
International Journal of Solids and Structures 48 (2011) 3453–3461
Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Preliminary study on ductile fracture of imperfect lattice materials

Xiaodong Cui a, Zhenyu Xue a, Yongmao Pei b, Daining Fang a,b,⇑
a AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
b LTCS, College of Engineering, Peking University, Beijing 100871, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 November 2010
Received in revised form 5 May 2011
Available online 12 September 2011

Keywords:
Ductile fracture
Lattice materials
Imperfection
Softening
Plastic dissipation
0020-7683/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2011.08.013

⇑ Corresponding author at: AML, Department of Eng
University, Beijing 100084, China. Tel./fax: +86 10 62

E-mail address: fangdn@pku.edu.cn (D. Fang).
The ductile fracture behavior of two-dimensional imperfect lattice material under dynamic stretching is
studied by finite element method using ABAQUS/Explicit code. The simulations are performed with three
isotopic lattice materials: the regular hexagonal honeycomb, the Kagome lattice and the regular triangu-
lar lattice. All the three lattices are made of an elastic/visco-plastic metal material. Two typical imperfec-
tions: vacancy defect and rigid inclusion are introduced separately. The numerical results reveal novel
deformation modes and crack growth patterns in the ductile fracture of lattice material. Various crack
growth patterns as defined according to their profiles, ‘‘X’’-type, ‘‘Butterfly’’-type, ‘‘Petal’’-type, are
observed in different combinations of imperfection type and lattice topology. Crack propagation could
induce severe material softening and deduce the plastic dissipation of the lattices. Subsequently, the
effects of the strain rate, relative density, microstructure topology, and defect type on the crack growth
pattern, the associated macroscopic material softening and the knock-down of total plastic dissipation
are investigated.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction by means of the discrete Fourier transform. They also studied the
Lattice materials have significant potentials in engineering
applications due to their preferable mechanical performances
and multifunctionality (Deshpande et al., 2001; Evans et al.,
1998; Wadley, 2006). The macroscopic effective stiffness, strength
and yielding of the lattice materials have been systematically
investigated by theoretical, numerical and experimental methods
(Gibson and Ashby, 1997; Papka and Kyriakides, 1998; Torquato
et al., 1998). The effects of imperfection on mechanical behavior
of lattice materials were also studied by numerous researchers
(Chen et al., 1999; Grenestedt, 1998; Silva et al., 1995; Symons
and Fleck, 2008). Further understanding of the damage tolerance
and fracture mechanism of lattice materials is essentially impor-
tant in their practical application.

The brittle fracture of elastic lattice materials has already been
detailedly analyzed in previous researches. The macroscopic frac-
ture toughness of hexagonal honeycomb was investigated for elas-
tic brittle material (Gibson and Ashby, 1997; Huang and Gibson,
1991; Maiti et al., 1984). Recently, Fleck and Qiu (2007) simulated
the fracture toughness of isotropic lattices: hexagonal honeycomb,
triangular lattice and Kagome lattice by finite element analysis and
they also provided corresponding analytical prediction. Square lat-
tice was also examined (Alonso and Fleck, 2007). Lipperman et al.
(2007a) calculated the fracture toughness of the above four lattices
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nucleation and propagation of cracks in these cellular materials
(Lipperman et al., 2007b). Slepyan (2001a,b,c, 2005) investigated
the dynamic crack propagation in elastic lattices analytically. How-
ever, the ductile fracture behavior of lattice materials has not been
investigated, except for the numerical study of Schmidt and Fleck
(2001) on regular and irregular hexagonal honeycomb.

From a microscopic point of view, ductile failure of solid mate-
rial is usually characterized by three stages: nucleation, growth
and coalescence of microscopic voids, which are induced by the
existence of inclusions and second phase particles. Because of the
high porosity of lattice material, its ductile fracture behavior is
quite different from that of the homogeneous metal material.
While the ductile fracture of solid metal materials has been well
studied, the growth of micro voids induced by structural imperfec-
tion and the propagation of induced cracks in lattice materials are
still unclear. This is the objective of the present paper. To study the
ductile fracture behaviors of imperfect metal lattice materials, the
dynamic stretching is simulated by using finite element method. In
Section 2, the numerical model is described in detail. The simu-
lated results are discussed in Section 3, including the growth pat-
terns of induced cracks, the associated material softening and the
descent of the energy absorption ability. Finally, the conclusions
are summarized in Section 4.

2. Finite element simulation

Three isotropic lattice materials with vacancy defect or rigid
inclusion are investigated by means of finite element method.
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Fig. 2. Schematic diagram of hexagonal honeycomb under dynamic stretching
along x2-axis.
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The vacancy defect/rigid inclusion are introduced by removing/
rigidifying one joint and the connected cell walls, which are repre-
sented by dashed lines in Fig. 1. It should be noticed that, to main-
tain the structural symmetry, two joints and the connected cell
walls are removed from hexagonal honeycomb.

The finite element model of lattices is composed of 50 cells by
50 cells. The walls in perfect cells have a length of l and a width
of t. The imperfection is created by varying the width of cell walls.
The walls with a width much smaller than t denote vacancy de-
fects, while the walls with a width much larger than t denote rigid
inclusions.

The hexagonal honeycomb under dynamic stretching along x2-
axis is taken as an example, and its undeformed shape is sketched
in Fig. 2. The displacement in x1-direction of the joints at the two
vertical surfaces is restricted to avoid the inertial effect and bound-
ary layer effect. If the two vertical surfaces were set free, the iner-
tial pressure would have been induced by Poisson’s effect, and
uniform macroscopic deformation could not be achieved. Bound-
ary layer would also emerge at the free boundaries under external
loading (Fleck and Qiu, 2007). Based on the fundamental solution
of imperfection-free plate under uniform stretching, proposed by
Shenoy and Freund (1999), an initial velocity field is imposed to
ensure uniform deformation field, i.e.

Vðx2Þ ¼ _e0x2; ð1Þ

where _e0 ¼ V0=2L2, is the nominal strain rate of lattice material, L2 is
the width of the lattice, and V0=2 is the magnitude of velocity at the
stretching ends.

The constitutive relation of the solid material is characterized
by Johnson–Cook model (JC model), which involves linear ther-
mo-elasticity, yielding plastic flow, isotropic strain hardening,
strain rate effect, and softening due to adiabatic heating and dam-
age. In the JC model, the equivalent von Mises flow stress is given
by

rY ¼ Aþ BðeplÞn
� �

1þ C ln
epl

_e0

� �� �
1� ðTHÞm
� �

; ð2Þ

where A, B, C, n, and m are material parameters, epl is the equivalent
plastic strain, _epl is equivalent plastic strain rate, _e0 is a reference
strain rate, and TH is the non-dimensional temperature defined as
follows,

TH ¼
T � TR

TM � TR
; ð3Þ

where T is the current temperature, TM is the melting point temper-
ature, and TR is the reference temperature.

To simulate the failure of metal material, a fracture model
proposed by Johnson and Cook based on cumulative damage is
Fig. 1. Three isotropic two dimensional lattice materials with imperfection: (a) hexagona
imperfect bars.)
adopted (Johnson and Cook, 1985). Failure occurs when a damage
parameter D exceeds the critical value 1. The damage parameter D,
is defined as follows,

D ¼
X Depl

epl
f

 !
; ð4Þ

where Depl is an increment of the equivalent plastic strain, epl
f is the

equivalent strain at failure, and epl
f is assumed to be dependent on a

non-dimensional plastic strain rate. When the temperature effect is
not considered, the equivalent failure strain is given by

epl
f d1 þ d2 exp d3

P
rY

� �� �
1þ d4 ln

_epl

_e0

 !" #
; ð5Þ

where d1, d2, d3 and d4 are material constants, and P is the mean
stress. When the failure criterion is met, the ‘‘element kill’’ algo-
rithm available in ABAQUS can be used to delete the failure ele-
ments from the mesh. It ensures that the mean stress in killed
elements is zero during subsequent analysis (ABAQUS, 2004). The
material investigated in the present study is 2024-T351 aluminum
alloy, and its material parameters are given by Johnson and Cook
(1983), as listed in Table 1.

The simulation of the above computational problem is per-
formed by means of the commercially available FEM code ABAQUS
Explicit (version 6.5). Timoshenko beam elements with linear
interpolation functions (element type B21 in ABAQUS) are adopted
to ensure the accuracy of the simulations, and numerical
convergence is confirmed by refining the meshes.
l honeycomb; (b) triangular lattice; (c) Kagome lattice. (The dashed lines denote the



Table 1
Johnson–Cook parameters for aluminum used in the numerical analyses.

E (GPa) m q (kg/m3) _e0 ð1=sÞ C Cp (J/kg K)

73.08 0.33 2770 1.0 0.015 875

TM (K) TR (K) m A (MPa) B (MPa) n

775 294 1.0 265 426 0.34

d1 d2 d3 d4 d5 v

0.13 0.13 �1.5 0.011 0.0 0.9
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3. Results and discussion

The dynamic stretching are simulated for the three lattices un-
der strain rate _e0 ¼ 10 s�1 , _e0 ¼ 100 s�1 and _e0 ¼ 1000 s�1, respec-
tively. Unexpected crack growth patterns are found from the
simulations. The propagating cracks result in substantial material
softening, and reduce the energy dissipated by the deformation
of the lattice materials. The crack growth pattern, the associated
material softening and knock-down of energy absorption are dis-
cussed separately in the following sections.
3.1. Crack growth pattern

3.1.1. Triangular lattice
The deformation of triangular lattice with vacancy defect under

dynamic stretching along x2-axis is shown in Fig. 3. The relative
density of the triangular lattice is q ¼ 10%, and three nominal
Fig. 3. Dynamic stretching of triangular lattice with vacancy defect along x2-axis: (a) the
under _e0 ¼ 100 s�1 ; (d) global failure under _e0 ¼ 1000 s�1 . The relative density is q ¼ 1
strain rates, _e0 ¼ 10 s�1, _e0 ¼ 100 s�1 and _e0 ¼ 1000 s�1 are consid-
ered, respectively. It can be seen that a crack growth pattern,
named as ‘‘X’’-type, is induced at low strain rate. The fracture ini-
tiates at the inclined cell walls near the defect, and four induced
cracks develop along the ±p/3 axis and ±2p/3 axis, respectively.
The final crack length at the global failure of the lattice decreases
with the increasing of strain rate. When the strain rate reaches
to enough high value, no apparent crack is formed before the global
fracture of the lattice. It is because that the maximum crack prop-
agation speed is the Rayleigh wave speed, which is predicted by
continuum mechanics (Freund, 1990). The propagation time of
crack decreases with the increasing of strain rate. When the strain
rate is high enough, there is no enough time left for the crack to
propagate before the global fracture of the lattice. This general con-
clusion is also valid for the hexagonal honeycomb and the Kagome
lattice. Therefore, the dynamic stretching under nominal strain
rate _e0 ¼ 10 s�1, is adopted in the following simulations.

The simulation of triangular lattice with a different relative den-
sity of q ¼ 2% is also performed. The similarity of the deformation
mode with that in the case of relative density q ¼ 10% indicates
the independence of crack growth pattern on relative density for
the triangular lattice.

For rigid inclusion, it can be seen from Fig. 4 that the initial frac-
ture occurs at the inclined walls next to the inclusion in the vertical
direction, and the induced cracks grow as an ‘‘X’’-type as well. It
should be noticed that the nominal strain at the initial fracture of
the lattice with rigid inclusion is much larger than that of the lat-
tice with vacancy defect.
initial fracture of cell wall; (b) ‘‘X’’-type crack under _e0 ¼ 10 s�1 ; (c) ‘‘X’’-type crack
0%.



Fig. 4. Dynamic stretching of triangular lattice with rigid inclusion along x2-axis: (a) the initial fracture of cell wall; (b) ‘‘X’’-type crack. The relative density is q ¼ 10%, and
the nominal strain rate is _e0 ¼ 10 s�1.
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3.1.2. Hexagonal honeycomb
Compared with the triangular lattice, the hexagonal honeycomb

exhibits a significantly different behavior. The result from vacancy
defect is shown in Fig. 5. It can be seen that the fracture occurs at
the inclined cell walls near the defect in the horizontal direction,
and a ‘‘Butterfly’’-type crack growth pattern develops under the
stretching along x2-axis. The crack growth directions are along
the ±p/6 axis and ±5p/6 axis, respectively. The finite element sim-
ulations show that the crack growth pattern of the hexagonal hon-
eycomb is also independent on its relative density. For rigid
inclusion, with the failure initiating at the inclined cell walls next
to the defect in the vertical direction, a ‘‘Petal’’-type crack formed,
which is sketched in Fig. 6.

The hexagonal honeycomb exhibit a crack growth pattern with
opening trend because of its bending dominated deformation
mechanism. The constraint of the cell walls near the crack is re-
leased as the crack grows, and the deformation becomes much eas-
ier. Therefore, the distance between the two sides of the crack
increases as the crack grows.

3.1.3. Kagome lattice
Different from the triangular lattice and the hexagonal honey-

comb, the Kagome lattice exhibits a relative density dependent
behavior under dynamic stretching.

For vacancy defect, the fracture occurs at the inclined cell walls
near the defect in the horizontal direction. At a relative density of
q ¼ 10%, a central horizontal crack is generated from the defect in
the Kagome lattice at first, and then four cracks develop along the
± p/3 axis and ±2p/3 axis (see Fig. 7). The cracks form an ‘‘X’’-Type
crack pattern. When the relative density is reduced to q ¼ 2%, no
obvious horizontal crack develops (see Fig. 8a). As the relative den-
sity is reduced to q ¼ 1%, a crack growth pattern between the
‘‘Butterfly’’-type and ‘‘X’’-type is generated (see Fig. 8b). In the Kag-
ome lattice, the mechanical behavior of the region near the va-
cancy defect is dominated by the combination of bending and
stretching. When the relative density is small, bending effect be-
comes dominant, and the crack growth pattern is similar to that
of the hexagonal honeycomb. With the increase of the relative den-
sity, the stretching gradually plays a dominant role and the crack
growth pattern turns to be the same as the triangular lattice. For
convenience, only the Kagome lattice with the relative density
q ¼ 10% is discussed in the following sections.

The deformation of Kagome lattice with rigid inclusion is shown
in Fig. 9. It can be seen that the failure initiates at the inclined cell
walls next to the defect in the vertical direction. Subsequently, an
‘‘X’’-type crack forms in a rapid way.

3.1.4. Compared with the brittle lattices
In the study of Lipperman et al. (2007b), the directions of

crack propagation also depend upon the lattice microstructure.
In the triangular and Kagome lattice, the crack was aligned per-
pendicularly to the loading for uniaxial loading. In hexagonal
honeycombs the crack was inclined by 30� to the load direction.
The common phenomenon is a macrocrack propagating in the
weakest direction. However, mirror symmetrical cracks are devel-
oped for the three lattices in our study. This difference is mainly
due to the different nature of the parent materials. The brittle
material is considered as complete failure when the largest nor-
mal tensile reaches the critical failure stress, thus the cracks
propagate by sequential failure of critical elements. But the fail-
ure of metal materials is based on cumulative damage. The duc-
tile elements have substantial load bearing ability after yielding.
The developing crack won’t stop the damage accumulating in
other elements, so other cracks can be developed when the fail-
ure condition is met.

3.2. Material softening

As mentioned in Section 3.1, the lattice materials display vari-
ous crack growth patterns, which are quite different from the
homogeneous ductile materials. The developed cracks will induce
significant material softening in the lattice materials.

For perfect lattice material, the macroscopic stress can be de-
rived by analyzing a representative unit cell due to its periodicity.
Take the triangular lattice as example. The deformation of a unit
cell of triangular lattice under stretching is shown in Fig. 10. Zhang
et al. proposed the ultimate yielding of statically indeterminate lat-
tice, implying its loading bearing capability after initial yielding
(Zhang et al., 2008). The initial and ultimate yielding must be con-
sidered for the triangular lattice.

Under quasi-static stretching along x2-axis, the initial and ulti-
mate yielding occur simultaneously. The yielding stress of the unit
cell can be written as

rt
y

� 	
2
¼

ffiffiffi
3
p

t
l

rys ¼ 0:5qrys; ð6Þ

where rys is the yielding strength of the solid material. Under quasi-
static stretching along x1-axis, the initial yielding of the unit cell oc-
curs when the horizontal struts yield, and the ultimate yielding is
achieved when the inclined struts yield either. Thus, the initial
and ultimate yielding stress of the unit cell can be respectively
expressed as

rt
y

� 	
2
¼ 5

ffiffiffi
3
p

t
6l
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5

12
qrys ð7Þ

and

ðrt
yÞ2 ¼

ffiffiffi
3
p

t
l

rys ¼ 0:5qrys: ð8Þ



Fig. 5. Dynamic stretching of hexagonal honeycomb with vacancy defect along x2-axis: (a) the initial fracture of cell wall; (b) ‘‘Butterfly’’-type crack. The relative density is
q ¼ 10%, and the nominal strain rate is _e0 ¼ 10 s�1.

Fig. 6. Dynamic stretching of hexagonal honeycomb with rigid inclusion along x2-axis: (a) the initial fracture of cell wall; (b) ‘‘Petal’’-type crack. The relative density is
q ¼ 10%, and the nominal strain rate is _e0 ¼ 10 s�1.

Fig. 7. Dynamic stretching of Kagome lattice with vacancy defect along x2-axis: (a) the initial fracture of cell wall; (b) a horizontal crack; (c) ‘‘X’’-type crack. The relative
density is q ¼ 10%, and the nominal strain rate is _e0 ¼ 10 s�1.
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It can be concluded that both the ultimate yielding stress of the
triangular lattice under quasi-static stretching along x1-axis and
x2-axis are 0:5qrys. With the same analyzing method as the trian-
gular lattice, the yielding stresses of the hexagonal honeycomb and
Kagome lattice can be derived, and they turn out to be of the same
value as that of the triangular lattice. Therefore, the nominal far
field stress r1 of the imperfect lattices is normalized by r1 ¼
r1=ð0:5qrysÞ.



Fig. 8. Dynamic stretching of Kagome lattice with vacancy defect along x2-axis: (a) the relative density is q ¼ 1%; (b) the relative density is q ¼ 2%. The nominal strain rate is
_e0 ¼ 10 s�1.

Fig. 9. Dynamic stretching of Kagome lattice with rigid inclusion along x2-axis: (a) the initial fracture of cell wall; (b) ‘‘X’’-type crack. The relative density is q ¼ 10%, and the
nominal strain rate is _e0 ¼ 10 s�1.

Fig. 10. Unit cell of the triangular lattice under stretching: (a) along x2-axis; (b) along x1-axis.
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As mentioned in Section 2, the inertia effects are neglected in
the finite element simulations. Considering the constitutive
relation of the parent material (Eq. (2)), under dynamic stretching,
the ultimate yielding stress can be estimated by

r�y
� 	u

ffi 0:5q�rys 1þ C ln
_e0

_e0

 !" #
; ð9Þ

where the superscript ‘‘⁄’’ denotes the type of lattice materials. The
comparison of the prediction with finite element simulation is plot-
ted in Fig. 11. The good agreement implies that the estimation in-
deed provides a good prediction of the yielding stress.
The normalized average stress versus nominal strain curves of
the triangular lattice with vacancy defect under dynamic stretch-
ing along x2-axis are shown in Fig. 11, where the relative density
is q ¼ 10%. The curve of the corresponding perfect triangular lat-
tice is also shown in the figure to demonstrate the material soften-
ing behavior. It can be seen that at a lower strain rate of
_e0 ¼ 10 s�1, a rapid drop in average stress occurs when the nominal
strain reaches about 0.13, which is far less than the failure strain.
But at much higher strain rate, such as _e0 ¼ 100s�1 and _e0 ¼
1000 s�1, no obvious material softening is observed.

The Kagome lattice with vacancy defect exhibits similar mate-
rial softening behavior, even when it has different relative densi-
ties. The results are shown in Fig. 12. The softening initiates are



Fig. 11. The normalized average stress vs. nominal strain for the triangular lattice
with vacancy defect under dynamic stretching along x2-axis. The relative density is
q ¼ 10%. The dashed lines are the predictions of the normalized yielding stress
from Eq. (9).

Fig. 12. The normalized average stress vs. nominal strain for the Kagome lattice
with vacancy defect under dynamic stretching along x2-axis. The nominal strain
rate is _e0 ¼ 10 s�1.

Fig. 13. The normalized average stress vs. nominal strain for the lattices under
dynamic stretching along x2-axis. The relative density is q ¼ 10% and the nominal
strain rate is _e0 ¼ 10 s�1 . (For convenience, Hexagonal honeycomb, triangular
lattice and Kagome lattice are represented by H, T and K, respectively. Vacancy
defect and rigid inclusion are represented by V and R, respectively).

Fig. 14. The normalized plastic dissipation vs. nominal strain for the triangular
lattice with vacancy defect under dynamic stretching along x2-axis. The relative
density is q ¼ 10%.
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at about the same nominal strain, but due to the varied crack
growth patterns, apparent difference occurs in the subsequent
softening process. The material softening in the Kagome lattice
with q ¼ 10% develops at a higher speed. It is because that the
crack tip influencing zone is much larger when the relative density
of the Kagome lattice is smaller, and the larger zone can dissipate
more energy in the crack growth procedure.

The curves of normalized average stress versus the nominal
strain for the three lattice materials with or without imperfection
are shown in Fig. 13. It can be concluded that:

(1) For vacancy defect, material softening starts approximately
at the same nominal strain. The average stress in the hexag-
onal honeycomb decreases more quickly, while that of the
other two lattices decreases approximately in the same
manner.

(2) For rigid inclusion, material softening initiates at a larger
nominal strain. The nominal strain corresponding to the
appearance of softening for the triangular lattice is the
smallest, and the hexagonal honeycomb has no obvious
material softening.

3.3. Plastic dissipation

Plastic dissipation is the most significant energy absorbing
mechanism of metal lattice materials. However, material softening
can induce a substantial knock-down in the plastic dissipation of
lattice materials and reduce their energy absorbing ability. In this
section, the plastic dissipation of imperfect lattices is evaluated
by normalization of Ep ¼ Ep=Eperfect

p , where Eperfect
p denotes the ulti-

mate plastic dissipation of the corresponding perfect lattice, when
it reaches global fracture under the same condition. The simulation
results from the dynamic stretching of the three perfect lattices
with the same relative density imply that their ultimate plastic dis-
sipations have almost equivalent value. Therefore, the plastic dissi-
pation of the three imperfect lattices can be evaluated under the
same standard.

The normalized plastic dissipation versus nominal strain curves
of the triangular lattice with vacancy defect under dynamic
stretching with different strain rates are shown in Fig. 14. It can
be seen that the imperfect lattice has an approximate 30%
knock-down in ultimate plastic dissipation at a strain rate of
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_e0 ¼ 10 s�1, while there is no obvious decrease at much higher
strain rate, such as _e0 ¼ 100 s�1 and _e0 ¼ 1000 s�1. It implies that
small defect almost has no effect on the energy absorption of the
lattice materials under high strain rate.

The relative density has less effect on the plastic dissipation of
the Kagome lattice with vacancy defect, compared with its effect
on the crack growth pattern. Both the defect affected region and
the bending effect depend on the relative density for the imperfect
Kagome lattice. They are competitive mechanisms to decide the
plastic dissipation of the Kagome lattice. As shown in Fig. 15, nei-
ther the Kagome with relative density q ¼ 10% nor the one with
q ¼ 1% possesses the largest ultimate plastic dissipation. In com-
mon, all the three Kagome lattices have an approximate 50%
knock-down in ultimate plastic dissipation.

The plastic dissipation curves of the three types of lattice mate-
rials are sketched in Fig. 16 to investigate the topology and defect
type effects. It can be concluded that:

(1) The ultimate plastic dissipation of the lattice material with
rigid inclusion is larger than that of the one with vacancy
defect. It implies that the lattice material with rigid inclusion
has greater energy absorption ability.
Fig. 15. The normalized plastic dissipation vs. nominal strain for the Kagome lattice
with vacancy defect under dynamic stretching along x2-axis. The nominal strain
rate is _e0 ¼ 10 s�1.

Fig. 16. The normalized plastic dissipation vs. nominal strain for the imperfect
lattices under dynamic stretching along x2-axis. The relative density is q ¼ 10%, and
the nominal strain rate is _e0 ¼ 10 s�1.
(2) As mentioned in Section 3.2, material softening starts
approximately at the same nominal strain for the three lat-
tices with vacancy defect. The deformation mechanism of
crack growth determines the ultimate plastic dissipation.
The stretching dominant deformation grants the triangular
lattice the largest ultimate plastic dissipation. The bending
dominant behavior gives the hexagonal honeycomb the
weakest energy absorption ability. The combined stretching
and bending dominated behavior puts the Kagome lattice in
a middle position.

(3) For the rigid inclusion, the nominal strain corresponding to
the initial of material softening is the decisive factor. The tri-
angular lattice starts softening at the smallest nominal
strain, and it has the weakest energy absorption ability. On
the contrary, the hexagonal honeycomb has the greatest
energy absorption ability due to the largest nominal strain.
4. Conclusions

The ductile fracture of two-dimensional lattice materials exhib-
its a widely different behavior under dynamic stretching, com-
pared with brittle lattices and homogeneous solid material.
Typical crack growth patterns, such as ‘‘X’’-type, ‘‘Butterfly’’-type,
and ‘‘Petal’’-type are observed by FEM simulations. The distinctive
types of cracks induce substantial material softening and knock-
down in the plastic dissipation of lattice materials. Further discus-
sions are about the effects of strain rate, relative density, micro-
structure topology, and defect type on the deformation behavior
of lattices.

The strain rate has no apparent effect on the crack growth pat-
tern when it is low. But at a higher strain rate, there is no abundant
time for crack propagation before the ultimate fracture of the lat-
tices. Hence, the imperfection can hardly induce obvious material
softening, thus it has little effect on the plastic dissipation of the
lattices.

The relative density plays a substantial role in the fracture
behavior of the Kagome lattice due to its combination of stretching
and bending dominant deformation mechanism, but it has almost
no effect on the triangular lattice or hexagonal honeycomb.

The deformation mechanism of the lattice materials, which is
the crucial factor to determine their fracture behavior, mainly
depends on the combination of microstructure topology and the
defect type. The crack initiates at a larger strain in the lattice with
rigid inclusion than that of the one with vacancy defect. Accord-
ingly, the material softening occurs later and the ultimate plastic
dissipation is larger.

For vacancy defect, the crack and the induced material softening
starts approximately at the same nominal strain in the lattices. The
deformation mechanism of crack growth determines the ultimate
plastic dissipation. The stretching dominant behavior induces a
tight ‘‘X’’-type crack, and grants the triangular lattice the largest
ultimate plastic dissipation. The bending dominant behavior in-
duces a wide open ‘‘Butterfly’’-type crack, and gives the hexagonal
honeycomb the weakest energy absorption ability. The combined
stretching and bending dominated behavior induces an intermedi-
ate crack growth pattern between the above two, and puts the Kag-
ome lattice in a middle position.

For the rigid inclusion, the nominal strain corresponding to the
initial of crack and material softening is the decisive factor. The tri-
angular lattice starts softening at the smallest nominal strain with
an ‘‘X’’-type crack, and has the weakest energy absorption ability.
On the contrary, the hexagonal honeycomb has the greatest energy
absorption ability due to the largest softening initial strain with a
‘‘Petal’’-type crack.
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