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Abstract A non-protein-coding RNA, UCA1, has been cloned
from human bladder TCC cell line BLZ-211 by using 5 0 and 3 0

RACE. The UCA1 full-length cDNA was 1442 bp. RT-PCR
analysis indicated that UCA1 is an embryonic development
and bladder cancer-associated RNA. The proliferative, migra-
tive, invasive, and drug resistance behaviors of human bladder
TCC cell line BLS-211 were enhanced by exogenous UCA1
expression in vitro. Several potential target genes of UCA1 were
identified through microarray analysis. Moreover, the expression
of UCA1 also increased tumorigenic potential of BLS-211 cells
in nude mice. Results from the present study suggested that
UCA1 might play a pivotal role in bladder cancer progression
and embryonic development.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Bladder cancer is one of the most common malignancies in

China, ranking as the first frequent neoplasm of the urinary

tract [1]. In most cases, bladder cancer presents as a superficial

transitional cell carcinoma that is easily resectable. However,

high local recurrence rates have been observed (more than

60% at 5 years and more than 80% at 15 years), and approxi-

mately 10–30% of cases will progress to invasive cancer [2,3].

In addition, approximately half of the deaths from bladder

cancer result from progression. Although several potential bio-

markers of disease progression and prognosis have been

adopted, no single marker has emerged as the test of choice
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[4]. Therefore, there is a compelling need to develop reliable

molecular markers to detect disease recurrence or progression

to reduce the morbidity of the patients.

Recently, several studies have highlighted the role of a group

of long (>400 bp) non-protein-coding RNAs (ncRNAs) in car-

cinogenesis and suggested that this class of genes might be used

as biomarkers in cancer [5–9]. However, little is known about the

involvement of ncRNAs in the progression of bladder cancer.

We previously reported a novel expressed sequence tag (EST)

(Genbank accession number DR159656) isolated from two

bladder transitional cell carcinoma (TCC) cell lines BLS-211

and BLZ-211 by using subtractive suppression hybridization

(SSH) technique [10]. BLS-211 and BLZ-211 cells are a pair

of bladder TCC cell lines which were cloned separately from

the same patient�s sample, but with different biological charac-

teristics [11–13]. BLZ-211 cells have a higher invasive potential

and tumorigenic property than BLS-211 cells [13]. In the pres-

ent study, based on this EST, we cloned and identified a

ncRNA, named urothelial cancer associated 1 (UCA1, which

was formerly registered as BCIA (bladder cancer invasion-asso-

ciated gene) in GenBank nucleotide sequence databases with

accession number EU334869) from BLZ-211 cells, and ana-

lyzed the tissue expression pattern and the roles of UCA1 in or-

der to explore the molecular basis responsible for a functional

role in bladder tumor progression and embryonic development.
2. Materials and methods

2.1. Cell culture, tissues collection and RNA extraction
Human bladder TCC cell lines BLS-211 and BLZ-211 were cultured

in RPMI 1640 medium (Gibco-BRL, Gaithersburg, MD, USA) sup-
plemented with 10% bovine calf serum, 100 U/ml penicillin, and
100 lg/ml streptomycin. Cultures were maintained at 37 �C in a
humidified atmosphere with 5% CO2. All tissue samples were obtained
during surgical operation from the First Affiliated Hospital, School of
Medicine of Xi�an Jiaotong University, then immediately snap-frozen
in liquid nitrogen and stored at �80 �C. All samples were pathologi-
cally confirmed and collected with written consent from each patient.
It was approved by the Ethics Committee of the First Affiliated Hos-
pital, School of Medicine of Xi�an Jiaotong University. Total RNA
from cells and tissues were extracted using TRIzol reagent (Invitrogen,
USA). RNA concentration and integrity were determined by spectro-
photometry and standard RNA gel electrophoresis.

2.2. Northern blotting
Total RNA (20 lg) of BLS-211 and BLZ-211 cells, together with

RNA ladder, were size separated by electrophoresis on 1% denaturing
formaldehyde agarose-MOPS gel and then blotted onto nylon mem-
branes (Hybond N, Amersham). The membranes were hybridized to
the [a-32P] dCTP-labeled probe (DR159656) overnight at 42 �C. Filters
blished by Elsevier B.V. All rights reserved.
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were washed in 1 · SSC, 0.1% SDS for 20 min at 68 �C, and three times
in 0.2 · SSC, 0.1% SDS for 20 min at 68 �C. Hybridized RNA signals
were detected by autoradiography. The 18S rRNA (18S) was also de-
tected as control by hybridization with a 252 bp cDNA probe
(M10098, 1565–1816).

2.3. Rapid amplification of cDNA ends (5 0 and 3 0 RACE)
One micrograms of total RNA of BLZ-211 cells was purified further

by treating with RNase-Free DNase I (Takara, Dalian, China), then
reverse transcribed with the SMART RACE cDNA Amplification
Kit (Clontech) according to manufacturer�s instructions. Specific 5 0

and 3 0 RACE cDNA ends were amplified with the universal primer
mix provided by kit and gene specific primers (GSPs) with the advan-
tage 2 PCR polymerase mix (Clontech). The PCR products were sub-
cloned into pGEM-T Easy vector (Promega) and several recombinant
clones were isolated for sequencing. The GSP sequences are 5 0-RACE-
GSP1: 5 0-GTCCAGAGGAACGGATGAAGCCTGC-3 0; 3 0-RACE-
GSP2: 5 0-CTACAGCCTCAATGGACCAGACCCTACC-3 0.

2.4. Sequence analysis of UCA1
The full-length cDNA of UCA1 was assembled with DNAMAN ver-

sion 6. BLAT was used to map the cDNA to chromosome. BLAST
was used to align the sequences. Open reading frame (ORF) finder
software was used to analyze ORF. The coding capacity of UCA1
was tested by TESTCODE.

2.5. Expression analysis of UCA1 RNA in various tissues by RT-PCR
One micrograms of total RNA of every tissue sample was reverse

transcribed by using ImProm II reverse transcriptase (Promega). Pri-
mer sequences for 30 cycles of PCR amplification were as follows:
UCA1 (forward: 5 0-CTCTCCATTGGGTTCACCATTC-3 0, reverse:
5 0-GCGGCAGGTCTTAAGAGATGAG-3 0), 18S (forward: 5 0-CAG-
CCACCCGAGATTGAGCA-3 0, reverse: 5 0-TAGTAGCGACGGG-
CGGTGTG-3 0). Annealing temperature was at 59 �C.

2.6. Stable transfection of UCA1 cDNA
The full-length cDNA of UCA1 was amplified using primers (for-

ward: 5 0-CGGGATCCTGACATTCTTCTGGACAATGAG-3 0, re-
verse: 5 0-CCGGAATTCGCATATTAGCTTTAATGTAGGTGGC-
3 0). The PCR product was purified and digested with BamHI and Eco-
RI restriction enzymes, subcloned into the pcDNA3.1 mammalian
expression vector (Invitrogen) and sequenced. Thereafter, the
pcDNA/UCA1 construct was transfected into BLS-211 cells with lipo-
fectamine2000 for 24 h and selected with 150 lg/ml G418 for 3 weeks.
Transfection with pcDNA3.1 empty vector (MOCK) acted as a con-
trol. The positive clone was identified by reverse transcription polymer-
ase chain reaction (RT-PCR) for UCA1 and neo gene expression. The
primers of neo are as follows: forward, 5 0-ACAAGATGGATTGCA
CGCAGG-30; reverse, 5 0-TTCTCGGCAGGAGCAAGGTGA-30.
Annealing temperature was at 58 �C.

2.7. Cell proliferation, colony formation, and ex vivo tumorigenic assay
Cell proliferation was assessed by using MTT (Amresco, Solon, OH,

USA) assays. Briefly, 4 · 103 cells were separately seeded at the same
time into 96-well culture plates and then routinely cultured for 7 days.
Table 1
Gene name and primer information for real-time PCR

Gene name Primer sequence

AURKC (NM_001015878) 50-CCCAATATCCTGCGCCTGTATA
50-AGGTCAGGGCATCTGCCAAC-3 0

CYP1A1 (NM_000499) 50-GCCAAGAGTGAAGGGAAGAGA-3
50-AGGAAGGGCAGAGGAATGTG-3 0

WNT6 (NM_006522) 50-CTGGAATTGCTCCAGCCACA-3 0

50-GCAGTGATGGCGAACACGA-30

SRPK1 (NM_003137) 50-AGCAAGCCACCAGTGAGGCTA-3
50-GAATGGCTGGCCAGTTACTCAG

MBD3 (NM_003926) 50-GGCAAGATGCTGATGAGCAAGA
50-TCACCGGCTGCTTGAAGATG-3 0

GAPDH (NM_004360) 50-AGGTCGGAGTCAACGGATTTG-3
50-GTGATGGCATGGACTGTGGT-3
Twenty microliters of (5 mg/ml) 3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-
nyltetrazolium bromide (MTT) was added to each well. The cells were
cultured at 37 �C for 4 h, 150 ll dimethyl sulfoxide (DMSO) was
added, and the 490 nm wave-length absorption value was measured.
All experiments were performed in triplicate and repeated three times.

Colony formation was assessed as follows: cells were trypsinized into
a single cell suspension. A total of 100 cells were plated in each well of
6-well plates and kept for 14 days in RPMI 1640 supplemented with
10% bovine calf serum containing 150 lg/ml G418 to allow colony for-
mation. Cell clones over 50 cells were counted using a grid. Three inde-
pendent experiments were performed.

For in vivo tumorigenicity, pcDNA/UCA1 and pcDNA3.1 stable
transfected BLS-211 Cells were trypsinized, counted, and centrifuged
and re-suspended into sterile PBS (1·), 200 ll cells (8 · 106 cells) of
the suspension was injected into left posterior limb subcutaneous re-
gion of athymic nude mice (4–6 weeks of age). On the seventh day post
injection, tumors began to develop and their volumes were measured
routinely using a caliper. Four weeks post injection, all mice were
killed, tumor sizes, weights and the expression of UCA1 RNA were de-
tected. The permission for the mouse experiments was obtained from
the Institutional Animal Care and Use committee of Xi�an Jiaotong
University and conducted in accordance with the European commu-
nity council directive 68/609/EEC guidelines.

2.8. Cell invasion, motility and drug resistance assay
Invasion assay was done in a 24-well Millicell chamber. The 8 lm

pore inserts were coated with 15 lg of Matrigel (Becton Dickinson
Labware, Bedford, MA). 5 · 105 cells were added to coated filters in
100 ll of serum-free medium in triplicate wells. Six hundred microliters
of RPMI 1640 media containing 20% fetal bovine serum was added to
the lower chamber as chemoattractant. After 24 h at 37 �C in a 5%
CO2 incubator, the Matrigel coating on the upper surface of the filter
was wiped off using a cotton swab. Cells that migrated through the fil-
ters were fixed in 2.5% glutaraldehyde for 30 min, stained with Giemsa,
photographed, and counted. The motility assay was conducted in a
similar fashion without coating with Matrigel. The plates were incu-
bated for 8 h then detected. Each experiment was carried out in tripli-
cate.

Cisplatin resistance was detected as follows: 10000 pcDNA/UCA1
and pcDNA3.1 stable transfection cells per well were seeded separately
in a 96-well plate for 24 h, then exposed to various concentrations of
drugs (0, 5, 10, 20, 40, 80 lM) for 48 h, and detected by MTT assay.
All experiments were performed in quadruplicate and repeated two
times.

2.9. Microarray mRNA expression analysis and verification of selected
genes by real-time PCR analysis

Total RNAs were isolated from BLS-211 cells that stable transfected
by pcDNA/UCA1 or pcDNA3.1 plasmids, and were subjected to re-
verse transcription, labeling and hybridization to Agilent Human 1A
Microarray (V2) G4110B gene chip arrays (Agilent Technologies, Palo
Alto, CA), containing about 22000 transcripts and variants, including
18700 well characterized human genes. Genes whose expression chan-
ged by at least twofold (pcDNA/UCA1 versus pcDNA3.1) are selected.
Then we identified several different up- and down-regulated genes (Ta-
ble 1) with Quantitative real-time PCR on an ABI PRISMR 7300 Se-
Position (mRNA) Product (bp)

AC-30 490–513 166
636–655
2094–2114 134
2208–2227
467–487 87
535–553

0 3586–3606 159
A-3 0 3722–3744
-30 221–242 139

340–359
0 66–86 551

597–616
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quence Detection System (Applied Biosystems, Foster City, CA, USA)
using SYBR� Premix Ex Taq� Kit (Takara Biotechnology Co. Ltd.,
Dalian, China). For normalization the gene glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) was used. Cycling conditions were
as follows: initial denaturation at 95 �C for 10 s, followed by 40 cycles
of 95 �C for 5 s, 60 �C for 15 s and 72 �C for 31 s, and no template con-
trols were included for each assay. After PCR, a dissociation curve
analysis was done. Relative gene expression was calculated using the
2�DDCT method with MOCK cDNA from all samples as a reference.
All experiments were performed in triplicate and repeated twice. All
oligonucleotide primers (Table 1) were designed and synthesized by
Takara (Dalian, China).

2.10. Statistical analyses
All statistical analyses were performed using the SPSS13.0 software.

The results were presented as means ± S.E. Differences between means
were analyzed using the unpaired Student�s t-test (two-tailed). The
probability value P < 0.05 was considered statistically significant.
3. Results

3.1. Molecular cloning and sequence analysis of UCA1 – a non-

protein-coding RNA

Northern blotting analysis identified among several splice

forms, a major UCA1 transcript approximately 1400 bp in

length (Fig. 1A). UCA1 RNA was only expressed in BLZ-

211 cells, no signal was observed in BLS-211 cells (Fig. 1A),

which was consistent with our SSH data [10]. The 3 0-cDNA

end and 5 0-cDNA end were confirmed to be 534 bp and
Fig. 1. Identification of UCA1 full-length cDNA and gene structure. (A) Nor
There were three different splice variants of UCA1 transcript in BLZ-211 cells
was most abundant. The 18S rRNA was detected as control by hybridizatio
RNA in each lane. (B) 5 0 and 3 0 ends of UCA1 were extended from BLZ-21
UCA1 gene. Blue part (including red and purple) represents EST sequenc
complement sequence of 5 0 RACE GSP1, purple letters was the 3 0 RACE GS
positive strand. UCA1 gene consists of three exons, the first two exons mainl
and HERVH).
395 bp in length by RACE, respectively (Fig. 1B and C). The

cloned full-length cDNA of UCA1 gene was 1442 bp (Fig.

1C), which was consistent with the result of Northern hybrid-

ization. UCA1 gene was detected in BLZ-211 cells but not in

BLS-211 cells. This might explain the higher invasive ability

of BLZ-211 cells [13]. Genomic sequence analysis revealed that

this transcript was spliced and polydenylated and contained a

polyadenylation signal (ATTAAA) located 16–21nt from the

polyA tail. The UCA1 cDNA was found to have 100% identity

with the human part of the DNA sequence of the chromosome

19 cosmid (AC004510), 99% identity with part sequence of hu-

man hypothetical LOC729642 mRNA (XM_001133784.1),

and 97% identity with Homo sapiens cDNA FLJ35082 fis,

clone PLACE6005351 (AK092401.1). No significant similari-

ties were observed between UCA1 and other human known

functional genes in Genebank nucleotide sequence databases.

Moreover, no significant similarities were found between

UCA1 transcript and mouse genomic and transcript in Gene-

bank. Further analysis the Blast Tree View

(http://www.ncbi.nlm.nih.gov/blast/treeview/blast_tree_-

view.cgi?; Database: nr, etc.) of UCA1 only identified UCA1

orththologues in primates, including chimpanzee (Pan troglo-

dytes, XM_001159928.1), Sumatran orangutan (Pongo abelii,

AC210534.3), and rhesus monkey (Macaca mulatta,

AC197808.1). No homologues were found in other species,

such as rat, mouse, dog, cow, chicken, Drosophila melanogas-

ter, honey bee, and the plant Arabidopsis thaliana, etc. in search
thern blot analysis of UCA1 transcripts in BLS-211 and BLZ-211 cells.
, 1400 bp 2200 bp and 2700 bp, respectively, and the 1400 bp transcript
n with a 252bp cDNA probe and demonstrated equal loading of total
1 cells using RACE technique. (C) The full-length cDNA sequence of
e and the probe for Northern blotting. Red letters was the reverse
P2. (D) The UCA1 gene was mapped to human chromosome 19p13.12
y consist a possibly nested LTR element of the ERV1 families (LTR7Y

http://www.ncbi.nlm.nih.gov/blast/treeview/blast_tree_view.cgi?
http://www.ncbi.nlm.nih.gov/blast/treeview/blast_tree_view.cgi?
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of the Genbank database, suggesting that UCA1 was evolu-

tionary conserved in some primates. The full-length cDNA

was mapped to 19p13.12 positive strand with three exons (Fig

1D). Interestingly, the first two exons of UCA1 overlapped with

a possibly nested LTR (long terminal repeat) element of the

ERV1 family (LTR7Y and HERVH, Fig 1D), indicating the

integration of a retrotransposon at this chromosomal location.

Multiple stop condons and multiple short predicted ORFs

(<240 nt) were found in all three frames of this transcript

(Fig. 2A). None of the ORFs of UCA1 was conserved between

human and other primates. The 5 0 ends of all ORFs lacked an

adequate Kozak start context [14]. Moreover, the deduced ami-

no acid sequences of these ORFs do not contain any known

protein motif nor do they share sequence similarities to other

protein in any species. The TestCode value for this sequence

was 0.4367, indicating that it was probably a ncRNA. To find

out whether the predicted short ORFs were capable of translat-

ing into corresponding short peptides in human cells, all five

putative ORF sequences as well as the full-length UCA1 cDNA

were amplified and subcloned separately into the mammalian

expression vector pEGFP-N3. The constructs were then trans-

fected into BLS-211 cells to be expressed as fusion proteins but

no fluorescence in BLS-211 cells transfected by pUCA1-EGFP

construct (Fig. 2B). Taken together, these data demonstrated

that UCA1 is a ncRNA.
Fig. 2. (A) Analysis the open reading frames (ORF) of UCA1. (B) Coding ab
211 cells transiently transfected with the pUCA1-EGFP plasmid and pEG
microscopic image corresponding to B1 and B3, respectively. (C) Tissue expr
normal embryonic tissue. Lanes 1–4: the gestational weeks were five, ten, s
pregnancy. (C3) Expression of UCA1 RNA in 16 normal adult tissues. (C4) U
different normal bladder tissues (N). The level of 18S rRNA in each sample w
the samples. (D) Positive clone of pcDNA/UCA1 stable transfection in BLS-
Left: neo gene was amplified from pcDNA/UCA1 transfected cells and pcDN
from pcDNA/UCA1 transfected cells, no products in pcDNA3.1 transfected
3.2. Spatial and temporal expression patterns of UCA1

RT-PCR analysis of spatial and temporal expression pat-

terns of UCA1 in various phase embryo tissues, adult tissues,

and bladder cancer tissues revealed that high expression of

UCA1 gene begins at early stage after fertilization and contin-

ues during embryonic development (Fig. 2C1). In tissues of 28

week pregnancy, UCA1 expression levels differed in different

organs. It was up-regulated in heart, urinary bladder, and

uterus, but lower in liver, kidney, lung, spleen, intestine, stom-

ach, skin, and cervix (Fig. 2C2). In adult, the expression of

UCA1 was turned off in most tissues. It was only expressed

in heart, spleen, and placental tissue (Fig. 2C3). The differen-

tial expression of UCA1 between human normal and cancer-

ous tissues was further demonstrated in different cancer

tissues. In urinary system, it was up-regulated in bladder can-

cer tissues, but no expression in normal bladder tissues (Fig.

2C4), and no expression in renal cancer tissues, normal renal

tissues and hyperplasia of prostate gland tissues (date not

shown). In other common tumors, UCA1 was up-regulated

in tumor tissues, such as colon, cervix, lung, thyroid, liver,

mammary gland, esophagus and stomach, compared with cor-

responding non-cancerous tissues (data not shown). The differ-

ential in UCA1 expression between human embryonic tissues,

normal adult tissues and cancer tissues suggested that UCA1,
ility assay of UCA1 in vitro. (B1, B3) Green fluorescent image of BLS-
FP-N3 positive control plasmid, respectively. (B2, B4) Bright field

ession patterns of UCA1 RNA. (C1) UCA1 RNA expression in human
even, eight, respectively. (C2) UCA1 expression in tissues of 28 week
CA1 expression in 20 different human bladder TCC tissues (T) and 20
as also measured as control and did not demonstrate deviation among

211cells was identified by RT-PCR for UCA1 and neo gene expression.
A3.1 transfected cells. Right: the UCA1 sequence was only amplified
cells (MOCK).



Fig. 3. UCA1 expression promoted proliferation potential of BLS-211 cells in vitro and in vivo. (A) MTT assay was used to assess the effect of UCA1
expression on growth of BLS-211 cells in vitro. Results represented the mean of three independent experiments performed in triplicates. The
promotion effect became obvious from the fifth day, and the difference was significant (P < 0.01). (B) Colony formation assay. Representative
cultures were shown, the colonies that pcDNA/UCA1 formed was 2.7 times than MOCK, difference was significant (P < 0.05). (C) UCA1 expression
enhances the tumorigenic potential of bladder carcinoma cells in vivo. (C1) Exposure of their tumors when mice were killed. (C2) RT-PCR detected
UCA1 expression in tumor tissues of nude mice. The UCA1 RNA was only amplified from the tumor tissue derived from pcDNA/UCA1 transfected
cells, no products were detected in tumor tissue from pcDNA3.1 transfected cells (MOCK). (C3) UCA1 expression persistently promoted tumor
growth in vivo. The promotion effect became apparent from the second week post injection, and the difference was significant (P < 0.01). (C4) UCA1
expression significant increased of about seven times of mean tumor weights. The difference was significant (P < 0.01).
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in addition to its role in embryonic development, might also be

important in carcinogenesis.

3.3. Ectopic UCA1 expression enhances the tumorigenic

potential of bladder carcinoma cells in vitro and in vivo

To investigate whether UCA1 expression plays a role in

bladder cancer progression, we established the pcDNA/

UCA1 stable transfectant (Fig. 2D). The expression of

UCA1 in BLS-211 cells indicated that it may have an impor-

tant role for bladder tumor growth. Compared with MOCK

transfectant, the stable UCA1 transfectant promoted BLS-

211 cell proliferation as measured by MTT assay (Fig. 3A),

and colony formation ability increased 2.7 times (Fig. 3B).

We also identified that UCA1 expression promoted the tumor-

igenicity of BLS-211 cells in vivo. As shown in Fig. 3C1–4, tu-

mors derived from the pcDNA/UCA1 cells were significantly

larger than those from the MOCK cells. Moreover, we found

that the tumors of pcDNA/UCA1 transfected cells persistently

grew in size, but the tumors of MOCK transfected cells grad-

ually diminished.

3.4. UCA1 expression increases the motility, invasion and drug

resistance of BLS-211 cells

Ectopic expression of UCA1 strongly promoted the motility

and invasion ability of bladder TCC cell line BLS-211 cells

(Fig. 4A). Moreover the expression UCA1 in BLS-211 cells

could lead to resistance to cytotoxic drugs as measured by
an MTT assay, such as cisplatin, its IC50 increased 2.4 times

in UCA1 expressed BLS-211 cells compared with the MOCK

transfectants (Fig. 4B), and mitomycin, the IC50 increased

1.9 times (data not shown).

3.5. UCA1 expression modulates the expression of several genes

involved in tumorigenic potential, drug resistance and

embryonic development

To obtain a first insight into a possible role of UCA1 in tu-

mor progression and to further determine the different targets

and pathways which are affected by UCA1 RNA, we detected

that 16 genes were up-regulated (Table 2) and 26 genes were

down-regulated (Table 3) by ectopic expression of the UCA1

RNA in BLS-211 cells through microarray assay. Results indi-

cated that expression of UCA1 RNA regulated the expression

of several gene products that mediated some aspects of the

tumorigenic processes and/or associated with embryonic devel-

opment (Tables 2 and 3). The changes of expression of the sev-

eral representative genes were confirmed through real time

PCR (Fig. 4C3–C5), the up-regulated genes including wing-

less-type MMTV integration site family, member 6 (WNT6)

[15], CYP1A1 (cytochrome P450, 1A1) [16], and AURKC (a

urora kinase C) [17], and the down-regulated genes including

methyl-CpG binding domain protein 3 (MBD3) [18–20], and

SR (serine/arginine-rich) protein-specific kinase 1 (SRPK1)

[21,22], which were identical with the microarray results

(Tables 2 and 3).



Fig. 4. (A) UCA1 expression increased the motility and invasive potential of BLS-211 cells in vitro. Representative visualfield of pcDNA/UCA1 cells
(left) compared with MOCK cells (right) was shown. Representative number of motility or invasion cells was counted under the microscope in 10
random fields at 400·. Significant difference from pcDNA3.1 control cells was indicated by asterisks (P < 0.01). (B) Cisplatin resistance assay. The
IC50 increased 2.4 times in UCA1 expressed BLS-211 cells compared with the MOCK transfectants. (C) Verification microarray results through real-
time PCR. (C1) Real-time amplification plots. (C2) Representative dissociation curves. (C3–C5) Real-time PCR analysis results: AURKC (C3a),
CYP1A1 (C3b), WNT6 (C3c) mRNA expression were increased; SRPK1 (C4), and MBD3 (C5) mRNA expression were reduced in pcDNA/UCA1
cells, with MOCK cDNA as a reference. GAPDH was used as an internal control.

Table 2
Genes induced at least twofolds by UCA1 expression

GeneBank accession
number

Gene symbol and name Folds
change

Functional category

NM_002949 Mitochondrial ribosomal protein L12 6.6 Mitochondrial translation
NM_000499a Cytochrome P450 family 1, subfamily A 5.5 Metabolism
NM_004309 Rho GDP dissociation inhibitor alpha 3.0 Signal transduction
NM_001015878a Aurora kinase C 4.7 Cell division/chromosome degregation
NM_005059 Relaxin 2 6.1 Extracellular matrix remodel/signal transduction/

pregnancy/hormone activity
NM_001386a Legumain 6.5 Extracellular matrix remodel
NM_031431 Component of oligomeric golgi complex 3 5.9 Protein glycosylation/Golgi structure and funct
NM_014208 Dentin sialoposphoprotein 8.8 Tooth development/nucleolus
NM_153221 Cartilage intermediate layer protein 2 4.2 Endochondrial bone development
NM_001004051 G protein-coupled receptor associated sorting protein 2 7.8 Membrane receptor degradation
NM_003884 p300/CBP-associated factor 5.4 Transcriptional regulator
NM_006522a,b Wingless type MMTV integration site family,member 6 4.8 Wnt signaling pathyway
NM_016350b Ninein (GSK3B interacting protein) 4.9 Centrosome associated protein
NM_018386 FLJ11305 6.0 Unknown
A_23_P75197 A_23_P75197 6.9 Unknown
A_23_P16408 A_23_P16408 6.3 Unknown

aGenes that have been reported to mediate some aspects of the tumorigenic processes.
bGenes associated with embryonic development.

1924 F. Wang et al. / FEBS Letters 582 (2008) 1919–1927
4. Discussion

UCA1 is believed to exert its functions as a ncRNA in the

regulation of embryonic development and bladder cancer inva-

sion and progression. The key feature of all ncRNA is that
they are not translated into proteins, but rather function di-

rectly at the RNA level [23–25]. Moreover, the RIKEN stan-

dard in Tokyo classifies the transcript as ncRNA if the

sequence of the putative ORF of the transcript is <300 base

pairs (bp) [26]. There are five putative ORFs in the 1442 bp



Table 3
Genes reduced at least twofolds by UCA1 expression

GeneBank
accession number

Gene symbol and name Folds
change

Functional category

NM_003926a,b Methyl-CpG binding domain protein 3 3.9 Transcriptional repressor/pregnancy
NM_018957 SH3-domain binding protein 1 5.1 Cell signaling transduction
NM_001622 Alpha-2-HS-glycorprotein 3.1 Skeletal development/negative acute phase response
NM_001009991 Synaptotagmin-like 3 4.1 Exocytosis
ENST00000227451b Deltex 4 homology (drosophila) 3.5 Notch signaling pathway/ubiquitin-protein

lignase activity
NM_00337a SFRS protein kinase 1 5.9 pre-mRNA splicing/cisplatin sensitivity
NM_002862 Phosphorylase, glycogen, brain 3.7 Metabolism
NM_018796 Solute carrier family 38, member 2 3.8 Amino acid transporter
ENST00000327926 Olfactory receptor, family 5, subfamily AS, member 1 4.7 Antigen binding/immune response
NM_007152 Zinc finger protein 195 7.3 Transcription regulator
NM_138330 Zinc finger protein 675 3.0 Transcription regulator
NM_199511a Steroid sensitive gene 1 7.8 Apoptosis
NM_139322 Attractin 2.0 Development/inflammatory response
NM_016199a LSM7 homolog, U6 small nuclear RNA

associated (Saccharomyces cerevisiae)
4.5 pre-mRNA splicing factor

NM_021643a Tribbles homolog 2 (Drosophila) 3.3 Slow cell cycle
NM_002197a Aconitase 1, soluble 3.1 Metabolism/regulation of translational

initiation by iro
AK056670 Solute carrier family 38, member 1 3.7 Amino acid transporter
NM_080608 Chromosome 20 open reading frame 165 4.4 Unknown
NM_001001921 OR5AS1 4.5 Unknown
NM_030891 Leucine rich repeat containing 3 3.3 Unknown
NM_152779 Hypothetical protein MGC26856 8.2 Unknown
NM_152761 Hypothetical protein FLJ25444 5.0 Unknown
NM_152510 HORMA domain containing 2 4.3 Unknown
NM_006383 Calcium and integrin binding family member 2 3.0 Unknown
A_23_P86762 Immunoglobulin binding protein 2 9.9 Unknown
NM_198991 Potassium channel tetramerisation domain containing 1 3.3 Unknown

aGenes that have been reported to mediate some aspects of the tumorigenic processes.
bGenes associated with embryonic development.
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UCA1 transcript, and their sequences are all <300 bp. Further-

more, the deduced amino acid sequences of these ORFs do not

contain any known protein motif nor do they share similarities

to other proteins in any species. So far, only two human

endogenous retrovirus (HERV) families, HERV-K and

HERV-W, which contained intact ORFs and could encode

functional proteins have been reported [27,28], most other

HERV sequences are protein-coding deficient because they

accumulated a variety of mutations and deletions or due to

homologous recombination between 5 0- and 3 0-LTRs and are

present only as solitary LTRs in the genome [29,30]. More-

over, the proteins supposedly encoded by these ORF sequences

of UCA1 were not detected in cells after transfection with

these sequences. All of the results supported that this transcript

might function as a ncRNA.

Evidence for the origin of the UCA1 gene was based on

the finding that the first two exons of UCA1 sequence

mainly consist of a possibly nested LTR element of the

ERV1 family (LTR7Y and HERVH), indicating that a ret-

rotransposon integrated at this chromosomal site. Another

ncRNA, highly up-regulated in liver cancer (HULC), associ-

ated with hepatocellular carcinoma, is similar to the UCA1

gene, in that the first exon of HULC gene overlaps with

an LTR of the mammalian LTR transposon1A (MLT1A)

type [5]. Interestingly, the HERV-derived sequence in

UCA1 RNA was only conserved in certain primates, no

homologue to other species. So far, whether the HERVH-

derived sequences could encode proteins is unclear, however,

HERVH-derived transcripts have been observed in a variety

of cell lines [31–34]. Although the precise roles of HERVs in

carcinogenic process have not been elucidated, several stud-
ies have implicated the possible involvement of HERVs in

malignancy [34–38].

The potential roles of UCA1 in embryonic development and

bladder carcinoma progression were based on its striking

expression in embryonic tissues and bladder TCC tissues. Dur-

ing development, UCA1 was transcribed at high levels in pla-

centa, embryo, and most of fetal tissues, but after birth its

expression was turned off in most tissues. Then, it was reacti-

vated during adult tumorigenesis. The spatial and temporal

expression patterns of UCA1 was similar to the expression pat-

terns of ncRNA H19 [39], indicated that it was an oncofetal

gene. Especially, exogenous expression of UCA1 enhanced

tumorigenicity, invasive potential and drug resistance in

BLS-211 cells, which suggested that UCA1 RNA might play

some roles in bladder cancer invasion and progression.

The ncRNAs might interact with its target gene/protein and

then through some still unidentified pathways regulate the

expression of effector genes. In microarray assays, we identified

several genes significantly up- and down-regulated when exog-

enously expressing UCA1 in BLS-211 cells. Some of which

have already been described in the context of different cancers,

such as WNT6, CYP1A1, AURKC, etc. Some were associated

with embryonic development, such as MBD3, WNT6, etc. We

speculated that UCA1 promoted tumor progression and

embryonic development mediated via these potential target

genes. The regulatory role of UCA1 in cisplatin resistance

was believed to be associated with the expression suppression

of SRPK1 gene. SRPK1 is a highly specific protein kinase

for the SR family of splicing factors [40]. It has been identified

as a cisplatin sensitivity gene, inactivation of this gene in hu-

man ovarian carcinoma cells fourfold resistance to cisplatin
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[21]. Nevertheless, the exact role of UCA1 in embryonic devel-

opment, bladder cancer invasion and progression is not clear,

detailed understanding will require further investigation.

In this study, we characterized a non-protein-coding RNA,

UCA1, from human bladder TCC cell line BLZ-211 cells.

The temporal and spatial expression patterns of UCA1 suggest

that it might be an oncofetal gene. In the urinary system, it is

highly specific to bladder cancer. Our results indicate that

UCA1 is expressed during embryonic development and blad-

der cancer. The cispltin resistance function is potentially re-

lated to its regulatory roles in SRPK1. Result from present

study supported that UCA1 might be a promising biomarker

for bladder cancer invasion and progression, and could also

be a potential therapeutic target in bladder cancer.
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