
JOURNAL OF FUNCTIONAL ANALYSIS 79, 18-31 (1988) 

Spectral Representation of the Resolvent 
of a Discrete Operator 

PATRICK LANG 

Department of Mathematics, 
Idaho State University, Pocatello, Idaho 83209 

JOHN LOCKER 

Department of Mathematics, 
Colorado State University, For! Collins, Colorado 80523 

Communicated by the Editors 

Received September 24, 1986; revised April 28, 1987 

Let T be a discrete linear operator in a Hilbert space H with spectrum a(T) = 
{J$}~ ,, let R,(T) denote the resolvent of T, and let Pi denote the projection of H 
onto the generalized eigenspace &“((,?,I- T)“l) along 9((1,1- T)“,), where mi is 
the ascent of the operator 1,Z- T. In this paper it is shown that 

in 1(H) for all 1 E p(T), where N, is the restriction of Ail- T to N((lil- T)“,), T, 
is the restriction of 2’ to a(r)n fir=, .%((I+ T)“,), P, =I,?, Pi (strong 
convergence), and 1, is a fixed but arbitrary point in C. This spectral representation 
is valid provided there exists M > 0 such that 11 xF=, P, ]j < IU, N = 1, 2, . . . . and 
generalizes results that apply to self-adjoint, normal, and spectral operators. The 
results of this paper are applied to represent the resolvent of a differential operator 
L in L*[O, 1] having infinitely many eigenvalues with ascent m,=2 and are also 
applied to represent the resolvent of an operator T with P, #I. 0 1988 Academic 

Press, Inc. 

1. INTRODUCTION 

Let T be a discrete linear operator in a Hilbert space H with spectrum 
a(T)= {A,},“,, 9 and let R,(T) denote the resolvent of T. If T is normal, 
then it is well known that 

R,(T)= f p, 
i= 1 cl - Ii 

(1.1) 
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in g’(H) for all 3, Ed, where Pi denotes the projection of H onto 
N(A,Z- 7’) along B(A,Z- T), and where l/(A - Ai) E a(R,( T)) [7, p. 2771. 
More generally, if T is spectral, then R,(T) is spectral [3, p. 22491, and 

R,(T) = D, + QA for all I E p(T), (1.2) 

where D, is a scalar operator in B(H) with a representation similar to the 
one given in (l.l), and Q, is a quasinilpotent operator in a(H) [3, 
p. 19501. These results hinge on two essential ingredients: (1) The Pi are 
orthogonal, or, more generally, the family of all finite sums of the Pi is 
uniformly bounded, and (2) Pix = 0 for all i implies x = 0. In [8] it is 
shown that there exist discrete operators where both of these properties fail. 
The purpose of this paper is to present spectral representations for R,(T) 
similar to (1.1) and (1.2) by weakening (1) and eliminating (2). 

The main result of this paper is summarized as follows: Let T(&) = 
(Ail- T)“‘, where mi is the ascent of operator Ail- T, and let Pi be the 
projection of H onto the generalized eigenspace JV( T(A,)) along 9(T(&)). 
If there exists a constant M> 0 such that 11 Cr! r Pi 11 < M, N= 1, 2, . . . . 
then H = S, 0 M, (topological direct sum), where S, = {x E HI x = 
Cz 1 Xi, Xi E JV’( T(Ji))} = 3, and M, is the zero or infinite-dimensional 
subspace fiz i .?A?( T(&)) (see [8]). Let P, denote the projection of H onto 
S, along M,. Then under the assumption placed on the Pi above, we 
show that 

R,(T) = f 2 ',;y;)yi + f (&4)‘Rb(T,)‘+‘(Z-P,) (1.3) 
i-1 j-1 I j=O 

in W(H) for all A in the resolvent set p(T), where N, is a nilpotent operator 
on N( T(A,)), T, is an operator defined on g(T) n M,, and 1, is a fixed 
but arbitrary point in the complex plane C. The first series in (1.2) is the 
sum of all the singular parts (poles) of R,(T) and completely describes the 
action of R,(T) on S,. The second series is the analytic part of R,(T) and 
describes its action on M,. This representation is analogous to the 
Mittag-Lelller decomposition of a meromorphic function. 

This result applied to many of the operators that appear in mathematical 
physics, and in particular it applies to many nth-order two-point differen- 
tial operators in H = L2[a, b]. 

The above result is established in Section 3 of this paper following a brief 
mathematical preliminary section. In Section 4 additional assumptions are 
placed on T, allowing us to decompose R,(T) into the sum of a scalar 
operator and two quasinilpotent operators. Finally, in Section 5 these 
results are applied to represent the resolvent of a two-point differential 
operator having infinitely many multiple eigenvalues with m,=2, and to 
represent the resolvent of an operator T with IF’, #I. 
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2. MATWEMATICAL PRELIMINARIES 

Let H be a complex Hilbert space with inner product ( , ) and norm I( 11, 
and let a(H) denote the Banach space of all bounded linear operators 
defined on H. For any linear operator Tin H we denote its domain, range, 
and null space by g(T), a(T), and JV( T), respectively. Let T be a closed, 
densely defined linear operator in H such that there exists a number I, in 
its resolvent set p(T) for which the resolvent R&(T) = (AJ- T)-’ is com- 
pact, i.e., T is a discrete operator in H. Then it is well known that (1) the 
spectrum a(T) = { &} z 1 is a countable set of eigenvalues having no finite 
limit points in C, (2) R,(T) is compact for all il E p(T) with a(R,(T)) = 
(0, (A - A,))‘},“_ 1 (if dim H< co, then 0 4 o(R,(T))), and (3) the algebraic 
multiplicity v(&) of Izi is finite and equal to dim N((&Z- T)“!), where mi 
denotes the ascent of Ail- T 17, p. 1873. Since T is discrete, it is 
a Fredholm operator of index 0 with its Fredholm set 4(T)= @ [9]. 
Consequently, 

H = ,Ir( T(&)) @ %‘( T(A,)) (topological direct sum), 

where T(l,)= (&Z- T)“: i= 1,2, . . . [S]. For N= 1, 2, . . . . cc define the 
subspaces S, and M, by 

S,= xeHlx= f xi,xi~uM(T(li)) 
i=l 

and 

MN= fi &?(T(&)). 
i= 1 

Then 

H=S,@M, (topological direct sum), (2.1) 

N = 1, 2, . . . . Equation (2.1) also holds when N = co iff the sequence of pro- 
jections P,,, = I:=, Pi of H onto SN along M,, where Pi is the projection 
of H onto A’“( T(&)) along W( T(l,)), is uniformly bounded in norm by a 
constant M>O [S]. It can be shown that S,= {XEHIX=C~=~ PiX}, 
M, = (x E H 1 Pix = 0, i = 1, 2, . . . . N}, N = 1, 2, . . . . co, and that M, is either 
zero or infinite dimensional [3, p. 22951. When II PNll GM, N= 1, 2, . . . . 
there exists a projection P, of H onto S, = S, along M,, such that 
IIDmx=CE, Pix for all XEH [S]. 

The projection Pi is identical with the projection associated with the 
eigenvalue (A- Ai) - ’ of R,(T) [7, p. 1871. Furthermore, it can be shown 
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that Pi = (1/27ri) Ir R,(T) dA, where I’ is a simple closed curve containing li 
in its interior and o(T) - {Ai} in its exterior. From this observation it 
follows that 

R,( T)P, = P;R,( T) for all 1 E p(T) (2.2) 

[7, p. 1783, and hence, 

RA(T)p,= P,R,I(T) for all 1 E p(T), (2.3) 

N= 1, 2, . . . . and when II P, II G M, N = I, 2, . . . . 

RJTP, = IFP,RJT) for all A E p(T), (2.4) 

with similar statements holding for R,( T)(Z- Pi), R,( T)(Z- P,), and 
R,(T)(Z- P,). A direct consequence of (2.2)-(2.4) is that 

TPix = Pi TX, i = 1, 2, . . . . (2.5) 

TIFD,x= P,Tx, N = 1, 2, . . . . (2.6) 

and when II P, II ,< M, N = 1, 2, . . . . 

TP,x=P,Tx (2.7) 

for all x E 9( T) [7, pp. 172-1731. Note that (2.5)-(2.7) contain the implicit 
statement that Pix, P,x belong to 9(T) whenever x does. Finally, from 
1811 

PiPj = &Pi for i, j= 1, 2, . . . . (2.8) 

3. REPRESENTATION OF R,(T) 

Fix a positive integer N. Then 

R,(T)= R,(T) P, + &(T)V- p,v) for all I E p(T). (3.1) 

Equation (2.3) implies that S, and M, are invariant subspaces of R,(T). 
Thus, the problem of obtaining a representation of R,(T) is reduced to 
studying its behavior on S, and M,, or equivalently to the study of 
R,( T)lP’, and R,( T)(Z- PN). We begin by looking at I?,( T)P,. 

For notational purposes we set 

Ni = (&Z- T) 1 A’-( T(A,)), i= 1, 2, . . . . (3.2) 

The operator Ni is easily shown to be a continuous nilpotent map of 
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N(T(Ji)) into N( T(A,)), satisfying NY = 0. On N(T(A,)) we note that 
AZ- T= (A - ,$)I+ Ni and for A# li 

Equation (3.3) and the fact that (AZ- T)R,(T)P,= Pi imply that 

ml ( - Ni)j- Ipi 
RJ T)p, = js, (A _ l,)i ’ i = 1, 2, . . . . (3.4) 

and hence, 

R,( T)P,,, = f f ( ;;y;;,:“, N= 1, 2, . ..) (3.5) 
i=] j=1 I 

for all A E p(T). 
Before looking at R,( T)(Z- IF’,), we need the following lemmas. 

LEMMA 3.1. Let X be a Banach space. Consider the power series 
C,“= ,(A - &)“a,,, where 1, A,, E @ and a,, E X, n = 1,2, . . . . 

(a) Zf there exists a(A)EX such that lim,, o. I/a(A)- 
Cf: I ,, (A- &)“a, II = 0, then lim, _ 3. 11 (A - &)“a, 1) = 0. 

(b) !.f lim supn4 m )I a,, /I ‘In = l/p, then the series is absolutely con- 
vergent for II -&I <p and divergent for IA--&I >p (for l/p =0 set 
p=co). 

Proof: See [6, p. 961. 

LEMMA 3.2. Let T be a discrete operator in a Hilbert space H with 
o(T)= {A,},“_,. Fix IIep(T) andset d=inf{l~i-ill I &EC(T)}. Then 

r(R,(T)) = /irnm (1 Rn(T)iII’ii= l/d, (3.6) 

where r(R,( T)) denotes the spectral radius of R,(T) (l/d = 0 for d = CO). 

Proof: This is immediate from the spectral radius theorem and [7, 
p. 1771. 

It is straightforward to show that the conclusion of the last lemma 
remains true when 11 R,( T)‘Il’u is replaced by 11 R,(T)‘+ ’ II lb. 

Equation (2.6) shows that T commutes with PN, and hence with Z- P,. 
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Thus, T(Q( T) n MN) E M,. In view of this we define TN: B(T) n 
M,+M,by 

TN= TICS(T)nM,. (3.7) 

Clearly T, is a closed linear operator in M,. From [S, p. 1041 it follows 
that T, is densely defined in M, and from [7, p. 1781 that o(TN) = 
{IZi)EN+ 1’ For I E p(T) it is easy to show that 

MT) I MN = R,( TN). (3.8) 

Since R,(T) is compact, so is R,( TN), and hence, T,,, is a discrete operator 
in the Hilbert space M,. The next lemma obtains a representation for 
RA(T,) that will be used in representing R,(T)(Z- P,). 

LEMMA 3.3. Let T be a discrete operator in H with a(T) = { A,}~,. For 
fixed 1,~p(T,) set d=inf{ 13,-&l l,l~o(T~)}. Then for ill @ with 
IA-&I cd, 

R,( TN) = f (A, - A@,( TN)‘+ ’ in B(MN). (3.9) 
j=O 

The disk I I - A., I < d where convergence occurs is maximal. 

Proof: Lemmas 3.1 and 3.2 and the comments following them imply 
that for 1 E C with II - A0 I cd, Cy=, (A, - A)jR,( TN)j+’ converges in 
g(M,,,), and that the disk where convergence occurs is maximal. Thus, it 
remains only to show that equality holds in (3.9). 

Fix x E Q( TN), and let A be such that I A - I, I < d. Note that AZ- TN = 
(A - A,)Z+ (1,Z- TN). Lemma 3.1 implies that 

f (A, - l)iR,,( TN)j+ ’ (AZ- TN)x 
j=O 

- i (Ao-A)i+lR,,(TN)i+‘x+ i (Jo-A)‘R&,,)‘x 
j=O j=O 1 

= !‘rnm [lx - (A, - A)k+ ‘RA,( T,)“+ ‘x] = Ix. (*) 

Now take any x E M,. Let il be such that II - 1, I c d and note that 

f (~o-~)iR,(TN)i+’ 
> 

x=ZX-(A,-I)~+‘R~(T~)~+~X. 
j=O 
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The operator ill- TN is closed since T, is closed. This fact together with 
Lemma 3.1 and the last equation gives 

k-cc 
5 (&-n)iR,(T,)i”x =Zx. (**) 

j=O 

Lines (*) and (w) prove (3.9). 1 

The results of these last few pages yield 

THEOREM 3.4. Let T be a discrete operator in H with a(T) = {&}z 1, 
and for a fixed positive integer N set T, = TI 9( T) n M,. Then a( T,) = 

{nilE=N+l andfor ,l~p(T)cp(T~): 

0) R,(T)=R,(T)P,+R,(T)(Z- pN), 
(ii) R,(T)P,=Crzl cy~~(( -N,)‘-‘P,/(A--Ii)‘), Ni= (&Z- T)I 

J1/^(T(Ai)), 
(iii) R,( T)(Z- p,) = Rn( T,,,)(Z- P,). 

Also, forfixed ,l,~p(T,) andfor d=inf{1(-A,I I <E(T(T~)}, 

R,(T)(Z-P,)= f (A,-#R,(T,)‘+‘(Z-lla,) in 99(H) (3.10) 
j=O 

for allIEp(T) with 13L-IzoI <d. 

This theorem provides a complete spectral representation of R,(T) in the 
case of a(T) = {A,},“, i, but only a partial representation when a(T) = 
{ &}E i . In the following we show that under the assumption 11 P, (I < A4 for 
N = 1, 2, . . . . the results of Theorem 3.4 are still valid when N is replaced by 
co. This assumption is necessary to ensure the existence of P, as a 
continuous operator defined on all of H. 

Throughout the rest of this section we assume that there is a constant 
M>O such that 11 P,II GM, N= 1,2, . . . . From this assumption it follows 
that there exists a projection P, from H onto S, = s, along M,, where 
lPp,x=C~i Pix for all XEH. Clearly 

R,(T) = MW’, + WW- pm) for all A E p(T). (3.11) 

From (2.4) it follows that S, and M, are invariants of R,(T), implying 
that we can obtain a representation of R,(T) by obtaining representations 
of RJT)P, and R,(T)(Z- p,). 

Equation (2.7) implies that T(S(T) n M,) c M,. Define T,: 9(T) n 
Mm-+Mm by 

T,= TIS@(T)nM,. (3.12) 
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As in the case of TN, T, is a closed linear operator in M,. We claim that 
58(T) A M, is dense in M,. To see this, let x E M, . Since g(T) is dense in 
H, there exists a sequence {xi} 2 i in g(T) such that xi + x. Also, since T 
commutes with Pa,, it commutes with Z - P oo, and hence, {(I- Poo)xi}; I 
belongs to 9(T) n M,. The continuity of I- P, implies that 
(z-P,)xi+(z-P,)x=x, thereby showing that g(T) n M, = M,. 
Thus, T, is densely defined in M,. From a result in [9] it follows that 
AZ- T, maps 9(T) n M, l-l onto M, for all 1 E @, and hence, 
c( T,) = /zr. It can also be shown that 

&(T)IMm=&(Tm) for all 1 E p(T). (3.13) 

Since R,(T) is compact, so is R,( T,), and hence, T, is a discrete operator 
in the Hilbert space M,. 

The next two lemmas provide the results necessary to represent 
R,(T)P, and Rn(T)(Z- P,). The first is the analogue of Lemma 3.3 and 
is proved in a similar fashion. A proof of the second can be found in 
C2, P. 81. 

LEMMA 3.5. Let T be a discrete operator in H with a(T) = { &} z 1. Then 
for &EP(T,)=@, 

R,(T,)= 2 (I,-I)‘R,,(T,)‘+’ in .C#(M,) (3.14) 
j=O 

for all 1 E C. 

LEMMA 3.6. Let X be a Banach space with A, A,c S?(X), i= 1,2, . . . . If 
Ai + A pointwise and if KE 99(X) is compact, then A,K + AK in a(X). 

We now are in a position to state and prove the main result of this 
section and of this paper. 

THEOREM 3.7. Let T be a discrete operator in H with a(T) = { ,I,}; 1. 
Assume there exists a constant M> 0 such that 11 P,,,ll < Zkf, N = 1,2, . . . . Set 
T,=TIQ(T)nM,. Then R,(T)=R,(T)P,+R,(T)(Z-P,)for lop 
with 

R,(T)P, = f f ',;'-';;)yi in .4J( H), (3.15) 
i=l j=l I 

where Ni= (Ail- T) I ,Ir( T(J.,)), and with 

R,( T)(Z- P,) = f (A,-#Z2,,( T,)j+ ‘(I- P,) 
j=O 

in S?(H), (3.16) 

where Izo is a fixed element of p( T,) = @. 
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Proof. We know that R,(T) is compact and that P, + P, pointwise. 
Therefore, Lemma 3.6 can be applied, together with (2.2) and (3.4), to 
show that 

P,RJT)= -f P,&(T)= f &(T)P,= f f ((;j;;):pi 
i= 1 i=l i-1 j-1 I 

in g(H). Equation (3.16) is immediate from (3.13) and (3.14). 1 

Theorem 3.7 yields a complete spectral representation of R,(T) when 
CJ( T) = {&}z, , provided I( P, II < M, N = 1,2, . . . . As a concluding remark 
we note that the convergence of the two series appearing in the theorem is 
uniform on compact subsets of p(T). 

4. REPRESENTATION OF R,(T) BASED ON 

SPECTRAL OPERATOR-TYPE ASSUMPTIONS 

Throughout this section we assume the stronger assumption that the 
family of all finite sums of the projections Pi is uniformly bounded in norm 
by a constant M > 0. This assumption is one of two made in the theory of 
discrete spectral operators, the other being that M, = {0}, which we do 
not assume. 

To simplify the statement of later results, we make the following 
definition. 

DEFINITION 4.1. A discrete operator T with a(T) = { A,}~, is spectral- 
like iff the family of all finite sums of the projections Pi is uniformly 
bounded in norm by a positive constant M. 

We now show that T being spectral-like allows more to be said about 
the representation of R,(T). We start with 

LEMMA 4.2. Let T be a spectral-like operator in H. Then for every 
XES, 

lM2 O” m< 1 IIPiXl12<4M2 11412, 
i= I 

(4.1) 

where the constant M is as in Definition 4.1. 

Proof: Fix a positive integer N. Let F= F(N) denote the family of all 
mappings from { 1, 2, . . . . N} into { - 1, 1 }. Let y E F and denote the value of 
y at je { 1,2, . . . . N} by yj. Let x E S, and set 

x(Y)= f Yjpjx, x+(Y)= C pjx9 X-(y)= C PjX. 
j= 1 Y, > 0 Y, c 0 
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Then 

x+(Y)+X-(Y)= f PjX=XN, 
j=l 

and 

X+(Y)-x-b)=x(Y). 

Note that F has 2N elements, that 

and that 

$,r, llxh412= $ IlPj~ll’ 
j=l 

(**I 

[4, p. 3343. Let A = {jlvj> 0} and B= {j I yj< O}. Then (*) implies that 

ll~w~2 ll~+(Y)l12+2 IL-WI’ 

Consequently, 

$y~FllX(~)l/2= i IIPjxl12~4M2 lIxNl12. 

j= 1 

We note that there exists y E F such that 

Ilx(Y)I12 G : IIpjxl12~ 
j=l 

for otherwise 

Ilx(~)l12 > i llpjxl12 for all y E F, 
j=l 

implying that 

$$ Ilwl12 > f llPjXl129 
j=l 
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contradicting (MC). Now (*) implies that for his y 

G4M2 llwl12 

<4M2 g IIPjXl12. 
j=l 

Thus, 

llXNl12 N wd 1 IIPjxl12~4M2 llXNI12’ I 
j=l 

COROLLARY 4.3. Let T be a spectral-like operator in H with a(T) = 
{ &} z,. Then the function 

llxll*=( z llpixlli)Lil, XESm, (4.2) 
i=l 

is a norm on S,. Furthermore, S, is complete under II .I/ * with 

g$< l/XI/ G2M l/xl/*. (4.3) 

Proof: Lemma 4.2 shows that II . II * is well defined and implies (4.3). 
The fact that II -II* is a norm follows from the triangle inequality in I* 
together with the result that S, n M, = (0). The completeness of S, 
under I(. II * is a trivial consequence of (4.3). [ 

It should be noted that 

fx9 Y)* = f Cpix9 pi.Y), x, YES,, (4.4) 
i= I 

defines an inner product on S, with llxll* = (x, x):/~, x E S,. Furthermore, 
if x E JV( T(A,)) and y E N( T(llj)), then 

Cx, Y)*= 5 tpkx, Pk.Y)= f tPkPiX, PkPj.Y)=G~(x~ Y) 
k=l k=l 

by (2.8), thereby showing that the generalized eigenspaces N(T(&)), 
A”( T(Aj)) are orthogonal under this inner product when i # j. 
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If R,(T) is assumed to be a Hilbert-Schmidt operator, then 
C& 1/11-ii12 < cc [ 1, p. 1941. With this fact in hand, we present the 
next theorem, which provides a “Jordan-canonical form” decomposition of 
R,( 0. 

THEOREM 4.4. Let T be a spectral-like operator in H with 
a(T) = { Ai} p”= 1, and assume R,(T) is Hilbert-Schmidt for all A E p(T). Then 

R,(T)=D,+Q,+R,(T)(Z-P,) forall Icp(T), (4.5) 

where 

in W(H), 

Furthermore, DA, Q,, and R,(T)(Z- EJ,) are compact operators on H with 
@A) = d&(T)) and dQJ = d&(T)U- Pm)) = 10). 

Proof Fix 1 E p(T). Define D N: H+ H by DN=Cyxl(PJ(l-Ai)), 
N= 1, 2, . . . . Since B(D,) is finite dimensional, D, is compact. If XE H and 
k > 1, then Corollary 4.3 implies that 

and hence;by the comments preceding this theorem, (DN};=, is a Cauchy 
sequence in W(H). Therefore, there exists a compact operator DA EB(H) 
such that 

(*I 

If H is infinite dimensional, then it is clear that OE a(DJ. Let 
XEN(A~Z- T) with x#O. Then DAx=(l-&-lx, so (A-A,)-‘Ec(D~), 
i.e., a(R,( T)) c o(Di). For the reverse inclusion suppose < E o(D,) with 
< # 0. Then there exists x # 0 such that D,x = cx. From (*) it is clear that 
XESCOa, so there exists an integer 1 such that P,x #O. This implies that 
P,D,x = P/x/(3, - A,) = <P,x, i.e., 5 = (A - Ai)-‘. Thus, o(DJ = a(RA(T)). 

For N= 1,2, . . . define QN: H-, H by QN=CL, ~~~~ (-N,)j-‘Pi/(A-A,)/ 
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where we insert 0 in the sum for the terms with mi= 1. Consider the 
sequence {Q,>;= 1 of compact operators in B(H). From Theorem 3.4 we 
see that QN= R1(T)P, - D,. Thus, for any k, 1 we have 

IQ,-Q,II 6 IIWW=‘,-PJII + IID,-D,II. 

The results from the first paragraph of this proof and Lemma 3.6 imply 
that (QN};=, is a Cauchy sequence in W(H). Thus, there is a compact 
operator QA E g(H) such that 

Q,= .f f (-Ni)j-'Pi 

i=l j=* (LA,)j . 
(**) 

Clearly o(QJ # 0. Suppose there is a nonzero <E a(Ql). Then there 
exists a nonzero x E S, and a projection P, such that P,Q,x = tP,x # 0. If 
we note that QIP,x = P,Qlx, then it is clear that Ql P,x=(Q,P,)P,x= 
<P,x, i.e., 5 E a(Qn P,). Since (QA Pl)mr= 0, QIPl is nilpotent, and hence, 
u(Q~ P,) = {O}. This leads to a contradiction. Therefore, a(Ql) = (0). 

Clearly R,(T)(Z- Pp,) is compact because R,(T) is compact. Also, 
Rn(T)(Z- P,)=R,(T,)(Z-P,). Since a(T,)= 0, a(R,(T,))= {0}, 
and hence, a(R,(T)(Z- P,)) = (0). 1 

It should be noted that (4.5) generalizes (1.2) and that (4.5)(b) provides 
a representation for QA previously unavailable. 

5. APPLICATIONS 

In H = L*[O, l] define the second-order differential operator L by 

9(L)= {UEH2[0, l] ~u’(o)+U’(l)=o, u(O)=O}, Lu = -l/, 

where H*[O, l] denotes the subspace of H consisting of all functions 
u E C’[O, l] with U’ absolutely continuous on [0, l] and U” E H. Then L is 
a discrete operator in H [ 111. Furthermore, o(L) = { Ai}?= 1, where 
&=[(2i--l)n]*, with v(&)=2=mi, i=l,2,.... It is shown in [lo] that 
the family of all finite sums of the projections P, is uniformly bounded in 
norm by the constant M = 6, that S, = H, that M, = (O}, and in [ 1 l] 
that R,(L) is Hilbert-Schmidt. Thus, for all 1 E p(L) 

in g(H). (5.1) 

The operator L in this example comes from a class of differential operators 
which has not previously been studied, the distinguishing feature being the 
presence of infinitely many multiple eigenvalues. These operators will be 
the subject of a future paper [lo]. 
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In the product Hilbert space H= L’[O, l] x L2[0, 11, with the standard 
inner product and norm, define the linear operator T by 

9(T) =9(K) x 9(L), T( u, u) = (Ku, Lu), 

where K and L are the differential operators in L2[0, l] defined by 

9(K)= {UEH2[0, l]~U(o)=U(l)=o}, Ku = -u”, 

and 
9(L) = (u E H2[0, l] ) u(0) = u’(0) = 01, Lu = - d’, 

respectively. It can be shown that T is an spectral-like operator in H with 
o(T)= {&}im_,, where li = (ire)’ for i = 1,2, . . . . It can also be shown 
that R,(T) is a Hilbert-Schmidt operator for all 1 E p(T), that S, = 
{(u,O)EH~~EL~[~,~]}=~,, that M,={(O,~)EHJUEL~[O,~]), that 
mi = 1 for all i, and that Pi(u, u) = ((u, c$~) c$~, 0), where ~$~(r) = ,/? sin(izt), 
i = 1, 2, . . . . Thus, for all 1 E p(T) 

R,(T)=i~I~+~io(z-~,) in B(H), 
I 

(5.2) 

where Poo(u, u) = (u, 0) for all (u, u) E H. 
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