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ABSTRACT 

We present two determinants whose ratio is the Hughes Jones approximant to a power series in 
two variables. They are generalizations of Jacobi's determinants for Pad6 approximants. They 
are useful in certain circumstances when the defining equations are degenerate. We analyze the 
indeterminacies associated with degenerate approximants, at least one of which is quite different 
in nature from the degeneracies of the single variable Pad6 approximants. We are led to suggest 
a modification of the symmetrizing equations which leads to numerical stability. 

1. INTRODUCTION 

Pad6 approximants defined by the Jacobi definition 
(Jacobi, 1846) always exist in a formal sense and 
satisfy the identity 

BD(z) f (z) -  AD(z) = 0(z M +N + 1) (1.1) 

The only significant point is that polynomials BD(z) 

of degree N and AD(z) of degree M may always be 
found to satisfy (1.1), and so a Pad6 approximant 
(P. A.) to f(z 7 may always be defined formally. 

Jacobi's explicit determinantal forms for AD(z) and 

BD(z) are useful if BD(z) is not identically zero. Re- 
duction of the degree of numerator and denominator 

of the fraction AD(z)/BD(z) is possible in the cases 
where 

(i) AD(0) = BD(0) = 0. A power of z cancels be- 
tween numerator and denominator. 

(ii) AD(z7 and BD(z) share a common polynomial 
factor which cancels from each. 

(iii) The coefficient of the highest power of z in 

AD(z) or BD(z) is zero, so that either the 
numerator has degree less than M or the de- 
nominator has degree less than N. 

We refer historically to Frobenius (1881) and to 
Gragg (1972) and Baker (1973) for a discussion of 
these possibilities. It only follows from (1.17 that 

f(z)-- AD(z) + 0 (zM+N+I 7 (1.2) 

B D (z) 

if BD(o) ~: O. Consequently, we prefer to use the 
Baker definition in which all Pad6 denominators are 

normalized to unity at z = 0 and certain approximants 
are declared not to exist. The Pad6 table breaks down in- 
to square blocks (Baker 1973, 19747 as shown in Fig. 1. 
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N 

N 
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Fig. 1. A block of the Pad~ table. 

For each block, the upper left hand entry, denoted by 
FI, is nonsingular and has the full indicated order. The 
other entries, denoted by N, in the upper row and left 
hand column have property (iii 7 and are normal. The 
entries, also denoted by N, in the right hand and lower 
edges are normal. The inner and upper left triangular 
block, denoted by C, has approximants with pro- 
perties (i) and (ii); the equations defining the 
coefficients are linearly dependent and consistent. 
The entries in the lower right inner triangular block, 
denoted by I, cannot exist; the equations defining the 
coefficients are linearly dependent and inconsistent. 
We use the concepts behind this categorization to de- 
fine the degeneracies of the individual two variable 
approximants. 

(*) P. R. Graves-Morris and R. Hughes Jones, Mathematical Institute, University of Kent, Canter- 
bury, Kent, England 
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Because we require the analogue of (1.2), two vari- 
able approximants are always defined subject to the 
requirement bOO = 1; any approximants which could 

not be constructed because the defining equations 
were linearly dependent were termed degenerate 
(Hughes Jones and Makinson, 1974). Rational ap- 
proximants of type fm, m/m, m (x, y) were originally 

defined by Chisholm (1973). The generalization to 
simple off  diagonal approximants fm, m/n, n (x' Y) and 

their practicality was shown by Graves-Morris, Hughes 
Jones and Makinson (1974). The further generaliza- 
tion to f m l , m 2 / n l  ' n2 (x,y)was made by Hughes 

Jones (1973). 
In section 2, we write down two determinants, 

AD(x, y) and BD(x, y) which satisfy the Jacobi type 
defining equations for the two variable approximants. 
They are in fact a minor variant of  a special case of  
Levin's determinants (Levin, 1973) who defined aly 
proximants which satisfy identities over very general 
regions of  lattice space. Our definitions are rather 
more explicit, and so the conditions for the existence 
of  our determinants can be established. 
If certain determinants are not zero and BD(x, y) is 

not identically zero, we will show that AD(x,y)/BD(x,y) 

satisfies the lattice space identities which are generaliz- 
ations of (1.2) and so the Maclaurin expansions of 
both function and approximant agree as far as the de- 
fining equations indicate. 
In section 3, we will explicitly consider degenerate 
approximants. The two variable case is quite different 
from the one variable case to the extent that vanish- 

ing of  the denominator BD(x, y) at the origin, 
x = y = 0, in the two variable case does not auto- 

matically imply that AD(x, y) and BD(x, y) have a 
common factor which cancels. This has implications 
even when the approximants are defined with the 
normalization condition B(0, 0) = 1. We will find a 
case when the defining equations are degenerate and 
consistent, for which an irreducible approximant 
A(x, y)/B(x, y) exists, with B(0, 0) = 1. The Mac- 
laurin expansions of  function and approximant agree 
to the full indicated order, yet the approximant is 
quite ill-defined. This situation cannot occur for one 
variable approximants, and we suggest some remedies. 
We also suggest a weighting for the symmetrizing 
equations which leads to numerical stability, and 
compare it with the weighting contemporaneously 
suggested by Chisholm and Hughes Jones (1975). 

2. A DETERMINANTAL FORM 

Define notation for Hughes Jones approximants by 
m 1 m2 

~0 aa l ' a2  x a l y a 2  
rv 1=0 a 2 = 

f-,...1,m2/nl,n2(X,Y)= ~ ~ b31,32 nl  n2 x~1y32 

~ 1  = 0 /32  = : 0  
(2.1) 

which may be written concisely as 

m n 

fm/n (z) = ]~ aa z~-/ X b3~3- (2.2) 
a - - O - -  3 = 0 -  

Given a power series, 

o o  3,1 ~ c3' z~- 
f(x'Y)=71~= 0 3'?=0c3'1,3"2 x Y3,2=3,=0 _ 

- - ( 2 . 3 )  

we may form approximants by defining 

oo n m 

-o %--~% (~- - E ( z ~ = ( ~  ~0 -- 

and equating coefficients to zero o,¢er the lattice space 
S(m/n_) which defines the m/n approximants. 

Let n = min (n 1, n2) 

m = min (m 1, m2) 

I = min (m, n). 

Consider the prong emanating from (a, a) where 
0 ~ a ~ I. For the first branch of the prong, a 2 = f~- 

ed = a, and a I ranges over m I + 1 ~ a 1 ~ m I +n  1- a 

giving 
n a 

Z 1 ~ b~ ca_  0. (2.5a) 
~1=0 32=0 ~= 

For the second branch, a I = fixed = a, Q¢2 ranges over 

m 2 + l K a  2 K m  2 + n  2 -a ,g iv ing  

a n2 
~= 0. (2.5b) ~1=0 ~_  0 b~ %_~ = 

The symmetrised equation, parametrised by (~a'  #a) 
(ChishoLm and Graves-Morris, 1975) is 

n I tv 

X afll=~0 ~ b c f12=0 3_ m l +  n l + 1 - a - 3 1 ,  a - 3 2  

a n2 

+ g a  fll=0Z t2 =0~' bflca_fll,m2+n2+l_a_fl2=O_ 
(2.5c) 

which applies for 1 ~ a I = a 2 = a ~ £. Note that the 
last prong, a =  ~, may have one or more branches 
missing. 
These equations, 2.5a, b and c, are sufficient to deter- 
mine all the denominator coefficients if and only if 
m/> n. Otherwise, the extra equations given by the 
( a,  a) prong, where ~ K a K n are precisely the ones 
needed for defining the denominator of  non-degenerate 
approximants. 
For the first branch, a 2 = fixed = a and a I ranges 

over a < a 1 ~ nl,  
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et et 
Z b E co~_f=0 (2.5d) 

fl=0 f2=o - _ _ 

For the second branch, a I = fixed = et and et2 ranges 

o v e r  et < a 2 ~ n 2, 

et et 

2; E 2 ba cet_l~ = 0 (2.5e) 
~I=0 /32=0 v 

For the equation at the angle of the prong, etl =a2= et 
and 

et et 

Z Z b E ca_ f = 0 (2.5f) 
81=0 f2=O -- _ _  

Again, the last prong may have one or both branches 
missing. These equations 2.5, together with b00= 1, 
determine the denominator coefficients. Let us first 
consider equations 2.5a, b, and c. We are led to de- 
fine, for et > 0, an array of b coefficients 

T 
bet = (bnlet . . . . . . .  bet + l , e  t ,  bet, n2 . . . . . . .  bet, et+l,bet,et) 

(2.6) 

The superflx T denotes transpose, and the notation 
emphasizes that a one-dimensional array bet is selected 
from the original set {bB}. The equations (2.5) take 

on the compact form : 

D00 b_0 = (0, 0 . . . . . .  ,0 ,  0, I )  T (2.7a) 

and for et > O, 

or-1 
Daet b_a + Y GaB b_._f =0  (2.7b) 

f=O 

when the following definitions are made : 

! 1) o X(o') 1 4 g) D00 = 

L 0 0 1 

lad for et > O, 

-¢(1) o x(:) 
o x(:) 

Xax~)T /'IOCx~)T Ya 

c 2)= 

C0,m2-n2+l 

C0,m2-n2+2 

C0,m2-n2+2 . . . . .  C0,m2., a 

C0,m2-~ . . . . .  C0,m2+n2-2 

X(1)T_ - ( c m l _ a + l , 0  

(2)T 
X~ = (C0,m2_~+ 1 

cml+et+2,0 . . . . .  c m l + n l - 2 ~  

C0,m2 -~v +2 . . . . .  C0,m2+n2-2 

l 

Ya = Xacml+n l -2~  +1,0 +/aa C0,m2+n2-2a +1 

Then it follows that 

det Dc~= Xa det C(? lde t  C(2) + ga det C(1) det C(2) 1 

G0£ is quite complicated to define. We write it in block 

form 

G12 GI3- - 1 1  
Go~ 

Ga,6= G 21 a~ 

G 31 

22 G23 
Go~ o~ 

G 32 G 33 
o~ o~ 

Let m (r x s) denote the class of matrices with r rows 
and s columns. We label the elements of a matrix by 
i=1, 2 . . . . .  r andj  = 1, 2 . . . . .  s. From 2.5, 2.6, we are 
led to define the dements of each block of Gaf f : 

11 11 
Ga/~ e m(nl--~ x nl-fl); (Getfl)ij = cml_nl+i+j_l,cx.. ~ 

12 12 
Gaf f e m(nl -a  x n2-~); (Gaf)i j = cml_f+i,a_n2_ 1 +j 

13 13 
GaB e m ( n l - a X l ) ;  (Gafl)ij = c m l - f + i , a - f  

21 21 
Gaf  f e m ( n 2 " ~ x n l - f ) ;  (Gaf)ij = C a - n l - l + j , m 2 - f + i  

22 22 
GaB e m(n2--a xn2--f); (Gaf)i j =cet_0,m2_n2+i+j_ 1 

c 0) = 
t~ 

-cml-nl+l,0 cml-nl+ 2,0 . . . . .  cml-et,0 

cml-nl+2,0 

cml-a,0 . . . . .  Cm1+nl_2a_l, ( 
i 

23 
Gaf  f e m(n2-ax  1); 
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G 32 
( a3)ij  = X a c m l + n  1 

nz+ n 2 - a - 3 +  1, a - n 2 - 1  +j 

+ P~ c~-3 ,m2-~+ j 

33 
Ga 3 = Xacml+nl - -a  - ~ +  1,a.--/3 

+ laaCa_[J, m2+n2_a_[3+l 

If any index of ci, j is negative, then the element is 

understood as zero. If n > m, then the prong equa- 
tions for £ < a ~< n are needed, corresponding to 
(2.5d, e, f). A possible configuration is shown in Fig.2 
The cross-hatched area shows the subspace of the 
n I x'n 2 lattice space where the extra equations are 

needed• The lines with arrows show the branches as- 
sociated with b a  in (2•6). The following definitions 
are motivated-by (2.5d, e, f) and (2•6). For ~ > ~. 

n 2 

m z 

n 

32 
G,v f l e  m(1 x n2-3); 

m I m l + n  I -- '- '~ i 

Fig. 2. The lattice space S(m/n0 of  coefficients 
cij for an approximant with 1 = m < n. 

D~ = 

0 0 . . . . . .  Co, 0 

0 

Co,o 

c0, 0 . . . . . . . . . .  cn l_a_l ,  0 

0 

0 0 . . . . .  Co, 0 

0 

• Co,o 

c0, 0 . . . . . . . .  C0,n2_a_ 1 

Cl,0 

¢n 1 -  a ,  0 

c0,1 

C0,n2-a 

c0,0 

n 1+ n2-2a+l 
In this case, I det Daa[ =l c0, 0 I 

11 
Go~ e m ( n  1 - a x n  1 - 3 ) ;  

12 
Go. 3 e m(n 1 - a .  x n 2 -3), 

13 
Ga3 e m(n I - a  x 1), 

21 
Ga/3 e m ( n 2 - a  x nl-/~), 

22 
Ga3 e m ( n 2 - a  x n 2 -  ~), 

11 
(Gct3) i j = ca + i  -n 1 + j - l , a - 3  

12 
(Ga3) ij = ca +i- /3 ,a-n 2 + j -1  

13 
(Ga3) i = c a + i - 3 , a - ~  

G 21 
( a3)ij  = C a - n l + j - l , ~ + i - 3  

c -3, +i-n2+j-1 

23 
Ga~ e m(n2-0t × 1), 

31 
Ga/3 e m(1 × n 1-3), 

32 
Ga/~ e m(1 x n2-/3), 

33 

23 
(Ga]3) i = ca_j3,a+i_ 3 

G 1 
a3)j = Ca-n 1 + j - l ,  a -3  

G 32 
( a/3)j = ca-~,a-n2+j-I 

Then the equations (2.7) for the denominator co- 
efficients are the key of the solution process. The 
prong method ensures that (2.7) has block lower 
triangular form. Frobenius method of  solution of 2.7 
is used, in the same way as for Pad6 approximants. 
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We write the denominator 

n fll yfl2 
B(x, y) = :g b~l  ' 32 x (2.8) 

fl=0 
and numerator 

m a l  y a2 (2.9) A ( x , y ) =  ~ a a a = 0  1' a2 x 

Since the defining equations of (2.4) give a a as a linear 

combination of bfl, both numerator and denominator 

are linear in bfl and follow from the solution of (2.7). 

Using the further definitions 

n 
F = detD~0 II de tDaa  

¢x=1 

D'00 = (D00, with the last row deleted) 

D~0 = (Do0, with the last column deleted) 

~ a  = (xnlya'" .... xa+lya'xayn2'" .... xaya+l'xaYa) 

-Za = (~'nl,a ...... ~'a +l ,w ~'a, n 2 ...... ~'a,o +1' ~a,a) 

where 
m I m 2 

x # ~o,r = y, y, c#-o ,  v - r  yV, 
la=o v=r 

we solve 2.7, 2.8 and 2.9 when F 4:0 : 

A (x,y) =A D (x ,y)( - - )n ln2/F 

B (x, y) =B D (x, y) ( - ) n l n 2 / F  

fm/n (x,y) = A D (x, y) / B D (x, y) (2.10a) 

BD(x, y) = 

D00 

G10 

G20 

D l l  

G21 

0 

D22 

Gn 0 G n l  Gn2 .... Dnn 

~-0 ~i ~2 .... ~-n 

(2.10b) 

AD(x, y) = 

:~oo 

G10 

G20 

D l l  0 

G21 D22 

Gn0 Gnl Gn2 .... Dnn 

_Z 0 Z 1 _Z 2 .... Z n 

(2.10c) 
These equations give explicit solutions of the two vari- 
able rational approximants when F is non-zero, which 
is to say that the approximants are 'non-degenerate. 
The generalization to N-dimensions is straightforward. 

3. DEGENERATE APPROXIMANTS 

To define two variabh rational approximants, we seek 
solutions of 2.5 with boo = 1. Then the Maclaurin 
coefficients of both function and approximant agree 
over the lattice space S(m/n_). 
The approximant always exists and is unique provided 

n 

F=  II de tDaa4 :0 .  
¢x=0 

Such approximants are termed non-degenerate. We 
must consider the cases which lead to F = 0 and so to 
degenerate approximants. The alternatives, which are 
not exclusive, are : 

Type 1 degeneracy : det Db0 = 0 

Type 2 degeneracy : det Daa = 0 for some ¢x, 

l ~ ¢ x ~ n .  

Type 1 degeneracy occurs when either of the P.As. 

[ml/nl] f (z  1, 0) or [m2/n2]f(0, z2) is degenerate; to 

be specific, we assume that at least the [ml/nl]  ap- 

proximant to f(z 1, 0) is degenerate. This means that 

the Pad~ equations which determine 

bl, 0' b2, 0 . . . . . .  bn 1, 0 

are linearly dependent. The equations must be either 
inconsistent (type 1, INC) or consistent (type 1, CON). 

3.1. Type 1, INC 

We say, in this case, that f_m/n(Z) does not exist, be- 

came an [m/n] cannot be found. In this instance, the 
determinantal solution (2.10) may be useful. The co- 

0 0  efficient of x y vanishes in numerator and denominator, 
and inspection of (2.10b and c) shows that at least a 
factor x cancels between numerator and denominator. 
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Suppose that xly J is the greatest monomial divisor of 
numerator and denominator. Provided the weights 
are chosen self consistently and AD(x, y) and BD(x,y) 
are not both identically zero, their ratio is the true 
[ml_i , m 2 - j / n l - i  , n2-j] approximant to f(x, y). 

Of course, the weights associated with formation of 
each approximant must be chosen self consistently, 
so that the basic approximation problem is unchang- 
ed. The following examples show in detail how these 
situations may occur. 

Example I 

Consider the [2,2/2,2] approximant to f (x, y) = 

= c~v~xay~ with COO = c20 = 1;Cl0 = c30 

2 
c40 =~ 1; c01 c03 -  c02 :/=0. 

The equations attached to the first prong are 

-b20 + b l 0 - b 0 0  = 0 

b 2 0 - b l 0  + c40 bOO = 0 

bOO = 1 

c01 b02 + c02 b01 + c03 bOO = 0 

c02 b02 + c03 b01 + c04 bOO = 0 

These equations are inconsistent. However, if we let 
bOO = 0 in the context of determinantal solutions, 

then it follows that 

bOO = b01 = b02 = 0 

and from the numerator equations that 

a00 = a01 = a02 = 0. 

Thus we expect f2,2/2,2(x, y) to reduce to 

fl,2/1,2(x, y) for suitable weights. Let )'1' /11' ~2'/12 

be the weights associated with f2,2/2,2(x, y) and 

XI'/11 be the weights associated with f1,2/1,2(x, y). 

Inspection of the remaining equations shows con- 
sistency for the choice 

X 1 = 0 , / 1 1 = 1 ,  ~ 2 = 0 ' / 1 2 = 1 '  = 1 , / 1 1 = 0 .  

Example 2 

This is the same as example 1, except that 

c01 c03 - c22 = 0. This case is so degenerate that 

the determinantal method fails because AD(x,y) = 

BD(x, y) = 0, as is evident by substitution in (2.10b 
and c). 

3.2. Type 1, CON 

In this case, one may set up to the equations so that 

two determinants vanish, representing the two condi- 
tions on the coefficients of the given power series. The 
conditions imply (Baker, 1974) that [ml-k/nl-k]f(x,0 ) 

has, for some k > 0, a Maclaurin expansion which agrees 

with f (x, 0) up to order x ml + nl 

Indeed, numerator and denominator of 

fml_k ' 0 /n l_k ,  0(x, 0) may be multiplied by any 

polynomial in x of degree k to give a superficially differ- 
ent approximant which might be called fmlO/nlO(X,O). 

There is no intrinsic difficulty with one variable ap- 
proximants, but the genuine two variable approximants 
behave differently from Pad~ approximants, as the 
following example shows. 

Example 3 

f(x,y)  = 1 - x + x 2 - x  3 + c 0 1 Y + C l l X Y +  . . . .  

and form 

fl,1/2,0 = a00+al0x+a01Y+allxY 

1 +bl0  x +b20x2 

The equations are b20- bl0 =-1 

-b20+bl0 = 1 

a00=l  

a01 = b l0 -  1 

a01 : c01 

al l  : c01 bl0 +Cll  

The equations for the denominator coefficients are 
dependent and consistent, and we may say that bl0 is 
undetermined, and the others are given in terms of bl0 

a 1 0 = b 2 0 = b 1 0 - 1 ,  a 0 0 = l  

a01 = c01 , a l l  = c01 b l0  + C l l  

He n ce 

[1+ (b10-1) x][ l+ c01Y ] + xy (c 11 + c01) 
f1,1/2,0 (x, Y) = 

( l+x)  [1 + (blo- 1)x] 

We see that f1,1/2,0 satisfies the S(1,1/2,0) lattice 
! 

identities and yet is indeterminate in a real sense : un- 
less Cll + c01 = 0, the approximant takes almost all 

values if b l0  is quite arbitrary. This type of situation 

does not occur for Pad6 approximants. 
No serious problem is presented by this type of ambiguity, 
although the orderly analysis is destroyed. If a lower 
order approximant satisfies the identities, the problem 
is solved ipso facto. This occurs in the example above, 
when Cll + c01 = 0 and then 
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1 + Co1 y 
fO,1/20 (x,y) = 1 + x satisfies the S(1,1/2,0) 

identities. If no lower order approximant satisfies the 
identities, one must use more coefficients of the 
original series to determine the approximants. In the 
example above, the equation corresponding to x2y is 

(Co1 + Cll)  b l o  = Co1- c21 

which always has a solution, since Co1 + C l l  =/= O. 

An alternative is to exploit the hypothesis of maximal 
analyticity lying behind Pad~ methods, and fix the 
parameters by maximizing the distance of  the nearest 
moveable singularity from the origin. In the example, 
b lo  = 1 sends the singularity to infinity. 

3.3. Type 2 degeneracies 

We now suppose that the denominator coefficients of 
the first prong (bnl,0 .....  b l ,  0' b0,n2 . . . . .  b0,1) have 

been determined and subsequent prongs have to be 
calculated. Again we may separate the cases where 
the equations at stage 0t are consistent (type 2 CON) 
and inconsistent (type 2 INC). We have assumed tacit- 
ly that h a :/a~ is given and the problem is that 

det D0tot = 0. 

2, INC 

The determinantal form may reduce and give a lower 
order approximant. However, we must say that the re- 
quested approximant does not exist. 

2, CON 

Either a lower order approximant is valid to the re- 
quested order, or else the ambiguity is removed by us- 
ing more coefficients of f(x,y) or by imposing max- 
imal analyticity, as previously described. 
For type 2 degeneracies, we suggest a different and al- 
most certainly better approach. The arbitrariness of  
hot :/aot in the definition of the approximants is 

embarrassing, because there is always a choice which 
makes any prong of any approximant indeterminate. 
The procedure suggested here is expected to give better 
results than the choice hot = /aa=  1 used hitherto. 
Since 

d e t D ~  =Xadete( l_~det  C ~ ) + t t ~  detC (1) det(~2)l, 

If m 1 = m 2 and n 1 = n 2, which includes Chisholm 

approximants and simple off-diagonal approximants, 
this scheme reduces to hot =/~ot for exactly symmetric 

functions. For antisymmetric functions, namely ones 
for which f (x, y) = _ f (y, x) the scheme reduces to 
hot=-/Jot Thus the scheme (3.1) gives the best values 

in these two cases. This choice of  ~ : Pot gives a 

scheme which is always well defined if the Pad4 table 
of f(x, 0) and f(0, y) are normal, and also caters for 
some cases where some of the determinants in the C- 
table vanish. 
If we consider only the Chisholm approximants 
fm, m / m , m  (x' Y)' then this choice Of hot :/~a gives'in- 
variance under the homographic transformations 

Ax Cx 
u - - - ,  v - - -  w i t h l A l = l C I  

1 + B x  1 + D x  

More explicitly, this means that ff f (x, y) = g(u, v) then 

fm, m/m,m(X, y) = gm, m/m,m (u, v). 

This particular choice o f h ~  : / ta i s  designed to give the 

approximants numerical stability. It is clear that the 
theorem of Chisholm and Graves-Morris (1975) takes 
on a stronger form if this choice is used ab initio. 
The choice of Chisholm and Hughes Jones (1975), name- 
ly 

~ot : /aa=det  C(1)det  C~)  1 : det eL1) 1 d e t C ~  ) 

(3.2) 
should be contrasted with (3.1). This would normally 
be the preferred choice for a sequence of  Chisholm ap- 
proxirnants which are not degenerate, because the 
authors show that it is invariant under independent 
homographic transformations of the variables. Since 
both choices (3.1) and (3.2) give identical results for 
symmetric and antisymmetric functions, at least for 
simple off diagonal approximants, which is the preferred 
choice in the general case is an open question. 
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