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1. Introduction

Let G be a connected reductive algebraic group over an algebraic cl&sofehe
finite field F, of ¢ elements; assum& has anfF,-structure with associated Frobenius
endomorphismF and let¢ be a prime distinct from the characteristic Bf. In [5,
Section 7.1] and [6] we outlined a program for the determination of the irredu@iple
characters of the finite group’, which showed that the problem may be largely reduced
(by induction) to an explicit determination of the Lusztig restrictidﬂkﬁ (x) of all
the irreducible characterg of G, for all rational Levi subgroupM of G. Here, and
throughout this paper, the word “rational” means “stable under the actiffi. &s shown
in [6], this problem may be addressed through the determination of the Lusztig restrictions
*R,\G,I (I,), whererl, is the generalized Gelfand—Graev character corresponding ®’the
conjugacy class of the rational unipotent elemestG” .

Now the characters;, are examples of class functions @f" which vanish outside
the unipotent set. Such functions form a vector space @uerwhich we denote by
Cuni(GF); it is the space of unipotently supported class functionsGorThe I, form
a basis of this space, and our strategy in this work will be to determine the map
*R,\G,I :Cuni(GT) — Cuni(MT) explicitly. We shall use Lusztig’'s orthogonal decomposition
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of the spacelyni(GF) into summands corresponding to “rational blocks” (see below)
and determinekR,a on each block generically, i.e. in terms of Weyl group data which

is associated with the block. In particular, we obtain a simple expression for the Lusztig
restriction of generalized Green functions. We then express the generalized Gelfand—
Graev characters in terms of this basis to describe their Lusztig restriction. In [6] we
computed‘Rﬁ of the generalized Gelfand—Graev character which corresponds to a regular
unipotent class. In this work, we apply the general method to carry out the corresponding
computation explicitly in the subregular case.

Our general result ohRﬁ of generalized Gelfand—Graev characters (Proposition 6.10)
essentially reduces this computation to the two problems of finding the Poincaré
ponnomiaIsFN’L,K of certain intersection cohomology complexes on closures of unipotent
classes, and to the computation of induction-restriction tables for twisted characters of
Weyl groups. In Section 8 we also prove a result (see Theorem 8.1) which reduces these
computations in the case of $to the case of GL., for various:’. These investigations are
part of our strategy of reducing the computation of character values to the case of “high”
unipotent classes in the usual partial order.

The first five sections of this paper consist largely of a recasting of the of work
of Lusztig, which may be found in [11,12,14], in a form which permits practical
computation. They also contain several orthogonality relations for Green functions and
their generalizations, which are proved by relating the inner produci,i(G*) to
the inner product of twisted class functions on a Weyl group. In Section 6, we prove
orthogonality relations for the generalized Gelfand—Graev characters in the same way, in
addition to determining their Lusztig restriction. By and large we maintain the notation
of [6]. We shall rely on the context to distinguish between the Frobenius endomorphism
F of anF,-groupG and the automorphisms, also denotedwhich are induced by
on reflection groups (such as the Weyl group) which are associated3wittihroughout
this work we shall freely use the character theory of cosets of a finite group, for which the
reader is referred to [3, (0.4)] or [8]. Characters of cosets are also sometimes known as
“twisted class functions”.

2. Preliminaries

Let « = (C,¢) be a pair consisting of a unipotent class &f and an irreducible
G-equivariant),-local systent on it; thenC will be called thesupportof : and sometimes
denotedC,. If we fix a non-trivial additive characteyp of the prime fieldF, of F,, as in
[6, 1.6] we may define a generalized Gelfand—Graev funcfipassociated with; one
of our objectives here is to express Lusztig restrictions of generalized Gelfand—Graev
characters in terms of generalized Gelfand—Graev characters.

As in [6], if the pair¢ is F-stable, we shall follow Lusztig [12, 24.1-24.2] in making a
specific choice of an isomorphism: F*; = ¢, and we denote by, the characteristic
function of ¢ which corresponds t@, and by &, the characteristic function of the
intersection cohomology complex ¢f (for u € CF, we haveX,(u) = ),(u)). The set
P of all pairs: is partitioned into “blocks”Z, each of which has an associated cuspidal
datum(L, ¢p = (Co, ¢0)) whereL is a Levi subgroup of some parabolic subgroup3f
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which is unique up t@-conjugacy. If the block concerned is rational, then as explained in
[6, 1.4], bothL and the parabolic subgroup may be assumed to be rational. The pairs in the
block Z are in bijection with the irreducible characters of the grétigp(L) = Ng(L)/L,
which is a Coxeter group. If is a rational block an@, is the character associated in
this way tot = (C, ¢) € ZF, then an extensiof, of ¢, to Wg(L) x (F) determines an
isomorphisme : F*¢ — ¢ as above. In this work, we shall always chogseo be the
“preferred extension” described in [12, 17.2] (as Lusztig does in [12, 24.2]).

The functiong), form a basis of the space of unipotently supported class functions on
G’ ast runs over the seP’ of all rational pairs. For a given block, the functions¥,
form another basis of the space spanne{dy,.z~, and if we writeX, = >, P .V« then
the P, , are polynomials iy with integer coefficients We havg, , = 0 unlessC, C C,
and if C, = C, then P, , = 5., (see, e.g., [14, 6.5]). We will assume from now on that the
pairs: have been totally ordered in such a way tiatc C, = « <. Then the matrix
(Pc.) is~upper unitriangglar.

Set X, = ¢“ X, and ), = ¢), wherec, = 3(codimC, — dimZ,). Then we have
X, = ZK PK,tyl(r WherePK,t = qc,fc,( Py..

Remark 2.1. We shall speak below of “complex conjugation” in the fiéld, denoted

by a — a. This is justified by noting tha®), is abstractly isomorphic t&. In practice,

we shall apply this notion almost exclusively to the subfielgfwhich is generated by

all roots of unity, on which conjugation is uniquely defined since it figeand inverts
roots of unity. We therefore speak of “real” values (meaning fixed by conjugation) and
“complex conjugates” in this context. The spakgi(G’) is then an inner product space
with Hermitian form defined by

(f,8)er =1GI™H Y fx)gx).

xeGF

Remark 2.2. The cuspidal datuniL, o) defines a unique blocky of any Levi subgroup
M of G which contains a5-conjugate ofL. AssumeM andL rational, and letl.’ =
Intg(L) := gL g~ 1) be a conjugate df which is rational and contained M let Mg > L

be the conjugate Int~1(M) of M. Definew € Wg(L) by w = g~1F(g) € Ng(L). Then
(L', F) is conjugate tolL, wF) and Mg is w F-stable; moreover we may identify (via
Intg=1) (M, F) with (Mg, wF) and henc&Wy (L"), F) with (Wnmo(L), wF), CunitM )
with Cuni(Mg’F) and (Zw, F) with (Zm,, wF). A particular case of this occurs when
Mo = L, when we refer to the twisted versionlofasL ,, (for w € Wg(L)). The cuspidal
pair (g of L is taken by Intg) to a cuspidal pair ot ,,. The corresponding characteristic
function onL % is likewise taken by ! to a function orL ¥, which we denote by, .

We recall that Lusztig inductioR,a has an easy description in terms of the functiahs
which applies with some restrictions gnandg. The results of this paper will depend on
this, and hence we shall assume, sometimes without explicit mention, for the whole of our
work that (cf. [6, 3.1]) the characteristje is good forG and thaty > ¢o(G), a constant
which depends only on the Dynkin diagram®@f
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Proposition 2.3. Assumep good andg sufficiently large, and thatl contains a rational
conjugatd.,, of L asin Remark.2. Assuméas we may, by the above discussithatL ,,
is a split Levi subgroup d¥1. Then for. € Z);, we have

. ~ ~ L).F - ~ . L

0] Rﬁ (X) = err (@, Res%i)()l_)_wF w)wMO(L).wFXx, where Rﬁ is the Lusztig in-
duction functor,

. ~ L).F ~ = e

(i) (¢, Re Ei(f_)_wF i)Wy (Ly.wF = O unlessC, C G, C IndS C..

Proof. Assertion (i) is in [6, 3.3]. Let us prove (ii). For the rightmost inclusion recall that,
from the definition of the induction of perverse sheaves, only gawsth support smaller
than that of the class induced from the suppotte#n have non zero coeﬁicientkﬁ (X).

. . . . L).F ~ :
To prove the other inclusion, first notice thatgf,, Re Eé(l)_).wF (p,()WMO(L).wF is non-zero

then so is{gp,, Re E(L(ﬂ) Pic) Wt (L)- But it follows from formula (1) in [16, 1.2] that the
0

latter inner product is zero unless there exists a representatiyeiofC,.U whereU is the
unipotent radical of a parabolic subgroup admittMgas a Levi component. This in turn
impliesC, c C, by [5,5.8]. O

Remark 2.4. We shall often have a situation whelg is a rational Levi subgroup d&
which contains a rational conjugadte, of L, as in Remark 2.2. In this situation we shall
consistently assume € Wg(L) to have been chosen so tHa, is split in M, i.e., is
contained in a rational parabolic subgrouphdf In this casew € Wg(L) is determined
up to F-conjugacy inWg (L) and the functiorREw (X, w) is well defined (see [6, 3.2 and
3.3(2)])- This is implicit in the statement and proof of Proposition 2.3.

3. Generalized Green functionsand Lusztig restriction

In this section we shall interpret Lusztig induction and restriction in terms of ordinary
induction and restriction of twisted class functions on cosets of parabolic subgroups of
Coxeter groups. This will be done by defining a linear isomorphism between the spaces
of twisted class functions oWg (L) and a certain subspace of the space of unipotently
supported functions. Under this map, the (normalized) characteristic functions of the
F-classes oW (L) correspond to functions we define as “generalized Green functions.”
These are analogues of the ordinary Green functions (the latter corresponding to the
“principal block,” which is the unique block for whidh = T, a maximal torus o6) which
constitute a basis of the space of unipotently supported class functions. In order to compute
their Lusztig restriction, we shall relate the generalized Gelfand—Graev characters to these.

For the whole of this section, we fix a rational cuspidal datdm:y), where we
may assume thdt is split, i.e. is contained in a rational parabolic subgrouggsofLet
C(Wg(L).F) be the space d¥Vg (L )-invariant functions (i.e. class functions) & (L). F
and recall thatyni(GF) is the space of unipotently supported class function&6n For
eachw € Wg (L), we fix aw-twisted rational conjugate,, of L asin Remarks 2.2, 2.4, and
Xyo.w € Cuni(LE) is the class function o (see Remarks 2.2 and 2.4) associated wgith
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Definition 3.1. Let Cz(GF) be the subspace @%,,i(G’) spanned by the functiond), |
LeIf).

(i) Define the linear isomorphis@€ from C(Wg(L).F) to Cz(GF) by 0%(¢,) = X..
(i) For w e Wa(L) defineyur € C(Wa(L).F) by

10 if vF is notWg(L)-conjugate taw F,
YurWF) = |CWG(|_)(wF)|7 otherwise.

(iii) The generalized Green functioQSF is defined byQSF = 0%W(wr).

Note that since the (distinct), r form a basis of (Wg(L).F), the generalized Green
functionsQ®,. form a basis o€7(G").
We shall omit the superscript i@¢ and QSF when there is no ambiguity.

Proposition 3.2. We haveQ, r = RE X, ..

Proof. Since thep, form an orthonormal basis @(Wg(L).F), and (0, yuwr)wgwL).F =
O(wF) foranyd e C(Wg(L).F), we have

YwF = Z (@0, YwF)We ). Fo = Z p(wF)g,,
eZ¥ eZ¥

whence by linearity

OQur = Z @L(WF)-)FL' (31)

eIl

But by [6, 3.1] we have

F=We®|™ Y GRRE (Xon). (3.2)
veWg (L)

Now in (3.2), the summand correspondingutoc Wg (L) depends only on th&g(L)-
class ofwF. To see this, observe that the functidp , is invariant under conjugation by
Ng(L,)F, so thatRfU X,,.» depends only on th& ' -class ofL,,, which is parametrized by
the W-class of the coséV| .vF, or by theWg (L )-class of the elementF € Wg(L).F.
Since thep, take real values, the second orthogonality relation for them reads

- - _]0, if vF is notWg(L)-conjugate tav F,
D PG @F) = { ICwewy(wF)|,  otherwise.
L

Substituting (3.2) into (3.1) and using this relation, the result follows.
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It follows from this proposition that our generalized Green functions are the same
as those in [12, 8.3.1], sinagoX,, is the restriction to the unipotent elements of the
characteristic function of the perverse sheaf denoted b¥ /€)[dim(%)] in [12, 8.2] and
for cuspidal local systems, Lusztig's induction coincides with the induction of perverse
sheaves by [13].

BothC(Wg(L).F) andCz(G') have natural structures as non-degenerate inner product
spaces. Althougi®® is not an isometry, its effect on scalar products can be computed.

Definition 3.3. Define the functiorg € C(Wg(L).F) by 2L (wF) = |Zz*F| = |ZE§|.
Proposition 3.4. We have, for any two functiolis¢ € C(Wg(L).F),
(0%©), 0°@P)gr = (200, 8) e Ly -

Proof. First note that [12, 24.3.6], suitably interpreted to take into account the distinction
between ourt,, and Lusztig'st,,, shows that

(/’E }K>GF =(ZE1¢L, ¢K>WG(L).F‘ (3.3)

Now in order to prove the proposition, it suffices to do s@amnd¢ run over a basis of
C(Wg(L).F) In particular, it suffices to take = ¢, and¢ = ¢,.. But then the statement is
precisely Equation (3.3), whence the resulty

It follows easily from the Definition 3.1(iii) and Proposition 3.4 that the generalized Green
functions form an orthogonal basis @f(G*). More precisely, we have

Corollary 3.5.

0, if wF andw’F are not conjugate itWg (L),

<QwF7 Qw’F)GF = M otherwise. (34)
iz
The formula (3.4) superficially seems different from [12, 9.11]. However the two

formulae are actually equivalent, although there is a power iof [12] which is absent
here. This is explained by the facts that in [12, 9.11] the inner product used differs from
ours, in that it does not involve conjugation, and that the formula given there is for the
inner product of two Green functions corresponding to contragredient local systems, with
contragredient Frobenius isomorphisms. In Lusztig’s notation, if the characteristic function
of the sheafF with Frobenius isomorphismy is f, then the characteristic function &t
with Frobenius isomorphismy’ is g% F (see the computation in the proof of [12, 9.8]);
this, in conjunction with the fact thdt,a commutes with complex conjugation, shows the
formulae are equivalent.

Remark 3.6. The preferred extensiagnof the alternating characterof Wg (L) will play a
prominent rbéle in our work. A fact which we shall use repeatedly, and which results from
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the description in [12, 17.2] of the preferred extension, is&hatrivial on Frobenius, i.e.,
forw e Wg(L), é(w.F) = ¢(w). Note also that since the preferred extension is redl, if
is the preferred extension corresponding toZ”, then there is a sign = 41 such that

@, ® &€ = g,¢;, Wheret is defined by, ® ¢ = ¢;.

Let H be any linear algebraic group with a Frobenius morphismH — H which
corresponds to al, -structure orG. Let T be a maximally split maximal torus ¢f and
write R, (H) for the unipotent radical ofl. Then the Weyl groupy = W (T) acts as a
reflection group orY (T) ® R, and F' has an induced action g% on this space, wherg¢
is a linear transformation of finite order (cf. [4, p. 40]). Writé., f>..., f¢} for a set of
basic invariants oW and letd; = deq f;). It is known (cf. [17, 6.1]) that thef; may be
chosen to be eigenfunctions feri.e. ¢ f; = §; f; for eachi, wheres; € C.

Lemma 3.7. With notation as in the previous paragraph, we have
(i) The order ofH is given by

|HF| = gdmR(H)+3; (i =D l_[(qd,- —5).

1

(ii) If F is varied by keeping fixed and allowingy to vary, the order function irfi) is a
polynomial ing and

|HF‘(q—1) :q—dimHsH‘HF

q/a

where, for any linear algebraic grould we writesy = (—1)Faak ofH and where we
denote byH |/ the part prime tay of |[HE|.

Proof. The formula in (i) is well known (see, e.g., [10, 1.8]). Part (ii) is obtained directly
from (i), taking into account the following three facts. First, it follows from [17, 6.5(i)]
that the eigenvalues af on ¥ (T) ® R are thes; *; secondly, ifs; # 8%, both occur

as eigenvalues aop in the same degree. The latter fact follows becagiss real, and

S0 its eigenvalues come in conjugate pairs. As a consequence, Wﬂlneqﬁé — &) =
]_[l.(qdi — 5;1), which is required for the identity (ii). Finally, one needs the fact that
en = detymygr(—¢) which holds because for any automorphignof finite order of a
lattice ¥, we have dgtgr(¢) = (—1)? whered is the codimension of the fixed point
subspaceop in Y @ R. O

Remark 3.8. In this work, we shall encounter several functions, whose definition generally
involves the number of -fixed points of some variety on which acts, and which are
(Laurent) polynomials iry. This means that i$ remains fixed but; is allowed to vary

as in Lemma 3.7, they are Laurent polynomialgirExamples of such functions include
the orders off',-groups (as in Lemma 3.7)3;,,(, and for a unipotent elemente G’ with

a fixed parametrization (e.g., in the Bala—Carter classification)r («), and |Cgr (1)|.

In the case of functions iGyni(GF), the term polynomial will be used when they are
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linear combinations of thg),, with coefficients which are polynomials in the above sense.
For any such functiory'(¢), we use the notatiorf* to denote the function defined by
f*(q) = f(g~1). The)), are fixed by this operation.

The next result gives some properties of the functipne C(Wg(L).F).

Lemma 3.9. () We have z>7| = | 2% | 30 _o ()N (vF)g'~ (~1)" wherel = dimZz? —
dim Zg and wherer is the restriction toWg(L).F of the character of the representation
of Wa(L) x (F) onY(z?/Z2) ® R, which is an extension of the reflection charactef
We(L). _

(i) We havez| (¢ 1) =7, g M2 2 (¢).

Proof. We havelZXF| = |z | Y, (—1) Trace&vF|H(ZD /Z2)). As in [2, proof of 5.7]
or [10, (1.4)], we have

|z =28 Y (=D q' TracdvF. A'Y (20 / 22))

1

where! = dimz? — dimZz2. Now the spacet (z?/z2) ® R realizes the reflection
representation of the Coxeter grodig(L), as can be seen from [11, 9.2] and [7,
Theorem 6], and part (i) of the lemma follows.

For (ii), let v € Wg(L) and consider the torug?, with Frobenius actionF. From
Lemma 3.7(ii) applied here, we havg"|(¢~%) = ¢}, ¢~ 4M%|z>F|(¢), where

/ F,-rank of Z with Frobeniusv F
ez, = (=D - .

But, sinces(vF) = deg,(ze)(v) (recall thatv acts trivially onZg and that: is the trivial
extension), we hav‘e(ZL =¢ez ¢WF). D

WhenG is quasi-simpleWg (L) is irreducible, so that is irreducible. We then have
Lemma 3.10. Wherr is irreducible,r is the preferred extension of the reflection character.

Proof. The lemma is a consequence of the definition of the preferred extension in [12,
17.2], and the fact (which can be checked by tracing through [11, 9.2]) that if we write
F=g¢onV =Y(z2/22) ® R so that is the extension of in which F acts viag, the
automorphisng stabilizes a set of positive roots of a root systemiy(L ) in V. We need

only consider the case whehnis non-trivial, so thal Wg (L), ¢) is of type?A,,, %Ee, °D4
or2D,. In the cased4,,, %Es, in the language of [12, 17.2] one has= 1 so the preferred
extension is the one wher& acts by—wg, which agrees withp. In the case’D4, the
preferred extension is the only rational one so again agreespwitmally, in the caséD,

one checks from the description in [12, 17.2] that the preferred extension is the one which
realizes the reflection representationByf~ D, x (F), and indee@ acts as a reflection,
since it acts by exchanging two of the simple roots and fixing the others.
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If G is not quasi-simple the groufyg (L) is a direct product of the irreducible Coxeter
groupsWg, (L) whereG; runs over the quasi-simple component§€ofThe representation
of Wg (L) on Y(ZE/Z%) ® R decomposes into the sum ovesf summands isomorphic to
the reflection representationof the componeng, (L) on Y(ZE/Z&) QR tensored with
the identity representations of the other components. The actiBrpefmutes the; in the
same way it permutes ti@;. Since the preferred extension of the identity is the identity, it
follows that if G; is F-stable, the extension of which appears ity (Z2/Z2) ® R is the
preferred extension of.

We now describe Lusztig restriction in terms of the generalized Green functions,
which form a basis of the spac&ni(G’). Letw € Wg(L) and suppos#/ is a rational
Levi subgroup which contains a rational conjugatg of L. Then we shall use the
identifications explained in Remarks 2.2, 2.4 to consi@ét as a linear isomorphism
betweerC(Wm,(L).wF) andCz, (MF).

Theorem 3.11. LetM be a rational Levi subgroup of some parabolic subgrouofhen
*R,\G,I 0 Q¢ = 0 unlessM contains some rationab-conjugate. ,, of L, and if this condition
holds, then in the above notation, we have

; G G_ M (L).F

(i) *Ryy 0 0°=0MoRe ;O(L).wF,

. We(L).F
(i) RS oQOM=0%0 Indwag()l_).wF.
Proof. We need only verify the statements on a basis of the relevant space of functions.
We start by proving (i), for which it suffices to evaluate both sidest®fior ¢ € I,Cl. By
Frobenius reciprocity, Proposition 2.3(i) can be written as

R (%) = 32 (Indy 0, r P Pl 1y 2 @0)

keI

G We(L).F ~ ~ ~ \_ G We(L).F  ~
Q ( Z <IndWM0(L).wF Pus ‘pK>WM0(L).wF‘/’K> =0 (IndWMO(L).wF ‘/’t)’
keIF

whence (ii) follows.
Now taked € C(Wg(L).F) and considetfRS o 0®(6). The spac€uni(M¥) has a basis

Uz, (X, | e Z},") whereZ}, runs over theF-stable blocks oM. Now

("R © QC(©), X))y r =(Q°©O), R (X.))gr

and by Proposition 2.3 the functidh,a ()?L) is in CI’G (GF), whereZ is the block ofG
corresponding t@,, . Thus the scalar productis 0f; is not equal t&. Furthermore, the
block T is of the formZg for some (unique by [6, 1.2]) block, of M only if M contains
aG-conjugatd.,, of L, whence the first statement of the theorem.

It follows also, that to prove (i), we need only show that for ahg C(Wg(L).F),
if we apply both sides of (i) t@, the resulting functions have the same inner product
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with any function inCz,, (MT). But Cz,, (M) is spanned by the function@™ (y-) with
¥ € C(Wm(Ly).F), so that it suffices to consider inner products with these functions. We
have

("R 0 Q°©@). QM (W))yr = (0% ©®). RG (O™ (1)) )sr
= (0%, 0% o Indye 07 p(W))gr by (i)
=0z ", Ind%ﬁ;f_’wa(w))WG(L).F by Proposition 3.4
= (20 Regi U O )y
= (0" oReqi (1, r0). Q" W)y
which completes the proof.O

Remark 3.12. Theorem 3.11 may be expressed as asserting the commutativity of the
following diagrams.

G

0
C(Wg(L).F) —— C7(GF)
Ind R,\G,I

Mo

CWao(L)wF) ~2== Cz,, (MET)

and

QG
C(Wg(L).F) —— C7(GF)

G
Res *Ry; \L
M

oo a
CWmo(L).wF) —— CIMO(MO )

As an immediate corollary, we have the following explicit formula for the Lusztig
restriction of the generalized Green functions.

Corollary 3.13. With notation as in Theore®11, we have

G HG -1 M
>kRM Oy = |WM0(L)| Z Qx(vF)x*l'
{xEWG(L)\x(vF)x*leWMO(L).wF}
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Proof. Itis easy to see that

(L).F -1
Re%EO(L).wF Yo = [Wio (L) Z VxF)x-1:
{xEWG(L)|x(vF)x*lEWMO(L).wF}

The result now follows immediately by applying Theorem 3.11(i) to the funcgtign O

The duality involutionDg (restricted toCz(G')) has an elegant description in this
setting.

Proposition 3.14 (Cf. [14]). Let Dg be the duality involutionthen

(i) We haveDg(Q,r) = né(wF)Q,r, where, for any reductive grou we write
ne = (_1)semisimplqu-rank ofG _ £GEZ
= — -

(i) The duality involutionDg : Cz(G") — Cz(G) corresponds unde®® to multipli-
cation byn & in C(Wg(L).F). In particular Dg(X,) = n_e,X;, wherel and g, are
defined in RemarR.6.

Proof. The statement (i) may be found in [14, Section 8] whose proof applies to the twisted

case without change. The first statement in (ii) follows immediately siiféés linear, and
the second statement follows from the relatiop ¢, = ¢,¢; (see Remark 3.6). O

4. Unipotently supported class functionsand twisted class functions on reflection
groups

For. e ZF define a functior, on Wg(L).F by

1 _
QwF) == " g “Vi(ta) Qur (ita) (4.1)

a,
acA(u)

where we fixu € CLF and setA(u) = CG(u)/Cg(u), a, = |A(u)| and takeu, to be a
representative of th& 7 -orbit in C¥ which corresponds to the-class ofa € A(u). The
function Q, does not actually depend on the choice: & CLF. Indeed, using the relation

al_l Z yL(Ma)yy(ua)zat,y (4.2)

acA(u)

(see [6, 1.5]) and (3.1), we obtain

QwF)= Y ¢,(wF)P,,. (4.3)

yeI¥
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The relation (4.3) justifies the remark above thais independent of the choice ofe ck.
Note also that the formula (4.3) makes sense even whenh; but then, sincep, ., =0
when: andy are in different bIocstL =0.

Proposition 4.1. For any unipotent elemente G, we have

Qur@) =Y 0uwF)Y,w). (4.4)

ezt

Proof. As remarked above, if¢ 7 then (4.3) shows that the corresponding summand of
the right-hand side is 0, since thén, =0 forally € Z¥'. So

Y 0wRYw =Y OwF)Y,®w).

eIF ePF

We now use the second orthogonality formula for 3hé:):

S V@) = { [AGT] i u~gr i, (4.5)

SF otherwise
L

where~gr meansG’-conjugacy. Thus

Y 0.wF)Y, () Y a7 Vi) Qur ) Vi(w)

eZF 1ePF acAu)

|A@)| AT |#a | ug ~gr 1} Qur@) = Qur@). O

Note that Equation (4.5) will often be used wher- u’ = u// for some rational unipo-
tent element.” and somez € A(u"), in which case we hav{a4(u)F| = |Cawny(@F)| =
|A")F|. The functions), form a basis o’z (GF) as: runs overZ¥. The next result
relates theD, to expansions in terms of this basis.

Lemma 4.2. (i) For any functionf e Cz(G"), the coefficient of in the basis), is

1 -
= > g Viua) £ (ta). (4.6)

L aeA)

(ii) For any functiord € C(Ws(L).F), we haveQ® ) = 3, 7# (6, 0w (wL).F -
(|||) The functiongQ®)~ l(y[) form the basis of (Wg(L).F) which is dual to the basis
{0.).

Proof. By Proposition 4.1 and the definition (4.1) ok, (i) holds whenf = Q,,r, and
since theQ, r form a basis oiC7(G’) and the formula (4.6) is linear irf, (i) holds
in general. Similarly, (i) holds wheA = y,,r, again by Proposition 4.1. By linearity,
(ii) holds generally. The statement (iii) follows immediately from (i)
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5. Lusztig'salgorithm and orthogonality relationsfor generalized Green functions
We shall require

Lemma 5.1. Let H be a finite groupx1, x2, - .. the irreducible characters off (over
a field of characteristic zejoand f any class function orlf which is non-zero at each
element off . Let f ~ be the pointwise inverse gf. Then we have the matrix equation

{(f_l)(iv XJ)H}[,]:{<fX“ Xj)H}:]l (51)

Proof. Since they; form an orthonormal basis of the space of class function& othe

left side of (5.1) is simply the matrix of the linear transformation induced by multiplication
by f~1, and the assertion is no more than the observation that multiplicatigiTbys the
inverse of multiplication byf. O

Lemma 5.1 remains valid wheH is a finite coset, the; are extensions té/ of the
irreducible characters of the underlying group, ghi$ a twisted class function oH .

We now recall the algorithm outlined by Lusztig in [12, Section 24] for the computation
of the polynomialsP, .. In the following, unless otherwise stated, we fix a bldcland
work in Cz(GF). Lusztig’s algorithm is based on the following matrix equation, which is
an immediate consequence of the relatior= ", ﬁ,“y,( and (3.3):

tﬁZF: {(-)?u f">G1’}L,K = {(lel(ﬁ" ¢K>WG(L).F}1,K

whereP = {P[ b andA={(,. ) ' )oF }i.«- We shall use the inverse of this equation:

~

PLAY P Y =8

where = (@ }ie ANAD, e = (2L G0, Pic) Wi (L).F» the inverse of the matrix on the right-
hand side being given by Lemma 5.1. The matfixmay be considered known (see
Definition 3.3) since it is given in terms of Weyl group data. The rows and columns of
A and P may be ordered in a way compatible with the order on unipotent classes; they
may further be ordered so that pairs with the same support form a connected sequence in
the order. Then is block-diagonal and block- -triangular with identity diagonal blocks,
the blocks corresponding to unipotent classes. Gietthere are unique matrices and
P of this shape which satisfy the above equation.

We note for future reference that Lemma 3.9 immediately gives

a)[,(—|Z |qu '( 1’ <¢[®§0K7~ >WG(L).F (5-2)
i=0

wherel = dimZz? — dimz2 and where' is the restriction toWg (L).F of the character

of the representation oVg (L) x (F) on ¥ (Z/Z2) ® R, which is an extension of the
reflection character of Wg(L).
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The following proposition is a generalization of [9, 1.1.4].

Coroallary 5.2 (Second orthogonality formula for Green functions).

(ZL ét’ éV)WG(L).F = {(yl’yﬁGF}:;

- 1C2(ua)"| .

a, ! Z %y[(ua)yy(ua) if C, = ny
acA(u)

0 otherwise

where notation is as if4.1).

Proof. Using the values given in (4.3) fab, andQ,, we obtain:

~ o~ -1

{(ZL élv éy)WG(L).F}t,y = ﬁ{<ZL¢Ks @K’)Wg(L).F}K’K/tﬁ: ﬁﬁtﬁ: {(ytv yV)GF}L,y‘

Now (37[, )7},)GF is 0 if C, # C,, and otherwise is equal to

3 |Cerwa)| V)Y, wo =a7t Y €3t TV wa P, e (5.3)

acHY(F,A(u)) acA(u)

To see (5.3), note th&t (u,), F) is isomorphic ta(A(u), a F), so that
|Car (a)| = |Caw (@F)||CEwa)".

Finally, it follows from (4.2) and Lemma 5.1 that the matrix whasey) entry is either
side of (5.3) is the inverse of the matrix who&ey) entry is the expression in the
statement. O

Remark 5.3. The matricesP and £2 have been defined block by block, but may be
extended in an obvious way to matrices for the wholeCgfi(G*), which are block-
diagonal for the various blocks; then the computation at the start of the above proof
shows in particular that()),, yy)GF}[—J} =0 if : andy belong to different blocks.

Corollary 5.2 in turn gives an orthogonality formula for te, 7, regarded as elements
of C(Wg(L).F) for a fixed value of the argument:

Corollary 5.4. For u a unipotent element @/, define the functio®_ (1) € C(Wg(L).F)
by O_ (u)(wF) = Qur(u) (for wF € Wg(L).F). Then

(0-00. 2L0- )}y

A Y |cg(ua>F|(Z y[(ua)y[(w)(z yl(ua)yt(u/)>
= acA(u) eZF eZF (5.4)
if u~gu',
0 otherwise.
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Proof. Applying Proposition 4.1 and then Corollary 5.2 to the left-hand side we get
(0@, ZL0- W)y L) r = <Z 0Y.w).> 2L éyify(u’>>
L Y

We(L).F

= Z yz(“)yy (M/){(yu j;y>GF }71

Y
LY

we then use that the matr[xi, )7},)GF}L,), is real to write the complex conjugate of the
expression in Corollary 5.2 and we get the resutt

If we sum formula (5.4) over all blocks, we obtain the simpler expression:

Proposition 5.5.

T VAN, — |CGF(M)| iflzt’\‘GF l/t/,
2I:<Q_(M)’ZL =l # {0 otherwise

whereZ runs over the rational blocks and where the superscfipn theQ _ indicates the
block from which it comes.

Proof. If u g u’, the left side is clearly zero. f ~g u’ then using Remark 5.3, the sum
over all blocks of the right-hand side of (5.4) is

lAw[™ Y |cg(ua>F\(Z y[(uam(u)) ( 3 yl(ua)y[(u/))
acAu) ePF ePF
Applying the second orthogonality formula (4.5) @, this reduces to

|AG| ™ > |Ceua) " [[A@ || AWHT]

{aeA)|ua~gru andu(,NGpu’}

which is 0 unless ~¢r 1’ and equal tch(u)| otherwise. O

6. Gelfand—Graev charactersand their Lusztig restriction

As in [14] and [6], forc € Z" andu € C, we definel;, = ", 5 (,) Vi (ua) I, » Where
I, is the generalized Gelfand—Graev character attached to the clags ahd other
notation is as in (4.3). We need here to assume phiatlarge enough for the generalized
Gelfand—Graev characters to be defined, @.g=,3(h — 1) wherer is the Coxeter number
for G.

Proposition 6.1. We havel’, = a,;7 0% (62 0}), wheret is a fourth root of unity(the
one associated t@ in [14, 7.2]whenG is split).
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Proof. We start from the formula [14, 7.5(b)] of Lusztig, which must be modified for the
case of a non-split group in a way hinted at in [14, 8.7]. We claim that for a possibly
non-split group, the equation [14, 7.5(b)] should read

— -1 ~ ~ > >
Lo=agiz ) [We®| ™ Y euP)@wr)|Z [Py g X, (6.1)
L weWg (L)

The only part of the generalization which is not obvious, and which is the source of
the coefficients,, in the above formula, is (as indicated in [14, 8.7]) the lemma [14,
~
7.2] whose statement should be changed for the general situation toAfepd =
. . ~ uni
¢7q@mG—dimZ)/2¢ ». The proof given in [14, 7.2] cannot be applied in our more general
case, since diff, has to be replaced by Tra@e| V,), which might vanish. Nonetheless the
generalization may be proved by considering a Frobenius twisted by varieu&g (L)
on the induced sheaf which Lusztig considers in that proof.
We now rewrite (6.1) as

I

agt Wo [ Y |22 Y ) B S Gy (wF)e, Xy
weWg(L) L l1

antYWe )|t 0 |22 Gw R B Y EwF)§, (wF) A,
weWg(L) L l1

by Remark 3.6

agt We )| >0 |22 GuwF) B EwF)Qur by (3.1)
weWg(L) L

agtT We )| > |22 B wF) O (wF) Qur by (4.3)
weWg (L)

The proposition now follows by Definition 3.1(iii). O

Let us writefg for the root of unity denoted byz in [6]. The point of this notation
is to distinguish;z and¢z, since they turn out to be different generalizations to non-split
groups of Lusztig’s constant.

Proposition 6.2. For any reductive group, letig := (—1)semisimple rank@)  Thenz, =
nLoLiz.

Proof. We have

(Dar, /’?,()GF = (I, DG/’?,()GF =nLec(I, /’?K) by Proposition3.14(ii)

GF
e 2010 T, (@) M X))y ) DY Proposition 3.4

HLSKaszl(éQZk, O We(L).F
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m_axfl(éf, @weL).r by Remark 3.6

= nat; P, by thex of (4.3).

The equation [6, 1.7] is transformed into this last relatiom_iffl is replaced by gfl,
whence the proposition.O

It will be convenient to use the normalizatidn = aflgzn. We shall now discuss
orthogonality relations among thié and among the’,, as well as the Lusztig restriction
of the I',. Note that from Proposition 6.1 it follows thatZfis a rational block ande Z*,
thenTl, € C7(GF).

Lemma 6.3. For any rational blockZ definel’” = 3", .7 V¥ (u) 1. If there is a pairn € 7

whose support contains, the orthogonal projection of, onto Cz(GY) is gflqclfuf;
otherwise it is0.

Proof. Using (4.5), the defining relation far, can be inverted to give
Le=|Aw|™ > Y.
ePF

If we restrict the above sum toe ZF we obtain the orthogonal projection &, onto
Cz(GF), since the various spacey (G) are mutually orthogonal. The lemma now
follows in straightforward fashion from the definitionso

Proposition 6.4. We havel'Z = 0% (2. 0* (u)).
Proof. Apply (0®)~! to the expression in Lemma 6.3 6} to get
(%) (T =3 Jrwiz ot
1eI¥

Now take the complex conjugate of ttieof the relation (4.1) and substitute into this
last equation. Taking into account that the functighsare real valued (i.e. stable under
complex conjugation), which is a consequence of (4.3) sincethee real, we obtain the
proposition. O

Corollary 6.5. We have(I}, Dgli)gr = eag Mm% (), Ve)or i, D)*, which is zero if
C,#C,.

Proof. We have

~ ~ _ 1, ~ - -1,~
(T Deli)gr = (201(°%) (1) n 8 (%) ™ (F)lwew).r
by Propositions 3.4 and 3.14(ii)
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77L<§77 ZLE@;)WG(L).F

ez q"M(0F, 2 Oflwow)r Dylemma3.o

= qud'mZL<Q;k, fo Qlt)WG(L).F sincenL =¢LEz
dmZz, (/1 » A
= &Lq L((le 2L QK)WG(L).F)

= 8quimZL ({(371’ §K>GF }_1

LK

*

)" by Corollary 5.2
The result now follows becaugg = g sincel is G-split. O
Corollary 6.6. Letu, v € G be unipotent elements arida rational block. Then
(7. Dol )gr =26q™™ ((0-w), 2L - W)y 1))
which is non-zero only it andv are conjugate irG.
Proof. We have, from Proposition 6.4, proceeding as in the proof of Corollary 6.5
(I}, DeTl)er = (FO* (), UngzLéi(U»WG(L).F
= nL{EQT W), 2L 0X (W) y Ly r
= ez q"MHEQ ), B2 O (W) )k
= SquimZL@i(”)’Zi@i(v))vve(L).F
= e1q"M™ ((0- ), 2L 0-W)) e 1))

and the result follows as in Corollary 6.5. The last remark is a consequence of the
evaluation of the right side in (5.4).0

Corollary 6.7. For any pairu, v of unipotent elements &%, we have

7 roifu~gru
I ,D ) = [SGSCG(U)ch‘L (u)|q | G_ s
Wi beli) 0 otherwise.

Proof. From Lemma 6.3, we sed},, D l) = > 7(¢7 g TL, ¢ ¢ Do I'F)gr where
the sum is over all blocks which contain two pairg whose support contains respectively
u andv. By Corollary 6.6 this sum s 0 if andv are notG-conjugate; otherwise we obtain

(T, DG Ty) = 86q ™M™ S (0L (w), 20 0L (0))y 1y.p)
7T

We now apply Propositions 5.5 and 3.7(ii) to complete the proaf.



F. Digne et al. / Journal of Algebra 260 (2003) 111-137 129

To describe the Lusztig restrictions of the we shall define the notion of “sign relative
to a block”. Suppos# is a rational Levi subgroup which contains a ratioBatonjugate
of L, as in Remarks 2.2 and 2.4.Tfh is a maximally split rational maximal torus &f
(and hence 06), the elementv € W (L) € Wg(To)/ WL(To). This element is uniquely
defined byM and the conditions oh,,, up to F-conjugacy inWg(L). The signez(M) of
M relative to the blockK is defined as-1 raised to the codimension lh(ZE) ® R of the
subspace ofv-fixed points on(ZE) ® R. It has also the following alternative definition:

Definition 6.8. With notation as in the previous paragraph, defipeM) := £©(w) where
C is the sign character d¥/g (L).

It follows from the remarks in the last paragraph that the right side depends only on (the
GF-conjugacy class ofyl.

Lemma 6.9. (i) In the notation of Remark®.2 and 2.4, there exist Laurent polynomials
R, ing (eI andy € Z})) such that

sL.F  x ~
Re wo (L) wF 0. = Z Ry Qy.
yeZh

We haveR, , = 0 unlessC, c C, C Ind$; C, .

(i) Maintaining the above notation, we haﬂe%ﬁ&f_’wa 5% = e7(M)EM, where

ez(M) is defined in Definition6.8 and wherez® (respectivelyé™) is the preferred
extension of the sign character Big (L) (respectivelyW,(L)).

Proof. Let R be the matrix with(:, y) coefficientR, , as in (i) of the statement. From
(4.3), we obtain the matrix equation

ﬁG {<¢7’ Reéﬁjﬁlg—(l)_)FwF ¢t/>WM0(L).wF }t/,y == RP M .

The first statement in (i) is now immediate, since the entries of the unitriangular matrix
PM are Laurent polynomials, whence the same is true of its inverse. The second statement
in (i) follows from Proposition 2.3(ii).

For (ii), letv.wF € Wy, (L).wF. Then

EG(v.wF) =sG(vw) =sG(v)sG(w) =M (w.wF)ez(M). O

Proposition 6.10. We have*Rﬁ (I) = 0 unlessM contains a rationalG-conjugate of_;
in the latter case, we have

Ry (1) =ez(M) Y RF, T3, (6.2)
yeZ

where notation is as in Propositidhi4and Lemma.9.
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Proof. Sincel; € C7(GF), it follows from Theorem 3.11 tha’tRﬁﬁ is zero unles
contains a rationab-conjugate ofL. We therefore také! as in Theorem 3.11. Now by
Proposition 6. 15, = QG(eZLQ ), and 2. € C(Wg(L).F) is defined in Defmmon 3.3.
By Theorem 3.11 we need only compute the restrictioriig, (L) of €2, Qt ,and a
straightforward calculation using Lemma 6.9 yields the statement.

Remark 6.11. As in [6], we refer to a block as regular if it contains a local system
supported by the regular unipotent class. It is a consequence of [6, Section 2] that for
regular blocks7 is independent of the ambient group and the rational structure, i.e.
depends only on the geometric data in the cuspidal syétemy). This is asserted without
justification in the proof of [6, 3.4] but can be seen as follows. From [6, 2.1] and [6, 2.5]
one has that7 is equal (in the notation of [6]) t@;LULag- up to a power ofy. Using

the Hasse—Davenport relation, one may compare the product of Gauss sums in [6, 2.4]
which applies to the case of twistéd to that occurring in a split group. One finds that the
products also differ by a factei_ o, . ThusZz = gIM in this case. In particular, this applies
generally to the principal block (whelnis a maximal torus). In general, the question as

to whether¢z = ¢z, in all cases amounts to the question of whethgris independent

of the Frobenius structure on the tripl&, C,,, t0). Although this point does not affect

the formulation of Proposition 6.10, it is relevant to some of the computations later in this
work.

Remark 6.12. Equation (6.2) may be expressed as follows:

Ry (@) =ex(M)zizt Y R ay Ty =ecemizly: Y Ri,a, T,  (6.3)
yeZh veZh

and the previous remark implies that in the regular case, the fépfghrﬁl isequalto 1.

7. Application totheregular and subregular cases

Our objective now is to apply Proposition 6.10 to some specific cases. The general
strategy will be first to compute (4.3) explicitly i and inM by computing certain
required vaIuesﬁ,K, and then to use specific knowledge of restriction of characters from
We(L).F to Wy (L).wF.

As an example, consider first the case whenp, wherep is a pair in the block with
support the regular unipotent class (such a pair is then the unique one with regular support
in the blockZ, see [6, 1.10]). Then the only non-zero term in the right hand side of formula
(4.3)is@,(wF), asP op =1 andP oy =0ifCp & Cy Moreover, ap has regular support

we haveg@, = Id. So we getQ,c = ldwgw) F, whence R AGA(L(l)_)FwF 0,6 = 0,u.
Applying (6.12) we get

a G
*pG __p
RMF,OG_a M8(;8|\/|Fp|v|
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Thus we recover Lemma 3.6 of [6].

Proposition 7.1. Consider anF-stable pairo with support a subregular class, of G
and denote by the corresponding blogkhen one of the following holds

() The representatiom, is a component of the reflection representatioof Wg(L). In
this case 0, = ¢id + ¢, and the block is regular. 5

(i) The representatiop, is nota component of for anyi; thenQ, = @, . In this case
the block may or may not be regular.

We shall refer to case (i) by saying thais standard Recall that a block is regular if
there exists a local systemnwith support the regular class and that in that case this local
system is unique and corresponds to the identity representati®a @f) (cf. [6, 1.10]).

Proof. We prove first that one of the two properties f@r andZ holds. This is done by
checking the tables of Appendix A. First we reduce to the case henquasi-simple
and simply connected. (& is not quasi-simple, a unipotent class is a product of unipotent
classes of the quasi-simple components. In particular a subregular class is the product
of the regular classes of all the components but one and the subregular class in the last
component. Although local systems depend on isogeny, Green functions do not, and hence
it clearly suffices to treat the simply connected group in each isogeny class, in which case
we may assume that the local system on such a class is the product of local systems on
the components. In particular, a cuspidal datum is a product of cuspidal data for the quasi-
simple components. All this shows that we can reduce the verification to the quasi-simple
(simply connected) case.

Itis then apparent from the tables that wignis the reflection representation, the block
is regular and that otherwigehas dimension strictly less than the reflection representation,
SO appears in no exterior power of the reflection representation.

We now prove the formula fo@(r in each case. We know thd, ,, is zero unless
C C C_,, ort=1y.So0P,, =0 unles, is the regular class or=o.

Consider first the case whénis regular: denote by the unique pair i€ with regular
support. If we take the rows and columns pertainingrtand p to be the last two, the
matrix equation? 1 A—1('P~1) = 2 which determine® and A has the form:

(o : Q)(o . o)( . o)z(._. )
0O o0 1 0 0 ... 01 cee Bpg Dpp
whereQ = (P15, tto = (A Y40 andp, = (A~Y), ,. We thus gety, + Q%u, =
Bo,o0 Qlp =B, p ANAL, = D, p-

In case (i) we apply (5.2). 164, ..., G, are the quasi-simple components®f we
haver™ = Zi1+~~+ik=i rl“1 Q- rka, wherer; is the reflection representation of the
ith component oWWg(L). So, using the remarks following Lemma 3.10 we have

(~ F/\i> _{1 |fl:1,
Yo7 lwewW).F =10 otherwise
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We then obtairis,,, = —1z2 14"t and@,,, = 1zYF |q' wherel is as in (5.2), whence
Q=—q,andP, , =q. _ _

In case (i), the above computation giveés, = 0, so the only non-zerf, , is Py s = 1.

It remains only to consider case (ii) for_a non-regular block, where dimension
considerations imply that the only non-zero eniy, is Ps ..

In either case, the value @, by is obtained by applying (4.3).0

Proposition 7.2. Assume that is an F-stable standard subregular pair in the regular
block Zg, and thatG is quasi-simple. LeM be a rational Levi subgroup dB, and let
Ci,...,Cy be the F-stable subregular classes M, which are in bijection with the set
of w F-stable irreducible constituentd; of M. Leto; be the pair corresponding to the
reflection representation d¥y, (L ); theno; has supporC; and is a standard pair in the
regular blockZy, . Moreover we have

k k
Regye ) r 0o = ((1 — g+ Go WF) = > o, (wF)) Om+Y 0o

i=1 i=1
wherepM is the pair with regular support iy .

Proof. Let Vg = ¥ (2°/Z2) ® R, and Vi, = Y(ZE/Z&O) ® R. By Lemma 3.10¢, is
the extension of the reflection representatiord@f (L) which occurs inVg, and by the
same remarks we have Trde@ F | Vi) = D ; ¢o; (VwF) for v € Wi, (L) (only thew F -

stable components occur when we take the trace of an element in théigpset). w F).

Thus if V is the kernel of the natural mapgs — Vv, we have R ;E)L(?_)FwF Fo =

Zfi’{(ﬁm + TracgwF | V)IH. Evaluating both sides abF we get TracéwF | V)
Go WF) — Y121 Go, (WF).

Now by [6, 1.10] since the blocKg is regular by assumption, the blodk, is also
regular. We know from the remark after the statement of Proposition 7.1 that the pairs
which occur in the restriction o, have regular or sub-regular support. Since the regular
class corresponds tll in any regular blockg; must have suppor€;, and thusoe; is
standard, so that by Proposition 7.1 we h@ye= Oy, —q 0 u.

The formula for the restriction of), results from this and the above formula for the
restriction ofg,. O

From Remark 6.12 and Proposition 7.2, we deduce
Proposition 7.3. For any standard subregular paér, we have
a a k
8G£M*R|\G/| I = a—”Fo,- + ﬁ((l—k)q + @o (WF) — Z(ﬁo,-(wF)>FpM.
%i P i=1

Similar computations can be made for non-standard pairs; however the end result does
not appear to have as clear a statement.



F. Digne et al. / Journal of Algebra 260 (2003) 111-137 133

8. Thecaseof SL,

We now discuss the case 6f= SL,,. According to [15, Section 5], cuspidal data are
indexed by characters of the cen#feof SL,,. Assume thaj is a character of ordet of
Z whered is a divisor ofn; theny corresponds to an equivariant cuspidal local system on
the regular class of a Levi subgroup of tyzp?_dl. We will denote byZ, the corresponding
block of G. The unipotent classes Gf are indexed by partitions of. Let C, be the class
indexed by the partitiorh of n. There is at most one local system 6y in Z,; such
a system exists when all the partsjofare divisible byd and we will denote it byf.
Wheny is the trivial characteu,j{ is the trivial local system oq’; , which is also the only
irreducible local system o@), in GL,. We will denote it simply by, in the latter case.

Theorem 8.1. The Laurent polynomiaﬁf’[‘x‘ for SL, is equal to the Laurent polynomial

P jantpa for GL,/q4, wherei /d (respectively/d) denotes the partition whose parts are
1/d times those of (respectively).

Proof. The proof consists of merely observing that the equations which detelﬁyme
and P, .., coincide. In either case the equation may be writtBnA;('P~1) = 2,
where Ay = [ZF |71 A7 and 2, = |z |712. In the present casé; acts trivially on

W (L). If, for ¢ € Irr(Wg (L)), we denote by, the corresponding local system, we have
according to (5.2):

[

(R0, = a7 (-Dip®¢, ey
i=0

We have two cases to consider: firsBy= SL,,, L of typeA:’/_d1 and secondlys = GL, 4,

L a maximal torus. In either case we haWg (L) ~ &,/4 and! =n/d — 1. Thus the
matrices(2; in the two cases may be identified through the bijection which maps the local
systemzf\‘ to the local system, ; (since, according to [15, Section 5] both correspond
under the generalized Springer correspondence to the charadtgypindexed by the
partition/d). To verify that the equations are the same, it remains only to check that the
rows and columns of the matri&, both of which are indexed by the irreducible characters
of 8,4, are ordered in the same way in either case. This ordering is induced by the partial
order on unipotent classes in either case, and the coincidence follows from the description
of this partial order in terms of partitions: we ha@g > C,, if and only if » > © where,

if A={A1,A2,...}with A1 > A2 > .. (respectivelyu = {1, 2, ...} With us > pu2>---)

this means that for allwe have,y +- - -+ A; > w1+ - - -+ u;. This condition is compatible

with dividing all parts ofA andu by the same integet, whence the result. O

The significance of the previous result is that in view of Proposition 6.10, the
computation of“Rﬁ of the generalized Gelfand—Graev characters, hence aofthand
through them of th@),, and hence of the characteristic functions of the unipotent conjugacy
classes for the group §Lis reduced to the same problem for various,Glwhich is in
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principle known. According to the program in [5], this is a step towards determining the
character table of Sl(q). The other essential step in this program is the determination of
*R,a of the irreducible characters, for which the work of C. Bonnafé gives a solution.

Appendix A. Local systemson the subregular unipotent classin good characteristic
for smply connected groups

We describe now the generalized Springer correspondence for local systems on the
subregular class for simply connected quasi-simple groups. The description for arbitrary
guasi-simple groups follows easily.

This appendix contains information extracted from [11,15,16]. Table A.1 contains the
following information:

The column ‘G” contains the type o6.
The column ‘C” describes the subregular claSsin Carter’s notation for exceptional
groups and by giving the partition associated to the Jordan form for classical groups.
The column “Dynkin—Richardson” contains the Dynkin—Richardson diagrath of
The column ‘A(u)” describes the grougd («) for an element: € C.
The column {” describes the local systetnconsidered oit; it is described by giving
the name of the corresponding characterAgf); this last group is when possible
described as a Coxeter group so the naming scheme for characters of Coxeter groups
(see below) applies. The exceptions are the cyclic group of order 3 whose characters
are denoted Iz, 2 and the cyclic group group of order 4 whose characters are denoted
1,i,—1,—i. If ¢ =(C,¢) let (L,tp) be the corresponding cuspidal datum, where
1o = (¢o, Co). In general there is only one cuspidal paitir(which is in most cases a
local system on the regular class) so neitigmor ¢p is mentioned; when there is an
ambiguity they are mentioned in the last column.
e WhenL is not a maximal torug or equal toG, the column L.” describes the Levi
by circling the nodes corresponding to simple rootk afh the Dynkin diagram of.
The simple roots o (L) in X (Z2/Z2) ® R therefore correspond to the unmarked
nodes of the same diagram.
e WhenWg (L) is neither trivial nor equal t&V it is described in the columnWg (L)”
by its Dynkin diagram, which has been decorated by letiebs . . . which appear also
on the un-circled nodes in the columh™to describe the correspondence between
simple reflections.
e The column %,” describes the character #fg (L) corresponding te. The notation
for characters of Coxeter groups is as followst Bndr always represent the trivial,
sign and reflection representation, respectively. Other linear characters are represented
by the Dynkin diagram labelled by the values of the character on the simple reflections.
The notation for characters @, is that from [1] (the charactep, , factors through
W (Fs)/ W(Dg) = W(A2) andis trivial on the reflections corresponding to a short root;
the characte¢>§’4 is deduced from it by the diagram automorphism). The characters of
W (By,) are parametrized in the usual way by pairs of partitions.



Table A.1

G C Dynkin—Richardson A(w) ¢ L Wg(L) 3
2 0
Go Go(a) — W(Ar) 1 T W(G2) r
-1 1
r T W(G») —
£ G 1 1 -
Fa Fa(ay) 2z, 2 2 WAy 1 T W (Fy) r o
€ T W (Fg) P4 E
2 2 0 2 2 @
Eg Eg(ay) . . . . 7)3 1 T W(Eg) r ~
| »
o2 ~
a b a -1 1 o
e o O T o o — — 8
B
¢2 same description; the cuspidal local system is the other one on the regular class o%
L > Slg xz(sLy) Sk ;‘
2 2 2 0 2 2 a
E7 E7(a1) = = . .|. = . W(A) 1 T W(E7) r o
*2 b d b d i
e S - "y 3
2 2 2 2 0 2 2 ° "5\’
Eg Eg(aq) . - - - T - * 1 1 T W(Eg) r \8/
2 2 0 52 2 B
An 1n-1) ¢ .—eo—2...0 1 1 T W (An) r =
n even 2’
An Ln-1 N S S S 1 1 T W(Ap) r
n odd
2 2 0
By, 1,1,2n-1) . . .e—=—o W(A) 1 T W(B,) r
€ T W (By) (Ln—1,9)

GeT



Table A.1 Continued)

G C Dynkin—Richardson A(u) L L Wg (L) o
Cy 2.2) P W(A7) 1 T W(Cy) r
e T W(C2) @,2)
Cn @221-2) b9l W(A? N T W(Cp) r
n>?2
(e, 8) T W(Cy) @, n)
(e,1) . .e—e—e—— W(C,_-1) @,1n—2)
1,¢) o .e—0o—o—— W(C,—_3) 1
2 2 0 2
Dy (3,21 -3 e 7/4Z 1 T W(Dy) r
n odd o
-1 .- o—o—T—o W(B,_2) (1n—3,0)
i S . -0 - o c W(B,—5) 1
2
(type Ds x A{'~>?)
—i same description; the cuspidal local system is also parametrized by the Dg
component of.
D B2n-3 .9 3wy 11 T W(Dy) r
» 21 — . 1 s n
n even b
=11 .- .—U—T—O W(B,_2) (1n—3,9)
[e]
(1, -1 o . o— o W(By2) @,n/2)
(type A%/?)
(=1,-1) o . o— o W(By2) @,n/2)

(type A%/?)

9€T

LET-TTT (£002) 092 ®Bigably Jo [euinor / ‘e 18 aubid 4
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A more precise description of the local systems wer Spin,, (the simply connected
semi-simple group of typ®,) is as follows:Asq,, (1) is isomorphic toW (A1); whenn
is odd it is the unique subgroup of order 2 4§ (1), while whenn is even it is the first
W(A1) in Agu).
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