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Abstract

The state spaces of machines admit the structure of time. A homotopy theory respecting this additional
structure can detect machine behavior unseen by classical homotopy theory. In an attempt to bootstrap
classical tools into the world of abstract spacetime, we identify criteria for classically homotopic, monotone
maps of pospaces to future homotope, or homotope along homotopies monotone in both coordinates, to a
common map. We show that consequently, a hypercontinuous lattice equipped with its Lawson topology is
future contractible, or contractible along a future homotopy, if its underlying space has connected CW type.
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1 Introduction

The state spaces of machines often admit partial orders which describe the
causal relationship between states. For example, the unit interval I equipped with
its standard total order represents the states of a finite, sequential process. Fig-
ure 1 illustrates the state space X of two sequential processes accessing a binary
semaphore. Thinking of the upper corner as the desired end state, we view mono-
tone paths I → X reaching the striped zone as unsafe executions of our binary
system, doomed never to terminate successfully. We can thus articulate critical
machine behavior in the language of partially ordered spaces.

A homotopy theory respecting this additional structure of time potentially can
detect machine behavior invisible to classical homotopy theory, as demonstrated in
[2]. A suitable theory should distinguish between the homotopy equivalent state
spaces given in Figure 2, for example. In an attempt to exploit classical arguments
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Fig. 1. State space of a binary semaphore, as in [2, Figure 7]

in a homotopy theory of preordered spaces, we seek criteria under which two homo-
topic, monotone maps X → Y of pospaces are in fact homotopic through monotone
maps. Certain cubical approximation results in [1] implicitly use one such criterion:
when Y is a convex sub-pospace of an ordered topological vector space. Lemma 3.2
identifies alternative criteria which do not require vector space structures: when X

is a compact pospace whose “lower” sets generated by open subsets are open and
Y is a continuous lattice equipped with its Lawson topology.

We can further refine classical homotopy theory, following [4]. Consider two
monotone maps f, g : X → Y of preordered spaces. We say that f future homotopes
to g if a classical homotopy from f to g defines a monotone map X × I → Y . We
call a preordered space future contractible if the identity on it future homotopes
to a constant map. Lemma 3.5 identifies criteria under which two monotone maps
X → Y homotopic through monotone maps future homotope to a common map:
when X is compact Hausdorff and Y is the order-theoretic dual of a continuous
lattice L equipped with the dual Lawson topology of L. We obtain the following
consequence.

Proposition 3.7 A hypercontinuous lattice equipped with its Lawson topology is
future contractible if its underlying space has connected CW type.

(a) (b)

Fig. 2. Partially ordered state spaces, as in [2, Figure 14]

It follows that a hypercontinuous lattice equipped with its Lawson topology is

S. Krishnan / Electronic Notes in Theoretical Computer Science 230 (2009) 141–148142



“past” contractible if its underlying space has connected CW type, by symmetry. In
§2, we review some basic definitions, examples, and properties of preordered spaces.
In §3 we prove Lemmas 3.2 and 3.5, followed by Proposition 3.7.

2 Preordered spaces

A preordered space is a preordered set equipped with a topology. An example
is a topological sup-semilattice (inf-semilattice), a sup-semilattice (inf-semilattice)
equipped with a topology making the binary sup (inf) operator jointly continuous.
A monotone map is a continuous, (weakly) monotone function between preordered
spaces. The forgetful functor

U : Q → T

from the category Q of preordered sets and monotone functions to the category T
of spaces and continuous functions has a left adjoint. We write Ü : Q → Q for the
composite of U with its left adjoint, and we write ε : Ü → idQ for the counit of the
adjunction.

For each preordered space X, we write �X for its preorder and

�X[A] =
⋃

a∈A

{x | a �X x}, �−1
X [A] =

⋃

a∈A

{x | x �X a}

for the “upper” and “lower” sets, respectively, generated by a subset A ⊂ X.

Example 2.1 In Figure 3, X1 is a topological sup-semilattice and

�−1
X1

[V1] = X1

for V1 the circled open subset of X1.

Example 2.2 In Figure 3, X2 is a topological inf-semilattice and

�−1
X2

[V2]

is not open in X2, for V2 the circled open subset of X2.

Example 2.3 [Counterexamples] The pospaces of Figure 3 are neither inf-
semilattices nor sup-semilattices, even though their underlying posets are complete
lattices.

Certain preorders are “continuous” in the following sense.

Definition 2.4 A preorder �X on (the points of a) space X is lower open if

�−1
X [V ]

is open in X for each open subset V ⊂ X.

An example of a lower open preorder is the trivial preorder on a space. The
class of preordered spaces having lower open preorders is closed under products and
coproducts.
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X1 X2

Fig. 3. Compact pospaces with and without lower open partial orders.

Lemma 2.5 All topological sup-semilattices have lower open preorders.

Proof. For each open subset V of a topological sup-semilattice L,

�−1
L [V ] = π2((V × L) ∩ sup−1(V )),

where π2 : L × L → L denotes projection onto the second factor, is open in L

because π2 is an open map and sup is a continuous function L × L → L. �

Recall from [3] that a pospace is a preordered space X whose partial order �X is
antisymmetric (x �X y �X x implies x = y) and has closed graph in the standard
product topology X × X.

Example 2.6 The preordered spaces in all of the figures are pospaces.

Pospaces are automatically Hausdorff by [3, Proposition VI-1.4]. Exam-
ples include Hausdorff topological sup-semilattices and Hausdorff topological inf-
semilattices by [3, Proposition VI-1.14]. In particular, continuous lattices equipped
with their Lawson topologies, which [3, Theorem VI-3.4] characterizes as compact
Hausdorff, topological inf-semilattices which have a maximum and whose points
admit neighborhood bases of sub-semilattices, are pospaces.

We can construct the “free continuous lattice generated by a compact pospace,”
following [3, Example VI-3.10 (ii)]. Let P denote the full subcategory of Q consist-
ing of compact pospaces. Inclusion i : L ↪→ P from the category L of continuous
lattices equipped with their Lawson topologies and continuous semilattice homo-
morphisms preserving maxima has a left adjoint

F : P → L

sending each compact pospace X with topology TX to the poset of all closed subsets
C ⊂ X satisfying C =�X [C], ordered by reverse inclusion and having topology
generated by the subsets

{A | A ⊂ V }, {B | B ∩ W �= ∅}, V, W ∈ TX , W =�−1
X [W ].

The unit is the natural map υX : X → FX defined by x �→�X[{x}]. The counit
is the infinitary infimum operator

∧
: FL → L.
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Lemma 2.7 Consider a compact pospace X. The inclusion

FX ↪→ FUX

is continuous if �X is lower open.

Proof. Consider an open subset W ⊂ X. The set

{B ∈ FX | B ∩ W �= ∅}= {B ∈ FX | �X[B] ∩ W �= ∅}
= {B ∈ FX | B ∩ �−1

X [W ] �= ∅}
is open in FX if �−1

X [W ] is open in X. The claim then follows. �

We can thus give a useful recipe for converting continuous functions into mono-
tone maps.

Lemma 2.8 For each compact pospace X having lower open partial order and each
continuous lattice Y equipped with its Lawson topology, the function

U : P(X, Y ) → T (UX, UY )

has a retraction f �→ (x �→ ∧
f(�X [{x}])).

Proof. For a continuous function f : UX → UY , the composite function

X × I
υX×I �� F (X × I) j �� FÜ(X × I)

F (f) �� FÜY
F (εY ) �� FY

V

�� Y,

where j denotes the inclusion function, is a monotone map by Lemma 2.7. This
composite sends x to

∧
f(�X [{x}]), which equals f(x) if f is monotone. �

3 The homotopy theory

We refine the classical homotopy relation, first by defining the “dihomotopy”
relation of [2]. Let I be the unit interval [0, 1] equipped with its standard total
order. Fix preordered spaces X, Y . For every pair of monotone maps

f, g : X → Y,

we write f ∼ g if f is homotopic through monotone maps to g, or equivalently, if
a homotopy Uf ∼ Ug defines a monotone map X × ÜI → Y . Following classical
notation, let [f ] denote the ∼-class of a monotone map f : X → Y , and let [X, Y ]
denote the set of all such equivalence classes [f ]. The forgetful functor U : P → T
to the category T of spaces induces a natural function

U∗ : [X, Y ] → [UX, UY ](1)

to the set of homotopy classes [UX → UY ] of continuous functions UX → UY .

Example 3.1 Consider the pospaces given in Figure 4. The monotone map X3 →
X4 surjectively wrapping the lower blue corner around X4 is homotopic, though not
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X3 X4

Fig. 4. U∗ : [X3, X4] → [UX3, UX4] neither injective nor surjective.

through monotone maps, to a monotone map X3 → X4 surjectively wrapping the
upper red corner around X4. Thus (1) need not be injective. No monotone map
X3 → X4 has Brouwer degree greater than 1. Thus (1) need not be surjective.

Directed homotopy theory reduces to classical homotopy theory and order-theory
precisely when (1) is injective. The following lemma gives us such a case.

Lemma 3.2 For each compact pospace X having lower open partial order and each
continuous lattice Y equipped with its Lawson topology, the function

U∗ : [X, Y ] → [UX, UY ]

has a well-defined retraction [f ] �→ [x �→ ∧
f(�X [{x}])].

Proof. For a compact pospace A such that �A is lower open and a continuous
lattice B equipped with its Lawson topology, let RA,B : T (UA, UB) → P(A, B)
denote the retraction defined by Lemma 2.8. The diagram

T (UX
∐

UX,UY )
R(X

‘
X),Y ��

(x�→(x,0))
‘

(x�→(x,1))

��

P(X
∐

X, Y )

(x�→(x,0))
‘

(x�→(x,1))
��

T (UX × UI, UY )
RX×ÜI,Y

�� P(X × ÜI, Y ),

is commutative and thus RX,Y passes to ∼-classes to define our desired retraction.�

Example 3.3 Consider Figure 5. Under the retraction given in Lemma 2.8, the
homotopy through monotone paths in (b) is the image of the classical homotopy of
paths in (a).

We refine the dihomotopy relation of [2], following [4].

Definition 3.4 Given preordered spaces X, Y and monotone maps

f, g : X → Y,

we say that f future homotopes to g if there exists a monotone map h : X × I → Y

such that h(−, 0) = f and h(−, 1) = g. A preordered space X is future contractible
if idX : X → X future homotopes to a constant map.
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(a) (b)

Fig. 5. A classical homotopy (a) and a homotopy (b) through monotone paths

Lemma 3.5 Consider a pair of monotone maps

g1, g2 : X → Y

from a compact Hausdorff preordered space X to a Lawson semilattice Y , homotopic
through monotone maps. There exists a monotone map which future homotopes to
both g1 and g2.

Proof. Let h : g1 ∼ g2 be a homotopy through monotone maps. The rules

j(x, t) =
∧

h(x, [0, 1 − t]), k(x, t) =
∧

h(x, [t, 1])

define functions j, k : X × I → Y . The functions j, k are continuous by Lemma
2.8 because �ÜX×I

and its order-theoretic dual are lower open. The functions j, k

are monotone because
∧

is a monotone operator. Thus j(−, 0) = k(−, 0) future
homotopes to j(−, 1) = h(−, 0) = g1 and k(−, 1) = h(−, 1) = g2. �

Example 3.6 On hom-sets P(X, Y ) for which Y is a continuous lattice equipped
with its Lawson topology, the dihomotopy relation ∼ coincides with the d-homotopy
relation of [4], as a consequence of Lemma 3.5.

Recall that a space has connected CW type if it is homotopy equivalent to a con-
nected CW complex. Recall from [3] that a hypercontinuous lattice is a continuous
lattice whose Lawson and dual Lawson topologies agree. Thus a hypercontinuous
lattice equipped with its Lawson topology is precisely a compact Hausdorff (inf-
and sup-) topological lattice whose points admit, with respect to each semilattice
operation, neighborhood bases of sub-semilattices.

Proposition 3.7 A hypercontinuous lattice equipped with its Lawson topology is
future contractible if its underlying space has connected CW type.

Proof. Consider a hypercontinuous lattice L equipped with its Lawson topology,
and suppose UL has connected CW type. The space UL is therefore path-connected.
Moreover, UL has trivial homotopy groups because the binary inf operator gives
UL the structure of an associative, idempotent H-space. The map idL is homotopic
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through monotone maps to a constant map c taking the value max L by Lemma 3.2
- idUL is homotopic to U(c) by the Whitehead Theorem, L is a compact pospace,
and �L is lower open by Lemma 2.5. The map idL and c future homotope to c by
Lemma 3.5 because L is the dual of a continuous lattice equipped with the dual
Lawson topology of L. �

4 Conclusion

The state spaces of machines in nature arise as “locally partially ordered” geo-
metric realizations of cubical complexes, as in [2]. Such “locally partially ordered”
spaces are hypercontinuous lattices precisely when they are continuous lattices, the
computational steps of computable partially recursive functions in [5]. Thus Propo-
sition 3.7 and Example 3.1 suggest that the directed homotopy theories of [2,4]
measure at least some of the failure, undetected by classical homotopy theory, of a
state space to represent a deterministic, computable process.
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