JOURNAL OF FUNCTIONAL ANALYSIS 79, 18-31 (1988)

Spectral Representation of the Resolvent of a Discrete Operator

PATRICK LANG

Department of Mathematics, Idaho State University, Pocatello, Idaho 83209

AND

JOHN LOCKER

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

Communicated by the Editors

Received September 24, 1986; revised April 28, 1987

Let T be a discrete linear operator in a Hilbert space H with spectrum $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$, let $R_{\lambda}(T)$ denote the resolvent of T, and let P_i denote the projection of H onto the generalized eigenspace $\mathcal{N}((\lambda_i I - T)^{m_i})$ along $\mathscr{R}((\lambda_i I - T)^{m_i})$, where m_i is the ascent of the operator $\lambda_i I - T$. In this paper it is shown that

$$R_{\lambda}(T) = \sum_{i=1}^{\infty} \sum_{j=1}^{m_i} \frac{(-N_i)^{j-1} P_i}{(\lambda - \lambda_i)^j} + \sum_{j=0}^{\infty} (\lambda_0 - \lambda)^j R_{\lambda_0}(T_{\infty})^{j+1} (I - \mathbb{P}_{\infty})$$

in $\mathscr{A}(H)$ for all $\lambda \in \rho(T)$, where N_i is the restriction of $\lambda_i I - T$ to $\mathscr{N}((\lambda_i I - T)^{m_i})$, T_{∞} is the restriction of T to $\mathscr{D}(T) \cap \bigcap_{i=1}^{\infty} \mathscr{R}((\lambda_i I - T)^{m_i})$, $\mathbb{P}_{\infty} = \sum_{i=1}^{\infty} P_i$ (strong convergence), and λ_0 is a fixed but arbitrary point in \mathbb{C} . This spectral representation is valid provided there exists M > 0 such that $\|\sum_{i=1}^{N} P_i\| \leq M$, N = 1, 2, ..., and generalizes results that apply to self-adjoint, normal, and spectral operators. The results of this paper are applied to represent the resolvent of a differential operator L in $L^2[0, 1]$ having infinitely many eigenvalues with ascent $m_i = 2$ and are also applied to represent the resolvent of an operator T with $\mathbb{P}_{\infty} \neq I$. \mathbb{C} 1988 Academic Press, Inc.

1. INTRODUCTION

Let T be a discrete linear operator in a Hilbert space H with spectrum $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$, and let $R_{\lambda}(T)$ denote the resolvent of T. If T is normal, then it is well known that

$$R_{\lambda}(T) = \sum_{i=1}^{\infty} \frac{P_i}{\lambda - \lambda_i}$$
(1.1)

0022-1236/88 \$3.00

Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved. in $\mathscr{B}(H)$ for all $\lambda \in \rho(T)$, where P_i denotes the projection of H onto $\mathscr{N}(\lambda_i I - T)$ along $\mathscr{R}(\lambda_i I - T)$, and where $1/(\lambda - \lambda_i) \in \sigma(R_{\lambda}(T))$ [7, p. 277]. More generally, if T is spectral, then $R_{\lambda}(T)$ is spectral [3, p. 2249], and

$$R_{\lambda}(T) = D_{\lambda} + Q_{\lambda} \quad \text{for all} \quad \lambda \in \rho(T), \quad (1.2)$$

where D_{λ} is a scalar operator in $\mathscr{B}(H)$ with a representation similar to the one given in (1.1), and Q_{λ} is a quasinilpotent operator in $\mathscr{B}(H)$ [3, p. 1950]. These results hinge on two essential ingredients: (1) The P_i are orthogonal, or, more generally, the family of all finite sums of the P_i is uniformly bounded, and (2) $P_i x = 0$ for all *i* implies x = 0. In [8] it is shown that there exist discrete operators where both of these properties fail. The purpose of this paper is to present spectral representations for $R_{\lambda}(T)$ similar to (1.1) and (1.2) by weakening (1) and eliminating (2).

The main result of this paper is summarized as follows: Let $T(\lambda_i) = (\lambda_i I - T)^{m_i}$, where m_i is the ascent of operator $\lambda_i I - T$, and let P_i be the projection of H onto the generalized eigenspace $\mathcal{N}(T(\lambda_i))$ along $\mathcal{R}(T(\lambda_i))$. If there exists a constant M > 0 such that $\|\sum_{i=1}^{N} P_i\| \leq M$, N = 1, 2, ..., then $H = S_{\infty} \bigoplus M_{\infty}$ (topological direct sum), where $S_{\infty} = \{x \in H | x = \sum_{i=1}^{\infty} x_i, x_i \in \mathcal{N}(T(\lambda_i))\} = \overline{S}_{\infty}$ and M_{∞} is the zero or infinite-dimensional subspace $\bigcap_{i=1}^{\infty} \mathcal{R}(T(\lambda_i))$ (see [8]). Let \mathbb{P}_{∞} denote the projection of H onto S_{∞} along M_{∞} . Then under the assumption placed on the P_i above, we show that

$$R_{\lambda}(T) = \sum_{i=1}^{\infty} \sum_{j=1}^{m_{i}} \frac{(-N_{i})^{j-1} P_{i}}{(\lambda - \lambda_{i})^{j}} + \sum_{j=0}^{\infty} (\lambda_{0} - \lambda)^{j} R_{\lambda_{0}}(T_{\infty})^{j+1} (I - \mathbb{P}_{\infty})$$
(1.3)

in $\mathscr{B}(H)$ for all λ in the resolvent set $\rho(T)$, where N_i is a nilpotent operator on $\mathscr{N}(T(\lambda_i))$, T_{∞} is an operator defined on $\mathscr{D}(T) \cap M_{\infty}$, and λ_0 is a fixed but arbitrary point in the complex plane \mathbb{C} . The first series in (1.2) is the sum of all the singular parts (poles) of $R_{\lambda}(T)$ and completely describes the action of $R_{\lambda}(T)$ on S_{∞} . The second series is the analytic part of $R_{\lambda}(T)$ and describes its action on M_{∞} . This representation is analogous to the Mittag-Leffler decomposition of a meromorphic function.

This result applied to many of the operators that appear in mathematical physics, and in particular it applies to many *n*th-order two-point differential operators in $H = L^2[a, b]$.

The above result is established in Section 3 of this paper following a brief mathematical preliminary section. In Section 4 additional assumptions are placed on T, allowing us to decompose $R_{\lambda}(T)$ into the sum of a scalar operator and two quasinilpotent operators. Finally, in Section 5 these results are applied to represent the resolvent of a two-point differential operator having infinitely many multiple eigenvalues with $m_i = 2$, and to represent the resolvent of an operator T with $\mathbb{P}_{\infty} \neq I$.

LANG AND LOCKER

2. MATHEMATICAL PRELIMINARIES

Let *H* be a complex Hilbert space with inner product (,) and norm || ||, and let $\mathscr{B}(H)$ denote the Banach space of all bounded linear operators defined on *H*. For any linear operator *T* in *H* we denote its domain, range, and null space by $\mathscr{D}(T)$, $\mathscr{R}(T)$, and $\mathscr{N}(T)$, respectively. Let *T* be a closed, densely defined linear operator in *H* such that there exists a number λ_0 in its resolvent set $\rho(T)$ for which the resolvent $R_{\lambda_0}(T) = (\lambda_0 I - T)^{-1}$ is compact, i.e., *T* is a discrete operator in *H*. Then it is well known that (1) the spectrum $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$ is a countable set of eigenvalues having no finite limit points in \mathbb{C} , (2) $R_{\lambda}(T)$ is compact for all $\lambda \in \rho(T)$ with $\sigma(R_{\lambda}(T)) =$ $\{0, (\lambda - \lambda_i)^{-1}\}_{i=1}^{\infty}$ (if dim $H < \infty$, then $0 \notin \sigma(R_{\lambda}(T))$), and (3) the algebraic multiplicity $v(\lambda_i)$ of λ_i is finite and equal to dim $\mathscr{N}((\lambda_i I - T)^{m_i})$, where m_i denotes the ascent of $\lambda_i I - T$ [7, p. 187]. Since *T* is discrete, it is a Fredholm operator of index 0 with its Fredholm set $\phi(T) = \mathbb{C}$ [9]. Consequently,

$$H = \mathcal{N}(T(\lambda_i)) \oplus \mathcal{R}(T(\lambda_i)) \qquad \text{(topological direct sum),}$$

where $T(\lambda_i) = (\lambda_i I - T)^{m_i}$, i = 1, 2, ... [8]. For $N = 1, 2, ..., \infty$ define the subspaces S_N and M_N by

$$S_N = \left\{ x \in H \mid x = \sum_{i=1}^N x_i, x_i \in \mathcal{N}(T(\lambda_i)) \right\}$$

and

$$\boldsymbol{M}_{N} = \bigcap_{i=1}^{N} \mathscr{R}(T(\lambda_{i})).$$

Then

 $H = S_N \oplus M_N$ (topological direct sum), (2.1)

N = 1, 2, ... Equation (2.1) also holds when $N = \infty$ iff the sequence of projections $\mathbb{P}_N = \sum_{i=1}^{N} P_i$ of H onto S_N along M_N , where P_i is the projection of H onto $\mathcal{N}(T(\lambda_i))$ along $\mathscr{R}(T(\lambda_i))$, is uniformly bounded in norm by a constant M > 0 [8]. It can be shown that $S_N = \{x \in H | x = \sum_{i=1}^{N} P_i x\}, M_N = \{x \in H | P_i x = 0, i = 1, 2, ..., N\}, N = 1, 2, ..., \infty$, and that M_∞ is either zero or infinite dimensional [3, p. 2295]. When $\|\mathbb{P}_N\| \leq M, N = 1, 2, ..., n$, there exists a projection \mathbb{P}_∞ of H onto $S_\infty = \overline{S}_\infty$ along M_∞ , such that $\mathbb{P}_\infty x = \sum_{i=1}^{\infty} P_i x$ for all $x \in H$ [8].

The projection P_i is identical with the projection associated with the eigenvalue $(\lambda - \lambda_i)^{-1}$ of $R_{\lambda}(T)$ [7, p. 187]. Furthermore, it can be shown

that $P_i = (1/2\pi i) \int_{\Gamma} R_{\lambda}(T) d\lambda$, where Γ is a simple closed curve containing λ_i in its interior and $\sigma(T) - \{\lambda_i\}$ in its exterior. From this observation it follows that

$$R_{\lambda}(T)P_{i} = P_{i}R_{\lambda}(T) \quad \text{for all} \quad \lambda \in \rho(T)$$
(2.2)

[7, p. 178], and hence,

$$R_{\lambda}(T)\mathbb{P}_{N} = \mathbb{P}_{N}R_{\lambda}(T) \quad \text{for all} \quad \lambda \in \rho(T), \quad (2.3)$$

 $N = 1, 2, ..., \text{ and when } || \mathbb{P}_N || \leq M, N = 1, 2, ...,$

$$R_{\lambda}(T)\mathbb{P}_{\infty} = \mathbb{P}_{\infty}R_{\lambda}(T) \quad \text{for all} \quad \lambda \in \rho(T),$$
 (2.4)

with similar statements holding for $R_{\lambda}(T)(I-P_i)$, $R_{\lambda}(T)(I-\mathbb{P}_N)$, and $R_{\lambda}(T)(I-\mathbb{P}_{\infty})$. A direct consequence of (2.2)-(2.4) is that

$$TP_i x = P_i Tx, \qquad i = 1, 2, ...,$$
 (2.5)

$$T \mathbb{P}_N x = \mathbb{P}_N T x, \qquad N = 1, 2, ...,$$
 (2.6)

and when $||\mathbb{P}_N|| \leq M$, N = 1, 2, ...,

$$T \mathbb{P}_{\infty} x = \mathbb{P}_{\infty} T x \tag{2.7}$$

for all $x \in \mathcal{D}(T)$ [7, pp. 172–173]. Note that (2.5)–(2.7) contain the implicit statement that $P_i x$, $\mathbb{P}_N x$ belong to $\mathcal{D}(T)$ whenever x does. Finally, from [8],

$$P_i P_j = \delta_{ij} P_i$$
 for $i, j = 1, 2,$ (2.8)

3. REPRESENTATION OF $R_{\lambda}(T)$

Fix a positive integer N. Then

$$R_{\lambda}(T) = R_{\lambda}(T) \mathbb{P}_{N} + R_{\lambda}(T)(I - \mathbb{P}_{N}) \quad \text{for all} \quad \lambda \in \rho(T).$$
(3.1)

Equation (2.3) implies that S_N and M_N are invariant subspaces of $R_{\lambda}(T)$. Thus, the problem of obtaining a representation of $R_{\lambda}(T)$ is reduced to studying its behavior on S_N and M_N , or equivalently to the study of $R_{\lambda}(T)\mathbb{P}_N$ and $R_{\lambda}(T)(I-\mathbb{P}_N)$. We begin by looking at $R_{\lambda}(T)\mathbb{P}_N$.

For notational purposes we set

$$N_{i} = (\lambda_{i}I - T) | \mathcal{N}(T(\lambda_{i})), \qquad i = 1, 2, \dots.$$
(3.2)

The operator N_i is easily shown to be a continuous nilpotent map of

 $\mathcal{N}(T(\lambda_i))$ into $\mathcal{N}(T(\lambda_i))$, satisfying $N_i^{m_i} = 0$. On $\mathcal{N}(T(\lambda_i))$ we note that $\lambda I - T = (\lambda - \lambda_i)I + N_i$ and for $\lambda \neq \lambda_i$

$$(\lambda I - T) \left(\sum_{j=1}^{m_i} \frac{(-N_i)^{j-1}}{(\lambda - \lambda_i)^j} \right) = \frac{(-N_i)^{m_i}}{(\lambda - \lambda_i)^{m_i}} + I = I = \left(\sum_{j=1}^{m_i} \frac{(-N_i)^{j-1}}{(\lambda - \lambda_i)^j} \right) (\lambda I - T).$$
(3.3)

Equation (3.3) and the fact that $(\lambda I - T)R_{\lambda}(T)P_i = P_i$ imply that

$$R_{\lambda}(T)P_{i} = \sum_{j=1}^{m_{i}} \frac{(-N_{i})^{j-1}P_{i}}{(\lambda - \lambda_{i})^{j}}, \qquad i = 1, 2, ...,$$
(3.4)

and hence,

$$R_{\lambda}(T)\mathbb{P}_{N} = \sum_{i=1}^{N} \sum_{j=1}^{m_{i}} \frac{(-N_{i})^{j-1}P_{i}}{(\lambda - \lambda_{i})^{j}}, \qquad N = 1, 2, ...,$$
(3.5)

for all $\lambda \in \rho(T)$.

Before looking at $R_{\lambda}(T)(I - \mathbb{P}_N)$, we need the following lemmas.

LEMMA 3.1. Let X be a Banach space. Consider the power series $\sum_{n=0}^{\infty} (\lambda - \lambda_0)^n a_n$, where $\lambda, \lambda_0 \in \mathbb{C}$ and $a_n \in X$, n = 1, 2, ...

(a) If there exists $a(\lambda) \in X$ such that $\lim_{k \to \infty} ||a(\lambda) - \sum_{n=0}^{k} (\lambda - \lambda_0)^n a_n|| = 0$, then $\lim_{n \to \infty} ||(\lambda - \lambda_0)^n a_n|| = 0$.

(b) If $\limsup_{n \to \infty} \|a_n\|^{1/n} = 1/\rho$, then the series is absolutely convergent for $|\lambda - \lambda_0| < \rho$ and divergent for $|\lambda - \lambda_0| > \rho$ (for $1/\rho = 0$ set $\rho = \infty$).

Proof. See [6, p. 96].

LEMMA 3.2. Let T be a discrete operator in a Hilbert space H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$. Fix $\lambda \in \rho(T)$ and set $d = \inf\{|\lambda_i - \lambda| \mid \lambda_i \in \sigma(T)\}$. Then

$$r(R_{\lambda}(T)) = \lim_{j \to \infty} \|R_{\lambda}(T)^{j}\|^{1/j} = 1/d,$$
(3.6)

where $r(R_{\lambda}(T))$ denotes the spectral radius of $R_{\lambda}(T)$ (1/d=0 for $d=\infty$).

Proof. This is immediate from the spectral radius theorem and [7, p. 177].

It is straightforward to show that the conclusion of the last lemma remains true when $||R_{\lambda}(T)^{j}||^{1/j}$ is replaced by $||R_{\lambda}(T)^{j+1}||^{1/j}$.

Equation (2.6) shows that T commutes with \mathbb{P}_N , and hence with $I - \mathbb{P}_N$.

Thus, $T(\mathscr{D}(T) \cap M_N) \subseteq M_N$. In view of this we define $T_N : \mathscr{D}(T) \cap M_N \to M_N$ by

$$T_N = T | \mathcal{D}(T) \cap M_N. \tag{3.7}$$

Clearly T_N is a closed linear operator in M_N . From [5, p. 104] it follows that T_N is densely defined in M_N and from [7, p. 178] that $\sigma(T_N) = \{\lambda_i\}_{i=N+1}^{\infty}$. For $\lambda \in \rho(T)$ it is easy to show that

$$R_{\lambda}(T) \mid M_{N} = R_{\lambda}(T_{N}). \tag{3.8}$$

Since $R_{\lambda}(T)$ is compact, so is $R_{\lambda}(T_N)$, and hence, T_N is a discrete operator in the Hilbert space M_N . The next lemma obtains a representation for $R_{\lambda}(T_N)$ that will be used in representing $R_{\lambda}(T)(I - \mathbb{P}_N)$.

LEMMA 3.3. Let T be a discrete operator in H with $\sigma(T) = {\lambda_i}_{i=1}^{\infty}$. For fixed $\lambda_0 \in \rho(T_N)$ set $d = \inf\{|\lambda - \lambda_0| | \lambda \in \sigma(T_N)\}$. Then for $\lambda \in \mathbb{C}$ with $|\lambda - \lambda_0| < d$,

$$R_{\lambda}(T_N) = \sum_{j=0}^{\infty} (\lambda_0 - \lambda)^j R_{\lambda_0}(T_N)^{j+1} \quad in \, \mathscr{B}(M_N).$$
(3.9)

The disk $|\lambda - \lambda_0| < d$ where convergence occurs is maximal.

Proof. Lemmas 3.1 and 3.2 and the comments following them imply that for $\lambda \in \mathbb{C}$ with $|\lambda - \lambda_0| < d$, $\sum_{j=0}^{\infty} (\lambda_0 - \lambda)^j R_{\lambda_0}(T_N)^{j+1}$ converges in $\mathscr{B}(M_N)$, and that the disk where convergence occurs is maximal. Thus, it remains only to show that equality holds in (3.9).

Fix $x \in \mathcal{D}(T_N)$, and let λ be such that $|\lambda - \lambda_0| < d$. Note that $\lambda I - T_N = (\lambda - \lambda_0)I + (\lambda_0 I - T_N)$. Lemma 3.1 implies that

$$\left(\sum_{j=0}^{\infty} (\lambda_{0} - \lambda)^{j} R_{\lambda_{0}}(T_{N})^{j+1}\right) (\lambda I - T_{N}) x$$

=
$$\lim_{k \to \infty} \left[-\sum_{j=0}^{k} (\lambda_{0} - \lambda)^{j+1} R_{\lambda_{0}}(T_{N})^{j+1} x + \sum_{j=0}^{k} (\lambda_{0} - \lambda)^{j} R_{\lambda_{0}}(T_{N})^{j} x \right]$$

=
$$\lim_{k \to \infty} \left[I x - (\lambda_{0} - \lambda)^{k+1} R_{\lambda_{0}}(T_{N})^{k+1} x \right] = I x. \qquad (*)$$

Now take any $x \in M_N$. Let λ be such that $|\lambda - \lambda_0| < d$ and note that

$$(\lambda I - T_N) \left(\sum_{j=0}^k (\lambda_0 - \lambda)^j R_{\lambda_0}(T_N)^{j+1} \right) x = Ix - (\lambda_0 - \lambda)^{k+1} R_{\lambda_0}(T_N)^{k+1} x.$$

The operator $\lambda I - T_N$ is closed since T_N is closed. This fact together with Lemma 3.1 and the last equation gives

$$\lim_{k \to \infty} (\lambda I - T_N) \left(\sum_{j=0}^k (\lambda_0 - \lambda)^j R_{\lambda_0} (T_N)^{j+1} x \right) = Ix. \quad (**)$$

Lines (*) and (**) prove (3.9).

The results of these last few pages yield

THEOREM 3.4. Let T be a discrete operator in H with $\sigma(T) = {\lambda_i}_{i=1}^{\infty}$, and for a fixed positive integer N set $T_N = T | \mathscr{D}(T) \cap M_N$. Then $\sigma(T_N) = {\lambda_i}_{i=N+1}^{\infty}$ and for $\lambda \in \rho(T) \subseteq \rho(T_N)$:

(i)
$$R_{\lambda}(T) = R_{\lambda}(T)\mathbb{P}_{N} + R_{\lambda}(T)(I - \mathbb{P}_{N}),$$

(ii) $R_{\lambda}(T)\mathbb{P}_{N} = \sum_{i=1}^{N} \sum_{j=1}^{m_{i}} ((-N_{i})^{j-1}P_{i}/(\lambda-\lambda_{i})^{j}), \quad N_{i} = (\lambda_{i}I - T)|$ $\mathcal{N}(T(\lambda_{i})),$

(iii)
$$R_{\lambda}(T)(I - \mathbb{P}_N) = R_{\lambda}(T_N)(I - \mathbb{P}_N)$$

Also, for fixed $\lambda_0 \in \rho(T_N)$ and for $d = \inf\{|\xi - \lambda_0| | \xi \in \sigma(T_N)\}$,

$$R_{\lambda}(T)(I-\mathbb{P}_{N})=\sum_{j=0}^{\infty}(\lambda_{0}-\lambda)^{j}R_{\lambda_{0}}(T_{N})^{j+1}(I-\mathbb{P}_{N}) \quad in \mathscr{B}(H) \quad (3.10)$$

for all $\lambda \in \rho(T)$ with $|\lambda - \lambda_0| < d$.

This theorem provides a complete spectral representation of $R_{\lambda}(T)$ in the case of $\sigma(T) = {\lambda_i}_{i=1}^N$, but only a partial representation when $\sigma(T) = {\lambda_i}_{i=1}^\infty$. In the following we show that under the assumption $||\mathbb{P}_N|| \leq M$ for N = 1, 2, ..., the results of Theorem 3.4 are still valid when N is replaced by ∞ . This assumption is necessary to ensure the existence of \mathbb{P}_{∞} as a continuous operator defined on all of H.

Throughout the rest of this section we assume that there is a constant M > 0 such that $||\mathbb{P}_N|| \leq M$, N = 1, 2, ... From this assumption it follows that there exists a projection \mathbb{P}_{∞} from H onto $S_{\infty} = \overline{S}_{\infty}$ along M_{∞} , where $\mathbb{P}_{\infty} x = \sum_{i=1}^{\infty} P_i x$ for all $x \in H$. Clearly

$$R_{\lambda}(T) = R_{\lambda}(T)\mathbb{P}_{\infty} + R_{\lambda}(T)(I - \mathbb{P}_{\infty}) \quad \text{for all} \quad \lambda \in \rho(T). \quad (3.11)$$

From (2.4) it follows that S_{∞} and M_{∞} are invariants of $R_{\lambda}(T)$, implying that we can obtain a representation of $R_{\lambda}(T)$ by obtaining representations of $R_{\lambda}(T)\mathbb{P}_{\infty}$ and $R_{\lambda}(T)(I-\mathbb{P}_{\infty})$.

Equation (2.7) implies that $T(\mathscr{D}(T) \cap M_{\infty}) \subseteq M_{\infty}$. Define $T_{\infty} \colon \mathscr{D}(T) \cap M_{\infty} \to M_{\infty}$ by

$$T_{\infty} = T | \mathscr{D}(T) \cap M_{\infty}. \tag{3.12}$$

As in the case of T_N , T_∞ is a closed linear operator in M_∞ . We claim that $\mathscr{D}(T) \cap M_\infty$ is dense in M_∞ . To see this, let $x \in M_\infty$. Since $\mathscr{D}(T)$ is dense in H, there exists a sequence $\{x_i\}_{i=1}^\infty$ in $\mathscr{D}(T)$ such that $x_i \to x$. Also, since T commutes with \mathbb{P}_∞ , it commutes with $I - \mathbb{P}_\infty$, and hence, $\{(I - \mathbb{P}_\infty)x_i\}_{i=1}^\infty$ belongs to $\mathscr{D}(T) \cap M_\infty$. The continuity of $I - \mathbb{P}_\infty$ implies that $(I - \mathbb{P}_\infty)x_i \to (I - \mathbb{P}_\infty)x = x$, thereby showing that $\overline{\mathscr{D}(T)} \cap M_\infty = M_\infty$. Thus, T_∞ is densely defined in M_∞ . From a result in [9] it follows that $\lambda I - T_\infty$ maps $\mathscr{D}(T) \cap M_\infty$ 1–1 onto M_∞ for all $\lambda \in \mathbb{C}$, and hence, $\sigma(T_\infty) = \mathscr{O}$. It can also be shown that

$$R_{\lambda}(T) \mid M_{\infty} = R_{\lambda}(T_{\infty}) \quad \text{for all} \quad \lambda \in \rho(T).$$
(3.13)

Since $R_{\lambda}(T)$ is compact, so is $R_{\lambda}(T_{\infty})$, and hence, T_{∞} is a discrete operator in the Hilbert space M_{∞} .

The next two lemmas provide the results necessary to represent $R_{\lambda}(T)\mathbb{P}_{\infty}$ and $R_{\lambda}(T)(I-\mathbb{P}_{\infty})$. The first is the analogue of Lemma 3.3 and is proved in a similar fashion. A proof of the second can be found in [2, p. 8].

LEMMA 3.5. Let T be a discrete operator in H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$. Then for $\lambda_0 \in \rho(T_{\infty}) = \mathbb{C}$,

$$R_{\lambda}(T_{\infty}) = \sum_{j=0}^{\infty} (\lambda_0 - \lambda)^j R_{\lambda_0}(T_{\infty})^{j+1} \quad in \, \mathscr{B}(M_{\infty})$$
(3.14)

for all $\lambda \in \mathbb{C}$.

LEMMA 3.6. Let X be a Banach space with A, $A_i \in \mathscr{B}(X)$, i = 1, 2, ... If $A_i \rightarrow A$ pointwise and if $K \in \mathscr{B}(X)$ is compact, then $A_i K \rightarrow AK$ in $\mathscr{B}(X)$.

We now are in a position to state and prove the main result of this section and of this paper.

THEOREM 3.7. Let T be a discrete operator in H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$. Assume there exists a constant M > 0 such that $\|\mathbb{P}_N\| \leq M$, N = 1, 2, Set $T_{\infty} = T | \mathcal{D}(T) \cap M_{\infty}$. Then $R_{\lambda}(T) = R_{\lambda}(T)\mathbb{P}_{\infty} + R_{\lambda}(T)(I - \mathbb{P}_{\infty})$ for $\lambda \in \rho(T)$ with

$$R_{\lambda}(T)\mathbb{P}_{\infty} = \sum_{i=1}^{\infty} \sum_{j=1}^{m_i} \frac{(-N_i)^{j-1} P_i}{(\lambda - \lambda_i)^j} \quad in \, \mathscr{B}(H), \quad (3.15)$$

where $N_i = (\lambda_i I - T) | \mathcal{N}(T(\lambda_i))$, and with

$$R_{\lambda}(T)(I-\mathbb{P}_{\infty}) = \sum_{j=0}^{\infty} (\lambda_0 - \lambda)^j R_{\lambda_0}(T_{\infty})^{j+1} (I-\mathbb{P}_{\infty}) \quad in \, \mathscr{B}(H), \quad (3.16)$$

where λ_0 is a fixed element of $\rho(T_{\infty}) = \mathbb{C}$.

Proof. We know that $R_{\lambda}(T)$ is compact and that $\mathbb{P}_N \to \mathbb{P}_{\infty}$ pointwise. Therefore, Lemma 3.6 can be applied, together with (2.2) and (3.4), to show that

$$\mathbb{P}_{\infty}R_{\lambda}(T) = \sum_{i=1}^{\infty}P_{i}R_{\lambda}(T) = \sum_{i=1}^{\infty}R_{\lambda}(T)P_{i} = \sum_{i=1}^{\infty}\sum_{j=1}^{m_{i}}\frac{(-N_{i})^{j-1}P_{i}}{(\lambda-\lambda_{i})^{j}}$$

in $\mathscr{B}(H)$. Equation (3.16) is immediate from (3.13) and (3.14).

Theorem 3.7 yields a complete spectral representation of $R_{\lambda}(T)$ when $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$, provided $||\mathbb{P}_N|| \leq M$, N = 1, 2, ... As a concluding remark we note that the convergence of the two series appearing in the theorem is uniform on compact subsets of $\rho(T)$.

4. Representation of $R_{\lambda}(T)$ Based on Spectral Operator-Type Assumptions

Throughout this section we assume the stronger assumption that the family of all finite sums of the projections P_i is uniformly bounded in norm by a constant M > 0. This assumption is one of two made in the theory of discrete spectral operators, the other being that $M_{\infty} = \{0\}$, which we do not assume.

To simplify the statement of later results, we make the following definition.

DEFINITION 4.1. A discrete operator T with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$ is spectrallike iff the family of all finite sums of the projections P_i is uniformly bounded in norm by a positive constant M.

We now show that T being spectral-like allows more to be said about the representation of $R_{\lambda}(T)$. We start with

LEMMA 4.2. Let T be a spectral-like operator in H. Then for every $x \in S_{\infty}$

$$\frac{\|x\|^2}{4M^2} \leqslant \sum_{i=1}^{\infty} \|P_i x\|^2 \leqslant 4M^2 \|x\|^2,$$
(4.1)

where the constant M is as in Definition 4.1.

Proof. Fix a positive integer N. Let F = F(N) denote the family of all mappings from $\{1, 2, ..., N\}$ into $\{-1, 1\}$. Let $\gamma \in F$ and denote the value of γ at $j \in \{1, 2, ..., N\}$ by γ_j . Let $x \in S_{\infty}$ and set

$$x(\gamma) = \sum_{j=1}^{N} \gamma_j P_j x, \qquad x_+(\gamma) = \sum_{\gamma_j > 0} P_j x, \qquad x_-(\gamma) = \sum_{\gamma_j < 0} P_j x.$$

Then

$$x_{+}(\gamma) + x_{-}(\gamma) = \sum_{j=1}^{N} P_{j} x \equiv x_{N},$$

and

$$x_+(\gamma) - x_-(\gamma) = x(\gamma).$$

Note that F has 2^N elements, that

$$\|x_N\|^2 + \|x(\gamma)\|^2 = 2 \|x_+(\gamma)\|^2 + 2 \|x_-(\gamma)\|^2, \qquad (*)$$

and that

$$\frac{1}{2^{N}} \sum_{\gamma \in F} \|x(\gamma)\|^{2} = \sum_{j=1}^{N} \|P_{j}x\|^{2} \qquad (**)$$

[4, p. 334]. Let $A = \{j | \gamma_j > 0\}$ and $B = \{j | \gamma_j < 0\}$. Then (*) implies that

$$\|x(\gamma)\|^{2} \leq 2 \|x_{+}(\gamma)\|^{2} + 2 \|x_{-}(\gamma)\|^{2}$$

= $2 \left\|\sum_{j \in A} P_{j} x_{N}\right\|^{2} + 2 \left\|\sum_{j \in B} P_{j} x_{N}\right\|^{2}$
 $\leq 4M^{2} \|x_{N}\|^{2}.$

Consequently,

$$\frac{1}{2^N} \sum_{\gamma \in F} \|x(\gamma)\|^2 = \sum_{j=1}^N \|P_j x\|^2 \leq 4M^2 \|x_N\|^2.$$

We note that there exists $\gamma \in F$ such that

$$||x(\gamma)||^2 \leq \sum_{j=1}^N ||P_j x||^2,$$

for otherwise

$$||x(\gamma)||^2 > \sum_{j=1}^N ||P_j x||^2$$
 for all $\gamma \in F$,

implying that

$$\frac{1}{2^{N}}\sum_{\gamma \in F} \|x(\gamma)\|^{2} > \sum_{j=1}^{N} \|P_{j}x\|^{2},$$

contradicting (**). Now (*) implies that for his γ

$$\|x_{N}\|^{2} \leq 2 \|x_{+}(\gamma)\|^{2} + 2 \|x_{-}(\gamma)\|^{2}$$

= $\left\|\sum_{j \in A} P_{j}x(\gamma)\right\|^{2} + 2 \left\|\sum_{j \in B} P_{j}x(\gamma)\right\|^{2}$
 $\leq 4M^{2} \|x(\gamma)\|^{2}$
 $\leq 4M^{2} \sum_{j=1}^{N} \|P_{j}x\|^{2}.$

Thus,

$$\frac{\|x_N\|^2}{4M^2} \leqslant \sum_{j=1}^N \|P_j x\|^2 \leqslant 4M^2 \|x_N\|^2.$$

COROLLARY 4.3. Let T be a spectral-like operator in H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$. Then the function

$$||x||_{*} = \left(\sum_{i=1}^{\infty} ||P_{i}x||^{2}\right)^{1/2}, \quad x \in S_{\infty},$$
 (4.2)

is a norm on S_{∞} . Furthermore, S_{∞} is complete under $\|\cdot\|_{*}$ with

$$\frac{\|x\|_{*}}{2M} \le \|x\| \le 2M \|x\|_{*}.$$
(4.3)

Proof. Lemma 4.2 shows that $\|\cdot\|_*$ is well defined and implies (4.3). The fact that $\|\cdot\|_*$ is a norm follows from the triangle inequality in l^2 together with the result that $S_{\infty} \cap M_{\infty} = \{0\}$. The completeness of S_{∞} under $\|\cdot\|_*$ is a trivial consequence of (4.3).

It should be noted that

$$(x, y)_{*} = \sum_{i=1}^{\infty} (P_{i}x, P_{i}y), \quad x, y \in S_{\infty},$$
 (4.4)

defines an inner product on S_{∞} with $||x||_{*} = (x, x)_{*}^{1/2}$, $x \in S_{\infty}$. Furthermore, if $x \in \mathcal{N}(T(\lambda_{i}))$ and $y \in \mathcal{N}(T(\lambda_{j}))$, then

$$(x, y)_{*} = \sum_{k=1}^{\infty} (P_{k}x, P_{k}y) = \sum_{k=1}^{\infty} (P_{k}P_{i}x, P_{k}P_{j}y) = \delta_{ij}(x, y)$$

by (2.8), thereby showing that the generalized eigenspaces $\mathcal{N}(T(\lambda_i))$, $\mathcal{N}(T(\lambda_i))$ are orthogonal under this inner product when $i \neq j$.

If $R_{\lambda}(T)$ is assumed to be a Hilbert-Schmidt operator, then $\sum_{i=1}^{\infty} 1/|\lambda - \lambda_i|^2 < \infty$ [1, p. 194]. With this fact in hand, we present the next theorem, which provides a "Jordan-canonical form" decomposition of $R_{\lambda}(T)$.

THEOREM 4.4. Let T be a spectral-like operator in H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$, and assume $R_{\lambda}(T)$ is Hilbert–Schmidt for all $\lambda \in \rho(T)$. Then

$$R_{\lambda}(T) = D_{\lambda} + Q_{\lambda} + R_{\lambda}(T)(I - \mathbb{P}_{\infty}) \quad \text{for all} \quad \lambda \in \rho(T),$$
(4.5)

where

(a)
$$D_{\lambda} = \sum_{i=1}^{\infty} \frac{P_i}{\lambda - \lambda_i}$$
 in $\mathscr{B}(H)$,
(b) $Q_{\lambda} = \sum_{i=1}^{\infty} \sum_{j=2}^{m_i} \frac{(-N_i)^{j-1} P_i}{(\lambda - \lambda_i)^j}$ in $\mathscr{B}(H)$.

Furthermore, D_{λ} , Q_{λ} , and $R_{\lambda}(T)(I - \mathbb{P}_{\infty})$ are compact operators on H with $\sigma(D_{\lambda}) = \sigma(R_{\lambda}(T))$ and $\sigma(Q_{\lambda}) = \sigma(R_{\lambda}(T)(I - \mathbb{P}_{\infty})) = \{0\}.$

Proof. Fix $\lambda \in \rho(T)$. Define $D_N: H \to H$ by $D_N = \sum_{i=1}^N (P_i/(\lambda - \lambda_i))$, $N = 1, 2, \dots$. Since $\mathscr{R}(D_N)$ is finite dimensional, D_N is compact. If $x \in H$ and $k \ge l$, then Corollary 4.3 implies that

$$\|(D_{k} - D_{l})x\|^{2} = \left\|\sum_{i=l+1}^{k} \frac{P_{i}x}{\lambda - \lambda_{i}}\right\|^{2}$$

$$\leq 4M^{2} \left\|\sum_{i=l+1}^{k} \frac{P_{i}x}{\lambda - \lambda_{i}}\right\|_{*}^{2} \leq 4M^{4} \|x\|^{2} \sum_{i=l+1}^{k} \frac{1}{|\lambda - \lambda_{i}|^{2}},$$

and hence, by the comments preceding this theorem, $\{D_N\}_{N=1}^{\infty}$ is a Cauchy sequence in $\mathscr{B}(H)$. Therefore, there exists a compact operator $D_{\lambda} \in \mathscr{B}(H)$ such that

$$D_{\lambda} = \sum_{i=1}^{\infty} \frac{P_i}{\lambda - \lambda_i}.$$
 (*)

If *H* is infinite dimensional, then it is clear that $0 \in \sigma(D_{\lambda})$. Let $x \in \mathcal{N}(\lambda_i I - T)$ with $x \neq 0$. Then $D_{\lambda} x = (\lambda - \lambda_i)^{-1} x$, so $(\lambda - \lambda_i)^{-1} \in \sigma(D_{\lambda})$, i.e., $\sigma(R_{\lambda}(T)) \subseteq \sigma(D_{\lambda})$. For the reverse inclusion suppose $\xi \in \sigma(D_{\lambda})$ with $\xi \neq 0$. Then there exists $x \neq 0$ such that $D_{\lambda} x = \xi x$. From (*) it is clear that $x \in S_{\infty}$, so there exists an integer *l* such that $P_l x \neq 0$. This implies that $P_l D_{\lambda} x = P_l x/(\lambda - \lambda_l) = \xi P_l x$, i.e., $\xi = (\lambda - \lambda_i)^{-1}$. Thus, $\sigma(D_{\lambda}) = \sigma(R_{\lambda}(T))$.

For $N=1, 2, \dots$ define $Q_N: H \to H$ by $Q_N = \sum_{i=1}^N \sum_{j=2}^{m_i} (-N_i)^{j-1} P_i / (\lambda - \lambda_i)^j$,

where we insert 0 in the sum for the terms with $m_i = 1$. Consider the sequence $\{Q_N\}_{N=1}^{\infty}$ of compact operators in $\mathscr{B}(H)$. From Theorem 3.4 we see that $Q_N = R_{\lambda}(T)\mathbb{P}_N - D_N$. Thus, for any k, l we have

$$||Q_k - Q_l|| \le ||R_{\lambda}(T)(\mathbb{P}_k - \mathbb{P}_l)|| + ||D_k - D_l||.$$

The results from the first paragraph of this proof and Lemma 3.6 imply that $\{Q_N\}_{N=1}^{\infty}$ is a Cauchy sequence in $\mathscr{B}(H)$. Thus, there is a compact operator $Q_{\lambda} \in \mathscr{B}(H)$ such that

$$Q_{\lambda} = \sum_{i=1}^{\infty} \sum_{j=2}^{m_i} \frac{(-N_i)^{j-1} P_i}{(\lambda - \lambda_i)^j}.$$
 (**)

Clearly $\sigma(Q_{\lambda}) \neq \emptyset$. Suppose there is a nonzero $\xi \in \sigma(Q_{\lambda})$. Then there exists a nonzero $x \in S_{\infty}$ and a projection P_{I} such that $P_{I}Q_{\lambda}x = \xi P_{I}x \neq 0$. If we note that $Q_{\lambda}P_{I}x = P_{I}Q_{\lambda}x$, then it is clear that $Q_{\lambda}P_{I}x = (Q_{\lambda}P_{I})P_{I}x = \xi P_{I}x$, i.e., $\xi \in \sigma(Q_{\lambda}P_{I})$. Since $(Q_{\lambda}P_{I})^{m_{I}} = 0$, $Q_{\lambda}P_{I}$ is nilpotent, and hence, $\sigma(Q_{\lambda}P_{I}) = \{0\}$. This leads to a contradiction. Therefore, $\sigma(Q_{\lambda}) = \{0\}$.

Clearly $R_{\lambda}(T)(I - \mathbb{P}_{\infty})$ is compact because $R_{\lambda}(T)$ is compact. Also, $R_{\lambda}(T)(I - \mathbb{P}_{\infty}) = R_{\lambda}(T_{\infty})(I - \mathbb{P}_{\infty})$. Since $\sigma(T_{\infty}) = \emptyset$, $\sigma(R_{\lambda}(T_{\infty})) = \{0\}$, and hence, $\sigma(R_{\lambda}(T)(I - \mathbb{P}_{\infty})) = \{0\}$.

It should be noted that (4.5) generalizes (1.2) and that (4.5)(b) provides a representation for Q_{λ} previously unavailable.

5. APPLICATIONS

In $H = L^2[0, 1]$ define the second-order differential operator L by

$$\mathcal{D}(L) = \{ u \in H^2[0, 1] \mid u'(0) + u'(1) = 0, u(0) = 0 \}, \qquad Lu = -u'',$$

where $H^2[0, 1]$ denotes the subspace of H consisting of all functions $u \in C^1[0, 1]$ with u' absolutely continuous on [0, 1] and $u'' \in H$. Then L is a discrete operator in H [11]. Furthermore, $\sigma(L) = \{\lambda_i\}_{i=1}^{\infty}$, where $\lambda_i = [(2i-1)\pi]^2$, with $v(\lambda_i) = 2 = m_i$, i = 1, 2, ... It is shown in [10] that the family of all finite sums of the projections P_i is uniformly bounded in norm by the constant M = 6, that $S_{\infty} = H$, that $M_{\infty} = \{0\}$, and in [11] that $R_i(L)$ is Hilbert-Schmidt. Thus, for all $\lambda \in \rho(L)$

$$R_{\lambda}(L) = \sum_{i=1}^{\infty} \frac{P_i}{\lambda - \lambda_i} + \sum_{i=1}^{\infty} \frac{(L - \lambda_i I) P_i}{(\lambda - \lambda_i)^2} \quad \text{in } \mathscr{B}(H).$$
(5.1)

The operator L in this example comes from a class of differential operators which has not previously been studied, the distinguishing feature being the presence of infinitely many multiple eigenvalues. These operators will be the subject of a future paper [10].

In the product Hilbert space $H = L^2[0, 1] \times L^2[0, 1]$, with the standard inner product and norm, define the linear operator T by

$$\mathscr{D}(T) = \mathscr{D}(K) \times \mathscr{D}(L), \qquad T(u, v) = (Ku, Lu),$$

where K and L are the differential operators in $L^{2}[0, 1]$ defined by

$$\mathscr{D}(K) = \{ u \in H^2[0, 1] \mid u(0) = u(1) = 0 \}, \qquad Ku = -u'',$$

and

$$\mathscr{D}(L) = \{ u \in H^2[0, 1] \mid u(0) = u'(0) = 0 \}, \qquad Lu = -u'',$$

respectively. It can be shown that T is an spectral-like operator in H with $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$, where $\lambda_i = (i\pi)^2$ for i = 1, 2, ... It can also be shown that $R_{\lambda}(T)$ is a Hilbert-Schmidt operator for all $\lambda \in \rho(T)$, that $S_{\infty} = \{(u, 0) \in H | u \in L^2[0, 1]\} = \overline{S}_{\infty}$, that $M_{\infty} = \{(0, v) \in H | v \in L^2[0, 1]\}$, that $m_i = 1$ for all *i*, and that $P_i(u, v) = ((u, \phi_i) \phi_i, 0)$, where $\phi_i(t) = \sqrt{2} \sin(i\pi t)$, i = 1, 2, ... Thus, for all $\lambda \in \rho(T)$

$$R_{\lambda}(T) = \sum_{i=1}^{\infty} \frac{P_i}{\lambda - \lambda_i} + R_{\lambda}(T)(I - \mathbb{P}_{\infty}) \quad \text{in } \mathscr{B}(H), \quad (5.2)$$

where $\mathbb{P}_{\infty}(u, v) = (u, 0)$ for all $(u, v) \in H$.

References

- 1. S. AGMON, "Lectures on Elliptic Boundary Value Problems," Van Nostrand, Princeton, NJ, 1966.
- 2. P. M. ANSELONE, "Collectively Compact Operator Approximation Theory," Prentice-Hall, Englewood Cliffs, NJ, 1971.
- N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators, I, II, III," Wiley-Interscience, New York, 1958, 1963, 1971.
- 4. I. C. GOHBERG AND M. G. KREIN, "Introduction to the Theory of Linear Nonselfadjoint Operators," Amer. Math. Soc., Providence, RI, 1969.
- 5. S. GOLDBERG, "Unbounded Linear Operators," McGaw-Hill, New York, 1966.
- E. HILLE AND R. S. PHILLIPS, "Functional Analysis and Semi-Groups," revised, Amer. Math. Soc., Providence, RI, 1957.
- T. KATO, "Perturbation Theory for Linear Operators, "2nd ed., Springer-Verlag, Berlin/ Heidelberg/New York, 1976.
- P. LANG AND J. LOCKER, Spectral decomposition of a Hilbert space by a Fredholm operator, J. Funct. Anal. 79 (1988), 9-17.
- 9. P. LANG AND J. LOCKER, Denseness of the generalized eigenvectors of an H-S discrete operator, J. Funct. Anal., to appear.
- 10. P. LANG AND J. LOCKER, Spectral theory of two-point differential operators determined by $-(d/dt)^2$, J. Math. Anal. Appl., to appear.
- 11. J. LOCKER, "Functional Analysis and Two-Point Differential Operators," Pitman Research Notes in Mathematics, Vol. 144, Longmans, Harlow, Essex, 1986.