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Abstract

If X is a set of points inPn1 × · · · × Pnk , then the associated coordinate ringR/IX is anNk-
graded ring. The Hilbert function ofX, defined byHX(i) := dimk(R/IX)i for all i ∈Nk , is studied.
Since the ringR/IX may or may not be Cohen–Macaulay, we consider only thoseX that are ACM.
Generalizing the case ofk = 1 to allk, we show that a function is the Hilbert function of an ACM s
of points if and only if its first difference function is the Hilbert function of a multi-graded Artin
quotient. We also give a new characterization of ACM sets of points inP1 × P1, and show how
the graded Betti numbers (and hence, Hilbert function) of ACM sets of points in this space
obtained solely through combinatorial means.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let R = k[x1,0, . . . , x1,n1, . . . , xk,0, . . . , xk,nk ] with degxi,j = ei be the Nk-graded
coordinate ring associated toPn1×· · ·×Pnk . A pointP =P1×· · ·×Pk ∈ Pn1×· · ·×Pnk ,
with Pi ∈ Pni , corresponds to a primeNk-homogeneous idealIP of height

∑k
i=1ni

in R. Furthermore,IP = (L1,1, . . . ,L1,n1, . . . ,Lk,1, . . . ,Lk,nk ) where degLi,j = ei and
(Li,1, . . . ,Li,ni ) is the defining ideal ofPi ∈ Pni . If X= {P1, . . . ,Ps} ⊆ Pn1 × · · · × Pnk ,
then IX = ⋂s

i=1 IPi , whereIPi corresponds toPi , is the Nk-homogeneous ideal ofR
associated toX. The ringR/IX inherits anNk-graded structure. The Hilbert function
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X is then defined byHX(i) = dimk(R/IX)i for all i ∈ Nk. In this paper we study thes
Hilbert functions, thereby building upon [5,13].

Each idealIPi is also homogeneous with respect to the standard grading, soIPi defines
a linear variety of dimensionk − 1 in PN−1 whereN =∑k

i=1(ni + 1). One can therefor
take the point of view that our investigation of sets of points inPn1 × · · · × Pnk is an
investigation of reduced unions of linear varieties with extra hypotheses on the gen
to ensureIX is Nk-homogeneous.

Ideally, we would like to classify those functions that arise as the Hilbert function
set of points inPn1×· · ·×Pnk . However, besides the casek = 1 which is dealt with in [3,4],
such a classification continues to elude us. Though some properties of the Hilbert fu
are known ifk > 1 (cf. [5,13]), even for sets of points inP1×P1 this problem remains open

The proof of the characterization for the casek = 1 relies, in part, on the fact tha
the coordinate ring of any finite set of points inPn is always Cohen–Macaulay (CM
However, ifk > 1, we show how to construct sets of points which fail to be CM. In f
for each integerl ∈ {1, . . . , k}, we can construct a set of points with depthR/IX = l. The
failure of R/IX to be CM in general provides an obstruction to generalizing the pr
of [3,4].

We therefore restrict our investigation to sets of points that arithmetically Co
Macaulay (ACM). With this extra hypothesis on our set of points, we can generaliz
proof for the casek = 1 as given in [3] to allk. In particular, we show thatHX is the Hilbert
function of an ACM set of points inPn1 × · · · × Pnk if and only if �HX, a generalized
first difference function, is the Hilbert function of someNk-graded Artinian quotient. Ou
generalization relies on two main ingredients: (1) the existence of a regular seque
R/IX such that each element has a specific multi-degree, and (2) the techniques of
lifting monomial ideals.

This characterization is not very satisfactory because it translates our original pr
into the open problem of characterizing the Hilbert functions ofNk-graded Artinian
quotients. However, we characterize these quotients in the special casen1= · · · = nk = 1,
thereby giving a complete description of the Hilbert functions of ACM sets of poin
P1× · · · × P1.

In the last two sections we specialize to ACM sets of points inP1 × P1. It was first
shown in [5] that the ACM sets of points are characterized by their Hilbert func
We give a new proof of this result, plus a new characterization that depends
upon numerical information describing the setX. We then show that this numeric
information also enables us to completely calculate the graded Betti numbers
minimal free resolution ofIX (and thus,HX) providedX is ACM. This generalizes th
fact that the Hilbert function and Betti numbers of a set ofs points inP1 depend only
upons.

2. Preliminaries: multi-graded rings, Hilbert functions, points

Throughout this paper,k denotes an algebraically closed field of characteristic z
In this section we provide the necessary facts and definitions about multi-graded
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Hilbert functions, and sets of points in multi-projective spaces. See [10,13] for mo
these topics.

Let N := {0,1,2, . . .}. For an integern ∈ N, we set [n] := {1, . . . , n}. We denote
(i1, . . . , ik) ∈Nk by i. We set|i| :=∑h ih. If i, j ∈Nk , theni+ j := (i1+ j1, . . . , ik+ jk).

We write i � j if ih � jh for everyh= 1, . . . , k. The setNk is a semi-group generated b

{e1, . . . , ek} whereei := (0, . . . ,1, . . . ,0) is theith standard basis vector ofNk . If c ∈ N,
thencei := (0, . . . , c, . . . ,0) with c in theith position.

SetR = k[x1,0, . . . , x1,n1, x2,0, . . . , x2,n2, . . . , xk,0, . . . , xk,nk ], and induce anNk-grad-
ing on R by setting degxi,j = ei . An elementx ∈ R is said to beNk-homogeneou
(or simply homogeneousif the grading is clear) ifx ∈ Ri for some i ∈ Nk . If x is
homogeneous, then degx := i. An idealI = (F1, . . . ,Fr )⊆ R is anNk-homogeneous(or
simply,homogeneous) ideal if eachFj is Nk-homogeneous.

For everyi ∈ Nk , the setRi is a finite-dimensional vector space overk. Since a basis
for Ri is the set of all monomials of degreei,

dimk Ri =
(
n1+ i1

i1

)(
n2+ i2

i2

)
· · ·

(
nk + ik

ik

)
.

If I ⊆ R is a homogeneous ideal, thenS = R/I inherits anNk-graded ring structure
if we define Si = (R/I)i := Ri/Ii . The numerical functionHS :Nk → N defined by
HS(i) := dimk(R/I)i = dimk Ri − dimk Ii is the Hilbert function ofS. If H :Nk → N
is a numerical function, then thefirst difference function ofH , denoted�H , is defined by

�H(i) :=
∑

0�l=(l1,...,lk)�(1,...,1)

(−1)|l|H(i1− l1, . . . , ik − lk),

whereH(j)= 0 if j � 0. If k = 1, then our definition agrees with the classical definitio

TheNk-graded polynomial ringR is the coordinate ring ofPn1 × · · · × Pnk . Let

P = [a1,0 : · · · : a1,n1] × · · · × [ak,0 : · · · : ak,nk ] ∈ Pn1 × · · · × Pnk

be a point in this space. The ideal ofR associated to the pointP is the prime idealIP =
(L1,1, . . . ,L1,n1, . . . ,Lk,1, . . . ,Lk,nk ) where degLi,j = ei for j = 1, . . . , ni . If P1, . . . ,Ps

ares distinct points andX = {P1, . . . ,Ps} ⊆ Pn1 × · · · × Pnk , thenIX = IP1 ∩ · · · ∩ IPs

whereIPi is the ideal associated to the pointPi . The ringR/IX then has the following
property.

Lemma 2.1 [12, Lemma 3.3].Let X be a finite set of points inPn1 × · · · × Pnk . For each
integeri ∈ [k] there exists a formLi ∈ Rei such thatLi is a nonzero divisor inR/IX.

We write HX to denote the Hilbert functionHR/IX , and we sayHX is the Hilbert
functionof X. Let πi :Pn1 × · · · × Pnk → Pni denote theith projection morphism. The
ti := |πi(X)| is the number of distinctith-coordinates inX. With this notation we have:

Proposition 2.2. LetX be a finite set of points inPn1×· · ·×Pnk with Hilbert functionHX.
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(i) [13, Proposition 4.2]If (j1, . . . , ji, . . . , jk) ∈Nk and if ji � ti − 1, then

HX(j1, . . . , ji, . . . , jk)=HX(j1, . . . , ti − 1, . . . , jk).

(ii) [13, Corollary 4.8]HX(j1, . . . , jk)= s for all (j1, . . . , jk)� (t1−1, t2−1, . . . , tk−1).

Remark 2.3. Fix an integeri ∈ [k], and fix k − 1 integers inN, sayj1, . . . , ji−1, ji+1,

. . . , jk. Set j l := (j1, . . . , ji−1, l, ji+1, . . . , jk) for each integerl ∈ N. Then Proposi-
tion 2.2(i) can be interpreted as saying the sequence{HX(j l)} becomes constant. In fac
HX(j l)=HX(j ti−1) for all l � ti − 1.

Proposition 2.4 [13, Proposition 3.2].Let X be a finite set of points inPn1 × · · · × Pnk

with Hilbert functionHX. Fix an integeri ∈ [k]. Then the sequenceH = {hj }, where
hj :=HX(jei), is the Hilbert function ofπi(X)⊆ Pni .

We end this section with some comments on the depth and Krull dimension ofR/IX.
Let m :=⊕

0�=j∈NkRj = (x1,0, . . . , xk,nk ) be the maximal ideal ofR. If I ⊆ R is an

Nk-homogeneous ideal, then recall that we say a sequenceF1, . . . ,Fr of elements is a
regular sequence moduloI if and only if

(i) (I,F1, . . . ,Fr )⊆m,
(ii) F 1 is not a zero divisor inR/I , and
(iii) F i is not a zero divisor inR/(I,F1, . . . ,Fi−1) for 1< i � r.

The depth ofR/I , written depthR/I , is the length of the maximal regular sequen
moduloI .

Because each prime idealIPi has height
∑k

i=1ni , it follows that K-dimR/IX = k,
the number of projective spaces. This result, coupled with Lemma 2.1, implies�
depthR/IX � k. Thus, every set of points inPn has depthR/IX = 1. If k � 2, the value for
depthR/IX is not immediately clear. In fact, for each integerl ∈ [k] we can construct a se
of points inX such that depthR/IX = l. We begin with a lemma.

Lemma 2.5. Fix a positive integerk. Denote byX1 andX2 the two points

X1 := [1 : 0] × [1 : 0] × · · · × [1 : 0] and X2 := [0 : 1] × [0 : 1] × · · · × [0 : 1]
in P1× · · · × P1 (k times). If X := {X1,X2}, thendepthR/IX = 1.

Proof. The defining ideal ofX is IX = IX1 ∩ IX2 = ({xa,0xb,1 | 1 � a � k,1 � b � k}) in
the Nk-graded ringR = k[x1,0, x1,1, x2,0, x2,1, . . . , xk,0, xk,1]. Sincex1,0+ x1,1 does not
vanish at either point, it suffices to show that every nonzero element ofR/(IX, x1,0+ x1,1)

is a zero divisor.
So, setJ = (IX, x1,0+ x1,1) and suppose that 0�= F ∈ R/J . Without loss of generality

we can takeF to beNk-homogeneous. We writeF asF = F0 + F1x1,0+ F2x
2
1,0+ · · · ,

whereFi ∈ k[x1,1, x2,0, . . . , xk,1]. Sincex1,0x1,1 ∈ IX, it follows that x2 = x1,0(x1,0 +
1,0
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x1,1)− x1,0x1,1 ∈ J . Hence, we can assume thatF = F0+ F1x1,0. The elementx1,0 /∈ J .
Although x1,0,F /∈ J , we claim thatFx1,0 ∈ J . Indeed, for each integer 1� b � k,
x1,0xb,1 ∈ IX ⊆ J . Furthermore, for 1� a � k, the elementx1,0xa,0= xa,0(x1,0+ x1,1)−
xa,0x1,1 ∈ J . Hence, each term ofF0x1,0 is in J , so F0x1,0 ∈ J . But thenFx1,0 =
F0x1,0 + F1x

2
1,0 ∈ J . So, every 0�= F ∈ R/J is a zero divisor because it is annihilat

by x1,0. ✷
Proposition 2.6. Fix a positive integerk, and letn1, . . . , nk bek positive integers. Then, fo
every integerl ∈ [k], there exists a set of pointsX in Pn1 × · · ·×Pnk with depthR/IX = l.

Proof. For everyl ∈ [k], we construct a set with the desired depth. DenotePi := [1 : 0 :
· · · : 0] ∈ Pni for 1 � i � k andQi := [0 : 1 : 0 : · · · : 0] ∈ Pni for 1 � i � k. Fix an l ∈ [k]
and letX1 andX2 be the following two points ofPn1 × · · · × Pnk :

X1 := P1× P2× · · · × Pk and X2 := P1× P2× · · · × Pl−1×Ql × · · · ×Qk.

If we setXl := {X1,X2}, we claim that depthR/IXl
= l. The defining ideal ofXl is

IXl
=
x1,1, . . . , x1,n1, . . . , xl−1,1, . . . , xl−1,nl−1,

xl,2, . . . , xl,nl , . . . , xk,2, . . . , xk,nk ,

{xa,0xb,1 | l � a � k, l � b � k}

 .

It follows thatR/IXl
∼= S/J , where

S/J = k[x1,0, x2,0, x3,0, . . . , xl−1,0, xl,0, xl,1, xl+1,0, xl+1,1, . . . , xk,0, xk,1]
({xa,0xb,1 | l � a � k, l � b � k}) .

The indeterminatesx1,0, x2,0, . . . , xl−1,0 give rise to a regular sequence inS/J . Thus,
depthR/IXl

= depthS/J � l − 1. SetK = (J, x1,0, . . . , xl−1,0). Then

S/K ∼= k[xl,0, xl,1, xl+1,0, xl+1,1, . . . , xk,0, xk,1]
({xa,0xb,1 | l � a � k, l � b � k}) .

The ringS/K is then isomorphic to theNk−l+1-graded coordinate ring of the two poin
{[1 : 0]× [1 : 0]× · · ·× [1 : 0], [0 : 1] × [0 : 1]× · · ·× [0 : 1]} in P1× · · · × P1 ((k− l+1)
times). From Lemma 2.5 we have depthS/K = 1, and hence, depthR/IXl

= l − 1+ 1= l.✷
3. The Hilbert functions of ACM sets of points

For an arbitrary set of pointsX ⊆ Pn1 × · · · × Pnk , depthR/IX � K-dimR/IX. If the
equality holds, the coordinate ring is Cohen–Macaulay (CM), and the set of points ar
to be arithmetically Cohen–Macaulay (ACM). We now investigate the Hilbert function
those sets of points inPn1 × · · · × Pnk that are also ACM. Under this extra hypothesis,
can generalize the characterization of the Hilbert functions of sets of points inPn as found
in [3].
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We begin with a preparatory lemma.

Lemma 3.1. LetX⊆ Pn1×· · ·×Pnk be a finite set of points, and supposeL1, . . . ,Lt , with
t � k anddegLi = ei , give rise to a regular sequence inR/IX. Then there exists a positiv
integerl such that(x1,0, . . . , x1,n1, . . . , xt,0, . . . , xt,nt )

l ⊆ (IX,L1, . . . ,Lt ).

Proof. Set Ji := (IX,L1, . . . ,Li) for i = 1, . . . , t . Since L1, . . . ,Lt form a regular
sequence onR/IX, for eachi = 1, . . . , t we have a short exact sequence with deg
(0, . . . ,0) maps:

0−→ (R/Ji−1)(−ei) ×Li−−→ R/Ji−1−→R/Ji −→ 0,

where we setJ0 := IX. From the exact sequences we derive the following formula:

dimk(R/Jt )i =
∑

0�(j1,...,jt )�1

(−1)(j1+···+jt ) dimk(R/IX)i1−j1,...,it−jt ,it+1,...,ik ,

where we set dimk(R/IX)j = 0 if j � 0.
For each integerj = 1, . . . , t , set tj := |πj (X)|. By Proposition 2.2, ifij � tj , then

dimk(R/IX)ij ej = dimk(R/IX)(ij−1)ej . This fact, coupled with above formula, implie
that dimk(R/Jt )tj ej = dimk(R/IX)tj ej − dimk(R/IX)(tj−1)ej = 0. ThusRtj ej = (Jt )tj ej ,
or equivalently,(xj,0, . . . , xj,nj )

tj ⊆ (IX,L1, . . . ,Lt ). Since this is true for each integ
1 � j � t , there exists an integerl� 0 such that(x1,0, . . . , x1,n1, . . . , xt,0, . . . , xt,nt )

l ⊆ Jt ,
as desired. ✷
Proposition 3.2. Suppose thatX is an ACM set of points inPn1 × · · · × Pnk . Then there
exist elementsL1, . . . , Lk in R/IX such thatL1, . . . ,Lk give rise to a regular sequence
R/IX anddegLi = ei .

Proof. The existence of a regular sequence of lengthk follows from the definition of a
CM ring. The nontrivial part of this statement is the existence of a regular sequence
elements have specific multi-degrees.

By Lemma 2.1 there exists a formL1 ∈ Re1 such thatL1 is a nonzero divisor ofR/IX.
To complete the proof it is enough to show for eacht = 2, ..., k there exists an elemen
Lt ∈Ret such thatLt is a nonzero divisor of the ringR/(IX,L1, . . . ,Lt−1).

Set J := (IX,L1, . . . ,Lt−1) and let J = Q1 ∩ · · · ∩ Qr be the ideal’s primary
decomposition. For eachi set℘i := √Qi . Since

⋃r
i=1℘i is the set of zero divisors ofR/J ,

we want to show that
⋃r

i=1(℘i)et � Ret . SinceRet is a vector space over an infinite fiel
Ret cannot be expressed as the finite union of proper subvector spaces. Thus, it suf
show(℘i)et � Ret for eachi.

So, suppose there isi ∈ [r] such that(℘i)et =Ret , or equivalently,(xt,0, . . . , xt,nt )⊆ ℘i .
By Lemma 3.1 there existsl ∈N+ such that(x1,0, . . . , x1,n1, . . . , xt−1,0, . . . , xt−1,nt−1)

l ⊆
J ⊆Qi . It follows that

(x1,0, . . . , x1,n1, . . . , xt,0, . . . , xt,nt )⊆ ℘i.
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Because the prime ideal℘i also containsIX = IP1 ∩ · · · ∩ IPs , whereIPj is the prime
ideal associated toPj ∈ X, we can assume, after relabeling,IP1 ⊆ ℘i . Let ℘ := IP1 +
(x1,0, . . . , xt,nt ). SinceIP1 = (L1,1, . . . ,L1,n1, . . . ,Lk,1, . . . ,Lk,nk ) where degLm,n = em,

℘ = (x1,0, . . . , xt,nt ,Lt+1,1, . . . ,Lt+1,nt+1, . . . ,Lk,1, . . . ,Lk,nk )⊆ ℘i.

Thus htR(℘i)� htR(℘)= (
∑k

i=1ni)+ t , where htR(I) denotes the height ofI .
From the identity htR(J )= K-dimR −K-dimR/J we calculate the height ofJ :

htR(J )=
(

k∑
i=1

ni + 1

)
− (k − (t − 1)

)=( k∑
i=1

ni

)
+ (t − 1).

Since X is ACM, R/J is CM, and hence the idealJ is height unmixed, i.e., all th
associated primes ofJ have height equal to htR(J ). But ℘i is an associated prime ofJ
with htR(℘i) > htR(J ). This contradiction implies our assumption(℘i)et =Ret cannot be
true. ✷
Remark 3.3. If S = k[x0, . . . , xn] is anN1-graded ring withI ⊆ S such thatS/I is CM,
then a maximal regular sequence can be chosen so that each element is homo
[1, Proposition 1.5.11]. However, as stated in [11] (but no example is given), it i
always possible to pick a regular sequence that respects the multi-grading. For ex
let S = k[x, y] with degx = (1,0) and degy = (0,1) and I = (xy). ThenS/I is CM,
but all homogeneous elements ofS/I , which have the formcxa or cyb with c ∈ k, are
zero divisors. Note thatx + y is a nonzero divisor, but not homogeneous. The fact th
homogeneous regular sequence can be found in a multi-graded ring is thus a very
situation.

We extend the notion of a graded Artinian quotient in the natural way.

Definition 3.4. A homogeneous idealI in theNk-graded ringR is anArtinian idealif any
of the following equivalent statements hold:

(i) K-dimR/I = 0.
(ii)
√
I =m= (x1,0, . . . , x1,n1, . . . , xk,0, . . . , xk,nk ).

(iii) For each integeri ∈ [k], HR/I (lei)= 0 for all l� 0.

A ring S = R/I is an Nk-graded Artinian quotientif the homogeneous idealI is an
Artinian.

Corollary 3.5. LetX be an ACM set of points inPn1×· · ·×Pnk with Hilbert functionHX.
Then

�HX(i1, . . . , ik) :=
∑

(−1)|l|HX(i1− l1, . . . , ik − lk),
0�l=(l1,...,lk)�(1,...,1)
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whereHX(i)= 0 if i � 0, is the Hilbert function of someNk-graded Artinian quotient o
the ringk[x1,1, . . . , x1,n1, . . . , xk,1, . . . , xk,nk ].

Proof. By Proposition 3.2, there existsk forms L1, . . . ,Lk that give rise to a regula
sequence inR/IX with degLi = ei . After making a linear change of variables in thex1,i ’s,
a linear change of variables in thex2,i ’s, etc., we can assume thatLi = xi,0.

The ideal(IX, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0) is isomorphic to an idealJ of the ring
S = k[x1,1, . . . , x1,n1, . . . , xk,1, . . . , xk,nk ]. SetA := S/J , and so

A∼= R/(x1,0, . . . , xk,0)

(IX, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0)
∼= R

(IX, x1,0, . . . , xk,0)
.

The ring A is Artinian because there existsl � 0 by Lemma 3.1 such thatml ⊆
(IX, x1,0, . . . , xk,0).

It therefore remains to compute the Hilbert function ofA. SetJi = (IX, x1,0, . . . , xi,0)

for i = 1, . . . , k. For eachi = 1, . . . , k we have a short exact sequence with deg
(0, . . . ,0) maps:

0−→ (R/Ji−1)(−ei) ×xi,0−−−→ R/Ji−1−→ R/Ji −→ 0,

whereJ0 := IX. From thek short exact sequences we have that

HR/Jk(i)=�HX(i) :=
∑

0�l=(l1,...,lk)�(1,...,1)

(−1)|l|HX(i1− l1, . . . , ik − lk),

whereHX(i)= 0 if i � 0. This completes the proof sinceA∼=R/Jk . ✷
The remainder of this section is devoted to showing that the necessary condi

Corollary 3.5 is also sufficient. To demonstrate this converse, we describe how tolift an
ideal.

Definition 3.6. LetR = k[x1,0, . . . , x1,n1, . . . , xk,0, . . . , xk,nk ] and letS = k[x1,1, . . . , x1,n1,

. . . , xk,1, . . . , xk,nk ] beNk-graded rings. LetI ⊆R andJ ⊆ S beNk-homogeneous ideal
Then we sayI is a lifting of J to R if

(i) I is radical inR;
(ii) (I, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0)∼= J ;
(iii) x1,0, . . . , xk,0 give rise to a regular sequence inR/I .

Our plan is to lift a monomial ideal ofS to anNk-homogeneous idealI of R, using
the techniques and results of [9], so thatI is the ideal of a reduced set of points
Pn1 × · · · × Pnk . We make a brief digression to introduce the relevant content of [9].

Suppose thatS andR are as in Definition 3.6, but for the moment, we only assu
that they areN1-graded. For each indeterminatexi,j with 1 � i � k and 1� j � ni ,
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choose infinitely many linear formsLi,j,l ∈ k[xi,j , x1,0, x2,0, . . . , xk,0] with l ∈ N+. We
only assume that the coefficient ofxi,j in Li,j,l is not zero. The infinite matrixA, where

A :=



L1,1,1 L1,1,2 L1,1,3 · · ·
...

...
...

L1,n1,1 L1,n1,2 L1,n1,3 · · ·
...

...
...

Lk,1,1 Lk,1,2 Lk,1,3 · · ·
...

...
...

Lk,nk,1 Lk,nk1,2 Lk,nk,3 · · ·


is called alifting matrix. By using the lifting matrix, we associate to each monom
m= x

a1,1
1,1 · · ·x

a1,n1
1,n1
· · ·xak,1k,1 · · ·x

ak,nk
k,nk

of the ringS the element

m=
[

n1∏
i=1

( a1,i∏
j=1

L1,i,j

)]
· · ·

[
nk∏
i=1

( ak,i∏
j=1

Lk,i,j

)]
∈ R.

Depending upon our choice ofLi,j,l ’s, m may or may not beNk-homogeneous. Howeve
m is homogeneous. IfJ = (m1, . . . ,mr) is a monomial ideal ofS, then we useI to denote
the ideal(m1, . . . ,mr)⊆R. The following properties, among others, relateR/I andS/J .

Proposition 3.7 [9, Corollary 2.10].LetJ ⊆ S be a monomial ideal, and letI be the ideal
constructed fromJ using any lifting matrix. Then

(i) S/J is CM if and only ifR/I is CM;
(ii) (I, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0)∼= J ;
(iii) x1,0, . . . , xk,0 give rise to a regular sequence inR/I .

We now consider the lifting of a monomial ideal using the lifting matrixA := [Li,j,l],
where

Li,j,l = xi,j − (l − 1)xi,0 for 1 � i � n, 1� j � ni, andl ∈N+.

The lifting matrixA associates to every monomialm= x
a1,1
1,1 · · ·x

a1,n1
1,n1
· · ·xak,1k,1 · · ·x

ak,nk
k,nk

of

S the followingNk-homogeneous form ofR:

m=
[

n1∏
i=1

( a1,i∏
j=1

(
x1,i − (j − 1)x1,0

))] · · ·[ nk∏
i=1

( ak,i∏
j=1

(
xk,i − (j − 1)xk,0

))]
.

Thus, if I is constructed from a monomial idealJ ⊆ S usingA, I is Nk-homogeneous. In
fact, usingA, the idealI is a lifting of J to R. To prove this statement, we need
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Lemma 3.8 [9, Corollary 2.18].Let J ⊆ S be a monomial ideal and letI be constructed
from J using any lifting matrix. IfJ =Q1 ∩ · · · ∩Qr is the primary decomposition ofJ ,
thenI =Q1 ∩ · · · ∩Qr whereQi is the ideal generated by the lifting of the generat
of Qi .

Proposition 3.9. LetJ ⊆ S be a monomial ideal and letI be the ideal constructed fromJ
using the lifting matrixA. ThenI is a lifting ofJ to R.

Proof. Since Proposition 3.7 is true for any lifting matrix, it suffices to show thatI is
radical. LetJ =Q1∩ · · · ∩Qr be the primary decomposition ofJ . SinceJ is a monomial
ideal, then by [9, Remark 2.19] we have that eachQi is a complete intersection of the for

Qi =
(
x
a1,i1,1
1,i1,1

, . . . , x
a1,i1,p1
1,i1,p1

, . . . , x
ak,ik,1
k,ik,1

, . . . , x
ak,ik,pk
k,ik,pk

)
with aj,ij,l � 1 for each variable that appears inQi . Using the lifting matrixA we then
have

Qi =
( a1,i1,1∏

l=1

L1,i1,1,l , . . . ,

a1,i1,p1∏
l=1

L1,i1,p1 ,l
, . . . ,

ak,ik,1∏
l=1

Lk,ik,1,l , . . . ,

ak,ik,pk∏
l=1

Lk,ik,pk ,l

)
,

whereLi,j,l = xi,j − (l − 1)xi,0. But thenQi is a reduced complete intersection. It th
follows from Lemma 3.8 thatI must be radical. ✷

We now describe the zero set of the lifted idealI . For each

(α1, . . . , αk) :=
(
(a1,1, . . . , a1,n1), . . . , (ak,1, . . . , ak,nk )

) ∈Nn1 × · · · ×Nnk ,

setXα1
1 · · ·Xαk

k := x
a1,1
1,1 · · ·x

a1,n1
1,n1
· · ·xak,1k,1 · · ·x

ak,nk
k,nk

. If P is the set of all monomials ofS
including the monomial 1, then there exists a bijection betweenP andNn1 × · · · × Nnk

given by the mapXα1
1 · · ·Xαk

k ↔ (α1, . . . , αk). To each tuple(α1, . . . , αk) we associate th
point (α1, . . . , αk) ∈ Pn1 × · · · × Pnk , where

(α1, . . . , αk) := [1 : a1,1 : a1,2 : · · · : a1,n1] × · · · × [1 : ak,1 : ak,2 : · · · : ak,nk ].

Note that if m = X
α1
1 · · ·Xαk

k ∈ P and if m is constructed fromXα1
1 · · ·Xαk

k using the
lifting matrix A, thenm((α1, . . . , αk)) �= 0. In fact, it follows from our construction tha
m((β1, . . . , βk)) = 0 if and only if some coordinate of(β1, . . . , βk) is strictly less than
some coordinate of(α1, . . . , αk).

If J is a monomial ideal ofS, then letN be the set of monomials inJ . The elements o
M := P\N are representatives for ak-basis of theNk-graded ringS/J . Set

M := {(β1, . . . , βk) ∈ Pn1 × · · · × Pnk
∣∣Xβ1 · · ·Xβk ∈M}

.
1 k
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Let I(M) denote theNk-homogeneous ideal associated toM . If m=X
α1
1 · · ·Xαk

k ∈ J
is a minimal generator, then for eachX

β1

1 · · ·X
βk

k ∈ M there exists at least on
coordinate of(β1, . . . , βk) that is strictly less then some coordinate of(α1, . . . , αk). So

m((β1, . . . , βk))= 0 for all X
β1

1 · · ·X
βk

k ∈M, and hence the lifted idealI ⊆ I(M). On the

other hand,M =V(I), the zero set ofI , so by theNk-graded analog of the Nullstellensa
(cf. [13, Theorem 2.3]) we haveI(M)⊆√I . BecauseI is radical by Proposition 3.9, w
have just shown.

Lemma 3.10. Let J ⊆ S be a monomial ideal and letI be the ideal constructed fromJ
using the lifting matrixA. Then, with the notation as above,I = I(M).

We come to the main result of this section.

Theorem 3.11. LetH :Nk→N be a numerical function. ThenH is the Hilbert function of
an ACM set of distinct points inPn1 × · · · × Pnk if and only if the first difference function

�H(i1, . . . , ik)=
∑

0�l=(l1,...,lk)�(1,...,1)

(−1)|l|H(i1− l1, . . . , ik − lk),

whereH(i) = 0 if i � 0, is the Hilbert function of someNk-graded Artinian quotient o
S = k[x1,1, . . . , x1,n1, . . . , xk,1, . . . , xk,nk ].

Proof. Because of Corollary 3.5, we only need to show one direction. So, if�H is
the Hilbert function of someNk-graded Artinian quotient ofS, then there exists anNk-
homogeneous idealJ ⊆ S with �H(i)=HS/J (i) for all i ∈ Nk . By replacingJ with its
leading term ideal, we can assume thatJ = (m1, . . . ,mr) is a monomial ideal ofS.

Let I ⊆ R be the ideal constructed fromJ using the lifting matrixA. By Proposi-
tion 3.9, the idealJ ∼= (I, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0) wherex1,0, . . . , xk,0 give rise to
a regular sequence inR/I . Because degxi,0 = ei , we havek short exact sequences wi
degree(0, . . . ,0) maps:

0−→ (R/Ji−1) (ei)
×xi,0−−−→ R/Ji−1−→R/Ji −→ 0,

whereJi := (I, x1,0, . . . , xi,0) for i = 1, . . . , k andJ0 := I . Furthermore,

S/J ∼= R/(x1,0, . . . , xk,0)

(I, x1,0, . . . , xk,0)/(x1,0, . . . , xk,0)
∼=R/(I, x1,0, . . . , xk,0)=R/Jk.

Then, using thek short exact sequences to calculate theHR/I , we find thatH =HR/I .
If N is the set of monomials inJ , then M = P\N is a finite set of monomial

becauseS/J is Artinian. By Lemma 3.10,I is the ideal of the finite set of poin
M ⊆ Pn1×· · ·×Pnk . Finally, by Proposition 3.7 the setM is ACM becauseS/J is Artinian,
and hence, CM. ✷
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Since characterizing the Hilbert functions of ACM sets of points inPn1 × · · · × Pnk

is equivalent to characterizing the Hilbert functions ofNk-graded Artinian quotient
of S, Theorem 3.11 translates one open problem into another open problem b
we do not have a theorem like Macaulay’s theorem [7] forNk-graded rings ifk > 1.
However, as shown below, there is a Macaulay-type theorem forNk-graded quotients
of k[x1,1, x2,1, . . . , xk,1]. As a consequence, we can explicitly describe all the Hil
functions of ACM sets of points inP1× · · · × P1 (k times) for any positive integerk.

So, suppose thatS = k[x1, . . . , xk] and degxi = ei , whereei is theith standard basi
vector of Nk . We prove a stronger result by characterizing the Hilbert functions o
quotients ofS, not only the Artinian quotients.

Theorem 3.12. LetS = k[x1, . . . , xk] with degxi = ei , and letH :Nk→N be a numerical
function. Then there exists a homogeneous idealI � S with Hilbert functionHS/I =H if
and only if

(i) H(0, . . . ,0)= 1,
(ii) H(i)= 1 or 0 if i > 0, and
(iii) if H(i)= 0, thenH(j)= 0 for all j � i.

Proof. If I � S is anNk-homogeneous ideal such thatHS/I = H , then condition (i) is
simply a consequence of the fact thatI � S. Statement (ii) follows from the inequality 0�
HS/I (i)� dimk Si = 1. Finally, if HS/I (i)= 0, thenxi11 · · ·xikk ∈ I , or equivalently,Si ⊆ I

becausexi11 · · ·xikk is a basis forSi . So, if j � i, thenSj ⊆ I , and hence,HS/I (j)= 0, thus
proving (iii).

Conversely, suppose thatH is a numerical function satisfying (i)–(iii). IfH(i)= 1 for
all i ∈Nk , then the idealI = (0)⊆ S has the property thatHS/I =H .

So, supposeH(i) �= 1 for all i. SetI := {i ∈Nk |H(i)= 0}. Note thatI �= Nk because
0 /∈ I. Let I be the idealI := 〈{xi11 · · ·xikk | i ∈ I}〉 in S. We claim thatHS/I (i) = H(i)

for all i ∈ Nk . It is immediate thatHS/I (0) = H(0) = 1. Moreover, ifH(i) = 0, then

HS/I (i)= 0 becausexi11 · · ·xikk ∈ Ii ⊆ I , i.e.,Si ⊆ I .
So, we need to check that ifH(i) = 1, thenHS/I (i) = 1. SupposeHS/I (i) = 0. This

implies thatxi11 · · ·xikk ∈ I . But becausei /∈ I, there is a monomialxj1
1 · · ·xjkk ∈ I with

j ∈ I, such thatxj1
1 · · ·xjkk dividesxi11 · · ·xikk . But this is equivalent to the statement th

j � i. But this contradicts hypothesis (iii). SoHS/I (i)= 1. ✷
Using Theorem 3.12 and the definition of anNk-graded Artinian quotient, we then hav

Corollary 3.13. LetS = k[x1, . . . , xk]with degxi = ei , and letH :Nk→N be a numerical
function. ThenH is the Hilbert function of anNk-graded Artinian quotient ofS if and only
if

(i) H(0, . . . ,0)= 1,
(ii) H(i)= 1 or 0 if i > (0, . . . ,0),
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(iii) if H(i)= 0, thenH(j)= 0 for all j � i, and
(iv) for eachi ∈ [k] there exists an integerti such thatH(tiei)= 0.

Corollary 3.14. LetH :Nk→N be a numerical function. ThenH is the Hilbert function of
an ACM set of distinct points inP1×· · ·×P1 (k times) if and only�H satisfies condition
(i)–(iv) of Corollary3.13.

Remark 3.15. It follows from the previous corollaries thatH is the Hilbert function of an
ACM set of points inP1× P1 if and only if

(i) �H(i, j)= 1 or 0,
(ii) if �H(i, j)= 0, then�H(i ′, j ′)= 0 for all (i ′, j ′) ∈N2 with (i ′, j ′) > (i, j), and
(iii) there exists integerst andr such that�H(t,0)= 0 and�H(0, r)= 0.

Giuffrida, Maggioni, and Ragusa proved precisely this result in [5, Theorems 4.1 and
We investigate ACM sets of points inP1× P1 in further detail in the next two sections.

4. ACM sets of points in P1× P1

If X is an ACM set of points inP1× P1, then by Theorem 3.11 the function�HX is
the Hilbert function of a bigraded Artinian quotient ofk[x1, y1]. In [5] it was shown tha
the converse of this statement is also true, thereby classifying the ACM sets of po
P1× P1. In this section we revisit this result by giving a new proof of this characteriza
that depends only upon numerical information describingX.

We begin with a brief digression to introduce some needed combinatorial results.
that a tupleλ = (λ1, . . . , λr ) of positive integers is apartition of an integers, denoted
λ � s, if

∑
λj = s andλi � λi+1 for eachi. If λ � s, then theconjugateof λ is the tuple

λ∗ = (λ∗1, . . . , λ∗λ1
) whereλ∗i := #{λj ∈ λ | λj � i}. Moreover,λ∗ is also a partition ofs.

To any partitionλ = (λ1, . . . , λr ) � s we can associate the following diagram:
an r × λ1 grid, placeλ1 points on the first line,λ2 points on the second, and so o
The resulting diagram is called theFerrers diagramof λ. For example, supposeλ =
(4,4,3,1,1)� 13. Then the Ferrers diagram is

• • • •
• • • •
• • •
•
•

.

The conjugate ofλ can be read off the Ferrers diagram by counting the number of do
each column as opposed to each row. In this example,λ∗ = (5,3,3,2)� 13.

The following lemma, whose proof is a straightforward combinatorial exer
describes some of the relations between a partition and its conjugate.
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Lemma 4.1. Letα = (α1, . . . , αn) � s andβ = (β1, . . . , βm) � s. If α∗ = β , then

(i) α1= |β| andβ1= |α|,
(ii) if α′ = (α2, . . . , αn) andβ ′ = (β1− 1, . . . , βα2 − 1), then(α′)∗ = β ′.

Let X denote a set of reduced points inP1× P1, and associate toX two tuplesαX and
βX as follows. Letπ1(X)= {P1, . . . ,Pt } be thet distinct first coordinates inX. Then, for
eachPi ∈ π1(X), let αi := |π−1

1 (Pi)|, i.e., the number of points inX which havePi as its
first coordinate. After relabeling theαi so thatαi � αi+1 for i = 1, . . . , t − 1, we setαX =
(α1, . . . , αt ). Analogously, for eachQi ∈ π2(X)= {Q1, . . . ,Qr }, we letβi := |π−1

2 (Qi)|.
After relabeling so thatβi � βi+1 for i = 1, . . . , r − 1, we setβX = (β1, . . . , βr ). So, by
construction,αX, βX � s = |X|. Note that|αX| = |π1(X)| and|βX| = |π2(X)|.

We write the Hilbert functionHX as an infinite matrix(mij ) wheremij := HX(i, j).
Proposition 2.4 gives

mi,0=
{
i + 1 0� i � t − 1,
t i � t,

and m0,j =
{
i + 1 0� i � r − 1,
r i � r,

becauseπ1(X)= {P1, . . . ,Pt } ⊆ P1 andπ2(X)= {Q1, . . . ,Qr } ⊆ P1. This fact, combined
with Proposition 2.2, implies thatHX has the form

HX =



1 2 · · · r − 1 r r · · ·
2 m1,r−1 m1,r−1 · · ·
... ∗ ...

...

t − 1 m2,r−1 m2,r−1 · · ·
t mt−1,1 · · · mt−1,r−2 s s · · ·
t mt−1,1 · · · mt−1,r−2 s s
...

...
...

...
. . .


, (1)

where the values denoted by(∗) need to be calculated. Set

BC = (mt−1,0, . . . ,mt−1,r−1) and BR = (m0,r−1, . . . ,mt−1,r−1).

From our description ofHX, we see that if we know the values in the tuplesBC andBR ,
we will know all but a finite number of values ofHX. As shown below, the tuplesBC and
BR can be computed directly from the tuplesαX andβX defined above. Ifλ is a tuple, then
we shall abuse notation and writeλi ∈ λ to mean thatλi is a coordinate ofλ.

Proposition 4.2 [13, Proposition 5.11].LetX⊆ P1× P1 be a finite set of points.

(i) If BC = (mt−1,0, . . . ,mt−1,r−1) wheremt−1,j = HX(t − 1, j) for j = 0, . . . , r − 1,
then

mt−1,j = #{αi ∈ αX | αi � 1} + #{αi ∈ αX | αi � 2} + · · · + #{αi ∈ αX | αi � j + 1}.
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(ii) If BR = (m0,r−1, . . . ,mt−1,r−1) wheremj,r−1 = HX(j, r − 1) for j = 0, . . . , t − 1,
then

mj,r−1= #{βi ∈ βX | βi � 1} + #{βi ∈ βX | βi � 2} + · · · + #{βi ∈ βX | βi � j + 1}.

We can rewrite this result more compactly using the language of combina
introduced above. Ifp = (p1, . . . , pk), then we write�p to denote the tuple�p :=
(p1,p2− p1, . . . , pk − pk−1).

Corollary 4.3 [13, Corollary 5.13].Let X be a finite set of points inP1× P1. Then

(i) �BC = α∗
X

,
(ii) �BR = β∗

X
.

Remark 4.4. In [13] the tupleBX = (BC,BR) was called theborder of the Hilbert
function.

Recall that�HX, thefirst difference functionof HX, is defined by

�HX(i, j) :=HX(i, j)−HX(i − 1, j)−HX(i, j − 1)+HX(i − 1, j − 1),

whereHX(i, j)= 0 if (i, j) � (0,0). The entries ofα∗
X

andβ∗
X

can then be read from�HX.

Corollary 4.5. Let X⊆ P1× P1 be a finite set of points, and setci,j :=�HX(i, j). Then

(i) for every0� j � r − 1= |π2(X)| − 1,

α∗j+1=
∑

h�|π1(X)|−1

ch,j ,

whereα∗j+1 is the(j + 1)th entry ofα∗
X

, the conjugate ofαX,
(ii) for every0� i � t − 1= |π1(X)| − 1,

β∗i+1=
∑

h�|π2(X)|−1

ci,h,

whereβ∗i+1 is the(i + 1)th entry ofβ∗
X

.

Proof. Use Proposition 4.2 and the identityHX(i, j)=∑(h,k)�(i,j) ch,k to computeα∗j+1:

α∗j+1 = HX(t − 1, j)−HX(t − 1, j − 1)

=
∑

(h,k)�(t−1,j)

ch,k −
∑

(h,k)�(t−1,j−1)

ch,k =
∑

h�t−1=|π1(X)|−1

ch,j .

The proof for the second statement is the same.✷
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Lemma 4.6. LetX⊆ P1×P1 be a finite set of points, and suppose thatα∗
X
= βX. LetP be

a point ofπ1(X) such that|π−1
1 (P )| = α1. SetXP := π−1

1 (P ). Thenπ2(XP )= π2(X).

Proof. SinceXP ⊆ X, we haveπ2(XP )⊆ π2(X). Now, by our choice ofP , |π2(XP )| = α1.
But since|π2(X)| = |βX| andα∗

X
= βX, from Lemma 4.1 we have|π2(X)| = |βX| = α1=

|π2(XP )|, and henceπ2(XP )= π2(X). ✷
Proposition 4.7. Suppose thatX is a set ofs = tr points in P1 × P1 such thatαX =
(r, . . . , r) (t times) andβX = (t, . . . , t) (r times). ThenX is a complete intersection, an
the graded minimal free resolution ofIX is given by

0−→R(−t,−r)−→ R(−t,0)⊕R(0,−r)−→ IX −→ 0.

Proof. Because|αX| = t and|βX| = r, π1(X)= {P1, . . . ,Pt } andπ2(X)= {Q1, . . . ,Qr },
wherePi,Qj ∈ P1. Since |X| = tr, X = {Pi × Qj | 1 � i � t,1 � j � r}. Hence, if
IPi×Qj = (LPi ,LQj ) is the ideal associated to the pointPi ×Qj , then the defining idea
of X is

IX =
⋂
i,j

(LPi ,LQj )= (LP1LP2 · · ·LPt ,LQ1LQ2 · · ·LQr ).

Since degLP1LP2 · · ·LPt = (t,0) and degLQ1LQ2 · · ·LQr = (0, r), the two generator
form a regular sequence onR, and hence,X is a complete intersection. The graded minim
free resolution is then given by theKoszul resolution, taking into consideration thatIX is
bigraded. ✷

We now come to the main result of this section.

Theorem 4.8. LetX be a finite set of points inP1×P1 with Hilbert functionHX. Then the
following are equivalent:

(i) X is ACM,
(ii) �HX is the Hilbert function of anN2-graded Artinian quotient ofk[x1, y1],
(iii) α∗

X
= βX.

Proof. The implication(i)⇒ (ii) is Corollary 3.5. So, suppose that (ii) holds. Beca
�HX is the Hilbert function of anN2-graded Artinian quotient ofk[x1, y1], Corollary 3.14,
Remark 3.15, and matrix (1) give
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�HX =

0
0

r − 1

t − 1

1

0

,

wheret = |π1(X)| and r = |π2(X)|. We have written�HX as an infinite matrix whos
indexing starts from zero rather than one.

By Corollary 4.5 the number of 1’s in the(i − 1)th row of �HX for each integer
1 � i � t is simply theith coordinate ofβ∗

X
. Similarly, the number of ones in the(j − 1)th

column of�HX for each integer 1� j � r is thej th coordinate ofα∗
X

. Now �HX can
be identified with the Ferrers diagram ofβ∗

X
by associating to each 1 in�HX a dot in the

Ferrers diagram in the natural way, i.e.,

0
0

r − 1

t − 1

1
←→

• • • •
• • •
• • •
•
•

.

By using the Ferrers diagram and Corollary 4.5, it is now straightforward to calculat
the conjugate ofβ∗

X
is (β∗

X
)∗ = βX = α∗

X
, and so (iii) holds.

To demonstrate that (iii) implies (i), we proceed by induction on the tuple(|π1(X)|, |X|).
For any positive integers, if (|π1(X)|, |X|) = (1, s), thenαX = (s) andβX = (1, . . . ,1)
(s times), and soα∗

X
= βX. Then by Proposition 4.7,X is a complete intersection an

hence ACM.
So, suppose that(|π(X)), |X|)= (t, s) and that the result holds true for allY⊆ P1×P1

with α∗
Y
= βY and (t, s) >lex (|π1(Y)|, |Y|), where>lex is the lexicographical orderin

on N2.
Suppose thatP1 (after a possible relabeling) is the element ofπ1(X) such that

|π−1
1 (P1)| = α1. Let LP1 be the form of degree(1,0) that vanishes atP1. By abusing

notation, we also letLP1 denote the(1,0)-line in P1× P1 defined byLP1.
SetXP1 :=X∩LP1 = π−1

1 (P1) andZ :=X\XP1. It follows thatαZ = (α2, . . . , αt ) and
βZ = (β1 − 1, . . . , βα2 − 1). Now (t, s) >lex (|π1(Z)|, |Z|), and moreover,α∗

Z
= βZ by

Lemma 4.1. Thus, by the induction hypothesis,Z is ACM.
Suppose thatπ2(X) = {Q1, . . . ,Qr }. Let LQi be the degree(0,1) form that vanishes

at Qi ∈ π2(X) and setF := LQ1LQ2 · · ·LQr . Becauseα∗
X
= βX, from Lemma 4.6

we haveπ2(XP1) = π2(X). So, XP1 = {P1×Q1, . . . ,P1×Qr }, and henceIXP1
=⋂r

i=1(LP1,LQi ) = (LP1,F ). Furthermore, ifP ×Q ∈ Z, thenQ ∈ π2(Z) ⊆ π2(X), and
thusF(P ×Q)= 0. ThereforeF ∈ IZ. BecauseF is in IZ and is also a generator ofIXP1

,
we can show:



A. Van Tuyl / Journal of Algebra 264 (2003) 420–441 437

eorem

ents
CM
to

rs,

he
d

Claim. Let I = LP1 · IZ + (F ). ThenI = IX.

Proof. SinceIX = IZ∪XP1
= IZ ∩ IXP1

, we will show IZ ∩ IXP1
= LP1 · IZ + (F ). So,

suppose thatG= LP1H1+H2F ∈ LP1 · IZ+ (F ) with H1 ∈ IZ andH2 ∈ R. BecauseLP1

andF are inIXP1
, we haveG ∈ IXP1

. SinceH1,F ∈ IZ, G ∈ IZ. ThusG ∈ IZ ∩ IXP1
.

Conversely, letG ∈ IZ ∩ IXP1
. SinceG ∈ IXP1

, G= LP1H1+ FH2. We need to show
thatH1 ∈ IZ. BecauseG,F ∈ IZ, we also haveLP1H1 ∈ IZ. But for everyP ×Q ∈ Z,
P �= P1, and thusLP1(P ×Q) �= 0. HenceLP1H1 ∈ IZ if and only if H1(P ×Q)= 0 for
everyP ×Q ∈ Z. ✷

We note thatX ⊆ P1 × P1 is ACM if and only if the varietyX̃ ⊆ P3 defined byIX,
considered as a homogeneous ideal ofR = k[x0, x1, y0, y1], is ACM. As a variety ofP3,
X̃ is a curve since K-dimR/IX = 2. LetZ̃ denote the curve ofP3 defined byIZ, considered
also as a homogeneous ideal ofR. The claim implies that the curvẽX is a basic double
link of Z̃. Since the Cohen–Macaulay property is preserved under linkage (see [8, Th
3.2.3] and following remark),̃X is an ACM curve ofP3, or equivalently,X is an ACM set
of points inP1× P1. ✷
Remark 4.9. Giuffrida et al. [5, Theorem 4.1] demonstrated the equivalence of statem
(i) and (ii) of Theorem 4.8 via different means. Our contribution is to show that the A
sets of points are also characterized byαX andβX. This result has been extended in [6]
characterize ACM fat point schemes inP1× P1.

Corollary 4.10. Let X be a set of points inP1× P1 with αX = (α1, . . . , αt ), andπ1(X)=
{P1, . . . ,Pt }. Suppose(after a possible relabeling) that |π−1

1 (Pi)| = αi . Set

Xi :=X
∖{

π−1
1 (P1)∪ · · · ∪ π−1

1 (Pi)
}

for 0 � i � t − 1,

where X0 := X. If X is ACM, then, for each integer0 � i � t − 1, Xi is ACM with
αXi
= (αi+1, αi+2, . . . , αt ).

Proof. It is sufficient to show that for eachi = 0, . . . , t − 2, if Xi is ACM, thenXi+1
is ACM. SinceXi+1 = Xi\{π−1

1 (Pi+1)}, Xi+1 is constructed fromXi by removing the
αi+1 points ofXi which havePi+1 as its first coordinate. The tupleβXi+1 is constructed
from βXi

by subtracting 1 fromαi+1 coordinates inβXi
. But becauseα∗

Xi
= βXi

, we have
|βXi
| = αi+1 and thusβXi+1 = (β1− 1, . . . , βαi+1 − 1)= (β1− 1, . . . , βαi+2 − 1). But by

Lemma 4.1,α∗
Xi+1
= βXi+1, and henceXi+1 is ACM by Theorem 4.8. ✷

5. The Betti numbers of ACM sets of points in P1× P1

If X is a set ofs points inP1, then it is well known that the graded Betti numbe
and consequently, the Hilbert function ofX, can be determined solely from|X| = s. If
we restrict to ACM sets of points inP1× P1, we can extend this result to show that t
graded Betti numbers in the minimal free resolution ofX (and hence,HX) can be compute
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directly from the tuplesαX andβX introduced in the previous section which numerica
describeX.

We require the following notation to describe the minimal free resolution. Suppos
X⊆ P1× P1 is a set of points withαX = (α1, . . . , αt ). Define the following sets:

CX :=
{
(t,0), (0, α1)

}∪ {(i − 1, αi) | αi − αi−1 < 0
}
,

VX :=
{
(t, αt )

}∪ {(i − 1, αi−1) | αi − αi−1 < 0
}
.

We takeα−1= 0. With this notation, we have

Theorem 5.1. Suppose thatX is an ACM set of points inP1 × P1. Let CX and VX be
constructed fromαX as above. Then the graded minimal free resolution ofIX is given by

0−→
⊕

(v1,v2)∈VX

R(−v1,−v2)−→
⊕

(c1,c2)∈CX

R(−c1,−c2)−→ IX −→ 0.

Proof. We proceed by induction on the tuple(|π1(X)|, |X|). If s is any integer, and
(|π1(X), |X|) = (1, s), then αX = (s) and βX = (1, . . . ,1) (s times). The conclusion
follows from Proposition 4.7 sinceCX = {(1,0), (0, s)} andVX = {(1, s)}.

So, suppose(|π1(X), |X|)= (t, s) with t > 1. Then

αX = (α1, . . . , α1︸ ︷︷ ︸
l

, αl+1, . . . , αt ),

i.e.,αl+1 < α1, butαl = α1. If l = t , thenX is a complete intersection and the resolution
given by Proposition 4.7. The conclusion now follows becauseCX = {(l,0), (0, α1)} and
VX = {(l, α1)}.

If l < t , let P1, . . . ,Pl be thel points ofπ1(X) that have|π−1
1 (Pi)| = α1. Set Y =

π−1
1 (P1) ∪ · · · ∪ π−1

1 (Pl). BecauseX is ACM, α1= |βX|, and hence,Y= {Pi ×Qj | 1 �
i � l, Qj ∈ π2(X)}. So,αY = (α1, . . . , α1) andβY = (l, . . . , l), and thusY is a complete
intersection. In fact,IY = (LP1 · · ·LPl ,LQ1 · · ·LQα1

) whereLPi is the form of degree

(1,0) that vanishes at all the points ofP1× P1 which havePi as their first coordinate, an
LQi is the form of degree(0,1) that vanishes at all pointsP ×Q ∈ P1 × P1 such that
Q=Qi .

LetF := LP1 · · ·LPl andG := LQ1 · · ·LQα1
. By Proposition 4.7, the resolution ofIY is

0−→R(−l,−α1)
φ2−→R(−l,0)⊕R(0,−α1)

φ1−→ IY −→ 0,

whereφ1 = [F G] andφ2 =
[

G
−F

]
. Let Z := X\Y. Sinceπ2(Z) ⊆ π2(X), it follows that

G= LQ1 · · ·LQα1
∈ IZ. Hence, imφ2⊆ IZ(−l,0)⊕R(0,−α1). ✷

Claim. IX = F · IZ + (G).
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Proof. By construction,X= Z∪Y. Hence, we want to show thatIZ ∩ IY = F · IZ+ (G).
The proof now follows as in the proof of the Claim in Theorem 4.8.✷

From the above resolution forIY, the claim, and the fact that imφ2 ⊆ IZ(−l,0) ⊕
R(0,−α1), we have the following short exact sequence ofR-modules:

0−→R(−l,−α1)
φ2−→ IZ(−l,0)⊕R(0,−α1)

φ1−→ IX = F · IZ + (G)−→ 0,

whereφ1 andφ2 are as above.
By Corollary 4.10 the setZ is ACM with αZ = (αl+1, . . . , αt ). Therefore, the inductio

hypothesis holds forZ. With the above short exact sequence, we can use themapping cone
construction(see [14, Section 1.5]) to construct a resolution forIX. In particular, we get

0 −→
[ ⊕
(v1,v2)∈VZ

R
(−(v1+ l),−v2

)]⊕R(−l,−α1)

−→
[ ⊕
(c1,c2)∈CZ

R
(−(c1+ l),−c2

)]⊕R(0, α1)−→ IX −→ 0.

Since the resolution has length 2, and becauseX is ACM, the resolution ofIX cannot be
made shorter by the Auslander–Buchsbaum formula (cf. [14, Theorem 4.4.15]).

To show that this resolution is minimal, it is enough to show that no tuple in th
{(c1+ l, c2) | (c1, c2) ∈CZ}∪ {(0, α1)} is in the set{(v1+ l, v2) | (v1, v2) ∈ VZ}∪ {(l, α1)}.
By the induction hypothesis, we can assume that no(c1, c2) ∈ CZ is in VZ, and hence, if
(c1+ l, c2) ∈ {(c1+ l, c2) | (c1, c2) ∈ CZ}, then(c1+ l, c2) is not in{(v1+ l, v2) | (v1, v2) ∈
VZ}. If (c1+ l, c2)= (l, α1) for some(c1, c2) ∈ CZ, then this implies that(0, α1). But this
contradictions the induction hypothesis. Similarly, if(0, α1) ∈ {(v1+ l, v2) | (v1, v2) ∈ VZ},
this implies(−l, α1) ∈ VZ, which is again a contradiction of the induction hypothesis
the resolution above is minimal.

To complete the proof we only need to verify that

(i) CX = {(c1+ l, c2) | (c1, c2) ∈CZ} ∪ {(0, α1)},
(ii) VX = {(v1+ l, v2) | (v1, v2) ∈ VZ} ∪ {(l, α1)}.

Because the verification of these statements is tedious, but elementary, we om
details. ✷
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Remark 5.2. It was shown in [5, Theorem 4.1] that the graded Betti numbers for an A
set of pointsX⊆ P1× P1 could be determined via the first difference function�HX, i.e.,

�HX =

0
0

r − 1

t − 1

1

0
c

c

c

c

v

v

v

.

An element ofCX, which [5] called acornerof �HX, corresponds to a tuple(i, j) that is
either(t,0), (0, α1)= (0, r), or has the property that�HX(i, j)= 0, but�HX(i− 1, j)=
�HX(i, j−1)= 1. We have labeled the corners of�HX with ac in the above diagram. A
element ofVX is avertex. A tuple(i, j) is called a vertex if�HX(i, j)=�HX(i−1, j)=
�HX(i, j −1)= 0, but�HX(i−1, j −1)= 1. We have labeled the vertices of�HX with
a v in the above diagram. Besides giving a new proof for the resolution of an ACM s
points inP1× P1, we have shown that the graded Betti numbers can be computed di
from the tupleαX.

Using the resolution as given in Theorem 5.1 we can computeHX directly fromαX for
any ACM set of pointsX⊆ P1× P1. Formally:

Corollary 5.3. Let X be an ACM set of points inP1× P1 with αX = (α1, . . .αt ). Then

HX =
1 2 · · · α1− 1 α1 α1 · · ·

1 2 · · · α1− 1 α1 α1 · · ·
...

...
...

...
...

. . .

+


0 0 · · · 0 0 0 · · ·
1 2 · · · α2− 1 α2 α2 · · ·
1 2 · · · α2− 1 α2 α2 · · ·
.
..

.

..
.
..

.

..
.
..

. . .



+


0 0 · · · 0 0 0 · · ·
0 0 · · · 0 0 0 · · ·
1 2 · · · α3− 1 α3 α3 · · ·
1 2 · · · α3− 1 α3 α3 · · ·
..
.

..

.
..
.

..

.
..
.

. . .

+ · · · +


0 0 · · · 0 0 0 · · ·
...

...
...

...
...

0 0 · · · 0 0 0 · · ·
1 2 · · · αt − 1 αt αt · · ·
1 2 · · · αt − 1 αt αt · · ·
...

...
...

...
...

. . .


.
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