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1. Introduction and preliminaries

In this note we study tensor products T (t) ⊗ S(t) of strongly continuous semigroups T (t) and S(t) acting on Banach
spaces X and Y . If α denotes a uniform crossnorm on the (algebraic) tensor product X ⊗ Y we denote by X ⊗̃α Y the
completion of the normed space (X ⊗ Y ,α). Our main purpose is to show that for strongly continuous semigroups T (t),
S(t) satisfying the recurrent hypercyclicity criterion and a uniform crossnorm α on X ⊗ Y the semigroup T (t) ⊗ S(t) acting
on X ⊗̃α Y satisfies the recurrent hypercyclicity criterion, too. An important ingredient in the proof of this result is the
work by Desch and Schappacher in [4]. Our result is of particular interest when one is working with L p spaces of the
form L p(M1 × M2,μ1 ⊗ μ2), p � 1, for measure spaces (Mi,μi), i = 1,2, as there is a uniform crossnorm α such that
L p(M1 × M2,μ1 ⊗ μ2) = L p(M1,μ1) ⊗̃α L p(M2,μ2), cf. [3]. Applications of our results to L p heat semigroups on certain
Riemannian manifolds are contained in [7].

Similar results for tensor products of semigroups or operators can be found in [1,9].

1.1. Hypercyclic and recurrent hypercyclic semigroups

A strongly continuous semigroup T (t) on a Banach space X is called hypercyclic if there exists x ∈ X such that its orbit
{T (t)x: t � 0} is dense in X .

If additionally the set of periodic points {x ∈ X: ∃t > 0 such that T (t)x = x} is dense in X , the semigroup T (t) is called
chaotic.

It is well known that a strongly continuous semigroup T (t) on a separable Banach space X is hypercyclic if and only if
it is topological transitive, i.e. for any pair of non-empty open subsets U , V ⊂ X there exists some t > 0 with T (t)U ∩ V �= ∅,
cf. [5].

A sufficient condition for hypercyclicity is given by the so-called hypercyclicity criterion, cf. [6] for this variant:
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Definition 1.1 (Hypercyclicity criterion). A strongly continuous semigroup T (t) on a separable Banach space X satisfies the
hypercyclicity criterion if for all non-empty open subsets U , V , W ⊂ X with 0 ∈ W there exists t > 0 such that

T (t)U ∩ W �= ∅ and T (t)W ∩ V �= ∅.

(Note that the same t is used in both cases.)

It should be remarked that a strongly continuous semigroup T (t) on X satisfies the hypercyclicity criterion if and only if
the semigroup

T (t) × T (t) :=
(

T (t) 0

0 T (t)

)

is hypercyclic on X × X , cf. [6, Theorem 2.5]. This result easily generalizes (with the same proof) to:

Proposition 1.2. Let T (t) denote a strongly continuous semigroup on a Banach space X that satisfies the hypercyclicity criterion. Then
the diagonal semigroup T n(t) := T (t) × · · · × T (t) is hypercyclic on Xn := X × · · · × X for any natural number n � 1.

The discrete version of the next corollary can be found in [8, Corollary 6].

Corollary 1.3. Let T (t) denote a strongly continuous semigroup on a Banach space X that satisfies the hypercyclicity criterion. Then
the diagonal semigroup T n(t) satisfies the hypercyclicity criterion on Xn, n � 1, too.

Proof. It follows from Proposition 1.2 that the semigroup T n(t) × T n(t) = T 2n(t) is hypercyclic, and hence, by [6, Theorem
2.5], the semigroup T n(t) satisfies the hypercyclicity criterion. �

As in [4] we say that a strongly continuous semigroup satisfies the recurrent hypercyclicity criterion if for open subsets
as in Definition 1.1 the set of all times t > 0 with T (t)U ∩ W �= ∅ and T (t)W ∩ V �= ∅ does not have arbitrarily large holes:

Definition 1.4. A strongly continuous semigroup T (t) on a separable Banach space X satisfies the recurrent hypercyclicity
criterion if for all non-empty open subsets U , V , W ⊂ X with 0 ∈ W there exists a constant L � 0 such that each interval
[t, t + L] contains an s with

T (s)U ∩ W �= ∅ and T (s)W ∩ V �= ∅.

Of course, any semigroup that satisfies the recurrent hypercyclicity criterion is hypercyclic as it satisfies the hypercyclicity
criterion.

1.2. Tensor products

For Banach spaces X and Y we denote by X ⊗ Y their (algebraic) tensor product. Furthermore, let α be a tensor norm (or
uniform crossnorm) on X ⊗ Y (for a definition see [3, 12.1] or [10, 6.1]). Then α is in particular a reasonable crossnorm on
X ⊗ Y which implies that for x ∈ X and y ∈ Y we have

α(x ⊗ y) = ‖x‖X · ‖y‖Y .

If we define for z ∈ X ⊗ Y ,

π(z) = inf

{
n∑

i=1

‖xi‖X · ‖yi‖Y : z =
n∑

i=i

xi ⊗ yi

}

this yields a tensor norm and is called projective norm. Actually, this norm is the greatest reasonable crossnorm on X ⊗ Y ,
i.e. if α is another reasonable crossnorm it follows α � π (cf. [2, p. 64] or [10, Proposition 6.1]). For any norm α on X ⊗ Y
we denote by X ⊗̃α Y the completion of the normed space (X ⊗ Y ,α).

For bounded operators T : X → X , S : Y → Y , and any uniform crossnorm α the tensor product T ⊗ S is a bounded
operator on (X ⊗ Y ,α) by definition of a uniform crossnorm. The unique extension of T ⊗ S to X ⊗̃α Y is, for simplicity,
also denoted by T ⊗ S .

Similarly, if T (t) : X → X and S(t) : Y → Y are strongly continuous semigroups their tensor product T (t) ⊗ S(t) is a
strongly continuous semigroup on (X ⊗ Y ,α) for any uniform crossnorm α. To see this, let z ∈ X ⊗ Y . Then we have

α
(
T (t) ⊗ S(t)z − z

)
� α

(
T (t) ⊗ S(t)z − T (t) ⊗ I z

) + α
(
T (t) ⊗ I z − z

)
� π

(
T (t) ⊗ S(t)z − T (t) ⊗ I z

) + π
(
T (t) ⊗ I z − z

)
.
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For the first term on the right-hand side it follows if z = ∑
i xi ⊗ yi is any representation of z,

π
(
T (t) ⊗ S(t)z − T (t) ⊗ I z

)
�

∑
i

∥∥T (t)xi
∥∥

X · ∥∥S(t)yi − yi
∥∥

Y → 0
(
t → 0+)

.

As an analogous argument shows that the second term goes to zero if t → 0+ , it follows that T (t) ⊗ S(t) is strongly
continuous.

2. Main results

Theorem 2.1. Let T (t), S(t) denote strongly continuous semigroups on Banach spaces X and Y , respectively, and assume that T (t)
satisfies the recurrent hypercyclicity criterion. Furthermore, α denotes a uniform crossnorm on X ⊗ Y .

(a) If S(t) satisfies the hypercyclicity criterion, the semigroup T (t) ⊗ S(t) on X ⊗̃α Y satisfies the hypercyclicity criterion, too.
(b) If S(t) satisfies the recurrent hypercyclicity criterion, the semigroup T (t) ⊗ S(t) on X ⊗̃α Y satisfies the recurrent hypercyclicity

criterion, too.

Proof. In the following, we use ‖(x, y)‖ = sup{‖x‖X ,‖y‖Y } as norm on the product X × Y . Note, that the topology induced
by this norm coincides with the usual product topology. As α is a reasonable crossnorm, the canonical bilinear map

ψ : (X × Y ,‖ · ‖) → (X ⊗ Y ,α), (x, y) �→ x ⊗ y

is continuous and has norm � 1 (cf. [2, p. 64]). Hence, for any n � 1, the mapping

ψn :
{

Xn × Y n → X ⊗ Y ,

(x1, . . . , xn, y1, . . . , yn) �→ ∑n
k=1 ψ(xk, yk)

is continuous for the norm ‖(x1, . . . , xn, y1, . . . , yn)‖ = sup{‖xk‖X ,‖yk‖Y : k = 1, . . . ,n} on Xn × Y n .
For the proof of part (a) we proceed as follows: Let U , V , W be non-empty open subsets of X ⊗̃α Y with 0 ∈ W . As

X ⊗ Y = span(ψ(X × Y )) is dense in X ⊗̃α Y , we find elements

m∑
k=1

xk ⊗ yk ∈ U

and
n∑

k=1

pk ⊗ qk ∈ V .

Extending one of the sums by zero summands if necessary we may assume m = n. Then ψ−1
n (U ) and ψ−1

n (V ) are non-empty
open subsets of Xn × Y n . Furthermore, 0 ∈ ψ−1

n (W ).
As T (t) satisfies the recurrent hypercyclicity criterion and S(t) satisfies the hypercyclicity criterion, it follows from [4,

Theorem 5.1] that the semigroup(
T (t) 0

0 S(t)

)
: X × Y → X × Y

satisfies the hypercyclicity criterion and hence, by Corollary 1.3, the semigroup T n(t) × Sn(t) satisfies the hypercyclicity
criterion, too. Therefore, there exists t > 0 such that(

T n(t) × Sn(t)ψ−1
n (U )

) ∩ ψ−1
n (W ) �= ∅

and (
T n(t) × Sn(t)ψ−1

n (W )
) ∩ ψ−1

n (V ) �= ∅.

As ψn(T n(t) × Sn(t)ψ−1
n (U )) ⊂ T (t) ⊗ S(t)U and ψn(ψ−1

n (V )) ⊂ V the proof of part (a) is complete.
For the proof of part (b) let U , V , W ⊂ X ⊗̃α Y be non-empty open subsets with 0 ∈ W . As in part (a) we find n ∈ N

such that the sets ψ−1
n (U ),ψ−1

n (V ), and ψ−1
n (W ) are non-empty open subsets of Xn × Y n with 0 ∈ ψ−1

n (W ). Since both
semigroups T (t) and S(t) satisfy the recurrent hypercyclicity criterion, it follows from [4, Corollary 5.6] that the semigroup
T n(t) × Sn(t) satisfies the recurrent hypercyclicity criterion, too. One can now conclude as in the proof of part (a) that the
semigroup T (t) ⊗ S(t) satisfies the recurrent hypercyclicity criterion. �
Corollary 2.2. Let T (t), S(t) denote chaotic semigroups on Banach spaces X and Y . If α denotes a uniform cross norm on the algebraic
tensor product X ⊗ Y the semigroup T (t) ⊗ S(t) on X ⊗̃α Y satisfies the recurrent hypercyclicity criterion.
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Proof. This follows directly from Theorem 2.1 since any chaotic semigroup satisfies the recurrent hypercyclicity criterion, cf.
[4, Corollary 6.2]. �

In order to state the next corollary, we need some preparation. Let T denote a bounded operator on a Banach space X .
T is called chaotic, if—similar to the case of semigroups—there is x ∈ X whose orbit {T nx: n ∈ N} is dense in X and if the
set of periodic points {x ∈ X: ∃n ∈ N such that T nx = x} is dense in X as well.

Corollary 2.3. Let T (t), S(t) denote strongly continuous semigroups on Banach spaces X and Y and α a uniform crossnorm.

(a) If there is t0 > 0 such that T (t0) is a chaotic operator and S(t0) has a dense set of periodic points, the semigroup T (t) ⊗ S(t) is
chaotic.

(b) If there are p1, p2,q1,q2 ∈ N such that T (p1/q1) and S(p2/q2) are chaotic the tensor product T (t) ⊗ S(t) is chaotic.

Proof. We first prove (a). From [9, Corollary 1.12] it follows that the operator T (t0) ⊗ S(t0) is chaotic and hence, the
semigroup T (t) ⊗ S(t) is chaotic.

To show (b) we first remark that both semigroups T (t) and S(t) are chaotic and hence their tensor product satisfies
the recurrent hypercyclicity criterion. It remains to show the density of the periodic points. Lets denote by P1 (resp. P2)
the set of periodic points of the operator T (p1/q1) (resp. S(p2/q2)). These are dense linear spaces and hence, P1 ⊗ P2 is
dense in X ⊗̃α Y . Furthermore, if x ⊗ y ∈ P1 ⊗ P2 there exist n,m ∈ N with T (p1/q1)

nx = T (np1/q1)x = x, S(p2/q2)
m y =

S(mp2/q2)y = y, and np1/q1 = mp2/q2 =: t . Then we have

T (t) ⊗ S(t)(x ⊗ y) = T (t)x ⊗ S(t)y = x ⊗ y

and x ⊗ y is therefore a periodic point of T (t) ⊗ S(t). Since

P1 ⊗ P2 = span{xk ⊗ yk: xk ∈ P1, yk ∈ P2}
and as with xk ⊗ yk , k = 1, . . . ,n, also

∑n
k=1 xk ⊗ yk is a periodic point, P1 ⊗ P2 consists only of periodic points. �
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