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The object of the present paper is to develop rather systematically some general
families of bilinear, bilateral, or mixed multilateral generating functions for the
classical Laguerre polynomials. Numerous straightforward consequences of some of
the results considered here frequently appear in the literature, especially from the
viewpoint of Lie groups and Lie algebras. It is also pointed out how the main
generating functions can be suitably applied to derive numerous further results
involving Laguerre polynomials and various other related polynomials. ¢ 1993

Academic Press, Inc.

1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES

In the usual notation, let

oo e (nFa) (=x)F
L(")(x)_kg(,(n—k) P (1.1)

where L{*(x) denotes the classical Laguerre polynomial of order « and
degree n in x. These polynomials are orthogonal over the interval (0, xc)
with respect to the weight function x%¢~¥; in fact, we have (cf,e.g.,
Rainville [10] and Szegd [15])
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(Re(a)> —1;mneN=NuU{0}; N=1{1,2,3,..}),

where §,, , denotes the Kronecker delta.
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Just as the other members of the family of classical orthogonal poly-
nomials (e.g., Jacobi polynomials, Hermite polynomials, Gegenbauer (or
ultraspherical) polynomials, Legendre (or spherical) polynomials, and the
Tchebycheff polynomials of the first and second kinds), the Laguerre
polynomials can be expressed as a hypergeometric function:

Lf)(_r):(n:a)1F,(—n;oz+l;x), (1.3)

where | F, is the (Kummer’s) confluent hypergeometric function which
corresponds to the special case u=1v=1 of the generalized hypergeometric
function ,F, (with ¥ numerator and v denominator parameters) defined, in
the notations of Leo Pochhammer (1841-1920) and Ernest William Barnes
{1874-1953), by

qu‘(als ey au;ﬁh ey ﬂ,, Z)

[ SUR, 2 x (o), 27
= F, e Ak 2
[Bls""ﬁx’ ] g (ﬁ) n
(usv+liu<v+l,jzj<oou=v+lLze={z:|z|<1};
u=v+1l,zed¥=1{z:|zl =1}, Re(w)>0), (1.4)

provided that no zeros appear in the denominator; here (4), is the
Pochhammer symbol defined by

) T2+ (1, if n=0, (15)
Ty AA+ D) (A+n—=1),  if neN, :
and (for convenience)
w=3 B- 3 . (16)
F=1 J=1
Clearly, (1.5) yields
(—=n)=0 (k=n+1,n+2,n+3,..;neN,), (L.7)

which accounts for the fact that a hypergeometric function ,F, would
reduce to a polynomial whenever a numerator parameter is a non-positive
integer. More importantly, since
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which follows upon reversing the order of terms in the finite sum for either
side of (1.8), the Laguerre polynomials in (1.3) can also be expressed in the
form:

(—x)"

L) =
n.

JFo(=n, —x—n;— —x ) (neNy). (1.9)

Some important special cases of the generalized hypergeometric function
.F, include (i) the confluent hypergeometric function | F, studied by Ernst
Eduard Kummer (1810-1893), as we pointed out above; (ii) the celebrated
hypergeometric function , F, introduced, in the year 1812, by Carl Friedrich
Gauss (1777-18535); (iii) the function , F, introduced, in the year 1828, by
Thomas Clausen (1801-1885); and (iv)the function ,F; studied by
Francesco Giacomo Tricomi (1897-1978) and Edmund Taylor Whittaker
(1873-1956), among others.

For the Laguerre polynomials, the following generating functions are
well-known:

iLL”(x)z"=(1—z)**"exp(—f_i;) (<1 (110)
n=0

i L "(x)=(1+1)e ™  (Jj<1). (1.11)
n=0

In view of the representation (1.3), the generating functions (1.10) and
(1.11) are actually contained in the hypergeometric identities

Z (4), —Hy oy, e Xyl
F, z it
Z n! u+ 14 ﬁla"-aﬁv;

TR A 0y, o, _i:l
=(1—1) u+1FU[ Bino B T (Irl<1)  (1.12)
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and

i ()“)n F |: —Ah, Ry ey Ayys "] e
+1 84 . z
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Bh i) ﬁt;

respectively. For a systematic and detailed account of these and more
general hypergeometric generating functions, the reader is referred to a
recent treatise on the subject by Srivastava and Manocha [14].

Some useful generalizations of the classical results (1.10) and (1.11)
include the generating functions

= [fm+n . "
Z( » )Li,.i"(x)t
n=0
xt ]

— (=g exp(————> L‘;’(l—z—t) (Il < 1:meN,)

:(l—t)qu,‘[ z] (71 < 1), (1.13)

1—1
(1.14)

and

L (m+n
("L

n=0

=(1+0)%exp(—x) L'(x(1+1) (| <l;meNy), (L.15)

which, in the special case when m =0, would immediately yield (1.10) and
(1.11), respectively. With a view to obtaining bilinear, bilateral, or mixed
multilateral generating functions for the Laguerre polynomials L‘*)(x) and
L~ ")(x), several workers have successfully applied the generating
functions (1.14) and (1.15). The most general applications of the generating
functions (1.14) and (1.15), of the type just mentioned, yield two classes of
mixed multilateral generating functions for L{*(x) and L*~")(x), which
were given by Srivastava [13, p. 231, Corollaries 8§, 9] and which have
since been reproduced by Srivastava and Manocha [14, pp.424-425,
Corollaries 8,9]. For the sake of ready reference, and in yet another
attempt to help avoid unnecessary rederivations of obvious special cases
of these results by current as well as future researchers on the subject,
we choose to recall the aforementioned results of Srivastava [13] as
Theorems A and B below:

THEOREM A (cf. Srivastava [13, p. 231, Corollary 8]). Corresponding
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to a non-vanishing function 2 (y,, .., v,) of s variables v, .., vy, (se N) and
of (complex) order p, let

x

1 e e R - \ y ) -
A:n,)p,q[v\s _1 [s oo } ¥ “] - Z anLira:L qn('\ ) Q;l + /m( ,]’ 15 oo _‘ .\) ~”
n=0

(a,#0;meNy; p, geN), (1.16)

where x is a complex parameter. Suppose also that

nm.g

iy ( m+n

N (yl""’ .V.\';:): Z n—(]k) akQu+ pk(.Vl""’ }K)Zk, (117)

k=0

where, as usual, [ A] represents the greatest integer in A.
Then

o

Z L"::L"(X) Nlll,:t‘:l,q(}‘l 3ty }‘»\; :) ’"

n=>0
xt
=(1-z =™ 'exp<~ il )

1 —¢

~14

.A4h X o . . =t
Am.p.ql:l_ta,‘l’--w}n(l_I)q:l(lr|<l)a (118)

provided that each member of (1.18) exists.

THEOREM B (cf Srivastava [13, p. 231, Corollary 9]). Corresponding to
a non-vanishing function 2 ,(y,, .., ¥,) of s variables y, ... y, (s€ N) and of
(complex) order u, let

A(ri]p,q[X; Vis oo Vs :]

= Z aan:;;I,'.”(x) Q;t+pn( }’1’ sy .]".v) Zn
n=0
(a,#0;meNgy; p,geN), (1.19)

where o is a complex parameter, Suppose also that the function

NPE (po i, Ve Z)

n.myq

is defined, as before, by Eq. (1.17).
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Then

2 L XY NIm (Vs Vi)
n=0
=(1+1) exp(—xt)
g
(2 N e -
.Am.)ﬁ‘q[x(l+r),,1,,...,_;,‘,—(1+1)q] (il <1),  (1.20)

provided that each member of (1.20} exists.

As already observed by Srivastava [13, p. 232, Remark 97, since
£ = (=17 LY M) = e e x), (121)

Theorem 3 can easily be restated in terms of the (so-called) modified
Laguerre polynomials f7(x} defined by [9, p. 4, Eq. (9)]

(1—1) *exp(xt)= Y fix)r" (4 <1) (122)

n=0

or of the Poisson-Charlier polynomials c¢,(x;a) given explicitly by
[15, p. 35, Eq. (2.81.2)]

c(x;a)= i (—1)F <n><x>k!a"" (x>0;xeN,). (1.23)
P k/\k

In view of the frequent occurrences of the various obvious special cases
of Theorems A and B (and of the aforementioned known consequences of
Theorem B involving, for example, the modified Laguerre polynomials) in
the current literature on the subject (cf, e.g., [ 1, 3-7, 11]), especially from
the viewpoint of Lie algebras and Lie groups [14, Chap. 6], we aim
here at developing some substantially more general families of mixed
multilateral generating functions for the Laguerre polynomials by further
applying (1.14) and (1.15). We also present an analogous (presumably
new) application of the generating function (cf. [2, p. 142, Eq. (18)]; see
also [ 14, p. 172, Problem 22(ii)]):

x k
Y Li,“"’(x)%=e’L2”(x—t), (1.24)
k=0 .

which incidentally is an immediate consequence of the Taylor expansion of

e'L'P(x—1)
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in powers of . (For another application of the generating function (1.24),
see the recent work of Hubbell and Srivastava [8§, p.346].)

2. GENERALIZATIONS OF THEOREMS A AND B

One of our main results on generating functions for the classical
Laguerre polynomials is contained in

THEOREM 1. Under the hypotheses of Theorem A, let

(3) . -
Am,p,q[x’ yl’ cs Vs "-]
oo

= Z a"LL?::I’:'I")(x) Q#+I‘n(yl7 esey ,V,\-)Z"

n=0
(a,#0;meNy;p, geN) (2.1)
and

O%0P (X Yy, s Vi3 Z)

n.m.p

[7/q] m+n
= Z (n _ qk) aka::’;'qu)(x) Q;A+pk(yl 9 eeey ys) Zk? (22)
k=0

where p is a suitable complex parameter.
Then

>4

Z @i::’r;,pp(x; Vis e Vi :) t"

n=0
=(1—1)"*"" lexp (— lx_l t)

X ztd
Ay [IT Vi e )’,y;————*} (Jef<1), (2.3)

t’ (l_l)(p+l)ll

provided that each member of (2.3) exists.

Proof. Denote, for convenience, the left-hand side of the assertion (2.3)
by 4. Then, upon substituting for the polynomials

OX@P (X3 Vyy ey Vi3 Z)

nm, p
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from (2.2) into the left-hand side of (2.3), we have

x [ni4]

m+hn

A= Z " ( k) a LR (x) Q5 Vs s o) z*
n=0 k=0 174

1 ™M

= Z a Q“ + pk(yl' see ,V.\)(:’q)k

X (m+gk+n :
3 (T Lo

n=0 n

by inverting the order of the double summation involved.

The inner series can be summed by applying the generating function
(1.14), with m and « replaced by m+ gk and o+ ppk, respectively (ge N;
ke N,), and we thus find that

xt & X
4=(1 —t)“”"cxx)(———) Y oaclniat (“1 _,)
k

1—1) %

ot k
Qi Yis s ¥y) {m} (lrf<1).
Interpreting this last infinite series by means of the definition (2.1), we
arrive immediately at the right-hand side of the assertion (2.3).

This evidently completes the proof of Theorem 1 under the assumption
that the double series involved in the first two steps of our proof are
absolutely convergent. Thus, in general, Theorem 1 holds true for those
values of the various parameters and variables involved for which each
member of the assertion (2.3) exists.

For p=0, Theorem | would reduce at once to our earlier assertion
(1.18) given by Theorem A. A similar generalization of Theorem B can be
proven by applying the generating function (1.15) and the proof of
Theorem | mutatis mutandis, and we are thus led to

THEOREM 2. Under the hyvpotheses of Theorem B, let
A L Vi vzl = 3 a, Lt () Q, (Vs ) 2T
n=0
(a,#70;meNg; p,geN) (2.4)
and
DXEP (X Yy, s Vi3 T

nm.p

4 /o4 n '
=3 (néqk> a Ly ) Qs ¥ 25, (2.5)
k=0

where p is a suitable complex parameter.
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Then
ps
g, . s -
Z (pn.:’n.pp(x’ Vs wes Vi ~) "
n=0

=1+ 0y exp(—xt) AL [x(L+1); vy, vzt +0) V9]
(lr] < 1), (2.6)

provided that each member of (2.6) exists.

3. AN UNuUSUAL FAMILY OF BILATERAL GENERATING FUNCTIONS

In this section we consider the generating function (1.24), which
obviously is unusual in the sense that the summation index & appears only
in the order of the Laguerre polynomials. Nevertheless, on replacing «
trivially by o +m (me N,), it yields the generating function:

o ,k
L LEOx) =L M x =) (meN), (3.1)
k=0 .

which incidentally fits easily into the Singhal-Srivastava definition [12,
p. 755, Eq. (1)]:

Z Am‘kSm + k(x) ’k =f}(.\‘, ’){ g‘.\', ’)} " S,,,(h(x, ,)) (’ne N())s (32)

k=0

with, of course,

4 = |
mk — E’

and (3.3)

S(x)=L""F(x)  (keN,).

Thus the entire development stemming from the Singhal-Srivastava
generating function (3.1) will readily apply also to the generating function
{1.24) or (3.1). Alternatively, by appealing directly to the generating
function (1.24), we can obtain an unusual family of bilinear, bilateral, or
mixed multilateral generating functions for the Laguerre polynomials, given
by
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THEOREM 3. Corresponding to a non-vanishing function Q,(y,, .., y,) of
s variables y,, ..., y, (se N} and of (complex) order p, let

A;;S(:[Yﬁ Yis oo .v.s; :]
¥, -k

— Z akle+(p+1)qkl(x)Q k(,Vl’m’ _Vx) -
R n H+p (qk)'

(a, #0;neNy; p, geN), (3.4)

where o and p are complex parameters. Suppose also that

P ooiX5 Yis e ¥y52)

[kiq] k .
= Z (qr) arLLx+nqr+ )(X)Qu+pr(yl»“" v,z (3.5)

r=0

where, as before, [i] represents the greatest integer in A.
Then

A tk

Z WZ‘.‘;J_Z(& Yis wo VsiZ) Z_’

kK=o !

=e'AS [x—1 piy oy, 2t7], (3.6)
provided that each member of (3.6) exists.

The proof of Theorem 3, using the generating function (1.24) or (3.1), is
much akin to that of Theorem 1, and we choose to omit the details
involved.

For each suitable choice of the coefficients a, (ke N,), if the multi-
variable function

Qu(yl""’ y:) (S>1)

is expressed as an appropriate product of several simpler functions, each of
our results (Theorems 1, 2, and 3 above) can be shown to yield various
families of mixed multilateral generating functions for the Laguerre polyno-
mials. Thus, for example, each of the numerous assertions in the recent {(or
current) literature on bilateral generating functions for the Laguerre (or the
modified Laguerre) polynomials (cf, e.g., [1, 3-7, 11]), especially since the
publication of the monograph by Srivastava and Manocha [ 14], is actually
contained in one or the other of the results which we have presented here.
The detailed demonstration of this statement may be left as an exercise for
the interested reader.

409:174:2-15
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