Exogenous lipoid pneumonia. Clinical and radiological manifestations

Edson Marchiori a,b,*, Gláucia Zanetti b,c, Claudia Mauro Mano a,d, Bruno Hochhegger b,e

a Fluminense Federal University, Rio de Janeiro, Brazil
b Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Received 19 August 2010; accepted 1 December 2010
Available online 23 December 2010

KEYWORDS
Exogenous lipoid pneumonia;
Computed tomography;
Aspiration pneumonia;
Bronchoalveolar lavage;
Lung diseases

Summary
Lipoid pneumonia results from the pulmonary accumulation of endogenous or exogenous lipids. Host tissue reactions to the inhaled substances differ according to their chemical characteristics. Symptoms can vary significantly among individuals, ranging from asymptomatic to severe, life-threatening disease. Acute, sometimes fatal, cases can occur, but the disease is usually indolent. Possible complications include superinfection by nontuberculous mycobacteria, pulmonary fibrosis, respiratory insufficiency, cor pulmonale, and hypercalcemia. The radiological findings are nonspecific, and the disease presents with variable patterns and distribution. For this reason, lipoid pneumonia may mimic many other diseases. The diagnosis of exogenous lipoid pneumonia is based on a history of exposure to oil, characteristic radiological findings, and the presence of lipid-laden macrophages on sputum or BAL analysis. High-resolution computed tomography (HRCT) is the best imaging modality for the diagnosis of lipoid pneumonia. The most characteristic CT finding in LP is the presence of negative attenuation values within areas of consolidation. There are currently no studies in the literature that define the best therapeutic option. However, there is a consensus that the key measure is identifying and
discontinuing exposure to the offending agent. Treatment in patients without clinical symp-
toms remains controversial, but in patients with diffuse pulmonary damage, aggressive ther-
apiest have been reported. They include whole lung lavage, systemic corticosteroids, and
thoracoscopy with surgical debridement.
© 2010 Elsevier Ltd. All rights reserved.

Contents

Definition and classification ... 660
Etiopathogenesis and pathophysiology 660
Clinical findings ... 661
Diagnosis .. 661
Clinical history ... 661
Bronchoalveolar lavage ... 661
Chest radiograph ... 661
Computed tomography .. 662
Histopathology ... 663
Complications .. 664
Treatment ... 664
Natural history and outcome ... 664
Conflict of interest statement ... 665
References ... 665

Definition and classification

Several pulmonary complications may be caused by the aspiration of different substances into the airways and
airspaces. Lipoid pneumonia (LP) is an uncommon condition that results from the pulmonary accumulation of fatlike
compounds of animal, vegetable or mineral origin.1,2 It can be classified into endogenous and exogenous forms.

In endogenous form, also called "cholesterol" or "golden" pneumonia, the fatlike materials are derived from
the lung itself.3,4 It usually develops when lipids that normally reside in the lung tissue — most commonly cholesterol
and its esters — are released from destroyed alveolar cell
walls distal to an obstructive airway lesion or from lung
tissue damaged by a suppurative process, or due to lipid
storage diseases.3,5,6

The exogenous form can be classified into acute and
chronic. Chronic exogenous LP results from long-term,
recurrent inhalation exposure to oil, while the acute form is
secondary to accidental aspiration of a large quantity of lipid material over a short period of time.7,8

Etiopathogenesis and pathophysiology

Exogenous LP is caused by the inhalation of oils present in
food, radiographic contrast media, or oil-based medica-
tions such as laxatives.1,9 Traditional oil-based popular
medicines are used to treat various diseases in children,
and are often associated with respiratory diseases.10 In
adults, most cases result from the use of oil-based laxatives
(olive oil, cod liver oil and paraffin oil) for the treatment of
constipation, followed by the nasal instillation of oily
products for chronic rhinopharyngeal diseases.3,11

Chronic constipation is a frequent symptom in the pedi-
atriac population. Mineral oil is also used in children for partial
small bowel obstruction by Ascaris lumbricoides.12,13
However, it must be remembered that infants and small
children often object vigorously to ingest the oil, resulting in
gagging that precipitates aspiration.14

Different substances called pyrofluids are used by "fire-
eaters" (performers that "swallow" or "spit" fire). The most
common is the petroleum-derivative kerdan, characterized by
its reduced viscosity and rapid diffusion throughout the bron-
chial tree. After flame blowing, the fire-eater takes a deep
breath, and can aspirate the kerdan remaining in the mouth.8

It is noteworthy that fire-eater pneumonitis has morpho-
logical, radiographic and clinical profiles entirely different
from chronic lipoid pneumonia. The history of accidental
aspiration during "fire-eating" demonstrations is character-
istic. Symptoms occur in the first 12 h after aspiration, and
include chest pain, dyspnea, cough, fever, and hemoptysis.
The disease has, in most of cases, a favorable evolution. The
HRCT usually shows bilateral lung consolidations, often
associated with cavitory lesions (pneumatoceles).8

Other less commonly reported causes of LP include:
aspiration of milk,15,16 poppy seed oil,3 and egg yolk16;
occupational exposure to paraffin (paraffin droplets
released by machines) in cardboard crockery factories17; oil
blasting in industries; use of spray paint18; contact with
plastic paint19; aspiration of oils used in industry as lubric-
ants and cutting fluids, in either fluid or spray form, for
turning, milling and grinding operations2; cleaning of new
cars protected by paraffin, using hot water generated by
compressed air jet20; cleaning oil-containing vats;
siphoning diesel fuel19,21; smoking blackfat tobacco, a Ken-
tucky product coated with oil and petroleum jelly to flavor
and moisturize the leaf6; accidental aspiration of vaseline
used in the placement of nasogastric tubes; longstanding use of petroleum jelly (Vaseline, Vicks) at bedtime; aspiration of spray lubricant WD-40 (very popular oil spray, for home use); excessive use of lip balm (Chap Stick, a lipstick that contains petrolatum and lipids) and of flavored lip gloss; and facial application of petrolatum for home use. The time of exposure to oil varies widely in the cases described in the literature, reaching up to several years. In almost all studies, the amount of oil consumed was not quantified. Some authors also described the development of LP secondary to suicide attempt by mineral oil immersion.

Factors that increase the risk of exogenous LP include extremes of age; anatomical or structural abnormalities of the pharynx and esophagus, such as Zenker diverticulum, gastro-esophageal fistula, hiatal hernia, gastroesophageal reflux, achalasia; psychiatric disorders; episodes of loss of consciousness; neuromuscular disorders that result in swallowing dysfunction or affect the cough reflex; and, particularly in children, forced oil intake. In some countries the digestive form of Chagas disease, where patients with megacolon have severe and prolonged periods of constipation (over 60 days), should also be remembered. The combination of two factors (constipation caused by functional disorder of colon, and tendency to aspiration due to megaesophagus) enhances the risk of lipid pneumonia in patients with Chagas disease.

In many cases there is no predisposing condition and the excessive use of oily substances is the presumed cause. In adults, 25% of cases of lipid pneumonia occur in individuals without any predisposing factors.

It is noteworthy that the aspiration of mineral oil usually occurs unnoticed because it does not induce reactive responses in the airways, such as glottic closure or cough. These substances introduced into the nose can easily and silently reach the bronchial tree of sleeping patients without eliciting a normal protective cough reflex and may impair mucociliary transport, subsequently reducing their clearance from the respiratory tract.

Clinical findings

The clinical symptoms are nonspecific, and vary according to the patient’s age, duration of oil intake, and the amount and quality of oil aspirated. The time of exposure to oil varies widely in the cases described in the literature, reaching up to several years. In almost all studies, the amount of oil consumed was not quantified.

In the elderly, these pneumonias are usually chronic, progressive, and asymptomatic. For this reason, it may be discovered only as an incidental autopsy finding. Respiratory failure requiring ventilatory support is an unusual presentation of the disease. In children, massive aspiration may present with acute clinical manifestations and early radiological findings. Symptoms can vary significantly among individuals, ranging from asymptomatic to severe, life-threatening disease. When present, symptoms are usually mild.

Lipoid pneumonia usually presents with chronic cough, sometimes productive, and dyspnea. Less common problems include chest pain, hemoptysis, weight loss, and intermittent fever. Physical examination of the chest may be normal or may present dullness to percussion, crackles, wheezes, or rhonchi.

Most cases of lipid pneumonia shows a discrepancy in severity between the radiological and clinical findings. Patients are often asymptomatic with extensive imaging findings, which are discovered incidentally on routine chest radiographs.

Extrathoracic symptoms, such as vomiting, stomach pain, dysphagia, vertigo and fainting, are occasionally described in the literature. The presence of hypertrophic osteoarthropathy has been reported in a five-year-old child with a history of forced feeding with animal fat (ghee). Since its clinical and radiological presentations are nonspecific, lipid pneumonia may mimic many other diseases, especially bacterial pneumonia, presenting with fever and cough. Occasionally, it can also simulate lung tumours, pulmonary tuberculosis or cystic fibrosis.

Diagnosis

The diagnosis of exogenous lipid pneumonia is based on a history of exposure to oil with radiological findings in keeping with the disease and the presence of lipid-laden macrophages on sputum or bronchoalveolar lavage (BAL) analysis. It should be considered, however, that none of these findings alone is diagnostic of lipid pneumonia.

Clinical history

Exogenous lipid pneumonias may be difficult to diagnose because a history of oil ingestion is often missed. The exposure is often identified only retrospectively after the diagnosis is made, when a directed history is taken from the patient or their parents.

Bronchoalveolar lavage

Bronchoscopy with BAL has been reported to be successful in establishing the diagnosis of lipid pneumonia. It allows the assessment of airway anatomy to rule out other causes of chronic nonresolving pneumonia. Plugging with oil has been noted bronchoscopically and on post-mortem examination. The macroscopic appearance of BAL may suggest the diagnosis, revealing a whitish or turbid fluid, with fat globules on the fluid surface. In a series of 10 children with LP, Sias et al. have found that all of them showed a milky BAL fluid on gross examination.

Besides the diagnostic value, BAL has therapeutic implications in some cases. The biochemical analysis of the collected fluid can help to confirm the diagnosis, when using fat stains. The specific type of oil aspirated can be determined by chemical analysis, infrared spectroscopy or chromatography.

The cytological demonstration of lipid-laden macrophages is consistent with the diagnosis of exogenous LP, although false-negative results may also occur. Both the presence of lipid-laden macrophages per se (Fig. 1), and the finding of high lipid-laden macrophage index (LLMI) are nonspecific
findings, and may be found in a variety of lung diseases where there is no clinical evidence of aspiration. However, the presence of extracellular oily droplets is more specific for exogenous LP. Another finding that distinguishes exogenous from endogenous LP is the presence of foamy macrophages with large cytoplasmic vacuoles contrasting to small vacuoles seen in the endogenous form. The computation of an LLMI may be helpful in excluding aspiration as a cause of parenchymal lung disease.

Midulla et al. reported marked reduction in normal alveolar macrophages, slight increase in eosinophil numbers and increased number of activated lymphocytes. After oil intake ended, normal and lipid-laden macrophages increased and lymphocyte numbers decreased.

Chest radiograph

The diagnostic accuracy of chest radiograph in aspiration diseases is relatively low. More than half of the patients with exogenous LP are asymptomatic on presentation, and are only identified because of an abnormality seen on a chest radiograph. The findings in lipid pneumonia are nonspecific, and the disease presents with variable patterns and distribution, ranging from asymptomatic focal inflammatory reaction with little or no radiological abnormality to severe life-threatening disease.

Diffuse and confluent consolidations (Fig. 2), bilateral poorly-defined opacities, irregular mass-like lesions, bilateral and symmetrical reticulonodular pattern, mixed alveolar and interstitial pattern, and unilateral or bilateral nodular lesions may be seen. According to the literature data, the abnormalities on chest radiographs are most commonly observed in the lower and middle lobes. The upper lobes may also be affected. Alveolar lesions either localized or diffuse, are the earliest changes.

Computed tomography

High-resolution computed tomography is the best imaging modality for establishing the diagnosis of lipoid pneumonia.
are highly suggestive of intrapulmonary fat, and consistent with lipoid pneumonia, especially when associated with a history of exposure to oil. However, care must be taken in obtaining these measurements, in order to prevent a false-positive interpretation. These measures should be taken in the most hypodense part of the consolidation areas, free of any aerated parenchyma on the periphery of the consolidation or areas of air bronchogram, due to interferences caused by partial-volume averaging of partly aerated lung. Air and soft tissue, when averaged together, can mimic the characteristic attenuation values of fat.

Unlike the consolidations, the specificity of the finding of fat in PL presenting as pulmonary nodules or masses is much lower, since some tumors such as hamartoma and lipoma may present with this finding. Moreover, the differential diagnosis should also be done with tumors originating from the pleura, mediastinum, or chest wall, which include teratomas, thymolipomas, lipomas and liposarcomas.

The aspiration of different substances can cause symptoms similar to those of LP. These substances can produce pulmonary consolidations resembling lipoid pneumonia, but do not show areas of fat attenuation.

Histopathology

Needle aspiration biopsy has been used for the diagnosis of LP. Cytological examination may be negative despite chemical evidence in the sputum of oil expectoration. On the failure of other methods, open lung biopsy may be indicated, with the disadvantage of being a much more invasive procedure.

If the diagnosis remains uncertain, percutaneous fine-needle aspiration biopsy, transbronchial biopsy or open lung biopsy may be necessary. Kameswaran et al. reported that transbronchial biopsy may be helpful in establishing the diagnosis, and suggested that open lung biopsy should be reserved for those few cases where the preceding less invasive methods are unhelpful.

The histological specimens cannot be embebed into paraffin, as the lipids are dissolved by xylol and other substances used in the processing. Therefore the analysis is limited to frozen sections. The diagnosis is made by using...
occupational exposure to paraffin may be aerosolized. Treatment is primarily supportive and generally conservative, followed by the treatment of complications.

Other supportive measures, such as oxygen therapy, respiratory therapy, control of risk factors, and mechanical removal of intrapulmonary fat should be considered. However, in some cases, it seems that lipid phagocytosis by macrophages may impede the removal by bronchial lavage.

There are reports of systemic corticosteroids use to slow the inflammatory response. However, steroid therapy remains controversial, and should be reserved for severe cases.

Treatment in patients without clinical symptoms remains controversial. Bronchiectasis caused by lipid pneumonia should be treated with aggressive early medical management, but surgical resections designed to remove the most affected portions of lung tissue is recommended for those who do not respond to medical treatment.

Complications

Superinfection of an exogenous lipid pneumonia by non-tuberculous mycobacteria is known, but rare. Exogenous LP has been described in association with superinfection by nontuberculous mycobacteria and occasionally by Nocardia organisms. Lipids seem to enhance the growth of these organisms, including Mycobacterium chelonae and Mycobacterium fortuitum, and impede their phagocytosis by the hosts’ macrophages.

Repetitive aspirations may result in variable amount of pulmonary fibrosis, which can be severe when caused by occupational exposure to paraffin. Hypoxic respiratory failure can also develop, occasionally leading to cor pulmonale. A late-stage emphysematous appearance in adjacent lung may result from volume loss and retraction of the lesion.

Another possible complication is hypercalcemia, probably from inflammatory cells producing calcitriol, a phenomenon observed in other granulomatous diseases such as sarcoidosis, tuberculosis, and systemic fungal diseases.

Treatment

There are currently no studies in the literature that define the best therapeutic option. However, there is a consensus that the key measure is identifying and discontinuing exposure to the offending agent. It is important to remember that the prevention in some workplaces is essential. The various forms of exposure should be carefully monitored by occupational physicians, especially when paraffin may be aerosolized. Treatment is primarily supportive and generally conservative, followed by the treatment of complications.

In children, the treatment of lipid pneumonia is usually supportive. The resolution of signs and symptoms occurs in some months, after discontinuing the use of mineral oil. In patients with diffuse pulmonary damage, aggressive therapies have been reported.

Whole lung lavage, sometimes used in the treatment of patients with symptomatic alveolar proteinosis, may also be therapeutic in treating LP. However, in some cases, it seems that lipid phagocytosis by macrophages may impede the removal by bronchial lavage.

There are reports of systemic corticosteroids use to slow the inflammatory response. However, steroid therapy remains controversial, and should be reserved for severe cases.

Treatment in patients without clinical symptoms remains controversial. Bronchiectasis caused by lipid pneumonia should be treated with aggressive early medical management, but surgical resections designed to remove the most affected portions of lung tissue is recommended for those who do not respond to medical treatment.

Natural history and outcome

The natural history and outcome of LP are variable, and depend on the type, volume, and distribution of oil aspirated. With treatment, the majority of patients with an acute presentation have clinical and radiographic improvement, similar to the usual course of pneumonia. Information about the course of lipid pneumonia derives largely from case reports, not long-term observational studies. Acute, sometimes fatal, cases can occur, but the disease is usually indolent. Some lesions may heal with fibrosis, while others may persist, sometimes fatal. In some cases, it seems that lipid phagocytosis by macrophages may impede the removal by bronchial lavage. Whole lung lavage, sometimes used in the treatment of patients with symptomatic alveolar proteinosis, may also be therapeutic in treating LP. However, in some cases, it seems that lipid phagocytosis by macrophages may impede the removal by bronchial lavage.
the uncontrolled use of mineral oil, especially for the very young and the elderly.

Conflict of interest statement

All authors inform that there are none conflicts of interest.

References

34. Marchiori E, Zanetti G, Nobre LF, Takayassu TC, Irion KL. Lipoid pneumonia complicating chagasic megaesophagus. High-resolu-

42. Libuse HM, Rohatgi PK. Diffuse cholesterol granulomatous pneumonitis in a patient exposed to sprayed paints. Chest 2000;118:303S.