
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect
Journal of Arrhythmia

Journal of Arrhythmia 32 (2016) 411–417
http://d
1880-42
(http://c

n Corr
E-m
journal homepage: www.elsevier.com/locate/joa
Review
Cardiac dynamics: Alternans and arrhythmogenesis
Gary Tse, BA Hons MBBS MA PhDa,n, Sheung Ting Wong, BScb, Vivian Tse c, Yee Ting Lee a, Hiu Yu Lin a,
Jie Ming Yeo, MBBS BScb

a School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
b Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
c Department of Physiology, McGill University, Canada
a r t i c l e i n f o

Article history:
Received 21 December 2015
Received in revised form
28 January 2016
Accepted 22 February 2016
Available online 28 March 2016

Keywords:
Cardiac arrhythmia
Dynamics
Re-entry
Restitution
Alternans
x.doi.org/10.1016/j.joa.2016.02.009
76/& 2016 Japanese Heart Rhythm Society. Pu
reativecommons.org/licenses/by-nc-nd/4.0/).

esponding author. Tel.: þ852 39177548; fax:
ail address: gary.tse@doctors.org.uk (G. Tse).
a b s t r a c t

Pre-existing heterogeneities present in cardiac tissue are essential for maintaining the normal electrical
and mechanical functions of the heart. Exacerbation of such heterogeneities or the emergence of
dynamic factors can produce repolarization alternans, which are beat-to-beat alternations in the action
potential time course. Traditionally, this was explained by restitution, but additional factors, such as
cardiac memory, calcium handling dynamics, refractory period restitution, and mechano-electric feed-
back, are increasingly recognized as the underlying causes. The aim of this article is to review the
mechanisms that generate cardiac repolarization alternans and convert spatially concordant alternans to
the more arrhythmogenic spatially discordant alternans. This is followed by a discussion on how alter-
nans generate arrhythmias in a number of clinical scenarios, and concluded by an outline of future
therapeutic targets for anti-arrhythmic therapy.
& 2016 Japanese Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Pre-existing heterogeneities present in cardiac tissue are essential
for maintaining the normal electrical and mechanical functions of the
heart. However, an increased risk of cardiac arrhythmias can result
from the exacerbation of such heterogeneities, which can occur
blished by Elsevier B.V. This is an

þ852 2817 0857.
under pathological conditions or following the administration of
cardiotoxic drugs. The emergence of dynamic factors, which can
interact with each other as well as with pre-existing tissue hetero-
geneities, can produce arrhythmogenic repolarization alternans and
therefore cardiac arrhythmias. The focus of this review is to illustrate
the mechanisms that (i) generate cardiac alternans, (ii) convert spa-
tially concordant alternans to the more arrhythmogenic spatially
discordant alternans, and (iii) are responsible for the production of
arrhythmias in a number of clinically relevant conditions. This is
open access article under the CC BY-NC-ND license
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concluded by a discussion on future therapeutic targets for anti-
arrhythmic therapy.
Fig. 2. An APD restitution curve describes the relationship between the APD and
the previous diastolic interval (solid line). The gradients of the curve are repre-
sented by the broken line. The values of DIs at which such gradients are greater
than one are represented by the gray box.
2. Cardiac alternans

Cardiac alternans are beat-to-beat oscillations in either arterial
pulse or electrocardiographic QRS and T waves. Of these, T-wave
alternans (TWAs) have been associated with re-entrant arrhyth-
mogenesis and identified as a good predictor of sudden cardiac
death [1]. They are due to alternations in repolarisation time
courses (measured as action potential durations, APDs) at the
cellular level, which increase in amplitude with faster heart rates.
TWAs have been observed in a number of conditions, including
electrolyte abnormalities, hypothermia, coronary artery disease,
post-myocardial infarction, long QT and Brugada syndromes,
vasospastic angina, dilated, hypertrophic, and Takotsubo cardio-
myopathies, and end-stage heart failure.

2.1. APD restitution-dependent mechanisms

The relationships between the diastolic interval (DI), APD, and
basic cycle length (BCL) are shown in Fig. 1. BCL is the sum of APD
and DI. The mechanism of APD alternans was first described by
using a graphical method, relating them to APD restitution [2].
This refers to the normal shortening of APD in response to faster
heart rates, and is thought to be an adaptive mechanism for pre-
serving diastole at such rates. It can be defined as the dependence
of APD on the previous DI. Experimentally, this can be determined
by using an S1S2 protocol, which gradually shortens the interval
between the S1 and S2 stimuli, or by using a dynamic pacing
protocol, which increases the heart rate by progressively reducing
the BCL. While both methods can be used to measure APD resti-
tution [3], the S1S2 restitution curve is a measure of the
immediate response to a change in BCL, whereas the dynamic
restitution curve is a measure of the steady-state response [4].
Fig. 2 shows a typical APD restitution curve obtained from mouse
hearts, APDnþ1¼ f (DIn), where f is the function relating the new
APD to its previous DI. The dashed line indicates the gradient of
the curve and the gray area refers to values of DIs with gradients
greater than one.

The gradient of the restitution curve is a collective measure of
the recovery of all the ion channels opened during the cardiac
action potential. First, of these channels, sodium channels recover
from inactivation rapidly, and therefore their effects on APD res-
titution occur mainly at short DIs, between 0 and 40 ms in human
hearts. However, if the recovery of sodium channels is slowed,
which can occur under ischemic conditions [5], their effects on
APD restitution would be extended to longer DIs. Second, the L-
type calcium channels recover more slowly than sodium channels,
and their effects are therefore observed in the short and inter-
mediate DI ranges, between 0 and 100 ms. These calcium channels
provide the majority of the inward current during the plateau
phase of the action potential and therefore exert major effects on
APD restitution. Their inhibition leads to reduced gradients of APD
restitution curves. Third, time-dependent potassium channels,
Fig. 1. Voltage trace showing the relationships between action potential duration
(APD), diastolic interval (DI), and basic cycle length (BCL).
such as the voltage-gated delayed rectifiers, show the slowest
recovery compared to other ion channels and therefore their
effects are observed over a much larger DI range beyond 100 ms.
In addition, the block of potassium channels shows reverse use
dependence, where there is less block with increasing use [6].
Thus, the block increases during phase 4 of the action potential
(diastole) and decreases during the plateau phase. Consequently,
potassium channel blockers, which prolong APDs, have greater
effects at long BCLs (bradycardia) and long DIs (e.g. compensatory
pause after an ectopic beat), but have much smaller effects at short
BCLs (tachycardia) and DIs [6]. They generally increase the gra-
dients of APD restitution curves. The steep portion of the APD
restitution curve is relevant in sinus tachycardia, where the heart
rate is increased. It is also relevant in heart failure or the con-
genital and acquired long QT syndromes. In these conditions, APD
is prolonged and therefore the DIs can become short enough to
engage the steep portion of the APD restitution curve even at
normal heart rates.

Fig. 3 shows cobweb plots that can be used to determine the
stability of APD alternans. As BCL decreases, APD also decreases
and the relationship BCL¼APDþDI can be shown graphically as a
straight line with a gradient of �1. The equilibrium point of APD
for each BCL is the intersection point of the restitution curve and
this line, which has the coordinates [DIs, APDs]. The stability of
APD can be determined by perturbing the DI by a small amount, δ,
Fig. 3. APD restitution curve plotting APD against the previous DI (solid line) along
with their gradients (broken line). The values of DIs with gradients greater than one
are represented by the gray box. The cobweb plot shows that when the APD res-
titution gradient is less than one, a stable equilibrium point is produced on
successive beats.
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such that DInþ1¼DInþδ. A negative δ that shortens the DI would
move DInþ1 to the left. This will in turn produce a shorter APDnþ2.
However, this will result in a long DInþ2 and therefore a long
APDnþ3.

If the gradient of the APD restitution curve at the intersection
with the BCL line is less than one (Fig. 3), then the alternans are
Fig. 4. APD restitution curve plotting APD against the previous DI (solid line) along
with their gradients (broken line). The values of DIs with gradients greater than one
are represented by the gray box. The cobweb plot shows that when the APD res-
titution gradient is greater than one, an unstable equilibrium point is produced on
successive beats, eventually leading to conduction block.

Table 1
APD restitution-dependent and APD restitution-independent mechanisms for producing

APD Alternans Explanation

APD restitution-dependent APD is depe
in the steep

APD restitution-independent:
Cardiac memory APD depend

pacing histo
Rate-depend
despite subs

Calcium handling Ca2þ-APD
VERP restitution VERP can di
Mechanoelectric feedback Mechano-se

Table 2
Mechanisms for producing spatially concordant and spatially discordant APD alternans.

Alternans Mechanisms

Spatially concordant alternans
(SCAs)

Positive Ca2þ-APD coupling

Spatially discordant alternans
(SDAs):
Pre-existing tissue
heterogeneities

Steep APD restitution

Spatial gradients in Ca2þtransients
Spatial gradients in VERP
Gap junction uncoupling or downregulation
Abnormal sodium channel function
Fibrosis

Dynamic factors CV restitution
Steep VERP restitution
Steep relationship between sarcoplasmic reticulum
release and diastolic sarcoplasmic reticulum calcium
Negative Ca2þ-APD coupling
Calcium accumulation in the sarcoplasmic reticulum

Reduced repolarization reserve
After-depolarization phenomena
Ectopic beats
Sympathetic stimulation
transient and will return to the stable equilibrium point over sub-
sequent beats. However, if this gradient is greater than one (Fig. 4),
then the amplitude of the alternans will increase, eventually leading
to 2:1 block in this simplified situation where the APD restitution
curve is linear. As indicated in the figure, the slope of the APD
restitution curve decreases with longer DIs and therefore alternans
will eventually reach a maximum stable value because the flat
restitution curve prevents their growth.

2.2. APD restitution-independent mechanisms

Restitution analysis assumes that alterations in DIs produce the
changes in APDs, and that the gradient of the restitution curve
determines the extent to which alterations in DIs produce APD
alternans. However, a feedback-based protocol that permits
explicit control of DI independent of APD has subsequently been
developed [7,8]. Experiments using such a protocol have demon-
strated APD alternans can occur during constant DI pacing [9]. This
means that DIs do not necessarily have to change to produce APD
alternans, which therefore have APD restitution-dependent and
restitution-independent components. Therefore, it can be con-
cluded that other factors influence this situation. Some of these
factors that have been identified include cardiac memory, calcium
handling dynamics, ventricular effective refractory period (VERP)
restitution, and mechano-electric feedback, which will be dis-
cussed in turn (Table 1).
APD alternans.

References

ndent on the previous DI. Abrupt change in DI leads to engagement
portion of the APD restitution curve.

[2]

[9,71]
s on not only the preceding DI but a series of DIs preceding it, i.e. the
ry is important, which is termed APD accommodation.

[3,11]

ent memory, termed hysteresis, results in persistence of alternans
equent slowing of heart rate.
coupling [14–18]
verge from APD, e.g. during hypokalemia. [19,63]
nsitive ion channels can influence the membrane potential [21,22]

Clinical relevance References
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Heart failure, Long QT syndrome type 3 [31]
Heart failure [30]
Ischemia, sodium channel blockade, hypothermia [5,34,62]
Hypokalemia [38]
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load

Heart failure, exercise, catecholaminergic polymorphic
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Heart failure [40,38]
Heart failure, exercise, catecholaminergic polymorphic
ventricular tachycardia
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Long QT syndromes [47]
Atrial fibrillation, heart failure [77,78]
Heart failure, long QT syndromes [34]
Heart failure, exercise [61]
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Cardiac memory results from the slow recovery of ion channels
as well as the gradual accumulation of ions on either side of the
cell membrane. Consequently, the pacing history is also important,
and so APD depends not only on its immediately preceding DI but
also on the series of DIs preceding it, i.e., APDnþ1¼ f (DIn, DIn�1,
DIn�2…). Second, APD depends not only on the preceding DIs but
also on the previous APDs. Therefore, in the presence of these
short-term memory effects, known as APD accommodation [10],
APD restitution gradients greater than one may not predict the
onset of APD alternans [3,11]. Nevertheless, better methods have
been developed to investigate the rate- and memory-dependent
aspects of APD restitution. For example, the restitution portrait
was generated by modifying the pacing protocol to include a
measurement of the transient response of the APD after a change
in BCL [4]. This allows measurements of various aspects of APD
restitution simultaneously, including dynamic restitution, S1S2
restitution, and the transient response that arises from short-term
memory. Such a protocol has subsequently been used to examine
restitution properties in the ventricles of perfused whole hearts
[12]. Moreover, rate-dependent memory, known as hysteresis, has
been demonstrated for repolarisation alternans observed in
humans [13]. This refers to alternans induced by rapid pacing that
persist despite subsequent slowing of the heart rate [14]. Theo-
retical work has shown that both restitution-dependent and
independent factors are responsible, and abnormal calcium
handling plays an important role [14]. Studies investigating onset
of alternans should specify the initial pacing conditions to account
for hysteresis.

Calcium handling dynamics, when altered, can also produce
APD alternans [15]. Membrane potential and [Ca2þ]i are bi-
directionally coupled. ICa,L is a major determinant of both APD
and [Ca2þ]i. If APD alternates, [Ca2þ]i will also alternate in
response to the alternating ICa,L amplitude (APD-Ca coupling). A
longer DI allows a longer recovery time of the L-type calcium
channels, which would increase the SR calcium load and therefore
the calcium transient amplitude. Conversely, [Ca2þ]i also affects
APD through its effects on the calcium-sensitive currents, such as
ICa,L, INCX, INS, ICl,Ca, that are active during the plateau phase (Ca-
APD coupling). The situation is complex here because [Ca2þ]i can
have opposing effects on APD. It shortens APD by potentiating the
calcium-induced inactivation of ICa,L but prolongs APD by
increasing the inward current produced by INCX. The net effect of
[Ca2þ]i on APD depends upon which of the two factors dominates.
A larger Ca2þ i transient causing prolonged and shortened APDs is
termed positive and negative coupling, respectively [16]. Further-
more, the propensity for pacing-induced calcium alternans
increases with increasing mitochondrial dysfunction through
either dissipation of the mitochondrial membrane potential or
inhibition of ATP synthesis [17]. What is clear is that APD alternans
is an emergent property involving both voltage- and calcium-
dependent mechanisms. Recent experiments using stochastic
pacing demonstrated the use of a novel parameter, λalt, to reveal
the onset of alternans as well as to distinguish between voltage-
and calcium-driven APD alternans [18].

In situations where the VERP diverges from APD, as has been
shown in hypokalemia, restitution gradients may not accurately
predict the onset of alternans [19]. In this case, the gradients of
VERP restitution curves may be a better indicator. An additional
advantage of VERP over APD restitution is that VERP can be
measured without the need to accurately record action potential
waveforms from monophasic action potential (MAP) recordings.

Moreover, mechanical contraction can modulate the electrical
activity of myocytes, a phenomenon referred to as mechano-
electric feedback (MEF). Electrical alternans have been observed
during simulated pulsus alternans produced by clamping the aorta
on alternate beats [20]. In this situation, the myocytes of the vessel
wall did not actually contract and therefore changes in [Ca2þ]i
probably did not cause these electrical alternans. It instead pointed
to mechano-sensitive ion channels [21], such as volume- or
stretch-activated channels (SACs), being responsible. Indeed, these
mechano-sensitive ion channels can influence the membrane
potential on a beat-to-beat basis and may therefore influence
cardiac dynamics. Thus, preliminary evidence shows that SAC
activation can have suppress spatially concordant alternans but
exacerbate discordant alternans [22].
3. Spatially concordant and discordant alternans

APD alternans can be either spatially concordant or discordant
(Table 2). As the pacing rate is increased, spatially concordant
alternans are observed, in which APD is long throughout the car-
diac tissue on one beat and short on the next beat, i.e., APDs in
different regions alternate in phase with each other. When the
pacing rate is increased further, spatially discordant alternans are
produced, in which APD is long in one region but short in an
adjacent region, and changes phase on the next beat; i.e., APD in
different regions alternate out of phase with each other. A number
of mechanisms have been identified as being responsible for the
production of spatially discordant APD alternans. These can
involve pre-existing heterogeneities, which often interact with
dynamic factors to produce them. However, pre-existing tissue
heterogeneities may not be necessary; the presence of dynamic
factors alone may be sufficient for producing spatially discordant
alternans [23].

3.1. Pre-existing tissue heterogeneities

Pre-existing tissue heterogeneities are normally present in the
heart, such as spatial gradients in repolarization between the
endocardium and epicardium or the base and apex. A steep APD
restitution gradient can convert spatially concordant alternans to
discordant alternans [24]. Like APD, Ca2þ i handling in the ventricle
also exhibits apex-base [25] and endocardium-epicardium [26]
gradients. Since Ca2þ i affects APDs, heterogeneity in Ca2þi hand-
ling can produce spatially discordant APD alternans via either
differential Ca2þ i-APD coupling or spatial heterogeneities in the
phase of the Ca2þ i alternans [27]. Moreover, electrotonic coupling
between cardiomyocytes via gap junctions attenuates differences
in properties between individual cells. When gap junctions are
uncoupled, pre-existing heterogeneities such as spatial gradients
in APDs, CVs, and Ca2þ i can become amplified, leading to dis-
cordance [28,29]. Finally, under conditions where cardiac con-
duction is abnormal, e.g. in heart failure [30], the threshold for
inducing spatially discordant alternans is lower. This may be due
to fibrosis, altered expression of gap junctions, or delayed recovery
of sodium channels from inactivation [31].

3.2. Dynamic factors

A number of dynamic factors can convert spatially concordant
to discordant APD alternans. First, CV restitution describes the
relationship between the CV and the preceding DI (Fig. 5). It is
almost entirely dependent on the recovery of sodium channels
because the upstroke of the action potential is mainly determined
by these channels [32]. Under normal conditions, these channels
recover from inactivation rapidly, and therefore CVs only slow at
very short DIs, between 0 and 10 ms (Fig. 5, solid line). However, if
their recovery is slowed, CVs vary over a broader range of DIs
(Fig. 5, dashed line). Fast pacing can engage the steep portion of the
CV restitution curve to convert pre-existing spatially concordant
alternans to discordant APD alternans when the tissue size is



Fig. 5. CV restitution curve. CV is plotted against its previous DI in which sodium
channel recovery is normal (solid curve) or slowed (dashed curve). The latter is
observed in clinical situations such as tissue ischemia, after application of sodium
channel inhibitors and hypothermia.

Fig. 6. Pre-existing heterogeneities or dynamic factors can convert spatially con-
cordant APD alternans to spatially discordant APD alternans.

Fig. 7. Potential molecular targets for anti-arrhythmic therapy, by suppression of
spatially discordant APD alternans by influencing cellular and tissue dynamics.
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sufficiently large [33]. Initially, at a relatively low heart rate, spa-
tially concordant APD alternans are observed. When the heart rate
increases, a beat with a long APD has a sufficiently short DI after it.
This engages CV restitution, causing the CV of the subsequent beat
to decrease. The conduction slowing allows the DI to increase
slightly, which in turn allows APD to increase slightly. This process
amplifies itself with subsequent beats, eventually producing dis-
cordant alternans [34]. This mechanism may be important during
ischemia or sodium channel blockade where sodium channel
recovery is slowed [5,35]. This would extend the range of DIs over
which CV varies, producing spatially discordant APD alternans
even at normal heart rates [36], thereby increasing arrhythmo-
genic risk [32,37] in both of these conditions. Alternatively, CV
restitution can also interact with steep VERP restitution or altered
[Ca2þ]i cycling dynamics to produce discordant alternans [38]
(Fig. 6).

Ca2þalternans can be induced in cardiac cells by making sar-
coplasmic release of calcium strongly dependent upon the SR
Ca2þcontent [39]. They can become discordant if Ca2þ-APD
coupling is changed from positive to negative [40]. Recently, a
novel mechanism for the production of spatially discordant alter-
nans was demonstrated despite positive Ca2þ-APD coupling [41].
Here, rapid pacing led to Ca2þaccumulation in the sarcoplasmic
reticulum over many beats, leading to Ca2þalternans that were
out-of-phase with each other [41]. Compelling evidence suggests
that APD alternans, whether in the atria or the ventricles, are
driven by Ca2þ i alternans [42], which are attributable to ryanodine
receptor refractoriness [43].

The concept of repolarisation reserve was introduced to explain
the occurrence of arrhythmias, positing that redundancy in repo-
larization exists [44,45]. The idea is that elimination of one repo-
larizing current need not necessarily lead to failure of repolarisa-
tion because of compensation by other repolarizing currents [46].
Recent experiments in transgenic LQT1 rabbits have shed light on
the mechanistic link between repolarisation reserve and alternans
[47]. Interestingly, in this model, reduced repolarization reserve
per se was paradoxically associated with a shallower gradient of
APD restitution and a higher threshold for inducing alternans. It
was only tachycardia pacing that led to steepening of the restitu-
tion curves and the development of alternans. This in turn has
been attributed to abnormal calcium handling, in which IKs
downregulation led to discordant Ca2þalternans. Under conditions
of prolonged repolarization or abnormal calcium handling, after-
depolarization phenomena are observed and these can produce
spatially discordant alternans. Where the voltage change brought
about by such phenomena are sufficiently large, an ectopic beat
can be generated, which can cause dispersion of the diastolic
interval, thereby converting spatially concordant alternans to dis-
cordant alternans [34].
4. Alternans and arrhythmogenesis in different clinical
conditions

APD alternans, whether spatially concordant or discordant, can
produce arrhythmias. For example, spatially concordant alternans
themselves can produce 2:1 conduction block, thereby initiating
re-entry [48]. Nevertheless, discordant alternans are considered to
be more arrhythmogenic. They can produce large spatial gradients
in repolarisation and refractoriness, which can result in local
conduction block of a premature extrasystole (such as a premature
ventricular complex, PVC [37]), thereby facilitating re-entry
[23,49]. They can also promote phase 2 re-entry involving either
a fixed or a variable Ito, allowing antegrade and retrograde phase
2 re-entry, respectively [50].

These mechanisms for producing spatially discordant alternans
are important in a number of clinical conditions, potentially
causing lethal arrhythmias. In heart failure, there is extensive ion
current remodeling with a lower threshold for inducing APD
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alternans [51]. APDs are prolonged due to downregulation of
potassium currents and increased late sodium current [30]. This
would allow the steep portion of APD restitution to be engaged,
and therefore generation of spatially concordant alternans. These
can become discordant in the presence of conduction abnormal-
ities [30], cardiac fibrosis [52], or abnormal Ca2þ i handling
dynamics, such as increased SR Ca2þ leak [53], decreased SERCA
pump activity [54], increased NCX currents [55], or steeper frac-
tional release of SR Ca2þ i content [56]. In catecholaminergic
polymorphic ventricular tachycardia (CPVT), mutations in the
ryanodine receptor lead to diastolic calcium leak and generation of
discordant Ca2þ i alternans [57,58]. Long QT syndromes are char-
acterized by APD prolongation, a reduction in repolarization
reserve, and increased APD restitution gradients leading to the
production of APD alternans. Spatial heterogeneities in repolar-
ization are exacerbated due to differences in ion channel expres-
sion and heterogeneities in restitution across the myocardial wall.

Other pro-arrhythmic conditions are clearly associated with a
flatter APD restitution curve, but discordant alternans can be
generated when regional differences in restitution lead to spatial
heterogeneities in APDs [59]. In myocardial ischemia and sodium
channel blockade, CV restitution may be more important in the
conversion of concordant alternans to discordant alternans [60].
Increased beta adrenergic drive, which can occur in heart failure or
exercise, can increase the maximum gradients of APD restitution
and produce discordant alternans [61].

Regardless of the mechanisms generating these arrhythmogenic
alternans, the final common pathway involves wavebreak, conduction
block, and the initiation and maintenance of re-entrant arrhythmias
[62]. It should be recognized that alternans are only one factor in
determining arrhythmogenesis. An anti-arrhythmic state can occur
even in the presence of both steep APD restitution and discordant
alternans, as exemplified by hypokalemia [19]. Heptanol, a gap junc-
tion uncoupler, was shown to exert anti-arrhythmic effects in hypo-
kalemia by influencing VERP alone [63]. This finding is perhaps sur-
prising, given that reduced electrotonic coupling should exacerbate
dispersion in APDs and promote arrhythmogenesis.
5. Future therapies

The question of how understanding the cardiac dynamics can
enable us to devise better pharmacotherapy for arrhythmia man-
agement persists. Numerous studies using animal models have
demonstrated that the anti-arrhythmic actions of many drugs are
in part mediated by their effects on cardiac dynamics. These
include traditional agents such as beta-blockers as well as novel
drugs such as late sodium current blockers and gap junction
openers [64–66] (Fig. 7). Gap junction inhibitors can exert anti-
arrhythmic effects by prolonging effective refractory periods
[63,67]. Moreover, mild loss of gap junction function in non-
uniform tissue may paradoxically increase CV and improve the
safety margin of conduction [68]. This in turn could remove uni-
directional conduction blocks, converting them into bilateral
conduction [69]. In contrast, gap junction enhancers can improve
conduction and reduce the spatial heterogeneities in repolariza-
tion and refractoriness, thereby suppressing discordant alternans
and arrhythmogenesis. Their effects on calcium dynamics are
complex, depending on the nature of Ca2þ-APD coupling. The
differences in Ca2þ transient between adjacent cells are amplified
in the case of negative coupling, but reduced with positive cou-
pling [40]. Activation of stretch-activated channels exerts opposing
effects on alternans, suppressing those that are concordant whilst
exacerbating those that are discordant [22]. SAC inhibitors could
potentially exert anti-arrhythmic effects by suppressing discordant
alternans. Discordant alternans can also be inhibited by late
sodium channel blockers [65], ryanodine receptor stabilizers [57]
or anti-fibrotic agents [70], which would prevent conduction block
and inhibit arrhythmogenesis. Some of the examples described
above illustrate the difficulty in predicting the overall electro-
physiological effects of a drug, and some may exert their anti-
arrhythmic effects without influencing restitution [71,72]. Future
efforts therefore require a computational strategy in which mod-
eling of the heart can be achieved at different levels of biological
organization to take into account of the complex spatiotemporal
properties of cardiac dynamics.
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