Criteria for Generalized Diagonally Dominant Matrices and \textit{M}-Matrices. II

Yi-ming Gao and Xiao-hui Wang

\textit{Mathematics Department}

\textit{Northeast Normal University}

\textit{Changchun, Jilin, 130024, P. R. China}

Submitted by Richard A. Brualdi

\textbf{ABSTRACT}

We provide new necessary and sufficient conditions for verifying (strictly) generalized diagonally dominant matrices by applying the inverse of a partitioned matrix and obtain some criteria for identifying (nonsingular) \textit{M}-matrices.

\textbf{1. INTRODUCTION}

Let \(A = (a_{ij}) \in \mathbb{C}^{n \times n} \). If there is a positive diagonal matrix \(D \) such that \(AD \) is a (strictly) diagonally dominant matrix, then \(A \) is said to be a (strictly) generalized diagonally dominant matrix: briefly, \(A \) is a \textit{GDDM} (SGDDM).

Let \(M(A) = (m_{ij}) \in \mathbb{R}^{n \times n} \), where \(m_{ii} = |a_{ii}|, m_{ij} = -|a_{ij}|, j \neq i, i, j \in N = \{1, 2, \ldots, n\} \), then \(M(A) \) is said to be a comparison matrix of \(A \).

We know that if \(A \) is a strictly diagonally dominant matrix, then \(\det A \neq 0 \) by the Levy-Desplanques theorem. O. Taussky [1] proved that if \(A \) is irreducible and diagonally dominant with \(\sum_{i=1}^{n} |a_{ii}| > \sum_{i=1}^{n} \Lambda_i \), then \(\det A \neq 0 \). P. N. Shivakumar and K. H. Chew [2] showed that if \(|a_{ii}| \geq \Lambda_i, i \in N, j = \{i \mid |a_{ii}| > \Lambda_i, i \in N\} \neq \emptyset \) and there exists a nonzero element chain \(a_{i_1} a_{i_1 i_2} \ldots a_{i_1 p} \) for any \(i \in N - J \), where \(p \in J \), then \(\det A \neq 0 \).

The authors in [3–7] gave some necessary and sufficient conditions for verifying SGDDMs, extending the results in [1] and [2].

In [8] we proved that if \(\Omega = \{ i \mid |a_{ij}| > \Lambda_i = \sum_{j \neq i} |a_{ij}|, \ i \in N \} \neq \emptyset \), \(N_1, N_2 \) are disjoint and such that \(N_1 \cup N_2 = N \), and

\[
(|a_{ii}| - \alpha_i)(|a_{jj}| - \beta_j) \geq \alpha_j \beta_i
\]

(1.1)

for any \(i \in N_1, j \in N_2 \), where

\[
\alpha_i = \sum_{j \in N_1} |a_{ij}|, \quad \beta_i = \sum_{j \in N_2} |a_{ij}|,
\]

then:

(1) \(A \) is a SGDDM and \(M(A) \) is a nonsingular M-matrix if strict inequality in (1.1) is valid for any pair of indices or \(A \) is irreducible with strict inequality in (1.1) for at least one pair of indices.

(2) \(A \) is not a SGDDM and \(M(A) \) is not a nonsingular M-matrix if all "\(\geq \)" are changed to "\(< \)" in (1.1).

Thus we extended the main results in [1-7].

Let \(A_2 = (m_{ij}), \ i, j \in N_2 \), and \((P_2)_i = -\sum_{j \in N_1} m_{ij} \) be the \(i \)-th component of \(P_2, i \in N_2 \). Ming-xian Peng [9] proved that if \(\Omega \neq \emptyset \) and if

\[
h_i = \frac{|a_{ii}| - \alpha_i}{\beta_i} \geq (A_2^{-1}P_2)_i = H_j
\]

(1.2)

for any \(i \in \Omega = N_1, j \in N_2 = N - \Omega \), then \(A \) is a GDDM. If strict inequality in (1.2) is valid for all \(i \in N_1, j \in N_2 \), or for any \(i \in J \subseteq \Omega \), one has

\[
h_i = \max_{j \in N_2} H_j,
\]

and for any \(i \in (N - \Omega) \cup J \) there is \(a_{i1}a_{i1i} \cdots a_{iqi} \neq 0 \), where \(q \in \Omega - J \), then \(A \) is a SGDDM. Peng extended the partial results in [1-7].

In this paper we prove that if \(\Omega \neq \emptyset \), \(N_1, N_2 \) are disjoint, and \(N_1 \cup N_2 = N \) with

\[
h_i \geq H_j
\]

(1.3)

for any \(i \in N_1, j \in N_2 \), then \(A \) is a GDDM, and we get the results:

(1) If strict inequality in (1.3) is valid for any \(i \in N_1, j \in N_2 \), or if \(J = \{ i \mid h_i > \max_{j \in N_2} H_j, \ i \in N_1 \} \neq \emptyset \) and for any \(i \in N - J \) there is \(a_{i1}a_{i1i} \cdots a_{iqi} \neq 0 \) where \(q \in J \), then \(A \) is a SGDDM.
(2) If N_1, N_2 are disjoint and $N_1 \cup N_2 = N$ with
\[h_i \leq H_j \] (1.4)
for any $i \in N_1, j \in N_2$, then A is not a SGDDM.

If strict inequality in (1.4) is valid for any $i \in N_1, j \in N_2$, or $J = \{i \mid h_i < \min_{j \in N_2} H_j, i \in N_1\} \neq \emptyset$ and for any $i \in N - J$ there is $a_{ii_1}a_{ii_2} \ldots a_{i,q} \neq 0$, where $q \in J$, then A is not a GDDM; so we have extended the main results in [1-9].

2. THE MAIN RESULTS

Theorem 1. Let $\Omega = \{i \mid |a_{ii}| > \Lambda_i = \sum_{j \neq i}|a_{ij}|, i \in N\} \neq \emptyset$; N_1, N_2 be disjoint and $N_1 \cup N_2 = N$; and A_2 be a nonsingular M-matrix.

(1) If
\[\frac{|a_{ii}| - \alpha_i}{\beta_i} > (A_2^{-1}P_2)_j > 0 \] (2.1)
for any $i \in N_1, j \in N_2$ [when $\beta_i = 0, i \in N, (|a_{ii}| - \alpha_i)/\beta_i = +\infty$], then A is a GDDM, and $M(A)$ is an M-matrix.

(2) If the strict inequality is valid in (2.1) for any pair of indices or
\[J = \left\{ i \mid \frac{|a_{ii}| - \alpha_i}{\beta_i} > \max_{j \in N_2} (A_2^{-1}P_2)_j, i \in N_1 \right\} \neq \emptyset, \] (2.2)
and for any $i \in N - J$ there is $a_{ii_1}a_{ii_2} \ldots a_{i,q} \neq 0$ where $q \in J$, then A is a SGDDM, and $M(A)$ is a nonsingular M-matrix.

Proof. (1): By (2.1) we choose d such that
\[\min_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i} > d \geq \max_{j \in N_2} (A_2^{-1}P_2)_j, \]
and construct
\[D_1 = \text{diag}(d_i; d_i = d, i \in N_2; d_i - 1, i \in N_1), \]
\[B = AD_1 = (a_{ij}^{(1)}). \]
When \(i \in N_1 \), we have

\[
|a_{i i}^{(1)}| - \Lambda_i^{(1)} = |a_{i i}| - \alpha_i - d \beta_i \geq |a_{i i}| - \alpha_i - \frac{|a_{i i}| - \alpha_i}{\beta_i} \beta_i = 0.
\]

Let \(B_2 = A_2^d \). When \(i \in N_2 \) we have

\[
(B_2^{-1} P_2)_i = (d^{-1} A_2^{-1} P_2)_i \leq \frac{(A_2^{-1} P_2)_i}{\max_{i \in N_2} (A_2^{-1} P_2)_i} \leq 1.
\]

Let \(B_2^{-1} P_2 = X \leq e = (1, 1, \ldots, 1)^T \), and construct

\[
D_2 = \text{diag}(d_i; d_i = x_i, i \in N_2; d_i = 1, i \in N_1),
\]

\[
C = BD_2 = (a_{ij}^{(2)}).
\]

When \(i \in N_1 \), we have

\[
|a_{i i}^{(2)}| - \Lambda_i^{(2)} = |a_{i i}^{(1)}| - \alpha_i^{(1)} - x_i \beta_i^{(1)} \geq |a_{i i}^{(1)}| - \Lambda_i^{(1)} \geq 0.
\]

When \(i \in N_2 \), we have

\[
|a_{i i}^{(2)}| - \Lambda_i^{(2)} = |a_{i i}^{(2)}| - \beta_i^{(2)} - \alpha_i^{(2)} = (c_2 e)_i - \alpha_i^{(1)}
= (B_2 X)_i - \alpha_i^{(1)} = (P_2)_i - \alpha_i^{(1)} = 0.
\]

Then \(C = AD_1 D_2 - \Lambda D \) satisfies

\[
|a_{i i}^{(2)}| - \Lambda_i^{(2)} \geq 0, \quad i \in N,
\]

so \(A \) is a GDDM. From Lemma 4.1 in [10] we know \(M(A) \) is an \(M \)-matrix.

(2): From (2.2), for any \(i \in N_1, j \in N_2 \) we have

\[
\frac{|a_{i i}| - \alpha_i}{\beta_i} > (A_2^{-1} P_2)_j.
\]

We choose

\[
\min_{i \in N_1} \frac{|a_{i i}| - \alpha_i}{\beta_i} > d > \max_{j \in N_2} (A_2^{-1} P_2)_j
\]
and construct the matrices

\[D_1 = \text{diag}(d_i|d_i = d, i \in N_2; d_i = 1, i \in N_1), \]

\[B = AD_1 = \left(a_{ij}^{(1)} \right). \]

When \(i \in N_1 \), we have

\[|a_{ii}^{(1)}| - \Lambda_i^{(1)} = |a_{ii}| - \alpha_i - d\beta_i > |a_{ii}| - \alpha_i - \frac{|a_{ii}| - \alpha_i}{\beta_i} \beta_i = 0. \]

Let \(B_2 = A_2 d \). When \(i \in N_2 \), we have

\[\left(B_2^{-1}P_2 \right)_i = \left(d^{-1}A_2^{-1}P_2 \right)_i < \frac{\left(A_2^{-1}P_2 \right)_i}{\max_{i \in N_2} \left(A_2^{-1}P_2 \right)_i} \leq 1. \]

Let \(B_2^{-1}P_2 = x > 0 \), and

\[y - B_2^{-1}(P_2 + \delta) < \sigma, \quad \delta > 0. \]

Construct

\[D_2 = \text{diag}(d_i|d_i = y_i, i \in N_2; d_i = 1, i \in N_1), \]

\[C = BD_2 = \left(a_{ij}^{(2)} \right). \]

When \(i \in N_1 \), we have

\[|a_{ii}^{(2)}| - \Lambda_i^{(2)} = |a_{ii}^{(1)}| - \alpha_i^{(1)} - y_i \beta_i^{(1)} \geq |a_{ii}^{(1)}| - \Lambda_i^{(1)} > 0; \]

when \(i \in N_2 \), we have

\[|a_{ii}^{(2)}| - \Lambda_i^{(2)} = \left(|a_{ii}^{(1)}| - \beta_i^{(1)} \right)d - \alpha_i^{(1)} = (c_2 e)_i - \alpha_i^{(1)} \]

\[= (B_2 y)_i - \alpha_i^{(1)} > (P_2)_i - \alpha_i^{(1)} = 0. \]

Then \(C - AD_1 D_2 - AD \) satisfies

\[|a_{ii}^{(2)}| - \Lambda_i^{(2)} > 0, \quad i \in N, \]

so \(A \) is a SGDDM. From Theorem 6.2.3 in [10] we know \(M(A) \) is a nonsingular \(M \)-matrix. \[\blacksquare \]
When

\[J = \left\{ i \left| \frac{|a_{ii}| - \alpha_i}{\beta_i} > \max_{i \in N_2} \left(A_2^{-1} P_2 \right)_j, i \in N_1 \right\} \right\} \neq \emptyset, \]

just as in the proof above, we can get \(C = AD_1 D_2 = (a_{ij}^{(2)}) \). It satisfies

\[|a_{ii}^{(2)}| - \Lambda_i^{(2)} > 0, \quad i \in J, \]
\[|a_{ii}^{(2)}| - \Lambda_i^{(2)} \geq 0, \quad i \in N - J, \]

and for any \(i \in N - J \) there is a nonzero element chain \(a_{ii} a_{i1} \ldots a_{iq} \neq 0 \), \(q \in J \), so \(C \) is a diagonally dominant matrix with a nonzero element chain. From Theorem 5 in [3] we know \(A \) is a SGDDM, and from Theorem 6.2.3 in [10] we know \(M(A) \) is a nonsingular \(M \)-matrix.

By Theorem 1 and the fact that an irreducible diagonally dominant matrix must be a diagonally dominant matrix with a nonzero element chain, we can get the following results:

Corollary 1. If \(\Omega \neq \emptyset, J \neq \phi \), \(A \) is an irreducible matrix, and the inequality is valid in (2.1) then \(A \) is a SGDDM, and \(M(A) \) is a nonsingular \(M \)-matrix.

Corollary 2. Let \(\Omega \neq \emptyset \).

1. If there are \(N_1, N_2 \), disjoint with \(N_1 \cup N_2 = N \), such that

\[(|a_{ii}||d_i|) > a(|a_{jj}| - \beta_j) > 0, (|a_{ii}| - \alpha_i)(|a_{jj}| - \beta_j) \geq \alpha_j \beta_i \]

for any \(i \in N_1, j \in N_2 \), then \(A \) is a GDDM, and \(M(A) \) is an \(M \)-matrix.

2. If the strict inequality is valid in (2.3) for any pair of indices or \(A \) is irreducible and the strict inequality is valid in (2.3) for at least one pair of indices, then \(A \) is a SGDDDM, and \(M(A) \) is a nonsingular \(M \)-matrix.

Proof. (1): By (2.3), for any \(i \in N_1, j \in N_2 \),

\[\min_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i} \geq \max_{j \in N_2} \frac{\alpha_j}{|a_{jj}| - \beta_j} \geq 0 \]
If we set $A_2 X = P_2$, $x_r = \|X\|_\infty$, then

$$X = A_2^{-1} P_2.$$

(2.4)

By the rth equation in (2.4), we have

$$\sum_{j \in N_2} m_{rj} x_j = (P_2)_r = \alpha_r \geq x_r \sum_{j \in N_2} m_{rj},$$

so

$$\left(A_2^{-1} P_2 \right)_j \leq x_r \leq \frac{\alpha_r}{\sum_{j \in N_1} m_{rq}} = \frac{\alpha_r}{|a_{rr}| - \beta_r} \leq \max_{j \in N_2} \frac{\alpha_j}{|a_{jj}| - \beta_j}.$$

for any $i \in N_1, j \in N_2$. By Theorem 1, we know A is a GDDM, and $M(A)$ is an M-matrix.

(2): When the strict inequality is valid in (2.3) for any pair of indices, just as in the proof of (1), we can get

$$\left(A_2^{-1} P_2 \right)_j \leq x_r \leq \max_{j \in N_2} \frac{\alpha_j}{|a_{jj}| - \beta_j} < \min_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i}.$$

By Theorem 1 we know A is a SGDDM, and $M(A)$ is a nonsingular M-matrix. When A is irreducible and the strict inequality is valid for at least one pair of indices, just as in the proof of (1), we can get

$$\left(A_2^{-1} P_2 \right)_j \leq x_r \leq \max_{j \in N_2} \frac{\alpha_j}{|a_{jj}| - \beta_j} \leq \min_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i},$$

and the strict inequality is valid for at least one pair of indices. By Corollary 1 we know A is a SGDDM, and $M(A)$ is a nonsingular M-matrix.

Remark 1. Theorems 2, 3 and Corollary 3 in [9] are exactly Theorem 1 in this paper, where $N_1 = \Omega$, $N_2 = N - \Omega$. Theorems 1, 2 in [8] are exactly Corollary 2(2) in this paper, and Theorems 4, 6 in [4] and Theorem 4 in [9] are precisely Corollary 2(2) in this paper, where $N_1 = \Omega$, $N_2 = N - \Omega$.

THEOREM 2. Let \(\Omega \neq \emptyset \).

(1) If there are \(N_1, N_2 \) disjoint with \(N_1 \cup N_2 = N \) and \(A_2 \) is a nonsingular M-matrix such that

\[
(A_2^{-1}P_2)_j > 0, \quad \frac{|a_{ii}| - \alpha_i}{\beta_i} \leq (A_2^{-1}P_2)_j
\]

(2.5)

for any \(i \in N_1, j \in N_2 \), then \(A \) is not a SGDDM, and \(M(A) \) is not a nonsingular M-matrix.

(2) If the strict inequality is valid in (2.5) for all \(i \in N_1, j \in N_2 \) or if

\[
J = \left\{ \left(\frac{|a_{ii}| - \alpha_i}{\beta_i} < \min_{j \in N_2} (A_2^{-1}P_2)_j, i \in N_1 \right) \right\} \neq \emptyset
\]

and for any \(i \in N - J \) there is \(a_{ii}a_{i_{1,2}} \ldots a_{i_{q,q}} \neq 0, q \in J \), then \(A \) is not a GDDM, and \(M(A) \) is not an M-matrix.

Proof. (1): By (2.5), we choose \(d \) such that

\[
\max_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i} \leq d \leq \min_{j \in N_2} (A_2^{-1}P_2)_j.
\]

Construct

\[
D_1 = \text{diag}(d_i), \quad d_i = d, \quad i \in N_2; \quad d_i = 1, \quad i \in N_1,
\]

\[
B = AD_1 = \begin{pmatrix} a_{i_{1,1}}(l) \end{pmatrix}.
\]

When \(i \in N_1 \),

\[
|a_{ii}^{(1)}| - \Lambda_i^{(1)} = |a_{ii}| - \alpha_i - d\beta_i \leq (|a_{ii}| - \alpha_i) - (|a_{ii}| - \alpha_i) = 0.
\]

Let \(B_2 = A_2d \); then when \(i \in N_2 \),

\[
(B_2^{-1}P_2)_i = d^{-1}(A_2^{-1}P_2)_i \geq \frac{(A_2^{-1}P_2)_i}{\min_{i \in N_2}(A_2^{-1}P_2)_i} \geq 1.
\]
We set $B_2 \cdot x = P_2$, $x = B_2^{-1}P_2 \succ e$, and construct
\[
D_2 = \text{diag}(d_i) \mid d_i = x_i, \quad i \in N_2; \quad d_i = 1, \quad i \in N_1,
\]
\[
C = BD_2 = \left(a_{ij}^{(2)} \right).
\]

When $i \in N_1$,
\[
|a_{ii}^{(2)}| - \Lambda_i^{(2)} = |a_{ii}^{(1)}| - \alpha_i^{(1)} - x_i \beta_i^{(1)} \leq |a_{ii}^{(1)}| - \Lambda_i^{(1)} \leq 0;
\]
when $i \in N_2$,
\[
|a_{ii}^{(2)}| - \Lambda_i^{(2)} = (c_2 e)_i - (P_2)_i = (B_2 x)_i - (P_2)_i = 0.
\]

So A is not a SGDDM. From Lemma 6.4.1. in [10], we know $M(A)$ is not a nonsingular M-matrix.

(2): If the strict inequality is valid in (2.5) for any pair of indices, we have
\[
\max_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i} < d < \min_{j \in N_2} \left(A_2^{-1}P_2 \right)_j
\]

and construct
\[
D_1 = \text{diag}(d_i) \mid d_i = d, \quad i \in N_2; \quad d_i = 1, \quad i \in N_1,
\]
\[
B = AD_1 = \left(a_{ij}^{(1)} \right).
\]

When $i \in N_1$,
\[
|a_{ii}^{(1)}| - \Lambda_i^{(1)} = |a_{ii}| - \alpha_i - d \beta_i < |a_{ii}| - \alpha_i - (|a_{ii}| - \alpha_i) = 0.
\]

We set $B_2 = A_2 d$. Then when $i \in N_2$,
\[
(B_2^{-1}P_2)_i = d^{-1}(A_2^{-1}P_2)_i > \frac{(A_2^{-1}P_2)_i}{\min_{i \in N_2}(A_2^{-1}P_2)_i} \geq 1.
\]
We set $B_2 x = P_2$, $\tilde{P} > 0$, such that $B_2 \tilde{P} > 0$, $Y = X - \tilde{P} > \epsilon$, and construct

\[
D_2 = \text{diag}(d_i \mid d_i = y_i, i \in N_2; d_i = 1, i \in N_1),
\]

\[
C = BD_2 = \left(a_{ij}^{(2)} \right).
\]

When $i \in N_1$,

\[
|a_{ii}^{(2)}| - \Lambda_i^{(2)} = |a_{ii}^{(1)}| - \alpha_i - d \beta_i < |a_{ii}^{(1)}| - \Lambda_i^{(1)} < 0.
\]

When $i \in N_2$,

\[
|a_{ii}^{(2)}| - \Lambda_i^{(2)} = (C_2 e)_i - (P_2)_i = (B_2 y)_i - (P_2)_i = (B_2 x)_i - (B_2 \tilde{P})_i < 0,
\]

so A is not GDDM. From Lemma 6.4.1 in [10] we know $M(A)$ is not an M-matrix.

If

\[
J = \left\{ i \mid \frac{|a_{ii}| - \alpha_i}{\beta_i} < \min_{j \in N_2} \left(A_2^{-1} P_2 \right)_j, i \in N_1 \right\} \neq \emptyset,
\]

then, as in the proof in (1), we can get that $C = AD_1 D_2 = \left(a_{ij}^{(2)} \right)$ satisfies $|a_{ii}^{(2)}| < \Lambda_i^{(2)}$, $i \in J$, $|a_{ii}^{(2)}| = \Lambda_i^{(2)}$, $i \in N - J$, and for any $i \in N - J$, there is $a_{ii}a_{i1}a_{i2} \ldots a_{iq} \neq 0$, $q \in J$, and there are $M_1 = J$, $M_k = \{ i \mid |a_{ij}^{(2)}| \neq 0, j \in M_{k-1}, |a_{ij}^{(2)}| = 0, j \in M_r, r < k - 1 \}$, $k = 2, 3, \ldots, m$, such that $\bigcup_{k=1}^{m} M_k = N$. We choose

\[
\min_{i \in M_1} \frac{\Lambda_i^{(2)}}{|a_{ij}^{(2)}|} > \delta_1 > 1,
\]

\[
\min_{i \in M_k} \frac{|a_{ij}^{(2)}| - (1 - \delta_{k-1}) r_i^{(2)}}{|a_{ij}^{(2)}|} > \delta_k > 1, \quad k = 2, \ldots, m - 1, \quad \delta_m = 1,
\]

where $r_i^{(2)} = \Sigma_{j \in M_{k-1}} |a_{ij}^{(2)}|$, and construct

\[
D_3 = \text{diag}(d_i \mid d_i = \delta_k, i \in M_k, 1 \leq k \leq m),
\]

\[
G = CD_3 = \left(a_{ij}^{(3)} \right).
\]
When \(i \in M_1 \),

\[|a_{ii}^{(3)}| - \Lambda_i^{(3)} \leq \delta_1 |a_{ii}^{(2)}| - \Lambda_i^{(2)} < \Lambda_i^{(2)} - \Lambda_i^{(2)} = 0. \]

When \(i \in M_k, k = 2, \ldots, m - 1 \),

\[|a_{ii}^{(3)}| - \Lambda_i^{(3)} \leq |a_{ii}^{(2)}|\delta_k - (\Lambda_i^{(2)} - r_i^{(2)} + \delta_{k-1}r_i^{(2)}) < |a_{ii}^{(2)}| - \Lambda_i^{(2)} = 0. \]

When \(i \in M_m \),

\[|a_{ii}^{(3)}| - \Lambda_i^{(3)} = |a_{ii}^{(2)}| - \delta_{m-1}\Lambda_i^{(2)} < |a_{ii}^{(2)}| - \Lambda_i^{(2)} = 0, \]

so \(G \) satisfies \(|a_{ii}^{(3)}| < \Lambda_i^{(3)}, i \in N \). Therefore \(A \) is not a GDDM, and \(M(A) \) is not an \(M \)-matrix.

By Theorem 2 and the fact that an irreducible matrix must have a strongly connected directed graph we have

Corollary 3. If \(\Omega \neq \phi, \Lambda \neq \phi \), \(A \) is an irreducible and the inequality is valid in (2.5), then \(A \) is not a GDDM, and \(M(A) \) is not an \(M \)-matrix.

Corollary 4. Let \(\Omega|\phi \),

(1) If for any \(i \in N_1, j \in N_2 \),

\[0 < (|a_{ii}| - \alpha_i)(|a_{jj}| - \beta_j) \leq \alpha_j \beta_i, \tag{2.6} \]

then \(A \) is not a SGDDM, and \(M(A) \) is not a nonsingular \(M \)-matrix.

(2) If the strict inequality is valid in (2.6) for any pair of indices or \(A \) is irreducible and the strict inequality is valid in (2.6) for at least one pair of indices, then \(A \) is not a GDDM, and \(M(A) \) is not an \(M \)-matrix.

Proof. (1): By (2.6), for any \(i \in N_1, j \in N_2 \),

\[\max_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i} \leq \min_{j \in N_2} \frac{\alpha_i}{|a_{jj}| - \beta_j}. \]
We set $A_2 X = P_2$; then $X = A_2^{-1} P_2$, $X_r = \min x_i$. Now from the rth equation we have

$$
(P_2)_r = \sum_{j \in N_2} m_{rj} x_j \leq x_r \sum_{j \in N_2} m_{rj}
$$

$$
(A_2^{-1} P_2)_j = x_j \geq x_r \geq \frac{(P_2)_r}{\sum_{j \in N_2} m_{rj}} = \frac{\alpha_r}{|a_{rr}| - \beta_r}.
$$

Hence for any $i \in N_1$, $j \in N_2$, we have

$$
(A_2^{-1} P_2)_j \geq \frac{|a_{ii}| - \alpha_i}{\beta_i}.
$$

By Theorem 2 we know A is not a SGDDM, and $M(A)$ is not a nonsingular M-matrix.

(2): When the strict inequality is valid in (2.6) for any pair of indices, as in the proof in (1), we have

$$
\min_{j \in N_2} (A_2^{-1} P_2)_j = x_r \geq \frac{\alpha_r}{|a_{rr}| - \beta_r} > \max_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i}.
$$

By Theorem 2(2), we know A is not a GDDM, and $M(A)$ is not an M-matrix.

When A is an irreducible and the strict inequality is valid in (2.6) for at least one pair of indices, as in the proof in (1), we have

$$
\min_{j \in N_2} (A_2^{-1} P_2)_j = x_r \geq \frac{\alpha_r}{|a_{rr}| - \beta_r} \geq \max_{i \in N_1} \frac{|a_{ii}| - \alpha_i}{\beta_i},
$$

and the strict inequality is valid for at least one pair of indices. By Corollary 3 we know A is not a GDDM, and $M(A)$ is not an M-matrix.

Remark 2. Theorem 3 in [8] is precisely Corollary 4(1) in this paper, while Theorem 8 in [4] is exactly Corollary 4(1) when $N_1 = \Omega$, $N_2 = N - \Omega$.

3. EXAMPLE

In this part we give an example to further illustrate the generalizations. Moreover, we provide a method to choose the positively diagonal matrix D which makes AD a strict diagonally dominant matrix.

Example. Let

$$A = \begin{pmatrix}
7 & 4 & 2i & 2i \\
\frac{7}{8} & 3 & i & 1 \\
\frac{7}{4} & i & 3 & i \\
7i/4 & i & 1 & 3
\end{pmatrix}.$$

Obviously,

$$M(A) = \begin{pmatrix}
7 & -\frac{4}{7} & -2 & -2 \\
-\frac{7}{8} & 3 & -1 & -1 \\
-\frac{7}{4} & -1 & 3 & -1 \\
-\frac{7}{4} & -1 & -1 & 3
\end{pmatrix}.$$

For $N_1 = \Omega = \{1, 2\}, N_2 = N - N_1 = \{3, 4\}$ we have

$$A_2 = \begin{pmatrix}
3 & -1 \\
-1 & 3
\end{pmatrix}, \quad A_2^{-1} = \begin{pmatrix}
\frac{3}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8}
\end{pmatrix}, \quad P_2 = \begin{pmatrix}
\frac{11}{4} \\
\frac{11}{4}
\end{pmatrix},$$

$$A_2^{-1}P_2 = \begin{pmatrix}
\frac{11}{8} \\
\frac{11}{8}
\end{pmatrix},$$

and

$$\frac{|a_{11}| - \alpha_1}{\beta_1} = \frac{45}{28}, \quad \frac{|a_{22}| - \alpha_2}{\beta_2} = \frac{17}{16},$$

$$(A_2^{-1}P_2)_i = \frac{11}{8} > \frac{|a_{22}| - \alpha_2}{\beta_2} = \frac{17}{16}.$$
So A satisfies neither the conditions of the main theorem in [9] nor the conditions of the main theorems in [1-8], but A satisfies Theorem 1(2) of this paper, for $N_1 = \{1\}$, $N_2 = \{2, 3, 4\}$. In fact, if we choose $d = \frac{49}{32}$ and construct

$$D_1 = \text{diag}(1, \frac{49}{32}, \frac{49}{32}, \frac{49}{32}),$$

then

$$B - (a_{ij}^{(1)}) = AD_1 = \begin{pmatrix}
7 & \frac{7}{8} & 49i/16 & 49i/16 \\
7i/8 & \frac{147}{32} & 49i/32 & \frac{49}{32} \\
\frac{7}{4} & 49i/32 & \frac{147}{32} & 49i/32 \\
7i/4 & 49i/32 & \frac{49}{32} & \frac{147}{32}
\end{pmatrix},$$

$$B_2^1P_2 = A_2^1d^1P_2 = \begin{pmatrix}
\frac{6}{7} \\
1 \\
1
\end{pmatrix}.$$

Construct

$$D_2 = \text{diag}(1, \frac{6}{7}, 1, 1),$$

$$C = (a_{ij}^{(2)}) = BD_2 = \begin{pmatrix}
7 & \frac{12}{16} & 49i/16 & 49i/16 \\
7i/8 & \frac{126}{32} & 49i/32 & \frac{49}{32} \\
\frac{7}{4} & 42i/32 & \frac{147}{32} & 49i/32 \\
7i/4 & 42i/32 & \frac{49}{32} & \frac{147}{32}
\end{pmatrix}.$$

C is an irreducible diagonally dominant matrix, $|a^{(2)}_{11}| = 7 > \Lambda^{(2)}_1 = \frac{110}{16}$, $|a^{(2)}_{ii}| = \Lambda^{(2)}_i$, and $a^{(2)}_{ii} \neq 0$, $i = 2, 3, 4$. Then $M_1 = \{1\}$, $M_2 = \{2, 3, 4\}$. We choose $\Lambda^{(2)}_1/|a^{(2)}_{11}| = \frac{110}{122} < \frac{111}{122} = \delta_1 < 1$. Construct

$$D_3 = \text{diag}(\frac{111}{122}, 1, 1, 1).$$
DIAGONALLY DOMINANT MATRICES

Then

\[\tilde{A} - \left(a_{ij}^{(3)} \right) = CD - \begin{pmatrix}
\frac{111}{16} & \frac{12}{16} & 49i/16 & 49i/16 \\
111i/128 & \frac{126}{32} & 49i/32 & 49i/32 \\
\frac{111}{64} & 42i/32 & \frac{147}{32} & 49i/32 \\
111i/64 & 42i/32 & \frac{49}{32} & \frac{147}{32}
\end{pmatrix}. \]

Obviously \(\tilde{A} \) satisfies \(|a_{ii}^{(3)}| > A_i^{(3)}, i \in N \), so \(\tilde{A} \) is a strictly diagonally dominant matrix.

Clearly if we change the rows into the columns in the matrices, the corresponding results are still true.

The authors owe many thanks to Professor Richard A. Brualdi and the referees, who have given excellent suggestions and kind help in revising this paper to make it a more substantial one.

REFERENCES

Received 29 March 1993; final manuscript accepted 9 March 1995