Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available at

www MATHEMATICSweB.0RG JOURNAL OF
POWERED BY SCIENCE @DIRECT° Algebra
ACADEMIC
PRESS Journal of Algebra 264 (2003) 420-441

www.elsevier.com/locate/jalgebra

The Hilbert functions of ACM sets of points
in P x ... x P

Adam Van Tuyl

Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON Canada P7B 5E1
Received 3 January 2002

Communicated by Craig Huneke

Abstract

If X is a set of points ifP"1 x --- x P, then the associated coordinate riRg/x is anNf-
graded ring. The Hilbert function &f, defined byHx (i) := dimy (R/Ix); for all i € N, is studied.
Since the ringk/Ix may or may not be Cohen—Macaulay, we consider only tioteat are ACM.
Generalizing the case &f= 1 to allk, we show that a function is the Hilbert function of an ACM set
of points if and only if its first difference function is the Hilbert function of a multi-graded Artinian
quotient. We also give a new characterization of ACM sets of point@&lix P1, and show how
the graded Betti numbers (and hence, Hilbert function) of ACM sets of points in this space can be
obtained solely through combinatorial means.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let R = K[X1,0, -, X1ngs - s Xk,0, - - -» Xk, ] With degr; ; = e; be the Nf-graded
coordinate ring associated®§! x - - - x P . ApointP =Py x --- X Py € P"1 x - - - x P,
with P; € P, corresponds to a prim&*-homogeneous idealp of height Z;‘zlni
in R. Furthermore/p = (L11,..., L1y, ..., Lk.1, ..., Lk.n,) Where ded,; ; = ¢; and
(Li1,...,Liy) is the defining ideal of?; e P%. If X ={Py,..., P} SP" x ... x P,
then Ix = (;_; Ip,, WhereIp, corresponds ta?;, is the Nk—homogeneous ideal ok
associated t&. The ring R/Ix inherits anN-graded structure. The Hilbert function of
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X is then defined byHx (i) = dimk(R/Ix); for all i € N¥. In this paper we study these
Hilbert functions, thereby building upon [5,13].

Each ideal/p, is also homogeneous with respect to the standard grading, sefines
a linear variety of dimensiok — 1 in PY~! whereN = Zf.‘zl(m +1). One can therefore
take the point of view that our investigation of sets of pointi x --. x P" is an
investigation of reduced unions of linear varieties with extra hypotheses on the generators
to ensurelx is N¥-homogeneous.

Ideally, we would like to classify those functions that arise as the Hilbert function of a
set of points Pt x - - - x P, However, besides the calse- 1 which is dealt with in [3,4],
such a classification continues to elude us. Though some properties of the Hilbert function
are known ifk > 1 (cf. [5,13]), even for sets of points Bt x P! this problem remains open.

The proof of the characterization for the cdse- 1 relies, in part, on the fact that
the coordinate ring of any finite set of points ¥ is always Cohen—Macaulay (CM).
However, ifk > 1, we show how to construct sets of points which fail to be CM. In fact,
for each integef € {1, ..., k}, we can construct a set of points with defih'x = /. The
failure of R/Ix to be CM in general provides an obstruction to generalizing the proofs
of [3,4].

We therefore restrict our investigation to sets of points that arithmetically Cohen—
Macaulay (ACM). With this extra hypothesis on our set of points, we can generalize the
proof for the casé = 1 as given in [3] to alk. In particular, we show thatlx is the Hilbert
function of an ACM set of points if”"1 x ... x P if and only if AHx, a generalized
first difference function, is the Hilbert function of sori&-graded Artinian quotient. Our
generalization relies on two main ingredients: (1) the existence of a regular sequence in
R/Ix such that each element has a specific multi-degree, and (2) the techniques of [9] for
lifting monomial ideals.

This characterization is not very satisfactory because it translates our original problem
into the open problem of characterizing the Hilbert functionsNétgraded Avrtinian
guotients. However, we characterize these quotients in the specialcase - =n; =1,
thereby giving a complete description of the Hilbert functions of ACM sets of points in
Pl x ... x PL

In the last two sections we specialize to ACM sets of point®in< PL. It was first
shown in [5] that the ACM sets of points are characterized by their Hilbert function.
We give a new proof of this result, plus a new characterization that depends only
upon numerical information describing the s&t We then show that this numerical
information also enables us to completely calculate the graded Betti numbers of the
minimal free resolution ofx (and thus,Hx) providedX is ACM. This generalizes the
fact that the Hilbert function and Betti numbers of a set gjoints inP! depend only
upons.

2. Preliminaries: multi-graded rings, Hilbert functions, points

Throughout this papek denotes an algebraically closed field of characteristic zero.
In this section we provide the necessary facts and definitions about multi-graded rings,
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Hilbert functions, and sets of points in multi-projective spaces. See [10,13] for more on
these topics.

Let N:={0,1,2,...}. For an integem € N, we set[n] := {1,...,n}. We denote
(i1,...,ix) e NFbyi. We seti| := >, in. If i, j € N theni + j := (i1 + ja, - - ., ik + jk)-
We writei > j if i, > jj, for everyh =1, ..., k. The sefN* is a semi-group generated by
{e1, ..., ex) Wheree; ;= (0,...,1,...,0) is theith standard basis vector 8¥. If ¢ € N,
thence; :=(0,...,c,...,0) with ¢ in theith position.

SetR =K[x1,0,---, X110, X205 - - - X2.5105 - - - » Xk, 05 - - - » Xk, ], @Nd induce arN"-grad-
ing on R by setting deg; ; = ¢;. An elementx € R is said to beNf-homogeneous
(or simply homogeneou# the grading is clear) ifx € R; for somei € N If x is
homogeneous, then deg=i. Anideall = (Fx, ..., F;) C R is anNf-homogeneour
simply,homogeneoysdealif each F; is N¥-homogeneous.

For everyi € N, the setR; is a finite-dimensional vector space overSince a basis
for R; is the set of all monomials of degree

i (7)) ()
- 11 12 Lk

If I € R is a homogeneous ideal, thén= R/I inherits anN*-graded ring structure
if we defineS; = (R/I); := R;/I;. The numerical functionts:N* — N defined by
Hs(i) :=dimg(R/I); = dimg R; — dimy [; is the Hilbert function of S. If H: N > N
is a numerical function, then tHigst difference function o, denotedA H, is defined by

AH(i) = > DY H G — 1, ik — ),
o<i=(l,....ln<@,...1)

whereH (j) =0if j # 0. If k =1, then our definition agrees with the classical definition.
TheN*-graded polynomial ring is the coordinate ring dP"1 x - - . x P Let

P=la1o: - :aiml X - X[ako: - arnl €P" x - x P

be a point in this space. The ideal Rfassociated to the poirit is the prime idealp =
(L11,..sLings oo L1y oo s Lic ) where degL,',j =e¢forj=1,...,n;. If P1,..., Ps
ares distinct points andX = {Py, ..., P} S P" x .- x P", thenIx =Ip, N --- N Ip,
wherelp, is the ideal associated to the poiRt The ring R/Ix then has the following
property.

Lemma2.1[12, Lemma 3.3]LetX be a finite set of points if#"* x --- x P". For each
integeri € [k] there exists a fornk; € R,, such thatL; is a nonzero divisor irR/Ix.

We write Hx to denote the Hilbert functioriiz,,, and we sayHx is the Hilbert
functionof X. Let 7; : P"1 x ... x P — P" denote thath projection morphism. Then
t; .= |m;(X)| is the number of distinatth-coordinates iX. With this notation we have:

Proposition 2.2. LetX be a finite set of points i1 x - - - x P" with Hilbert functionHx.
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(i) [13, Proposition 4.2If (j1,..., ji,..., jx) € NFandif j; > — 1, then
Hx(j1, ooy Jis--oo Ji) = Hx (1, ..o ti = Loy ).
(ii) [13,Corollary 4.8]Hx(j1,---, jr)=sforall (ji,...,jx) = (1 —1,2—1, ..., 1 —1).

Remark 2.3. Fix an integeri € [k], and fixk — 1 integers inN, say j1, ..., ji—1, ji+1,
s Jre Setjri= (1, .-, ji-1,1, ji+1,---, jx) for each integer € N. Then Proposi-
tion 2.2(i) can be interpreted as saying the sequéhks j;)} becomes constant. In fact,

Hx(j1) = Hx(j;-1) foralll > — 1. -

Proposition 2.4 [13, Proposition 3.2]Let X be a finite set of points if?"t x --. x P"%
with Hilbert function Hx. Fix an integeri € [k]. Then the sequencH = {4}, where
hj = Hx(je;), is the Hilbert function ofr; (X) < P*.

We end this section with some comments on the depth and Krull dimensiBpigf
Let m:= @Q;éjeNkRj = (X1,0,-- -, Xk,n,) b€ the maximal ideal oR. If I C R is an
N"-homogeneéus ideal, then recall that we say a sequénce., F, of elements is a
regular sequence modulbif and only if

(I) (_IsFlv"'vFr)gma
(i) F1isnota zerodivisorimk/I, and
(i) F;isnotazerodivisorim/(I, F1,...,Fi_1)forl<i <r.

The depth of R/I, written depthR/I, is the length of the maximal regular sequence
modulo/.

Because each prime ide&p. has heightzf.‘zlni, it follows that K-dimR/Ix = k,
the number of projective spaces. This result, coupled with Lemma 2.1, implies 1
depthR/Ix < k. Thus, every set of points if* has depttR/Ix = 1. If k > 2, the value for
depthR/Ix is not immediately clear. In fact, for each integer [k] we can construct a set
of points inX such that deptlR /Ix = I. We begin with a lemma.

Lemma 2.5. Fix a positive integek. Denote byX1 and X2 the two points
X1:=[1:0]x[1:0]x---x[1:0] and X2:=[0:1]x[0:1] x---x[0:1]
in Pl x ... x P! (k timey. If X:={X1, X2}, thendepthR /Ix = 1.

Proof. The defining ideal oK is Ix = Iy, N Ix, = ({xq,0xp,1 | 1< a <k, 1 <b <k} in
the N"-graded rngR = K[x1,0, X1,1, X2,0, X2.1, - - - » Xk.0, Xk,1]. Sincex1 o + x1,1 does not
vanish at either point, it suffices to show that every nonzero elematt@k, x1.0+ x1,1)
is a zero divisor.

So, set/ = (Ix, x1,0+ x1,1) and suppose that F € R/J. Without loss of generality,
we can takeF to beN¥-homogeneous. We writ€ as F = Fo + Fix10+ szio + -,

where F; € K[x1.1, x2,0, ..., Xk.1]. Sincex1ox1.1 € Ix, it follows thatsz_!o =x1,0(x1,0 +
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x1,1) — x1,0x1,1 € J. Hence, we can assume that= Fo + F1x1,0. The elemenk1o ¢ J.
Although x10, F ¢ J, we claim thatFx1o € J. Indeed, for each integer & b < k,
x1,0xp,1 € Ix € J. Furthermore, for X a < k, the elemenk1 ox,,0 = x4.0(x1.0 + x1.1) —
Xq,0x1,1 € J. Hence, each term ofpx10 is in J, SO Fox1,0 € J. But then Fx19 =
Fox1,0+ leio e J. So, every G4 F € R/J is a zero divisor because it is annihilated
byxi10. O

Proposition 2.6. Fix a positive integek, and letny, . . ., ny bek positive integers. Then, for

every integel € [k], there exists a set of poinksin P! x - -- x P with depthR/Ix =1.

Proof. For everyl € [k], we construct a set with the desired depth. Derfgte=[1:0:
:0lePtiforl<i<kandQ; :=[0:1:0:---:0]eP" for 1 <i <k. Fixanl € [k]
and letX; andX> be the following two points oP"1 x .- . x P"%:

X1:=P1xPox---xP, and Xo:=P 1 xPpx---x P_1xQ;x--+x Q.
If we setX; := {X1, X2}, we claim that deptR/Ix, = /. The defining ideal 0K, is
-xl,17 e 7xl,n17 e 7x171,11 ] xl*l,n],ls

Ix, = X[,25 ooy Xlpyys oo v s Xk, 20 oo s Xy

{xa0xpall<a<k, I <b<k}

It follows thatR/Ix, = S/J, where

_ Klx1,0,x2,0, X3,0, - - -, X1-1,0, X1,0, X1,1, XI41,0, XI4+1,1, - - - » Xk,0, Xk, 1]

S/J
/ {xa,0xp,1 11 <a <k, I<b<k))

The indeterminates o, x2.0, ..., x1—1,0 give rise to a regular sequence $iJ. Thus,
depthR/Ix, =depthS/J > — 1. SetK = (J, x10,...,x-1,0). Then

K[x1,0, X1,1, X14+1,00 XI41,1, - - - » Xk,05 Xk, 1]

S/K =
(xaqoxp1ll<a<k I<b<k))

The ringS/K is then isomorphic to th&*—/*1-graded coordinate ring of the two points
{[1:0]x[1:0] x---x[1:0],[0:1]x[0:1] x---x [O:l]}in]P’lx x]P’l((k—l+1)
times). From Lemma 2.5 we have deff#fK = 1, and hence, depity Iy, =/ -1+ 1=1.

O

3. TheHilbert functions of ACM setsof points

For an arbitrary set of point§ C P"t x ... x P", depthR/Ix < K-dimR/Ix. If the
equality holds, the coordinate ring is Cohen—Macaulay (CM), and the set of points are said
to be arithmetically Cohen—Macaulay (ACM). We now investigate the Hilbert functions of
those sets of points i"1 x --- x P" that are also ACM. Under this extra hypothesis, we
can generalize the characterization of the Hilbert functions of sets of poilitsas found
in [3].
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We begin with a preparatory lemma.

Lemma3.l. LetX C P"t x - .. x P" be a finite set of points, and suppdse ... ., L;, with
t <k anddegL; = ¢;, give rise to a regular sequence Ry Ix. Then there exists a positive
integer! such that(x1.0, ..., X1.nys -+ - X1.0, - - -» Xr.n,)) S (I, L1, - .., Ly).

Proof. Set J; := (Ix,L1,...,L;) for i =1,...,¢. Since L1,...,L; form a regular
sequence orRr/Ix, for eachi =1,...,¢t we have a short exact sequence with degree
O, ...,0) maps:

0—> (R/Ji—1)(—ei) 255 R/Ji—1 —> R/J; —> O,
where we setlp := Ix. From the exact sequences we derive the following formula:

dimg(R/Jy)i = Z (=)0 dimy (R /I iy— oo ii— iy a1 it
0<(J1,--nJr) KL

where we set dig(R/Ix); =0if j 2 0.

For each integej = 1, ...,t, sett; := |7;(X)|. By Proposition 2.2, ifi; > t;, then
dimk(R/Ix),»].ej = dimk(R/IX)(,-J.,l)ej. This fact, coupled with above formula, implies
that dink (R/J1)je; = diMk(R/Ix)1;e; — dIM(R/Ix) (1;-1)e; = 0. TAUS Ry, = (Ui
or equivalently,(x; o, ...,x]')nj)tj C (Ix,L1,...,L;). Since this is true for each integer
1< j <t, there exists an integérs 0 such thatx1.0, ..., X1.ug» - +» X1.0 - - - Xe.n,) € Ty,
as desired. O

Proposition 3.2. Suppose thaX is an ACM set of points if?"* x --- x P"*. Then there
exist elementé., ..., L in R/Ix such thatlL1, ..., L, give rise to a regular sequence in
R/Ix anddegL; = ¢;.

Proof. The existence of a regular sequence of lerigtbllows from the definition of a
CM ring. The nontrivial part of this statement is the existence of a regular sequence whose
elements have specific multi-degrees.
By Lemma 2.1 there exists a forfiy € R,, such thatL, is a nonzero divisor oR/ Ix.
To complete the proof it is enough to show for each 2, ..., k there exists an element
L; € R, such thatL; is a nonzero divisor of the ring/(Ix, L1, ..., Li_1).
SetJ := (Ix,L1,...,L;,—1) and letJ = Q1 N --- N Q, be the ideal's primary
decomposition. For eagtsetyp; := +/Q;. Since J/_; ; is the set of zero divisors @t/ J,
we want to show thatJ;_; (¢i)., C Re,. SinceRr,, is a vector space over an infinite field,
R., cannot be expressed as the finite union of proper subvector spaces. Thus, it suffices to
show(g;)., € R, for eachi.
So, suppose thereis [r] such thatg;)., = R,,, Or equivalently(x; o, ..., x;,4,) € .
By Lemma 3.1 there existse N* such thatx1,0, ..., X1ys -+ - Xr—1.0, - - » X1, ;)
J C Q;. It follows that

(X1,05 -+ XLngs oo o» X£,05 + « 5 Xt.0,) S 04
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Because the prime idegl; also containdx = Ip, N ---N Ip,, wherelp, is the prime
ideal associated t®; € X, we can assume, after relabeling, C ;. Let p := Ip, +
(¥1,0, ..., Xz ,n,). Sincelp, =(L11..... L1ygs ..o Li1, ..., Lk n,) Where ded., , = ey,

60 = (-xl,01 sy -xf,ntv L[+l,ls DR Lt+l,n,+1a DR Lk,ls ey Lk,nk) g 601'

Thus hk (g;) > htr(p) = (Zf:ln,») + t, where hk (1) denotes the height df.
From the identity h# (/) = K-dim R — K-dim R/J we calculate the height of:

k k
htg(J) = (Zn,- +1) —(k—(@-1)= (Zn) + (@ —1).
i=1

i=1

SinceX is ACM, R/J is CM, and hence the ideal is height unmixed, i.e., all the
associated primes of have height equal to ptJ/). But g, is an associated prime of
with htg (g;) > htg(J). This contradiction implies our assumpti¢p;)., = R,, cannot be
true. O

Remark 3.3. If S =K[xo, ...,x,] is anN!-graded ring with/ S such thatS/I is CM,

then a maximal regular sequence can be chosen so that each element is homogeneous
[1, Proposition 1.5.11]. However, as stated in [11] (but no example is given), it is not
always possible to pick a regular sequence that respects the multi-grading. For example,
let S = K[x, y] with degx = (1,0) and degy = (0,1) and/ = (xy). ThenS/I is CM,

but all homogeneous elements $fI, which have the fornx® or &y’ with ¢ € k, are

zero divisors. Note that + y is a nonzero divisor, but not homogeneous. The fact that a
homogeneous regular sequence can be found in a multi-graded ring is thus a very special
situation.

We extend the notion of a graded Artinian quotient in the natural way.

Definition 3.4. A homogeneous idedl in theNf-graded ringR is anArtinian idealif any
of the following equivalent statements hold:

() K-dimR/I =0.
(") ﬁ =m= (-xl,01 LR xl,n]_v cee xk,o: LR xk,nk)-
(iii) Foreach integerf e [k], Hg/;(le;) =0 foralli > 0.

A ring S = R/I is an Nf-graded Artinian quotienif the homogeneous idedl is an
Artinian.

Corollary 3.5. LetX be an ACM set of points i&"t x -- - x P with Hilbert functionHx.
Then

AHx(i1, ..., i) = Z D" Hx (i1 — 11, ..., i — I),
0<I=(l1,--.[K)<(L,..., )
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where Hx (i) = 0if i 20, is the Hilbert function of somi¥*-graded Artinian quotient of
the ringk[xl,l, ces XLngs e s XLy - ey Xkong ]

Proof. By Proposition 3.2, there exists forms L1, ..., L, that give rise to a regular
sequence iR/ Ix with degL; = ¢;. After making a linear change of variables in the s,
a linear change of variables in the;'s, etc., we can assume that = x; o.

The ideal(Ix, x1,0, ..., Xk,0)/(x1.0, - - -, Xk,0) IS iSomorphic to an ideal of the ring
S=K[x11,..., XLngs s Xk,1s - -0 Xkony ] SELA 1= S/ J, and so

R/(x10, ..., Xk,0) ~ R
(Ix, x1,0, - -+, Xk,00/(X1,0, - - -, Xk,00  (IX, X1,0, - - - » Xk,0)

12

A

The ring A is Artinian because there exists> 0 by Lemma 3.1 such than! C
(Ix, X1,0 - - - » Xk,0)-

It therefore remains to compute the Hilbert functionAfSetJ; = (Ix, x1.0, ..., Xi.0)
fori =1,...,k. For eachi = 1,...,k we have a short exact sequence with degree
O, ...,0) maps:

0—> (R/Ji—1)(—ei) RN R/Ji_1—> R/J; —> 0,

whereJp := Ix. From thek short exact sequences we have that

Hgyy, (i) = AHx (i) := > (D Hx (i1 =11, ... ik — ),
o<i=(ly, ...l @,...1)

whereHx (i) =0 if i 2 0. This completes the proof sinee= R/J;,. O

The remainder of this section is devoted to showing that the necessary condition in
Corollary 3.5 is also sufficient. To demonstrate this converse, we describe Hifivaio
ideal.

Definition 3.6. Let R = K[x1,0, ..., X1, ny» - - - Xk,05 - - -» Xk, ] @NA €S = K[x1.1, ..., X109
ey Xk1s .-, Xk, ) DeNK-graded rings. Lef € R andJ < S beNf-homogeneous ideals.
Then we say is alifting of J to R if

() I isradicaling;
(i) (I,x1,0,...,X,0)/(x1,0, ..., Xk,0) = J;
(iii) x10,-..,xk0giverise to a regular sequenceRn.

Our plan is to lift a monomial ideal o to anN‘-homogeneous idedl of R, using
the techniques and results of [9], so thais the ideal of a reduced set of points in
P x ... x P, We make a brief digression to introduce the relevant content of [9].
Suppose thaf and R are as in Definition 3.6, but for the moment, we only assume
that they areN!-graded. For each indeterminatg; with 1 <i <k and 1< j <n;,
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choose infinitely many linear forms; ;; € K[x;,j, x1,0, x2,0, . .., xx,0l with / € N*. We
only assume that the coefficientof; in L; ;,; is not zero. The infinite matriX, where

rLi11 L1112 L1113
Lin1 Ling,2 Ling3

Li11  Lk12 Lia3

L Lk g1 Ling1,2 L3 - -

is called alifting matrix. By using the lifting matrix, we associate to each monomial

_.a11 alnl dkl Ak,ny, .
m=xyq Xy, X g oo, - oftheringsS the element

i) [ )

Depending upon our choice &f; ;,;’s, in may or may not b&-homogeneous. However,
m is homogeneous. If = (m1, ..., m,) is a monomial ideal of, then we usd to denote
the ideal(m1, ...,m,) € R. The following properties, among others, rel®&¢gl andS/J.

Proposition 3.7 [9, Corollary 2.10]LetJ C S be a monomial ideal, and Idtbe the ideal
constructed frony using any lifting matrix. Then

() S/JisCMifandonlyifR/I is CM,;
(i) (I, x1,0, ..., %k,0)/(X1,0, ..., Xx,0) = J
(iii) x1.0,...,xk.0 give rise to a regular sequence Ry .

We now consider the lifting of a monomial ideal using the lifting matfix=[L; ; ],
where

Liji=xi;j—(—-Dxo forl<i<n, 1<j<n;, andl eNT,

ceys . . o 11 atng akl Ak,ny,
The liting matrix.A associates to every monomial=x; ;" ---x; , *---x; 1 - x; .~ of

S the following N*-homogeneous form ak:

- [ﬁ(f{(m - Do) )] [ﬁ(ﬁ Py —1)xk,o))}.

i=1\j;=1 i=1

Thus, if I is constructed from a monomial ide&lcC S usingA, I is N*-homogeneous. In
fact, usingA, the ideall is a lifting of J to R. To prove this statement, we need
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Lemma 3.8 [9, Corollary 2.18].Let J C S be a monomial ideal and Igt be constructed
from J using any lifting matrix. If/ = Q1N ---N Q, is the primary decomposition of,
then/ = Q1N ---N Q, where Q; is the |deal generated by the lifting of the generators
of Q;.

Proposition 3.9. Let J € S be a monomial ideal and Idt be the ideal constructed froth
using the lifting matrix4. Then/ is a lifting of J to R.

Proof. Since Proposition 3.7 is true for any lifting matrix, it suffices to show thag
radical. Let/ = Q1N ---N Q, be the primary decomposition df SinceJ is a monomial
ideal, then by [9, Remark 2.19] we have that eahs a complete intersection of the form

. ai; . ar :
0, = xal»’l,l Li1 py iy 1 Koik.py
P\ ML 0 iy 0 Tk T Tk py

with a; ;;, > 1 for each variable that appears n. Using the lifting matrixA we then
have

ALy 4Lig,py i 1 Wik, py
:( l_[ Ll>i1,lsl"" l_[ Llllpl l_[ Lk lkll”"’ l_[ Lk,ik'pk,l>s
=1 =1

whereL; ;; = x; ; — (I — Dx; 0. But thenQ; is a reduced complete intersection. It then
follows from Lemma 3.8 thaf must be radical. O

We now describe the zero set of the lifted idéaFor each
(@1, ...,00) = ((ar1, ..., arny)s -, (@1, .. arpy)) €N X oo x N,

setXT! - Xt =2y a1 P is the set of all monomials of
|nclud|ng the monomlal 1, then there exists a bijection betwBeamd N1 x ... x N%
given by the map( . X < (a1, ...,ak). To each tupléas, ..., ar) we associate the
point (a1, ...,ar) € P"t x --- x P where

(@1,...,o0):=[liag1:a12:- - taip ] x - x[1iag1:ax2:- - agnl
Note that if m = X7*--- X € P and if im is constructed fromx7*--- X;* using the
lifting matrix A, thenm((«a1, ..., ar)) # 0. In fact, it follows from our construction that
m((B1,...,Br)) =0 if and only if some coordinate aff1, ..., Bx) is strictly less than
some coordinate afxy, . .., o). a a
If Jis a monomial ideal of, then letN be the set of monomials ih. The elements of
M := P\N are representatives forkabasis of theéV*-graded ringS/J. Set

M::{(gl,...,gk)ep"lx---x]P”k|Xf1---xfkeM}.
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Let I(M) denote theN*-homogeneous ideal associatedMd If m = X7*---X* e J

is a minimal generator, then for eackifl---xfk € M there exists at least one

coordinate of(,§1, s B that is strictly less then some coordinate(af;, ..., o). So

m((B1, ---. Bx)) =0 for all Xfl ... x% ¢ M, and hence the lifted idedIC | (). On the

other handM =V (1), the zero set of, so by theN*-graded analog of the Nullstellensatz
(cf. [13, Theorem 2.3]) we hav@M) < +/I. Becausd is radical by Proposition 3.9, we
have just shown.

Lemma 3.10. Let J € S be a monomial ideal and lett be the idgal constructed from
using the lifting matrix4. Then, with the notation as above= | (M).

We come to the main result of this section.

Theorem 3.11. Let H : N* — N be a numerical function. TheH is the Hilbert function of
an ACM set of distinct points i"t x --- x P" if and only if the first difference function

AH(iy, ..., ip) = > —DMH 1~ 1, ik — o),
0=, .-.,lp) <(L,....1)
whereH (i) = 0if i 20, is the Hilbert function of somB¥-graded Artinian quotient of
S=K[x11,..., XLngs-eor Xk, 1o ooy Xkong ]

Proof. Because of Corollary 3.5, we only need to show one direction. Sa, Hf is
the Hilbert function of somé¥*-graded Artinian quotient of, then there exists alN*-
homogeneous ideal < S with AH (i) = Hg/;(i) forall i € N¥. By replacingJ with its
leading term ideal, we can assume thiat (m1, ..., m,) is a monomial ideal of.

Let I € R be the ideal constructed fromh using the lifting matrix.4. By Proposi-
tion 3.9, the ideall = (1, x1,0, ..., Xk,0)/(x10, - - -, Xk,0) Wherexi o, ..., xr,0 give rise to
a regular sequence iR/I. Because deg o = ¢;, we havek short exact sequences with
degreqO, ..., 0) maps:

0—> (R/Ji-1) (1) —% R/J;-1 —> R/J; —> 0,
whereJ; := (I, x10,...,x;0) fori =1,...,k andJo := I. Furthermore,

R/(x10,...,Xk0)
(I, x1,0,...,%,0)/(x1,0, - - ., Xk,0)

S/J = =R/, x10,...,Xxk0) = R/Jk.

Then, using th& short exact sequences to calculate Hyg,, we find thatH = Hg,;.

If N is the set of monomials iV, then M = P\N is a finite set of monomials
becauseS/J is Artinian. By Lemma 3.10/ is the ideal of the finite set of points
M CP" x...x P, Finally, by Proposition 3.7 the s#f is ACM because/J is Artinian,
and hence, CM. O
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Since characterizing the Hilbert functions of ACM sets of point®th x --- x P"%
is equivalent to characterizing the Hilbert functions Iéf-graded Artinian quotients
of S, Theorem 3.11 translates one open problem into another open problem because
we do not have a theorem like Macaulay’s theorem [7] ¥egraded rings ifk > 1.
However, as shown below, there is a Macaulay-type theorenNfegraded quotients
of K[x11,x21,...,xk.1]. AS a consequence, we can explicitly describe all the Hilbert
functions of ACM sets of points i x - -- x P (k times) for any positive integer.

So, suppose tha# = K[x1, ..., x¢] and deg; = ¢;, wheree; is theith standard basis
vector of N, We prove a stronger result by characterizing the Hilbert functions of all
guotients ofS, not only the Artinian quotients.

Theorem 3.12. Let S = k[x, ..., xx] with degx; = ¢;, and letH : N* — N be a numerical
function. Then there exists a homogeneous idealS with Hilbert functionHs,; = H if
and only if

(i) HQO,...,00=1,
(i) H@)=1lor0ifi >0, and
(iii) if H(i) =0,thenH (j)=0forall j >i.

Proof. If 7 C S is anNF-homogeneous ideal such thHk,; = H, then condition (i) is
simply a consequence of the fact tHat. S. Statement (ii) follows from the inequality<Q
Hs/1(i) <dimg S; = 1. Finally, if Hs;;(i) =0, thenxi' .- x* € 1, or equivalently,s; < I
becauseci1 . .x,’}' is a basis fosS;. So, if j > i, thenS; € I, and hencelds,;(j) =0, thus
proving (iii).

Conversely, suppose that is a numerical function satisfying (i)—(iii). IH (i) = 1 for
all i e N, then the ideal = (0) C S has the property thatls,; = H.

So, supposéf (i) # 1 for all i. SetZ := {i € N* | H(i) = 0}. Note thatZ # N* because
0¢ 7. Let I be the ideall := ({x}*---x}* | i € Z}) in S. We claim thatHs,; (i) = H (i)
for all i € NF. It is immediate thatHs,; (0) = H(0) = 1. Moreover, if H(i) = 0, then
Hg/(i) = 0 becauseil - -x]i(k el; C1, i.e.,Si ClI.

So, we need to check that H (i) = 1, thenHs,;(i) = 1. Supposes,;(i) = 0. This
implies thatx! .. x/*  I. But because ¢ Z, there is a monomiati®---x/* € I with
j € Z, such thatx-l"1 . ~x,f" diVidESxil .. .x,ik. But this is equivalent to the statement that
J < i.Butthis contradicts hypothesis (iii). S#s,,(i) =1. O

Using Theorem 3.12 and the definition ofh-graded Artinian quotient, we then have:
Corollary3.13.LetS =k[x1, ..., x;] withdegx; = ¢;, and letH : N¥ — N be a numerical
function. TherH is the Hilbert function of aiNk-graded Artinian quotient of if and only
if

() HO,...,00=1,
(i) H@)=1or0ifi> (0,...,0),
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(iii) if H(@) =0,thenH (j)=0forall j >i, and
(iv) for eachi € [k] there exists an integer such thatH (¢;e;) = 0.

Corollary 3.14. Let H : N* — N be a numerical function. Thef is the Hilbert function of
an ACM set of distinct points i&! x - - - x P (k time9 if and only A H satisfies conditions
()—(iv) of Corollary 3.13

Remark 3.15. It follows from the previous corollaries tha is the Hilbert function of an
ACM set of points inP? x P! if and only if

() AH(,j)=1orO0,
(i) if AH(i, j)=0,thenAH(’, j'’) =0 forall (i/, j') € N? with (i’, j') > (i, j), and
(iii) there exists integersandr such thatA H(¢,0) =0 andAH (0, r) = 0.

Giuffrida, Maggioni, and Ragusa proved precisely this result in [5, Theorems 4.1 and 4.2].
We investigate ACM sets of points 1At x P! in further detail in the next two sections.

4. ACM setsof pointsin P x P!

If X is an ACM set of points iiP! x P!, then by Theorem 3.11 the functignHx is
the Hilbert function of a bigraded Artinian quotient lofx1, y1]. In [5] it was shown that
the converse of this statement is also true, thereby classifying the ACM sets of points in
P! x PL. In this section we revisit this result by giving a new proof of this characterization
that depends only upon numerical information descriiing

We begin with a brief digression to introduce some needed combinatorial results. Recall
that a tupler = (A1, ..., A,) of positive integers is artition of an integers, denoted
A s, if Y- A; =s andi; > ;41 for eachi. If A s, then theconjugateof A is the tuple
A =%, ..., /\jl) wherer” :=#{L; € A | A; > i}. Moreover\* is also a partition of.

To any partitioni = (A1,...,A,) s we can associate the following diagram: on
anr x A1 grid, placer; points on the first linex, points on the second, and so on.
The resulting diagram is called tHeerrers diagramof A. For example, suppose =
(4,4,3,1, 1) 13. Then the Ferrers diagram is

The conjugate of can be read off the Ferrers diagram by counting the number of dots in
each column as opposed to each row. In this examyple; (5, 3, 3,2) - 13.

The following lemma, whose proof is a straightforward combinatorial exercise,
describes some of the relations between a partition and its conjugate.



A. Van Tuyl / Journal of Algebra 264 (2003) 420-441 433

Lemmad.l. Leta = (a1,...,ap) FsandB = (B1,..., Bn) Fs. If a* = B, then

() a1=|Blandpi=|af,
(i) if o’ =(a2,...,ap)andp’ =(B1—1,..., By, — 1), then(a)* = 4'.

Let X denote a set of reduced pointshh x P, and associate t& two tuplesax and
Bx as follows. Letr1(X) = {P1,..., P;} be ther distinct first coordinates iX. Then, for
eachP; e 11(X), leta; := |n{l(Pi)|, i.e., the number of points iK which havep; as its
first coordinate. After relabeling the so thate; > «;41 fori=1,...,1 — 1, we setux =
(a1, ...,ar). Analogously, for eaclp; € m2(X) = {01, ..., O,}, we lets; .= |n51(Qi)|.
After relabeling so thag; > 8;y1 fori =1,...,r — 1, we setfx = (B1, ..., Br). S0, by
constructiongyx, Bx s = |X]. Note thatax| = |71(X)| and|Bx| = |72(X)].

We write the Hilbert functionHx as an infinite matrixm;;) wherem;; := Hx(i, j).
Proposition 2.4 gives

i+1 0<i<r-—1,

i+1 0<igr—1,
m;o= + S and mo,j = .
’ ’ r 1>,

t i>t,

becauser1(X) = {Py, ..., P,} CPtandm(X) = {041, ..., O,} C PL This fact, combined
with Proposition 2.2, implies thaix has the form

-1 2 .. r-1 r o
2 Myr_1 mi1,-1
Hx=|t-1 Mor_1 mp,—1 - |, (1)
t Mi_11 -+ Mi_1r-2 S :
t mi—11 -+ My—1r-2 N

where the values denoted by) need to be calculated. Set

Bc = (mi—10,...,mi—1,-1) and Br=(mo,—1,...,Mi—1,-1).
From our description oHx, we see that if we know the values in the tup®s and Bg,
we will know all but a finite number of values dfx. As shown below, the tupleB¢c and
Bpg can be computed directly from the tuplegs andgx defined above. If. is a tuple, then
we shall abuse notation and write € A to mean thai; is a coordinate of.

Proposition 4.2 [13, Proposition 5.11]LetX € P! x P! be a finite set of points.

(i) If Bc = (mi—10,...,m—1,—1) Wherem;_1 ; = Hx(t —1,j) for j =0,...,r — 1,
then

mi—1;=#a; cax|a; 2} +#a cax o 220+ +#o cax |o; > j+ 1}
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(i) If B = (moy—1,--.,Mi—1r-1) WheI’Emj)r,l = Hx(j,r —1) for j=0,...,t — 1,
then

mir—1=#piePx Bzl +#HBiePx|Bi=2+ - +#Biebx|Bi = j+1}.

We can rewrite this result more compactly using the language of combinatorics
introduced above. Ifp = (p1, ..., pr), then we writeAp to denote the tuplehp :=

(p1, P2 — p1,---» Dk — Pk—1)-

Corollary 4.3[13, Corollary 5.13]Let X be a finite set of points i&! x P1. Then

() ABc=a,
(i) ABg=p:.

Remark 4.4. In [13] the tuple Bx = (B¢, Bg) was called theborder of the Hilbert
function.

Recall thatA Hx, thefirst difference functiof Hx, is defined by
AHx(i, j) = Hx(i, j) — Hx(i =1, j) — Hx(i,j - D+ Hx( —1,j - 1),
whereHx (i, j) = 0if (i, j) # (0, 0). The entries of; andB; canthen be read from Hy.
Corollary 4.5. LetX c P! x P! be a finite set of points, and sgt; := AHx(i, j). Then

(i) forevery0< j <r—1=|mX)| -1,

*
Yj+1= Z Ch.j>

h< e (X)1-1

whereozj;rl is the(j + Dth entry ofa, the conjugate odex,

(i) forevery0<i<t—1=|mX)| -1,

ﬁi*+l = Z Cihy

hlr2(X)]1-1

whereg, , is the(i + 1)th entry ofgg.
Proof. Use Proposition 4.2 and the identitix (i, j) = Z(h,k)g(i,j) chx to computex;’;rl:

a;FJrl = Hx(t—1,j)—-Hx(t—-1,j-1)

= Z Chk — Z Chk = Z Ch,j-

(h.B)<(—L1.)) (h.B)<(-1.j-1) h<t=1=|m(X)]-1

The proof for the second statement is the sane.
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Lemma4.6. LetX c P x P! be a finite set of points, and suppose hat= Bx. Let P be
a point of1(X) such thatz; *(P)| = a1. SetXp := n; 1 (P). Thenma(X p) = m2(X).

Proof. SinceXp C X, we haverz(Xp) C m2(X). Now, by our choice oP, |72(Xp)| = a1.
But since|m2(X)| = |Bx| anday = Bx, from Lemma 4.1 we havero(X)| = [Bx| = a1 =
|72(Xp)|, and hencera(Xp) = m2(X). O

Proposition 4.7. Suppose thaK is a set ofs = ¢r points inP! x P! such thatax =
(r,...,r) (t timeg and Bx = (¢, ...,t) (r time9. ThenX is a complete intersection, and
the graded minimal free resolution &f is given by

0— R(—t,—r) — R(—t,00 ® RO, —r) — Ix — 0.

Proof. Becauséax| =1t and|Bx| =r, 11(X) ={P1, ..., P} andm2(X) = {01, ..., O;},
where P;, Q; € PL. Since|X| =tr, X = {P; x Q;11<i<t1<j<r} Hence, if
Ipx0; = (Lp,, Lg;) is the ideal associated to the poiitx Q;, then the defining ideal
of X'is

Ix= m(LPi’ Lo;)=(LpLp,---Lp,LoyLoy--Lo,).
iJ

Since ded.pLp,---Lp, = (¢t,0) and ded.p,Lg,---Lg, = (0,r), the two generators
form a regular sequence @ and henceX is a complete intersection. The graded minimal
free resolution is then given by th@szul resolutiontaking into consideration thd is
bigraded. O

We now come to the main result of this section.

Theorem 4.8. LetX be a finite set of points iR x P with Hilbert functionHx. Then the
following are equivalent

() Xis ACM,
(i) A Hy is the Hilbert function of aiN?-graded Artinian quotient ok[x1, y1],
(iii) ok = Bx.

Proof. The implication(i) = (ii) is Corollary 3.5. So, suppose that (ii) holds. Because
A Hy is the Hilbert function of aiN2-graded Artinian guotient dd[x1, y1], Corollary 3.14,
Remark 3.15, and matrix (1) give
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0 r—1

AHx = )

t—1

wheret = |71(X)| andr = |72(X)|. We have writtenA Hx as an infinite matrix whose
indexing starts from zero rather than one.

By Corollary 4.5 the number of 1's in th€ — 1)th row of AHx for each integer
1<i <tissimply theith coordinate o5 . Similarly, the number of ones in thg — 1)th
column of A Hx for each integer X j <r is the jth coordinate otx;. Now A Hx can
be identified with the Ferrers diagram g§ by associating to each 1 in Hx a dotin the
Ferrers diagram in the natural way, i.e.,

0 r—1

L

t—1

By using the Ferrers diagram and Corollary 4.5, it is now straightforward to calculate that
the conjugate oy, is (85)* = Bx = ag, and so (iii) holds.

To demonstrate that (i) implies (i), we proceed by induction on the tdptgX)|, | X]).
For any positive integey, if (J71(X)], |X]) = (1,s), thenax = (s) andBx = (1,...,1)
(s times), and saxy = Bx. Then by Proposition 4.7 is a complete intersection and
hence ACM.

So, suppose thatr (X)), |X|) = (¢, s) and that the result holds true for &llc P! x P!
with o = By and (¢, s) >jex (Im1(Y)!, |Y]), where>ex is the lexicographical ordering
onN2,

Suppose thatP; (after a possible relabeling) is the element nf(X) such that
|nf1(P1)| = «aj. Let Lp, be the form of degre€l, O) that vanishes aP;. By abusing
notation, we also leL p, denote thel, 0)-line in P* x P! defined byL p,.

SetXp, := XN Lp, = 7; (P1) andZ := X\Xp, . It follows thatez = (a2, . .., @) and
Bz=PB1—1,...,B0, — 1. Now (z,5) >jex (|71(Z)|, |Z|), and moreovery; = Bz by
Lemma 4.1. Thus, by the induction hypothe&ss ACM.

Suppose that2(X) = {Q1, ..., O,}. Let Lo, be the degre€0, 1) form that vanishes
at Q; € m2(X) and setF := Lg,Lg,---Lg,. Becauseay = Bx, from Lemma 4.6
we haven(Xp,) = m2(X). So, Xp, = {P1x Q1,..., PLx Q,}, and henceIX,,l =
Mi—1(Lp,, Lg;) = (Lp,, F). Furthermore, ifP x Q € Z, thenQ € n2(Z) € 72(X), and
thusF (P x Q) =0. ThereforeF € I. BecauseF is in I and is also a generator b;tpl,
we can show:
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Claim.Letl =Lp, - Iz + (F). Thenl = Ix.

Proof. Sincelx = Izuxpl =17 N Ix,,l, we will show I N Ix,,l =Lp, - Iz + (F). So,
suppose that = Lp, H1 + HoF € Lp, - Iz + (F) with H; € Iz andH, € R. Becausd. p,
andF are inlx, , we haveG € Ix, . SinceHy, F € Iz, G € Iz. ThusG € Iz N prl.

Conversely, ieG elzN prl. SinceG e prl, G = Lp, H1 + F H>. We need to show
that H; € I7. BecauseG, F € Iz, we also have. p, Hy € Iz. But for everyP x Q € Z,
P # P1, and thusL p, (P x Q) #0. HenceL p, Hy € Iz if and only if Hi(P x Q) =0 for
everyP x QeZ. O

We note thatX < P! x P! is ACM if and only if the varietyX < P3 defined bylx,
considered as a homogeneous ideaket K[xo, x1, yo, y1], is ACM. As a variety ofP3,
X is a curve since K- dink/Ix = 2. LetZ denote the curve a3 defined bylz, considered
also as a homogeneous ideal®f The claim implies that the cun is a basic double
link of Z. Since the Cohen—Macaulay property is preserved under linkage (see [8, Theorem
3.2.3] and following remark)X is an ACM curve ofP3, or equivalentlyX is an ACM set
of points inP! x PL. O

Remark 4.9. Giuffrida et al. [5, Theorem 4.1] demonstrated the equivalence of statements
(i) and (ii) of Theorem 4.8 via different means. Our contribution is to show that the ACM
sets of points are also characterizediyand gx. This result has been extended in [6] to
characterize ACM fat point schemeshh x PL.

Corollary 4.10. Let X be a set of points if?! x P! with ax = (a1, ..., @), andz1(X) =
{P1,..., P}. Supposéafter a possible relabelinghat |nfl(Pi)| =q;. Set

X =X\|r (PO U---UnH(P)) forO<i<r—1,

where Xp := X. If X is ACM, then, for each integed < i <t — 1, X; is ACM with
OlX,- - (al+lv Oi42, ..., al‘)-

Proof. It is sufficient to show that for each=0,...,r — 2, if X; is ACM, thenX; ;1

is ACM. SinceX;;+1 = Xi\{nl‘l(PiJrl)}, Xi+1 is constructed fronX; by removing the
;11 points ofX; which haveP;; as its first coordinate. The tupf,, is constructed
from Bx, by subtracting 1 from; ;1 coordinates irBx, . But becausezX = Bx,, we have

|Bx;| = g1 and thusBx,, = (B1— ... fu,, — D =(B1— L..... Buy,, — 1). But by

Lemma 4. 1‘)‘X;+1 = Bx;,,, and hencé§,+1 is ACM by Theorem 4 8 ]

5. The Betti numbers of ACM sets of pointsin P! x P*

If X is a set ofs points inPL, then it is well known that the graded Betti numbers,
and consequently, the Hilbert function Bf can be determined solely frofX| = s. If
we restrict to ACM sets of points i?! x P, we can extend this result to show that the
graded Betti numbers in the minimal free resolutioiXdfind henceHx) can be computed
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directly from the tuplestx and Bx introduced in the previous section which numerically
describeX.

We require the following notation to describe the minimal free resolution. Suppose that
X c P! x Pl is a set of points witlvx = (o1, . . ., ;). Define the following sets:

Cx = {(1,0),0,a)} U{(i =1, @) | & —ai_1 <O},
Vx = {(t,oz,)} U {(i —lai—1) | —aj—1 < 0}.

We takex_1 = 0. With this notation, we have

Theorem 5.1. Suppose thaK is an ACM set of points if? x PL. Let Cx and Vi be
constructed fronaey as above. Then the graded minimal free resolutiofixois given by

0— B R-v.-v1)— P R(-c1.—c2) — Ix—0.

(v1,v2)€Vx (c1,c2)€Cx

Proof. We proceed by induction on the tuplér1(X)|, |X]). If s is any integer, and
(Im1(X), IX]) = (1,5), thenax = (s) and Bx = (1,...,1) (s times). The conclusion
follows from Proposition 4.7 sinc€x = {(1, 0), (0, s)} and Vx = {(1, 5)}.

So, supposé€|r1(X), |X]) = (¢, s) with 7 > 1. Then

ax = (01, ..., 01, 41, .., 0),
———
I

i.e.,a;11 < a1, butey = 1. If [ =1, thenX is a complete intersection and the resolution is
given by Proposition 4.7. The conclusion now follows becatige= {(/, 0), (0, 1)} and
Vx ={(, a1)}.

If I <1, let Py,..., P, be thel points of r1(X) that have|r; *(P:)| = a1. SetY =
m (P U--- Ut (P). Becaus&X is ACM, a1 = |Bx|, and henceY = {P; x Q; | 1<
i<l, Qj em(X)}. So,ay = (a1, ...,a1) andBy = (/, ..., ), and thusY is a complete
intersection. In factly = (Lp,---Lp, Lo, - --LQal) where Lp, is the form of degree
(1, 0) that vanishes at all the points Bt x P! which haveP; as their first coordinate, and
Ly, is the form of degre€0, 1) that vanishes at all point8 x Q € P! x P! such that
0=0:.

LetF:=Lp,---LpandG:=Lg,--Lg, - By Proposition 4.7, the resolution of is

0—> R(—1, —a1) 2> R(—=1.0) ® R0, —ay) 25 Iy —> 0,

wheregy = [F G] andg, = [ . ]. Let Z := X\Y. Sincen»(Z) C m2(X), it follows that
G=Lg, Lo, €lz. Hence, imp2 C I7(—1,0) ® R(0, —a1). O

Claim. Ix = F - Iz + (G).
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Proof. By constructionX =ZUY. Hence, we wantto show that N Iy = F - Iz + (G).
The proof now follows as in the proof of the Claim in Theorem 4.81

From the above resolution fak, the claim, and the fact that ig» C I7(—1,0) &
R(0, —a1), we have the following short exact sequenc&eafodules:

0— R(—1, —a1) 2 I(~1,0) ® RO, —a1) % Iy = F - I, + (G) —> O,

whereg; andg, are as above.

By Corollary 4.10 the sef is ACM with oz = (¢+1, - .., ;). Therefore, the induction
hypothesis holds faZ.. With the above short exact sequence, we can usa#pping cone
construction(see [14, Section 1.5]) to construct a resolutionfgrIn particular, we get

0 — @ R(—(U1+l),—vz)i| ® R(—l, —a1)

(v1,v2)€Vz

— @ R(—(c1+l),—cz)j|€BR(0,a1)—> Ix — 0.

(c1,c2)€Cy

Since the resolution has length 2, and becaXise ACM, the resolution offx cannot be
made shorter by the Auslander-Buchsbaum formula (cf. [14, Theorem 4.4.15]).

To show that this resolution is minimal, it is enough to show that no tuple in the set
{(c1+1,c2) | (c1,c2) € Cz}U{(0, an)} isinthe sef(vy+1, v2) | (v1,v2) € VZ}U{(, a1)}.
By the induction hypothesis, we can assume thattoc,) € Cy, is in Vz, and hence, if
(c1+1,¢2) €{(c1+1,¢2) | (c1,c2) € Cz}, then(c1+1, c2) isnotin{(vi+1, v2) | (v1, v2) €
Vzt If (c1+ 1, c2) = (I, a1) for some(cy, ¢2) € Cy, then this implies that0, «1). But this
contradictions the induction hypothesis. SimilarlyGf «1) € {(v1+1, v2) | (v1, v2) € Vz},
this implies(—I, «1) € Vz, which is again a contradiction of the induction hypothesis. So
the resolution above is minimal.

To complete the proof we only need to verify that

(i) Cx={(c1+1.c2) | (c1,c2) € Cz} U{(0, 1)},
(i) Vx ={(v1+1,v2) | (v1,v2) € Vz} U{({, @1)}.

Because the verification of these statements is tedious, but elementary, we omit the
details. O
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Remark 5.2. It was shown in [5, Theorem 4.1] that the graded Betti numbers for an ACM
set of pointsX € P x P! could be determined via the first difference functidbily, i.e.,

An element ofCx, which [5] called acornerof A Hx, corresponds to a tuplg, j) that is
either(z, 0), (0, 1) = (0, r), or has the property that Hx (i, j) =0, butAHx (@ — 1, j) =
AHx(i, j — 1) = 1. We have labeled the cornerst®dtix with ac in the above diagram. An
element ofVx is avertex A tuple(i, j) is called a vertex iA Hx (i, j) = AHx(i — 1, j) =
AHx(i,j —1)=0, butAHx(i — 1, j — 1) = 1. We have labeled the verticestfix with
av in the above diagram. Besides giving a new proof for the resolution of an ACM set of
points inP! x P, we have shown that the graded Betti numbers can be computed directly
from the tuplexy.

Using the resolution as given in Theorem 5.1 we can compigteirectly fromas for
any ACM set of point&X € P! x P, Formally:

Corollary 5.3. LetX be an ACM set of points i x P! with ax = (a1, ...). Then

00 0 0 0
1 2 a1 —1 a1 a7 12 oo apg—1 ap a
Hyx = 12 1=l o e 11 2 - ap—1 az ap
o0 ... 0 0 O
0o 0 . 0 0 0 .. . . .
0o 0 . 0 0 0 c : : :
+ 1 2 . az—1 a3 az - bt 00 - 0 0 0
1 2 - Ot3—l a3 o3 1 2 Ott_l oy Op
. 1 2 ... (X;—l oy O
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