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a b s t r a c t

Insulin receptor substrates (IRSs) are known to play important roles in mediating intracellular insu-
lin-like growth factors (IGFs)/insulin signaling. In this study, we identified components of messenger
ribonucleoprotein (mRNP) as IRS-1-associated proteins. IRS-1 complex formation analysis revealed
that IRS-1 is incorporated into the complexes of molecular mass more than 1000 kDa, which were
disrupted by treatment with RNase. Furthermore, oligo(dT) beads precipitated IRS-1 from cell
lysates, showing that the IRS-1 complexes contained messenger RNA. Taken together with the data
that IRS-1 was fractionated into the polysome-containing high-density fractions, we concluded that
IRS-1 forms the novel complexes with mRNPs.

Structured summary of protein interactions:
IRS1 physically interacts with PABPC1 by anti bait coimmunoprecipitation (View Interaction: 1, 2)
IRS1 physically interacts with PABPC1 by anti tag coimmunoprecipitation (View interaction)
IRS1 physically interacts with PABPC1 by anti bait coimmunoprecipitation (View interaction)
IRS1 physically interacts with EIF4F and PABPC1 by anti bait coimmunoprecipitation (View interaction)
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1. Introduction pathway, including insulin receptor substrates IRS-1 and -2 [2–4].
Insulin-like growth factors (IGFs) and insulin induce fundamen-
tal bioactivities, supporting embryonic development and growth,
and postnatal somatic growth and regulation of glucose, lipid
and protein metabolism [1]. The intracellular processes are
accomplished by a variety of molecules of the IGF/insulin signaling
When IGFs or insulin bind to their specific receptors, receptor-
intrinsic tyrosine kinases are activated and phosphorylate IRSs.
Phosphotyrosyl IRSs are then recognized by Src homology region
2 (SH2) domain-containing proteins, leading to the activation of
phosphatidylinositol 3-kinase (PI3K) and mitogen-activated pro-
tein kinase (MAPK) pathways. The activated PI3K transmits the sig-
nal to up-regulate growth and metabolism through the Akt
signaling pathway [5]. In particular, the downstream mammalian
target of rapamycin (mTOR) is important in promoting growth-re-
lated intracellular activities such as protein synthesis and ribo-
some biogenesis [6]. The signaling pathway triggered by tyrosine
phosphorylation of IRSs plays important roles in controlling trans-
lational processes required for IGF/insulin-induced protein synthe-
sis resulting in cell proliferation, differentiation and survival.

Among the IRS isoforms, it was well established that IRS-1 and
IRS-2 are the main isoforms that mediate signal transduction
essential for IGF/insulin bioactivities. We found that IRS-1/-2 form
high-molecular-mass complexes (we named these complexes IR-
Somes) with various proteins even in a phosphotyrosine-indepen-
dent manner, and the components of IRSome vary in different
tissues/cell-types and under conditions of hormone/cytokine
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stimulation [7]. We and others have identified phosphotyrosine-
independent binding partners of IRSs and these IRS-associated
proteins are shown to positively/negatively modulate IGF/insulin
signaling through altering the availability of IRSs to their receptors
and regulating the intracellular quantity of IRSs [8–15]. While
much has been studied about the phosphotyrosine-dependent sig-
naling pathway of IRSs, it is largely unclear how the phosphotyro-
sine-independent association of proteins with IRS modulates IGF/
insulin bioactivities. Thus, we have been investigating the compo-
nents of IRS-1 complexes using proteomic approaches, and as
shown herein, our studies unexpectedly identified an interaction
of IRS-1 with poly(A) binding protein cytoplasmic 1 (PABPC1).

Newly transcribed pre-messenger RNA (mRNA) is capped at the 50

end and bound by a nuclear cap-binding heterodimer CBP80/20
[16,17]. Pre-mRNA undergoes RNA processing including 30 poly(A) tail
addition and splicing, in which introns are removed and a large-protein
complex called the exon junction complex (EJC) is deposited upstream
of each exon–exon junction [18,19]. These proteins remain bound to
mRNA while the messenger ribonucleoprotein (mRNP) complex is ex-
ported to the cytoplasm [20–22] and are subsequently replaced by
cytoplasmic translation initiation factors during the first ribosomal
passage along the mRNA in the cytoplasm; the EJC is removed
[23,24] and CBP80/20 is replaced by eukaryotic initiation factor (eIF)
4E [25] and poly(A)-tail is protected by PABPC1 [26]. Passing through
the pioneer round of translation, eIF4E-bound mRNAs undergo stea-
dy-state translation, which is regulated by mTORC1 mainly through
phosphorylation of downstream effectors eIF4E inhibitory proteins,
4E binding proteins (4EBPs) and the 40S ribosomal subunit protein
S6 (rpS6) protein kinases (S6Ks) in response to various cellular condi-
tions, including the presence of growth factors [27]. eIF4E promotes
translation initiation by recruiting eIF4G, eIF4A, eIF3 and the 40S ribo-
somal subunit to the 50 end of mRNA, and the ternary complex (eIF2/
Met-tRNA/GTP) is also recruited to the cap, resulting in the assembly
of the translation preinitiation complex (PIC) [28]. Poly(A)-associated
PABPC1 interacts with eIF4G in the PIC, leading to circularization
of the mRNA and translation enhancement [29].

In this study, we show that IRS-1 forms RNA-dependent high
molecular mass complexes including PABPC1 and other mRNP
components and IRS-1 was distributed into high-density fractions
containing polysomes in proliferating cells.

2. Materials and methods

Experimental materials and cell cultures and transfection are
described in Supplementary manuscripts.

2.1. Identification of PABPC1 as an IRS-1-associated protein

IRS-1-associated proteins were immunopurified using anti-IRS-
1 antibody and separated by SDS–PAGE, followed by silver staining
as described previously [7]. Excised protein bands were digested
and subjected to matrix-assisted laser desorption/ionization-
time-of-flight mass spectrometry (MALDI-TOF-MS) as described
previously [30]. Peptide mass fingerprinting analysis were per-
formed with the Mascot search engine (http://www.matrix-
science.com/search_form_select.html).

2.2. Immunoprecipitation followed by immunoblotting

Immunoprecipitation and immunoblotting were performed as
described in Supplementary methods.

2.3. Oligo(dT) pull down assay

mRNP capturing was performed using Dynabeads oligo(dT)25

magnetic beads (Dynal). Extracts from MCF-7 cells (1 � 107 cells)
were adjusted to 5 ml in Binding buffer [20 mM HEPES (pH 7.6),
150 mM NaCl, 1 mM EDTA, 0.5% (v/v) NP40, 15 lg/ml calpain inhib-
itor, 10 lg/ml leupeptin, 5 lg/ml pepstatin, 20 lg/ml PMSF,
100 KIU/ml aprotinin, 10 mg/ml PNPP], and incubated with 20 ll
of beads for 60 min at 4 �C. As controls, extracts were treated with
1 mg/ml ribonuclease A (RNase A) for 10 min at room temperature,
prior to binding to the oligo(dT) beads. After six washes in the same
buffer, the mRNPs were eluted by boiling in1� Laemmli0s buffer.

2.4. Blue native-polyacrylamide gel electrophoresis (BN-PAGE)

To separate protein complexes containing IRSs, BN-PAGE was
performed as described previously [7].

2.5. Sucrose gradient density centrifugation analysis

The sucrose gradient density centrifugation was performed
according to the previous report [7], except for modifications as de-
scribed in supplementary methods.

2.6. Polysome fractionation

Polysome fractionation was performed as described in supple-
mentary methods

3. Results

3.1. PABPC1 is a component of IRS-1 complex

We have previously set up immunoprecipitation assays using
FLAG-tagged IRS-1 and -2 proteins and found many proteins that
are candidates for IRSome components [7]. To further characterize
proteins that associate with IRS independently of its tyrosine phos-
phorylation, L6 myotubes were cultured under serum-free condi-
tions and cell lysates were immunoprecipitated with anti-IRS-1
antibody. Immunoprecipitated proteins were detected by silver
staining, and the protein profile of the precipitated fraction was
quite similar to that of FLAG-IRS-1, which we have previously re-
ported [7] (data not shown). Those proteins were subjected to
MALDI-TOF-MS and peptide mass finger printing analysis, and as
a result, we identified poly(A) binding protein cytoplasmic 1 (PAB-
PC1) as one of the IRS-associated proteins. We confirmed the asso-
ciation in serum-starved L6 cells by immunoprecipitation using
anti-IRS-1 antibody followed by immunoblotting with anti-PAB-
PC1 antibody (Fig. 1A). To address the question whether IRS-2 also
interacts with PABPC1, we overexpressed FLAG-IRS-1 or FLAG-IRS-
2 and immunoprecipitated with anti-FLAG antibody, followed by
immunoblotting with anti-PABPC1 antibody. The specific interac-
tion of PABPC1 with IRS-1 was observed but not in the case of
IRS-2 (Fig. 1B). In addition, we used MCF-7 cells since this cell line
abundantly expresses both IRS-1 and IRS-2 proteins to check
endogenous association between PABPC1 and IRS-1 or IRS-2. Co-
immunoprecipitation analysis also showed that PABPC1 specifi-
cally associated with IRS-1 but not with IRS-2 (Fig. 1C).

3.2. IRS-1 forms a ribonucleoprotein complex

Since it is well established that PABPC1 interacts with the
poly(A)-tail of mRNA [31], we next investigated the possibility that
IRS-1 complexes contain polyadenylated mRNAs. To this end, we
performed oligo(dT) pull-down assays using serum-starved MCF-
7 whole cell lysates. Poly(A)+ RNAs were isolated by incubating cell
lysates with oligo(dT)-conjugated beads, and proteins associated
with the RNA were separated by SDS–PAGE and analyzed by
immunoblotting. IRS-1, but not IRS-2, was isolated by oligo(dT)
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Fig. 1. IRS-1 forms a complex with PABPC1. (A) L6 myoblasts were cultured under
serum-free conditions, and cell lysates were subjected to immunoprecipitation with
anti-IRS-1 antibody, followed by immunoblotting with anti-PABPC1 antibody.
Immunoprecipitates with normal rabbit IgG (NR IgG) served as negative controls.
(B) HEK293 cells transiently expressing FLAG-IRS-1 or FLAG-IRS-2 were cultured
under serum-free conditions. Cell lysates were subjected to immunoprecipitation
with anti-FLAG antibody conjugated-agarose, followed by immunoblotting with the
indicated antibodies. (C) MCF-7 cells were cultured under serum-free conditions,
and cell lysates were subjected to immunoprecipitation with anti-IRS-1 antibody or
anti-IRS-2 antibody, followed by immunoblotting with anti-PABPC1 antibody.
Immunoprecipitates with normal rabbit IgG (NR IgG) or with anti-IRS-1 and anti-
IRS-2 antibody in the presence of peptide used to raise the anti-IRS-1 or IRS-2
antibody (Antigen pep.) served as negative controls.
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affinity extraction, whereas this interaction was impaired in the
presence of RNase A (Fig. 2A). This strongly suggests that IRS-1
forms complexes with poly(A)+ RNA.

3.3. Ribonuclease treatment dissociates IRS-1 complexes

Given the association of IRS-1 with poly(A)+ RNA, we considered
the possibility that the formation of IRSomes is dependent on
Fig. 2. High-molecular-mass complexes of IRS-1 contain mRNAs. (A) mRNPs in MCF-7 cel
Proteins bound to the beads were analyzed by immunoblotting with anti-IRS-1 or IRS-2
serum-free conditions. Cell lysates were subjected to immunoprecipitation with anti-FL
FLAG-IRS-1 was eluted with FLAG peptides. Nine-tenths of the precipitate was subjecte
immunoblotting. (C) MCF-7 cells were serum-starved, and the lysates were treated with
or IRS-2 antibody. (D) Cell lysates of MCF-7 cells were treated with or without RNase. Each
of each fraction were analyzed by immunoblotting with anti-IRS-1 or IRS-2 antibody. Fra
Ppt: precipitates.
RNAs. Thus, the effects of ribonuclease A (RNase A) treatment on
the IRSomes were investigated. IRSomes were immunopurified
from serum-starved human embryonic kidney 293 (HEK293) cells
expressing FLAG-IRS-1 using anti-FLAG antibody. They were then
treated with RNase A, and separated under the native conditions
by BN-PAGE, followed by immunoblotting with anti-FLAG anti-
body (Fig. 2B). The results showed that IRS-1 was contained in
complexes of about 400 kDa and over 1000 kDa, which is consis-
tent with our previous report [7]. RNase A treatment clearly de-
creased the amount of complexes over 1000 kDa, and increased
the amount of the 400-kDa complexes. We also investigated
endogenous IRSomes by treating MCF-7 cell lysates with RNase
and found that endogenous IRS-1 showed a similar trend
(Fig. 2C). On the other hand, the amounts of the high-molecular
mass complexes of IRS-2 were not as much reduced after RNase
A treatment (Fig. 2C). Consistently, sucrose gradient fractionation
analysis showed that although IRS-1 and IRS-2 were detected in
relatively high-molecular-mass fractions as well as in low-molecu-
lar-mass fractions, RNase A treatment of lysates greatly decreased
high-molecular-mass complexes containing IRS-1 but not IRS-2,
and increased low-molecular-mass complexes (Fig. 2D). Taken to-
gether, we concluded that the formation of 1000 kDa-complex con-
taining IRS-1 is dependent on RNAs.

3.4. IRS-1 associates with protein components of mRNP

Since PABPC1 is a major component of mRNP and is involved in
multiple key steps of translation initiation, such as cap recognition
by eIF4E [31], and translation enhancement by the circularization
of the mRNA through eIF4G–PABPC1 interaction [29], we next
examined whether components of cytoplasmic cap-binding pro-
tein also interact with IRS-1 (Fig. 3). We found that IRS-1 interacts
with eIF4G and eIF4E in both serum-starved and IGF-I-stimulated
MCF-7 cells. In contrast, we could not detect the association be-
tween IRS-1 and 4EBP1, which sequesters eIF4E in the eIF4E–
4EBP1 complexes from mRNPs [32,33], indicating that IRS-1
l extracts were captured using oligo(dT) beads in the presence or absence of RNase A.
antibody. (B) HEK293 cells transiently expressing FLAG-IRS-1 were cultured under
AG antibody conjugated-agarose in the absence or presence of RNase A, and then
d to BN-PAGE (top panel), and the remaining to SDS–PAGE (bottom), followed by

or without RNase A, and subjected to BN-PAGE and immunoblotting with anti-IRS-1
lysate was fractionated by sucrose density gradient centrifugation, and the aliquots
ction number (Fr. #) and sucrose concentration (%) are indicated above the panels.



Fig. 3. IRS-1 forms complexes with the components of mRNPs. MCF-7 cells were
serum-starved, then either left untreated or stimulated with IGF-I (100 ng/ml) for
2 h. The cell lysates were subjected to immunoprecipitation with anti-IRS-1
antibody in the presence or absence of RNase A. Precipitated IRS-1 complexes
were eluted with the IRS-1 immunizing peptides and analyzed by immunoblotting
with the indicated antibodies.
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certainly interacts with RNA-bound eIF4E rather than the
eIF4E–4EBP1 complexes. Furthermore, our results revealed that
the interactions of IRS-1 with both PABPC1 and eIFs were abolished
by RNase A treatment, whereas the protein–protein interaction of
IRS-1 with a p85 regulatory subunit of PI3K was not affected. These
results suggest that IRS-1 is incorporated into mRNP complexes.

3.5. IRS-1 associates with polysomes

To investigate whether IRS-1-associated mRNAs are translation-
ally activated under the growth conditions, we compared the sedi-
mentation profile of IRS-1 with that of polysomes in a 10–45%
sucrose gradient. Under serum-starved conditions, IRS-1 was pri-
marily detected in monosome fractions (Fig. 4A, before fraction
#13) as well as non-ribosomal fractions (Fig. 4A, fraction #4–6).
IRS-2 was mainly detected in non-ribosomal fractions (Fig. 4A,
Fig. 4. IRS-1 associates with polysomes. Polysomes were fractionated using extracts pre
(10% fetal bovine serum (FBS)/Dulbecco’s modified Eagle’s medium (DMEM)). Proteins in
curve denotes the O.D. 254 of each fraction, and the positions of 40S, 60S, and 80S ribos
before fraction #6). In the case of MCF-7 cells cultured in the pres-
ence of serum, we observed IRS-1 in the polysome-containing frac-
tions (Fig. 4B, after fraction #13) as well as 40S and 60/80S fractions
(Fig. 4B, before fraction #13). The shift of PABPC1 distribution to the
polysome-containing fractions was also observed. On the contrary,
IRS-2 distribution remained unchanged (Fig. 4B). Consistent with
the findings that IRS-1, but not IRS-2, forms complexes with mRNAs,
these results suggested that IRS-1 specifically interacts with mRNPs,
and that IRS-1-associated mRNPs, forming polysomes in response to
growth factor stimuli, are active to be translated.

4. Discussion

IRSs are phosphorylated by the activated tyrosine kinases in
IGF-I receptor and insulin receptor, and phosphotyrosyl IRSs asso-
ciate with various effecter proteins containing the SH2 domain,
resulting in the activation of the downstream signaling pathways.
In contrast to this canonical phosphotyrosine-dependent associa-
tion between IRSs and signaling molecules, we have recently
shown that IRSs associate with various proteins in a phosphotyro-
sine-independent manner, and that those IRS-associated proteins
play important roles in modulating IGF/insulin bioactivities [8–
10]. In this study, we have identified several RNA-binding proteins
as novel binding partners with IRS-1 and have shown that the IRS-
1 complexes contained mRNA. These IRS-1 complexes containing
mRNAs are likely to have some functions in translation.

IRS-1 is widely expressed in various IGF/insulin target tissues
[34]. Previously, we have reported that the formation of high-
molecular mass complexes containing IRS-1 is observed in various
tissues/cell-types [7]. In this study, the interaction of IRS-1 with
RNA-binding proteins as well as mRNA by themselves was de-
tected in all cell-types that we have tested, suggesting that com-
plex formation of IRS-1 with mRNAs or RNA-binding proteins
generally occurs in various tissues/cell-types.

BN-PAGE and sucrose gradient fractionation analyses revealed
that IRS-1 forms two types of complexes, relatively high- and
low-molecular mass complexes, and in both analyses, the high-
molecular mass complexes were disrupted by RNase treatment
and disappeared whereas the amount of the low-molecular mass
complexes increased instead (Fig. 2B–D). These data suggested that
pared from MCF-7 cells cultured in the (A) serum-starved or (B) growth condition
each fraction were subjected to immunoblotting with the indicated antibodies. The

omal particles and polysomes are indicated. Fraction numbers (Fr. #) are indicated.
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RNAs are contained only in the high-molecular mass complexes
and that the low-molecular complexes are formed by different
mechanisms independent of RNAs. In addition, this complex for-
mation with RNAs was specific for IRS-1, since IRS-2 could not
interact with PABPC1 (Fig. 1B and C) and high-molecular mass
complexes containing IRS-2 were less sensitive to RNase treatment
(Fig. 2C and D). Even though we could not rule out the possibility
that IRS-2 also forms high-molecular mass complexes with RNAs
and PABPC1 in small amounts, it remains unclear how only IRS-1
can associate with mRNPs, but specific interaction of IRS-1 with
RNA complex suggests specific function of IRS-1 in RNA metabo-
lism at the post-transcriptional level.

How does IRS-1 form complexes with RNAs? One possibility is
that some proteins, directly interacting with both RNA and IRS-1,
recruit RNAs around IRS-1. In this study we newly discovered that
PABPC1, eIF4E and eIF4G were co-immunoprecipitated with IRS-1
(Fig. 3). But all these co-immunoprecipitation were disrupted by
RNase treatment, indicating that these associations are not direct
but RNA-mediated. Since none of the RNA binding proteins we
tested showed RNase-resistant binding to IRS-1, we could not
identify proteins that recruit RNAs around IRS-1 by directly
binding to IRS-1. Comprehensive analysis of proteins in the
IRS-1 ribonucleoprotein complexes is required to identify protein
candidates for bridging RNA and IRS-1 in the complexes. Another
possibility is that IRS-1 directly interacts with RNAs. Although
IRS-1 bears no known conserved RNA binding motifs as far as
we could determine, we cannot rule out the possibility that IRS-1
binds to RNAs in a direct manner through a novel RNA-binding
motif. Understanding of the structural nature of the IRS-1 com-
plexes will help identify mRNAs packaged and translationally
regulated within them.

Recently, IRSs are shown to function as an integrator of signal-
ing information rather than as a canonical adaptor protein [35]. We
and others reported that IRSs are associated with various proteins
to modulate the downstream signaling through IRS as well as con-
trol its intracellular localization [8–15,36]. This study indicating
the identification of mRNA in complex with IRS-1 adds a novel
function of IRS-1 as a scaffold protein to control mRNA metabo-
lism. It is well known that tyrosine phosphorylation of IRSs by
IGF-I receptor/insulin receptor kinase activated by IGFs/insulin
playing important roles in controlling global translational pro-
cesses through the downstream mTOR complex [6]. Taken to-
gether, specific mRNAs in high-molecular mass complexes with
IRS-1 are possibly translated in response to IGFs/insulin, mediating
their bioactivities in novel manners.

Our study demonstrated that IRS-1 interacts with several
translation-related proteins and forms high-molecular mass
complexes with mRNAs in a phosphotyrosine-independent man-
ner. These interactions suggest that IRS-1 may play novel role(s)
in controlling post-transcriptional RNA programs in addition to
the canonical phosphotyrosine-dependent roles of IRSs in IR and
IGFR signaling pathways. The components of IRS-1-associated
mRNPs might be remodeled into polysomes for translational
activation using IRS-1 as a scaffold. Further study is required to
evaluate the role of IRS-1 complex formation with mRNP in
translational activation.
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