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1. INTRODUCTION

A Room Square is a square of side v == 2n 4- | with the properties that (1)
each cell is either empty or filled by an unordered pair from v + [ symbols,
often denoted by 1, 2,..., 2, 00; (2) each row and column contains every
symbol exactly once, that is, there are precisely # blank cells in each row and
column; (3) each of the (v + 1) /2 unordered pairs of symbols occurs in
exactly one cell.

The definition given in the first paragraph is purely combinatorial; how-
ever, it was first pointed out by R. H. Bruck [4] that Room Squares were
itimately assoctated with quasigroups. One numbers the rows and columns
of the square from 1 to v, and then permutes elements so that one has a
normalized Room Square with the pair oo, 7, appearing in cell (7, 7). Then
binary operations 6 and ¢ are defined on G = {1, 2,..., %} as follows:

() IfxeG, yel, v+ y, and the pair x, y, lies in cell (a, d), then
x0y =. a, x¢y = b (thus 6 and ¢ are row and column selectors);

(2) x0x = xgx = x for all x e G.

Thus, (G, #) and (G, ¢) are commutative idempotent quasigroups (Room
quasigroups) on v elements and they satisfy the following orthogonality
conditions:

(1) ItpeG, xeG,yeq, xly = xdy = p, then x ==y = p;
(2) If peG, g G, p 5 q, then there is at most one unordered pair
x,y, with x € G, y € G, such that xfy = p, x¢y == gq.

As Bruck has pointed out in Ref. [4], not only does a Room Square produce a
pair of orthogonal Room quasigroups (G, ) and (G, ¢) as above, but the con-
verse holds; such an orthogonal pair produces a normalized Room Square by
reversing the construction. We shall find it most convenient to use the
combinatorial approach, and phrase our results on Room Squares; however,
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it is important to note that these results, as well as all other mentioned in the
references, can be interpreted as results on orthogonal pairs of commutative
idempotent quasigroups.

Historically, Room Squares were first defined by E. C. Howell (see Refs. [3]
and [6]) and by T. G. Room [12}], and a few early results appear in Refs. [1,
2,4, 18]. We shall have need of a number of more recent results, which we
tabulate here by letter.

(a) Thereis a Room Square of odd side v for 7« v = 47 (see Ref. [[5]).

(b) There is a Room Square of side o for any prime power v = p%,
provided that © is not equal to 3, 5, 257, 65537 (see Refs. [10] and [9]). These
exceptional cases occur among the Fermat numbers F), = 22" 1, and are
the cases Fy = 3, F; = 5, F; = 257, F, == 65537.

(c¢) 1If Room Squares of sides v; and v, exist, so does a Room Square
of side v;v, (see Refs. {13] and [14]).

(d) 1f Room Squares of sides v; and v, exist, so does a Room Square of
side ©y(v, — 1) -+ | (see Refs. [7] and [9]).

(e) If v is not divisible by Fy , Fy , F, , F, , then there is a Room Square
of side 2v + 1 (see Refs. [17] and [I1, Lemma 3]).

(f) Ifsisan odd prime power, s % F%, s 5= I, (where F, is any Fermat
prime), then there is a Room Square of side 5s (see Ref. [8]).

(g) It follows from (b) and (c) that, if » is not divisible by Fy, I, , Fy,
or F, , then there exists a Room Square of side .

A complete survey of the statc of the art in Room Square theory up to early
1970 is found in Ref. [16].

2. Probucts or F; (1 == 0,1, 2,3, 4)

We begin this section by noting that a Room Square of side F, = 17 is
known to exist, by (a). Hence, we leave further discussion of this prime until

Section 4. We let R ={F, , I, ,F, , F}.

LeMma 1. Let v =FpF(\F3Fy, for nonnegative integers ay, ay, ay, d,,
and denote ay -+ a, + a, + a, by w(v). If w(v) # 1, then there is a Room
Square of side ©.

Proof. 1If w(v) = 0, then v == 1, and there is trivially 2 Room Square.

If w(v) == 2, there are 10 values of v to consider. If v == F;2, for some
F, e R, there is a square of side v by (b). A square of side FyF; exists by (a).
For the remaining cases, we write FoFy = 7(111 — 1) 4+ 1; FFy, =
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19661(11 — 1) + 1; FiFy =107(13 — 1)+ 1; FyF, = 27307013 — 1) — L5
FF, - 21931769 — 1) + 1. Squares of these sides exist by (d) and (g).

If w(v) = 3, there are 20 possible values for v. If v —= F;? for some F, € R,
there is a square of side v by (b).

There is a square of side F2F, by (a). For other multiples of F(?, we write
FR2F, = 289(9 — 1) -+ 1; F3F, == 4337(137 — 1) - 1; and there are squares
of these sides by (d) and (g).

We dispose of the remaining multiples of F, as follows. Write
FyF 222037y +- 1y FuF? =2(99073) + 1, FF2 = 2(6442647553) + 1;
F P\ Fy == 2(1927) - 15 FoFy Fy = 2(491527) 4 1; Fo . F, = 2(25264513) — 1
Squares of these sides exist by (e).

We treat the remaining multiples of F2. Since F2F; = 73(89 — 1) -~ |
and F2F, == 204803(9 — 1) -+ 1, squares of these sides exist by (d) and (g).

There are squares of side FiF\? and F\F® by (f) or by consideration of
the number-theoretic identities F F,2 = 95((25(141 — 1) + 1) — 25) - 25
FF2 == 130948121(165 — 1) + 1. Also F\F,F, = (45083)(1869 — 1) =~ 1;
1869 = 21.89; thus squares of these sides exist by (a), (c), (d), and (g).
Since Fy2F, = (8454401)(513 — 1) + 1 and 513 = 19.3%, there are squares
of these sides by (a), (¢), (d), and (g).

To complete the case when w(z) = 3, we write
Fol? == 89539283(12337 — 9) + 9; 12337 = 169.73; 73 =909 — 1) + 1;

which shows the existence of squares of these sides by the methods of
Ref. [9].

Now if w(v) = 4, we can write © = 2,7, , where v, 1s a product of 2 (not
necessarily distinct) primes of @. Therefore w(v)) > 2 and w(v,) = 2. The
lemma follows by induction, using (c).

We now use the preceding lemma to prove:

TueoreM 1. Let U be the set of odd positive integers for which no Room
Square exists; let R ={F, ,F,,F;,F,}. Then there is a function p: U —> R
such that for eachve U

O p@) o, (@)1
(i1) no other member of R divides v.

Proof. Let v be an odd positive integer. We extend the definition of
w(z) given in Lemma | as follows. We write 0 = FpoF{tFj3F {4 == mn, where
(Foom)y==1, 1==0,1,3,4. We define w(v) as a, -+ @, + a3 + a,. Thus
w(v) == w(m), and if w(v) £ 1, there is a square of side v by Lemma 1, (c),
and (g). If no square of side v exists, then @(v) == 1. In this event, we denote
the unique member of R which divides v by u(%), and the theorem follows.
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3. SQUARES OF SIDE 5s

In this section, we eliminate the Fermat prime £y - 5 from further con-
sideration by showing that (for s =~ 1) a Room Square of side 5s always exists.
If 5 is a prime power other than 3¢ or a Fermat prime F, , the result is simply
(f). If s - 39, we appeal to (a) for @ -~ | or 2, and write 55 == 15.3% 2 for
a > 2 (then using (a), (b), and (c)). We then establish the following theorem.

o ok . . .
THEOREM 2. Let Fy == 2% -1 1; then there exists a room square of side SI), .

Proof. Since SF, = 15, 5F, = 25, we sce that (a) permits us to assume
that & 2. Then 5F, = (522" |- 4) + 1 = 4(5.222 .~ )b | — 4R 4 1.
For & 2= 2, we see that 2 — 2 is even, and hence R =z 0 (mod 3), say R == 3.5.
Thus 5F, == 128 + 1.

Now F, = F,F, - F,, + 2, and hence the relationship 5F), = 125 — |
reduces to SF\F, - F,_, =45 — 3. This trinomial relationship at once
shows that (S, 3) == 1 and (S, F}) = | for ¢ > 0; hence, we have

SF, == 128 = 1 = 513 — 1) -+ 1,

and S is relatively prime to all F, . Then, by results (g) and (d), we see that
a square of side 5F, exists. Indeed, using the construction in Ref. [9], we have
the following:

CoroLLARY 1. There exists a square of side SF,. containing a subsquare of

side 13 (k == 2).

By virtue of Ref. [8], it is possible now to consider the general case 5s.
We do this in the following:

TurOREM 3. If v = 55, where s is an odd integer "~ 1, then there is a Room
Square of side v.

Proof. In Ref. [8] it is shown that therc is a Room Square of side 5p for
all odd non-Fermat primes p. By Theorem 2, there is a square of side 5p
for all Fermat primes p. Now let us assume that v is such that the theorem
fails. By Theorem 1 and the above remarks, v may be written as v == 5pr
where 7 is a prime and a square of side 7 exists, since # is not divisible by any
member of R. Thus there is a square of side (5p)" by (¢), and this fact contra-
dicts the choice of ©. Thus Theorem 3 is proved.

4. ProDUCTS OF FERMAT NUMBERS

We really only have to consider primes in the set of /;’s; of course, it is
not known whether there are any such for £ > 4. The following results can
be obtained.
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TueoREM 4. There exists a Room Square of side 3F),, for all k.

Proof. 3F, =9, 3F, = 15, and we appeal to (a). The case 3F, = 51
was first treated in Ref. [5]; so take & > 3. From the identity 3F) =
2(3.221 £ 1) b | = 206252 4 1)} | = 2(6.4° 1 - 1)L 1 =2R + 1,
we see that R = 0 (mod 5), say R —= 55, and deduce that 3F, = 108 - L.
From F,=2-+FJF, -+ F,.,, we obtain 3FF, -F.,-+1=2S and
deduce that (S, F,) == 1 for F; 5 5.

If (S, 5) =1, then 3F, = S(11 —1) + I, and (d) produces a Room Square;
if (S, 5) =5, write S = 547, where (7, 5) = 1; then 3F, - = 5*T(11 — 1) - L.
For a >> 1, a square of side 57 exists by (b) and (c); for a =1, by (f).
Hence we obtain the theorem, as well as

CorOLLARY 2. There exists a Room Square of side 3F, with a subsquare
of side 11 (k 2= 3).

For completeness, we mention the trivial result:

THEOREM 5. There exists a Room Square of side 17F,, for all k.

Proof. 'This follows from (c), since a Room Square of side 17 exists,
and (b); except for & =0, 1, 3,4. The first two cases are treated in
Theorems 3 and 4; the last two follow from [7F; =91(49 — 1) — 1,
17F, = 2579(433 — 1) 4+ 1.

TurorEM 6. There exists a Room Square of side 257F,, for all k.

Proof. Trom the preceding results, take & = 4. Then 257F, =
256(1 - 257.288) 4 [ = 256R < I. Since k>3, R—0 (mod 3), say
R =38, thus 257F, = 7685 4 1. Replace F), by 2 +— F . F, -~ F,_;, and
simplify to 257FyF, - F;_; -+ 32.19 = 256.5; this shows that (S, F;) = | for
all Fermat numbers F; . Thus, we have 257F, = (769 — 1)S -+ 1, and (g)
thus gives the result.

CorOLLARY 3. There exists a Room Square of side 257F, with a subsquare
of side 769(k = 4).

Finally, we establish the following:

TurorREM 7. There exists a Room Square of side 65537F,, for all k.

Proof. In light of the previous results, we may take 2 > 5. Then
65537F,. = 65536(3R) - 1. Also 65537F\F, - F,._; +- 4369] := 65536R, and
thus (R, ;) = 1 for ¢ > 0.

If R - 3%S, b+ 1, then a square of side R exists, and the theorem follows
from the relationship 65537F, = R(196609 — 1) 4 I, since a square of side
196609 == | 4 3.216 =4 4 3F F,F,F, does exist. If h=1, we write
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65537F, = (65536)9.5 4+ 1, where S is prime to all F,. Then 9.21 -
589825 — 1 - 5%(23593) -~ 1, and we know that a square of side 589825
exists. This completes the theorem.

We record an obvious extension in the following theorem:

THeorEM 8. If k and m are greater than 4, then a Room Square of side
F.F,, exists.

Proof. Squares of sides [, and F,, exist by (b). Hence we need merely
employ (c).

CoroLLarY 4. If © is a product of n (not necessarily distinct) Fermat
primes (n > 1), then a Room Square of side v exists.

Proof. We write v = PP,, where P involves primes F,, F, | F;, F,;
P, involves all other Fermat primes. Let there be r| primes in Py, r,in Py .
If r; = I, then a square of side P exists (Lemma 1); hence a square of side
PP, exists by (b) and (c). I r, - 1,r, - I, we may write PP, == {F,F)) P,,
where 715 0, 1,3, or 4; j > 4; F;P, .- P,. Then Theorems 3, 4, 6, and 7,
with (b) and (¢), give the result. Finally, if r; -= 0, we use Theorem 8.

5. Room SQUARES oF SIDE 3y
In this section we prove the following:

TuroreM 9. There is a Room Square of side 3s for all s -~ | except possibly
when s 1s a prime congruent to 3 modulo 4.

Proof. 1t is shown in Ref. [11] that there is a Room Square of side v for
all © > 3 such that v = 3 (mod 12). Thus, there is a square of side 3s for
all s > 1 such that & = | (mod 4). Let us assume that there is no square of
side v -~ 3s for some composite s - 3 (mod 4). Since s is composite, it contains
an odd number of prime factors (considering multiplicities). Thus either s
has a prime factor ¢ == | (mod 4) or at least 3 prime factors p, g, r, congruent
to 3 mod 4. In the latter casc, take ¢ = pg. Then = = 3tn, where n is not
divisible by F, , F;, or F,, by Theorem 2. Thus, there is a square of side n,
and a square of side 3¢, since ¢ -~ | {mod 4) and ¢ > 1. Therefore, there is a
square of side © by (¢). This contradiction establishes the result.

6. CONCLUSION

In our initial work Ref. [16] on the Room problem, we indicated the
problems which would need to be investigated tn order to prove a general
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existence theorem for Room Squares. Such a general theorem is now nearly
complete in that Room Squares have been obtained for all possible sides ©

except for (i) v == 3p, p a prime, p = 3 (mod 4); (ii) ¢ == 257n; (ii) v~ 65537n.

With the results of the present paper and those cited in it, we can improve

the list given in Ref. [16] of those orders v << 1000 for which the existence
problem is still unsolved; 42 values of © were listed in Ref. {16], but this list
has now shrunk to 13. These values are as follows:

17.
18.

69, 93, 129, 213, 237, 257, 321, 453, 597, 669, 717, 789, 933.
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