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The representation theory of groups of Lie type has been investigated in 
several research papers recently, with much attention being directed towards 
the computation of constituents of induced modules. Our interest here is to 
start an investigation into the Schur indices of the characters of the groups of 
Lie type in an attempt to give a more complete description of the representa- 
tions. The only previous results in this direction are due to Janusz [IO], who 
obtained the local Schur indices of the characters of the group SL(2, p). 
Our approach concentrates on induced modules, defined via the linear 
characters of the Sylow p-subgroups (p being the characteristic of the 
underlying field of the group). Such modules have been studied by Yokonuma 
[17], and Gelfand and Graev [6], and they have been shown to be multiplicity- 
free for certain linear characters said to be in general position. We will show 
that in many circumstances the characters of the induced modules we define 
are the characters of representations realizable in the rational field. When this 
is the case, the Schur index of any constituent character of the module 
divides the multiplicity with which the character appears. 

Examination of the character tables of some groups of Lie type confirms 
that almost all characters do occur exactly once in some induced module, and 
given favorable conditions in the Bore1 subgroup, we can deduce that such 
characters have Schur index 1. To illustrate our methods we have determined 
the Schur indices of groups of small rank using the currently available 
character tables, but an attack on the general problem seems to require a 
better understanding of the construction of the characters of the Lie groups. 
However, we believe that a knowledge of the character values only on the 
Sylow p-subgroup may be sufficient to tackle the problem for groups of any 
rank. Throughout this paper m,(X) d enotes the Schur index of X over the 
field F. Our findings are presented at the end of the paper. 
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1. PRELIMINARY RESULTS 

The theory of the Schur index is developed in [l, Sect. 70; 9, Sect. 14, 
Chap. 51. Initially, we will need none of the deeper results on the Schur 
index, and will rely on the following property of the index [l, 70.141: 

LEMMA 1. Let F be a representation of a finite group G defined over the 
rationals and let 0 be the character of F. Then if X is an absolutely irreducible 
constituent of 9 and the inner product (0, X) = r # 0, the rational Schur 
index of X divides r. 

We will also use the following result, which is easily established. 

LEMMA 2. Let x be an element of the finite group G and suppose that for 
each integer m coprime to the order of x, x and xm are conjugate in G. Then all 
characters of G take rational values on x. 

2. THE GENERAL LINEAR GROUP 

Let G denote the general linear group GL(n, q), where q is a power of the 
prime p. Our intention is to analyze the structure of an induced character XB, 
where h is a linear character of a Sylow p-subgroup P of G, and B is the 
normalizer of P, usually known as a Bore1 subgroup. We will show that XB 
is the character of a rational representation, and thus the same will be true 
of XG. By computing inner products (X, A”), we will obtain information on the 
Schur indices of the characters of G. 

A result of Gelfand and Graev [6, Theorem 11, shows that each character 
occurs as a constituent of at least one of these induced characters, and so our 
method theoretically has some applicability. However, the Gelfand-Graev 
theorem does not hold for all Chevalley groups or the twisted types, a fact 
which becomes evident even when dealing with the groups of small rank 
considered in the final section. We will base most of our calculations of Schur 
indices in this paper on the method to be developed now for the general linear 
group. 

It is well-known that B can be written in the form B = PH, where 
P n H = 1 and H is isomorphic to n copies of the multiplicative group of 
GF(q). The next lemma is the key to obtaining our results on the Schur index. 

LEMMA 3. Let X be a linear character of P. Then the induced character XB 
is the character of a rational representation. 

Proof. We will take as a representative for P all those lower triangular 
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matrices whose entries on the main diagonal are 1. H will consist of all 
diagonal matrices. The derived group of P consists of all those members of 
P whose entries immediately below the main diagonal are 0, and the derived 
factor group of P is elementary abelian of order q’+1. To determine the action 
of H on P/P’, we have only to examine the action of H on the entries im- 
mediately below the main diagonal of an element of P. 

If h E H has diagonal entries A, ,..., A, and x E P has entries ai ,..., a,-, 
below the diagonal, we find that h&z-l has corresponding entries h&‘a, ,..., 
hJ;!la,-l . Let u be an element of order p - 1 in GF(p) and let m = 
diag(1, 0 ,..., an-l), an element of order p - 1 in H. We readily see that for any 
x in P, mxm-1 and x0 are equal modulo P’. Thus if M is the subgroup of B 
generated by m and P, it follows that each nonidentity element of P/P’ is 
conjugate in M/P’ to its p - 1 nonidentity powers. In particular, Lemma 2 
implies that each character of M/P’ takes rational values on P/P’. Now it is 
easily seen that if X is any linear character of P, AM is irreducible (this follows 
from [9, 16.13, p. 5611 since M/P’ is a Frobenius group with kernel P/P’). 
We also note that AM is rational-valued, for it is zero outside P, and we know 
it must be rational-valued on P. 

Finally, we will show that the Schur index of AM is 1. If this is true, AM is 
the character of a rational representation and the same must be true of P. 
Let L be the subgroup of M generated by m. Since M = PL, Mackey’s 
theorem [9, 16.9, p. 5571, implies that (h”)L is the regular representation of L. 
Thus the trivial representation 1, of L occurs once in the restriction of the 
irreducible character AM to L, and, by reciprocity, AM occurs once in (1 JM 
Lemma 1 implies that AM has Schur index 1, and our proof is complete. 

Thus we have a criterion for determining the Schur indices of characters 
of GL(n, q). 

THEOREM l(a). Let P be a Sylow p-subgroup of G = GL(n, q), where q is a 
power of p, and let h be a linear character of P. Then if X is an irreducible 
constituent of hc with multiplicity r # 0, the rational Schur index of X divides r. 

Proof. We have seen in Lemma 3 that XB is a character of a rational 
representation and the same must be true of Xc. Our assertion follows from 
Lemma 1. 

The information we have collected so far is sufficient for us to obtain the 
following positive result concerning the Schur indices of characters of 
GL(n, 4). 

THEOREM 2(a). Let q be a power of the prime p and let X be a character of 
G = GL(n, q). Then if X(1) is coprime top, the Schur index of X equals 1. 

Proof. We consider the element c of G whose action on a basis e, ,..., e, 
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of the underlying vector space is given by ce, = ei + e+i , 1 < i < n - 1, 
ce, = e, . The order of c is a power of p and c is an example of a so-called 
regular unipotent element. It has been shown by Simpson in [14, Theorem 11, 
that any irreducible character X of G takes only the values 0, 1 or -1 on c. 
Moreover if X(1) is coprime top, X(c) cannot equal 0. 

The centralizer of c in G has order @-l(q - 1) [14, p. 2921, and qn-l is 
the order of the centralizer of c in the Sylow p-subgroup P of G consisting 
of lower-triangular matrices with l’s on the diagonal. In P we have 
Ci e,(c) Bi(c-l) = qn-l by the orthogonality relations, where the sum extends 
over all irreducible characters of P. We note that each linear character h of P 
makes a contribution of 1 to this sum. However, since P/P’ has order p--l, 
there are pn-l different linear characters of P, and their contribution to the 
sum equals the total. Since the sum consists of nonnegative real numbers, 
we must have e(c) = 0 for any nonlinear irreducible character of P. 

Let X be any irreducible character of G whose degree is coprime to p. 
We know that X(c) = &l. Let X, = C a,ei + C b,h, , where the first sum 
consists of nonlinear characters of P, the second only of linear characters. 
If the Schur index of X is t, we know from Theorem 1 that t divides each 
inner product (X, hit). But since (X, hdG) = bi , by reciprocity, t divides each 
b, . By our previous arguments, X(c) = C b&(c) = &I, and if t is greater 
than 1, putting bi = tdi , we obtainx d&c) = &l/t. However, the left-hand 
sum is an algebraic integer, whereas if t > 1, l/t is a rational number but not 
an integer. This is not possible and so t = 1, implying that X has Schur 
index 1. 

3. THE SPECIAL LINEAR GROUP SL(n, q) 

The results we have established about the characters of a Bore1 subgroup 
of GL(n, 4) are not in general true for a Bore1 subgroup of SL(n, 4). As might 
be expected, the situation varies according to the value of n and the arithmetic 
nature of 4. We will let B denote, as before, the normalizer of a Sylow p- 
subgroup P of SL(n, 4). P is complemented in B by a subgroup H of order 
(a - 1),-r and the centralizer of P in B is the center 2 of SL(n, Q), which has 
order (n, 4 - 1). 

We now consider the characters of B/P’. In general it is not true that all 
characters take rational values on P/P’, nor do all characters have Schur 
index 1. However, we will show that for SL(2rz + 1, a) we do have the exact 
analog of Lemma 3. 

LEMMA 4. Let P be a Sylow p-subgroup of SL(2n + 1, q) and let B be its 
normalizer. Then if h is a linear character of P, hB is the character of a rational 
representation. 
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Proof. We follow Lemma 3 and assume P consists of lower triangular 
matrices. H consists of all diagonal matrices with determinant 1. If 0 has 
orderp - 1 in GF(p), we find that the element m = diag(a-“, ol-“,..., an-r, an) 
has determinant 1 and is thus in H. As in Lemma 3, for any element x of P, 
mxm-l and x0 are equal modulo P’. The rest of the proof follows Lemma 3. 

We now have no trouble in proving: 

THEOREM l(b). Let P be a SyZow p-subgroup of G = SL(2n + 1, q), 
where q is a power of p, and let h be a linear character of P. Then sf X is an 
irreducible constituent of hc with multiplicity r # 0, the rational Schur index 
of X divides r. 

We can also obtain an exact analog of Theorem 2(a). 

THEOREM 2(b). Let q be a power of the prime p and let X be an irreducible 
character of G = SL(2n + 1, q). Then if X( 1) is coprime top, the Schur index 
of Xis 1. 

Proof. We take b to be a regular unipotent element corresponding to the 
element c introduced in the proof of Theorem 2(a). It is not true that X(b) 
is necessarily equal to -&I, but we can modify the proof of Theorem 2(a) to 
obtain our objective. We note that X(b) is necessarily an integer, for it is not 
hard to see that b is conjugate to its powers br, (r, p) = 1, in B and hence in G. 

Let Gi = GL(2n + 1, q) and let X = X1 ,..., X, be the distinct Gi- 
conjugates of X. Since G,/G is cyclic, it follows from the Clifford theory, 
[9, Chap. 5, Sect. 171, that there is an irreducible character 0 of Gr with 
4i = Xl + ..* + X, . As the characters Xi ,..., X, are conjugate under 
automorphisms of G it is easily seen that their Schur indices are equal. 
Now r divides / Gr : G 1 = q - 1 and thus, as 0(l) = rX(l), e(l) is also 
coprime to p. 

Let us suppose that the Schur index of X is t. Since Theorem l(b) holds 
for G, the argument of Theorem 2(a) may be applied to show that t must 
divide X(b). But this argument applies to each Gr-conjugate of X, since 
we know that the conjugates also have Schur index t. We have 0(b) = 
X,(b) + ... + X,(b) = f I, by Simpson’s theorem. Since t divides each 
X,(b), it must divide B(b) and consequently t = 1, establishing our claim. 

We turn our attention to the even dimensional special linear group 
SL(2n, q). When q is odd we will see that results on the Schur index are more 
complicated than those encountered so far, but when q is even, there are no 
problems in obtaining analog of Theorems l(b) and 2(b). For if q is a power 
of 2, and P is a Sylow a-subgroup of SL(2n, q), any linear character of P is 
realizable in the rational field, as P/P’ is an elementary abelian 2-group. Thus 
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an analog of Theorem l(b) is trivial, and the argument of Theorem 2(b) 
easily gives, for any n. 

THEOREM 2(c). Let q be a power of 2 and let G = SL(n, q). Then any 
irreducible character of G of odd degree has Schur index I. 

When dealing with SL(2n, q) for odd values of q, the method just described 
for investigating Schur indices is no longer so effective. However, when n is 
odd, we can give a criterion for the existence of characters of Schur index 2. 

THEOREM l(c). Let q be a power of the prime p, with q = 1 (mod 4), and 
let G = SL(2n, q), n odd. Let P be a Sylow p-subgroup of G and let h be a 
nontrivial linear character of P. Then any real-valued irreducible character X 

of G which occurs in Xc with odd multiplicity and is nontrivial on the central 
involution of G has Schur index 2 over the reals, and hence over the rationals. 

Proof. We will assume that P consists of lower triangular matrices. Let 
w have order 4 in GF(q) and let h = diag(w-l, w,..., w-l, w). We see that h is 
in G, normalizes P, and has order 4, with h2 = -1. Following Lemma 3, 
it is easily seen that for all x in P, hxh-l and x-l are equal modulo P’. Let N 
be the subgroup generated by P and h. The analysis above implies that all 
characters of N/P’ take real values on P/P’. 

Now let X be a nontrivial linear character of P. It is not hard to see that h” 
consists of two real-valued characters, pi and pcL2 , of degree 2. We can assume 
that the notation is chosen so that pI(h2) = 2, p2(h2) = -2. Using the 
method of Frobenius and Schur [S, p. 211, it is easily shown that p2 must have 
Schur index 2 over the real numbers. Let X be a real-valued character of G 
which occurs in hG with odd multiplicity, r say, and which satisfies X(h2) = 
-X(l). Let hN = p. Then since hG = pG, we have (pG, X) = r. However, 

CL G = piG + pzc and all constituents of plG are trivial on h2. Thus (p2G, X) = r 
and correspondingly X, = rp2 + other characters different from p2 . Let us 
suppose that X is realizable in the real field. Then if D is the real representation 
of G with character X, p2 occurs Y times in the character of D, . By Lemma 1, 
the real index of p2 divides r. But we know that the real index of p2 is 2 and 
we have a contradiction. Thus X has Schur index 2 over the reals, and the 
Brauer-Speiser theorem implies that it has Schur index 2 over the rationals, 
[3]. This completes the proof. 

Although we have not made use of the fact that n is odd in the proof of 
Theorem l(c), the theorem is only of interest for odd values of n. For if 
n is even and q = 1 (mod 4) SL(2n, q) has a central element z of order 4 
whose square is ---I. Any character of SL(2n, q) which is nontrivial on --I 
must be faithful for x, and hence cannot be real-valued. Thus for even values 
of n, there are no characters satisfying the hypothesis of Theorem l(c). 
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However, when n is odd, and 4 = 1 (mod 4), it would be of interest to know 
whether all real-valued characters of SL(2n, 4) which are nontrivial on ----I 
have Schur index 2. 

The following result of the author offers an approach to showing the 
existence of real-valued characters of Schur index 2 in SL(2n, 4) whenever 
both n and 4 are odd [7, Theorem 21. We recall that an element of a group is 
said to be real if it is conjugate to its inverse and strongly real if it is inverted 
by an involution. 

LEMMA 5. Let G be a finite group and let x1 ,..., x, be nonconjugate real 
2-regular elements of G which are not strongly real. Suppose also that C(xJ 
has an abelian Sylow 2-subgroup, 1 < i < r. Then G possesses at least r real- 
valued irreducible characters of Schur index 2. 

In what follows we will assume that n is odd and greater than 1. This is no 
restriction as we already have a description of the Schur indices of characters 
of SL(2, q). We will show that G = SL(2n, q) has classes for which Lemma 5 
is applicable. By [9, p. 187, Theorem 7.31, there is a cyclic self-centralizing 
subgroup S in G of order q en - 1 /q - 1. If w is a generator of S, there is an 
element t in N(S) with t-lwt = wQ. Let Y be the 2-part of q + 1 and let T be 
a subgroup of order qn + l/r in S. As n is odd, T has odd order. Moreover, as 
n > 3, it may easily be shown that T is an irreducible subgroup. Let x be 
a generator of T and let u = t*. We have u-lxu = XP” = x-l, as x has order 
dividing qn + 1, and so x is a real element of G. It may be shown that any 
involution of GL(2n, q) which inverts x must have n eigenvalues equal to 1 
and n equal to - 1, and so has determinant equal to - 1. We deduce that x is 
a real 2-regular element which is not strongly real, with C(x) abelian. Now x 
is conjugate to exactly 2n of its powers and so T has 1/2n * v(qn + l/r) 
nonconjugate generators, where v is Euler’s function. By Lemma 5, G has at 
least (1 Pn) v,(q” + I/ r ) real-valued characters of Schur index 2. In particular, 
we have 

PROPOSITION 1. Let G = SL(2n, q), q = 1 (mod 4), n odd. Then G has at 
least ( 1/2n)q(qn + 1) real-valued irreducible characters of Schur index 2. 

We remark that there is some evidence, based on the Frobenius-Schur 
involution formula, to indicate that the number of real-valued irreducible 
characters of Schur index 2 in SL(2n, q) may be some rational polynomial in q 
of degree n. 

We conclude this section by showing that whenever q is a square, our 
previous methods are applicable to the problem of determining Schur 
indices of characters of PSL(2n, q), f or any value of n. The next lemma is in 
the spirit of previous ones. 
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LEMMA 6. Let p be an odd prime and let q be an even power of p. Let P 
be a Sylow p-subgroup of G = PSL(2n, q) and let X be a linear character of P. 
Then AC is the character of a rational representation of G. 

Proof. We work in SL(2n, q) initially, taking P to consists of lower 
triangular matrices. Let 0 have order p - 1 in GF( p). As q is a square, we 
can find an element t in GF(q) with t2 = cr. Let h be the element diag(t1-2n, 
t3-2” ,..., t2n-3, t2n-1) of SL(2n, q). Exactly as in our previous proofs we see 
that h normalizes P and for x in P, hxh-l and x0 are equal modulo P’. Now h 
has order 2( p - 1) in SL(2n, q), but as h?‘-l = -I, its image in G has order 
p - 1. Thus in G we can find a subgroup N of the normalizer of P for which 
each induced character hN is irreducible of degree p - 1 and realizable in the 
rationals (just as in the proof of Lemma 3). The proof of the lemma is 
immediate from this fact. 

By considering PSL(2n, q) as a subgroup of the projective general linear 
group PGL(2n, q) we can imitate the proof of Theorem 2(b) to obtain 

THEOREM 2(d). Let q be an even power of theprimep and let G = PSL(2n, q). 
Then if X is an irreducible character of G of degree coprime to p, the Schur 
index of X is 1. 

We can extend this analysis to investigate the local Schur indices of charac- 
ters of SL(2n, q) whenever q is a square. For, letting B and P denote Bore1 
and Sylow p-subgroups of G = SL(2n, q), the argument of Lemma 6 shows 
that for any linear character X of P, XB is a rational-valued character. However, 
XB will not be realizable in the rational field (by the argument of Theorem l(c)). 

Now it is not hard to see that any irreducible character X of B/P’ remains 
irreducible as an r-modular character for any prime r # p, essentially because 
the restriction of X to P consists of X(1) distinct conjugate linear characters 
of P, which are all distinct modulo Y. A result of the author [8], implies that X 
has Schur index 1 over the r-adic numbers. Thus as each constituent of hB 
has r-local index 1 and hB is rational-valued, XB is realizable in the r-adic 
numbers. The same is true of Xc. Thus following the argument of Theorem 
2(b), we can deduce 

THEOREM 2(e). Let q be an even power of an odd prime p and let G = 
SL(2n, q). Then if X is an irreducible character of G of degree coprime to p, the 
only finite prime at which the local index of X can differ from 1 is p. 

This theorem is in accordance with the results of [lo] for SL(2, q). However, 
Janusz shows that when q is not a square there are other finite primes at which 
local indices can exceed 1. 



110 R. GOW 

4. THE SYMPLECTIC GROUP Sp(2n, q) 

We will briefly describe how it is possible to apply the methods developed 
in the previous section to investigate the Schur indices of the characters of the 
symplectic group. Since the two-dimensional symplectic group is the group 
SL(2, q), we already have a description of the Schur indices of the characters 
of Sp(2,q). It is the author’s belief that the behavior exhibited by the Schur 
indices of Sp(2, 4) is essentially common to all symplectic groups. This section 
presents a number of reasons why this should be so. As with the group 
SL(2n, Q), the analysis falls naturally into a number of cases, depending on 
the nature of 4: 4 even, 4 odd and a square, 4 = 1 (mod 4) but not a square, 
Q = 3 (mod 4). Our first result given an initial simplification of the problem 
of computing Schur indices. 

LEMMA 7. Let q be a power of 2 or a power of an odd prime p with q = 1 
(mod 4). Then all characters of G = Sp(2n, q) are real-valued and consequently 
of Schur index at most 2. 

Proof. We must show that each element of G is conjugate to its inverse. 
This may be established by induction on n, using the conjugacy criterion for 
elements of the symplectic group given in [I 1, pp. 36(ii), p. 591. When q is 
odd, the essential part of the proof is that -1 is a square in GF(q). 

Note 2. When q = 3 (mod 4), Lemma 7 is no longer true. However, 
we can show that each p-regular class of G is real. Since the number of 
p-regular classes of G is qn, and the total number of classes of G is a manic 
polynomial in q of degree n [I 1, p. 36(iii)], we can assert that the majority of 
characters are real-valued. 

Our next objective is to give some criteria for computing the Schur index 
using induced characters. Let V be a 2n-dimensional symplectic space over 
GF(q) with basis e, ,..., can and form defined by (ei , ei) = 6(i, 2n + 1 - j), 
i < j. Let G be the group preserving this form and let B and P be Bore1 and 
Sylow p-subgroups of G, where p is the prime divisor of q. It is possible 
to choose P to consist of certain lower triangular matrices with ones on the 
diagonal. The 2n - 1 entries immediately below the diagonal of a typical 
element of x of P take the form a, ,..., a,-, , a, , -a,-, ,..., -a, where the 
ai arbitrary elements of GF(q). If q is odd, the derived group of P consists of 
those elements of P whose entries immediately below the main diagonal are 
0, the derived factor-group being elementary abelian of order q”. 

B can be written in the form PH, where H consists of diagonal matrices 
h of the form diag(h, ,..., h, , hi1 ,..., A;‘). We find that h-lxh, x E P, has 
entries 

X&la, ,..., AnX;~Ialz--l , X;‘a, ,..., -A&‘a, 
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below the main diagonal and we may thus describe the action of h on P/P’. 
When 4 satisfies the congruence q = 1 (mod 4), we can obtain a simple 
criterion for the Schur index of a faithful irreducible character of G to be 2, 
for we have 

THEOREM 3(a). Let q be a power of theprimep, with q E 1 (mod 4), and let 
G = Sp(2n, q). Let P be a Sylow p-subgroup of G and let h be a linear character 
of P. Then any faithful irreducible character of G which occurs in XG with odd 
multiplicity has Schur index 2. Any nonfaithful irreducible character of G which 
occurs with odd multiplicity has Schur index 1 over the reals. 

Proof. We take P to consist of lower triangular matrices, as described 
earlier. Let o be an element of order 4 in GF(q) and let h be the element 
diag(A, ,..., A, , Ai1 ,..., X;l) where Xi = (-l)%, I < i < n. Certainly h 
normalizes P and we find that for any element x of P, hxh-l and x-l are 
equal modulo P’. Furthermore, h2 = --I. The first statement of the theorem 
follows from the proof of Theorem l(c). The second statement follows by 
noticing that h has order 2 in PSp(2n, q). 

By specializing to the case where q is a square, we easily prove 

THEOREM 3(b). Let q be an evenpower of an oddprimep. Let G = Sp(2n, q) 
and let P be a Sylow p-subgroup of G. Then zf X is a linear character of P, any 
nonfaithful irreducible constituent of Xc which occurs with odd multiplicity has 
Schur index 1. If X is a faithful irreducible constituent of XG which occurs with 
odd multiplicity, the only jkite prime for which the local index of X can d;SJer 

from 1 is p. 

Proof. Since q is a square, we can easily show that Xc is rational-valued 
and that if X is a nonfaithful constituent of AC, the Schur index of X divides 
(X, AC). Since we know that the Schur index of X is either 1 or 2, the first 
statement follows. The second statement follows from arguments identical 
to those used in the proof of Theorem 2(e). 

We will see in the next section that not all irreducible characters of the 
symplectic group occur as constituents of induced characters hc, so Theorems 
3(a) and 3(b) are not always applicable. However, we note that our two 
theorems do apply when his in general position, for it follows from Yokonuma’s 
results that AC is multiplicity-free. Since the majority of characters of Sp(2n, q) 
occur in such induced characters, we can even assert that almost all irreducible 
faithful characters of Sp(2n, q), q z 1 (mod 4), have Schur index 2. We believe 
that in fact all faithful irreducible characters of this group are of index 2, and 
will show that this is true for the four dimensional group in the next section. 

Lemma 5 may be used to predict the existence of real-valued irreducible 
characters of Schur index 2 in Sp(2n, q) for any odd value of q. For Sp(2n, q) 

481/4.2/I-8 
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contains a self-centralizing cyclic subgroup S of order qn + 1. If  r is the 
2-part of qn + 1, S contains a subgroup T of odd order q* + l/r, which is 
always irreducible provided that n is greater than 1. The generators of T 
provide us with classes satisfying the hypotheses of Lemma 5, and the 
following result may be proved in a manner similar to Proposition 1. 

PROPOSITION 2. If n is even or q 3 1 (mod 4), Sp(2n, q) has at least 
(1/2n) v(q” + 1) real-valued faithful irreducible characters of Schur index 2. 

ADDENDUM 

This part of the paper is independent of the previous sections and is 
designed to provide a second approach to the problem of determining the 
Schur indices of the irreducible characters of the classical groups. Using 
different methods, relying on the Brauer-Speiser theorem, it proves to be 
easy to show that the Schur index of an irreducible character of GL(n, q) 
or U(n, q”) divides 2. Indeed we are led to believe that the Schur index of 
an irreducible character of any classical group divides 2. However, to decide 
whether the index of a particular character is equal to 1 or 2 may require 

methods of the type already developed in Section 1. 
The following result illustrates the idea behind our second method. 

THEOREM A. Let G denote either the general linear group GL(n, q) OY the 
general unitary group U(n, q2). Then the Schur index of any character of G 
divides 2. 

Proof. We will deal with GL(n, q) first. Let u be the involutory automor- 
phism of G defined by U(X) = x*, where x* is the transpose-inverse of X, 
and let H be the split extension of G by u. It is well-known that each element 
x of G is conjugate to its transpose xt. Thus we have w-lxw = &, for some w 
in G. Applying the automorphism u, we see that x is conjugate to x-l in H. 
It follows that all characters of H take real values on G. 

Now if 6 is a real-valued irreducible character of G, the Brauer-Speiser 
theorem implies that the Schur index of 0 divides 2. On the other hand, if 0 
is an irreducible character of G which is not real-valued, the induced character 
p = BH is a real-valued irreducible character of H. For since H/G has order 
2, 93 is either irreducible or is the sum of two distinct extensions 19, , tiz of 0 
to H. In the latter case, 0, is a character of H which cannot be real-valued on G 
contrary to our earlier deduction. That F is real-valued follows from the fact 
that it vanishes outside G and is real-valued on G. 

Let y  = q3r ,..., v,. be the distinct algebraic conjugates of v. Since CJI is real- 
valued, the Brauer-Speiser theorem implies that # = 2(93r + ... + p)r) is the 
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character of a rational representation of H. Thus $~c is the character of a 
rational representation of G. We note that 0 occurs exactly twice in &, 
since v is the unique character of H whose restriction to G contains 19. 
Lemma 1 now implies that mo(0) is at most 2, as required. 

The proof for the unitary group is essentially the same. We take G to 
consist of all elements x which satisfy XU(X)~ = 1, where IJ is the involution 
of GF(p2). With this presentation of G, if x is in G, xt is also in G. Since u 
defines an involutory automorphism of G, we may form the split extension, H, 
of G by 0’. In H, we have x0 = X* for each element x of G. However, since x 
and xt are known to be conjugate in the full linear group, we deduce from a 
result of Wall [II], that they are conjugate in G. Thus x and x-l are con- 
jugate in Hand the rest of the proof is identical with that for GL(n, 4). 

5. SPECIFIC CALCULATIONS 

We will use character tables to compute the Schur indices of all characters 
of GL(n, q), n < 4, X(3, q), PSU(3, q2), Ree groups of type G, , Suzuki 
groups, and Sp(4, CJ), when 4 is even or an even power of an odd prime. For 
the sake of brevity, all computations of inner products have been omitted. 

THEOREM 4. Let G be any of the groups GL(n, q), where n < 4. Then any 
character of G has Schur index 1. 

Proof. Our sources for character tables are [15] and [20] (also [12], by 
using the device of changing q to -q). Let q be a power of p, and let B, 
P be Bore1 and Sylow p-subgroups of G. Let X be a linear character of P in 
general position. When G = GL(2, q), we find that all nonlinear characters 
of G are constituents of hc, with multiplicity 1, of course. For GL(3, q), we 
find that hG contains all characters of G whose degrees are polynomials in p 
of degree 3. The only nonlinear characters of G which remain are those of 
degree q2 + q and q2 + q + 1. However, if p is any linear character of P 
which has q - 1 conjugates in B, pG contains these characters with multi- 
plicity 1. Thus Theorem l(a) gives the result. 

We now turn our attention of GL(4, q). To compute inner products, we 
must assign elements of P to the four conjugacy classes of p-elements of G, 
but we omit details of this routine matter. We find that hc contains all 
characters of G whose degrees are polynomials in q of degree 6. We also note 
that Steinberg has proved in [19], for any general linear group, that all 
constituents of lBG are realizable in the rational numbers. For GL(4, q), 
these are the characters of Table 9 in [20]. The tensor products of these 
characters with linear characters of G must also be of Schur index 1. As we 
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know that all characters of G of degree coprime to p have Schur index 1, the 
only characters we have not accounted for are those of degree 01 = 
q(q + l)“(q” + 1) and ,8 = q(q2 + l)(q2 + q + 1). However, we find by 
taking inner products that characters of degree 01 and /3 are contained exactly 
once in a certain induced character pc, where p is a linear character of P which 
has (q - 1)2 conjugates in B. Once more, Theorem l(a) may be invoked to 
complete the proof. 

An investigation of the Schur indices of characters of SL(3, q) follows the 
pattern established in Theorem 4. 

THEOREM 5. Any character of G = SL(3, q) has Schur index I. 

Proof. We simply find that every character of G occurs exactly once in 
some character Xc induced from a linear character of a Sylow p-subgroup of 
G. Theorem I(b) gives us the result. 

We continue our investigation by computing the Schur indices of the 
characters of the simple groups PSU(3, q2). 

THEOREM 6. Let G be the group PSU(3, q2). All irreducible characters of G 
have Schur index 1 except for a rational-valued character of degree q2 - q. 
This has Schur index 2 and the corresponding division algebra component of the 
rational group algebra has nonzero Hasse invariants only at the infinite prime 
and p, where p is the prime divisor of q. 

Proof. We first consider the case when (q + 1, 3) = 1. Let P be a Sylow 
p-subgroup of G and B its normalizer. PIP’ is elementary abelian of order q2 
and B/P’ is a Frobenius group whose complement His cyclic of order q2 - 1 
[9, p. 2421. It follows that if X is any nontrivial linear character of P, A has 
q2 - 1 conjugates and XB is irreducible. Since P is just the character of the 
regular representation on H, XB has Schur index 1 and is the character of a 
rational representation. Using the character table in [15], we find that all 
but two nonlinear characters of G contain X exactly once on restriction to 
P. The familiar argument of previous pages implies that these characters have 
Schur index 1. 

The two remaining nonlinear characters have degrees q” - q + 1 and 
q2 - q. The former contains the trivial representation of P exactly once, 
and so has Schur index 1. However, the character X of degree q3 - q contains 
no linear character of P. The method of Frobenius and Schur previously 
discussed shows that m,(X) = 2, and, as we have noted before, the Brauer- 
Speiser theorem gives ma(X) = 2. W e note that XB is irreducible. Let 
0 = X, . We discover that 6 is a sum of q - 1 irreducible characters of 
degree q, these being all the nonlinear characters of P. As the representation 
theory for P over algebraically closed fields of characteristic different from 
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p is classical, it follows easily that X, , and hence X, must be irreducible as 
an r-modular character for any prime r # p. The result of the author [8], 
shows that if a complex irreducible character remains irreducible as an 
r-modular character, then its Schur index over the r-adic number is 1. It 
follows that X has Schur index 1 over the r-adic numbers for r # p. But a 
theorem of Hasse implies that there are two distinct primes for which X has 
Schur index 2. We already know that the infinite prime is one of these, and 
evidently the only other possibility is p. 

When 3 divides 4 + 1, the analysis proceeds along the lines above. B/P’ 
is still a Frobenius group, but the complement is of order $ - l/3. Each non- 
identity element of P/P’ is conjugate in B/P’ to its p - 1 nonidentity powers. 

In this case, if h is a nontrivial linear character of P, hB is irreducible, 
rational-valued and of Schur index 1. Three linear characters of P are required 
to construct induced characters which contain all but two nonlinear characters 
with multiplicity 1. The remaining nonlinear characters can be handled by the 
previous methods, This completes the proof. 

Our next investigation concerns the four-dimensional symplectic group 
Sp(4,q). The character theory varies according to whether Q is even or odd. 
We first examine the case where q is odd and, following the discussion of 
Section 4, prove 

THEOREM 7. Let q be a power of an odd prime satisfying q = 1 (mod 4). 
Then all faithful characters of G = Sp(4, q) h ave Schur index 2. All irreducible 
characters of GI = PSp(4, q) have Schur index 1 over the reals. If in addition 
q is a square, all characters of GI have Schur index 1 over the rationab, and 
the only$nite prime where the local index of a faithful character of G may difJer 
from 1 is p. 

Proof. We use the character table given in [18], and begin by calculating 
the number of involutions in the two groups. In addition to the central 
involution of G, there is another class of involutions with centralizer 
SL(2, q) x SL(2, q). Thus if we include the identity element, there are 
2 + q2(q2 + 1) involutions in G. In Gi we obtain 1 + q2(q2 + 1)/2 involutions 
from those in G. A further class of involutions is obtained by considering any 
element of order 4 in G whose square equals ---I. The centralizer of such an 
element is GL(2, q) and in Gi we obtain q3(q3 + q2 + q + 1)/2 more involu- 
tions. This accounts for all involutions of G. 

The results of [18] give us the degrees of the characters of G1 . A straight- 
forward calculation shows that the sum of these degrees equals the number of 
involutions in G1 . The Frobenius-Schur theorem implies that all characters 
of G1 have Schur index 1 over the reals. We also find that the sum of the 
degrees of the faithful irreducible characters of G equals (4” + q5 + q3 - 
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q2 - 2)/2, which is the difference in the number of involutions in the two 
groups. Once more the Frobenius-Schur theorem may be invoked to show 
that all the faithful characters have Schur index 2 over the reals, and hence 
over the rationals. 

Theorem 3(b) is applicable if we assume from now on that q is a square. 
We take P to be a Sylow p-subgroup of G, B* to be a Bore1 subgroup of G 
and B its image in Gr . Up to conjugacy in B *, there are two linear characters 
of P, h, and h, , which are in general position and these each have (q - I)“/2 
conjugates in B*. The induced characters hIC and &o are distinct and, of 
course, multiplicity-free. We find that the constituents of hro or h,c are 
precisely those characters whose degrees are polynomials in q of degree 4. 

Further computations of inner products can be used to show that all other 
characters of G also occur exactly once in suitable induced characters pc, 
where t.~ is a linear character of P, with the exception of the character 8 = t?,, 
of Srinivasan’s list. Assuming that we can show B has Schur index 1, our 
theorem follows from Theorem 3(b). The character 0 contains no linear 
characters in its restriction to P. However, we find that 0, is still irreducible 
and 0, is a sum of (q - I)“/2 distinct characters of P of degree q. Thus if v 
is an irreducible constituent of BP , @ is irreducible, rational-valued and 
equals 0,. If B = PH where H is abelian of order (q - 1)2/2, Mackey’s 
theorem [9, 16.9, p. 5571, shows that (~~1~ is the character of ~(1) copies of 
the regular representation of H. By reciprocity 0, occurs in (lH)B ~(1) times 
and Lemma 1 implies that the Schur index of 8s divides p(l), a power of p. 
But 0, has Schur index 1 or 2 as it is rational-valued, by the Brauer-Speiser 
theorem, and we deduce that its Schur index is 1. Since (e,)Gl contains 0 once, 
and Bs is realizable in the rationals, 0 is itself realizable in the rationals, and 
this finishes our proof. 

To investigate the Schur indices of characters of G = Sp(4, q) when q is 
a power of 2, we use Enomoto’s character table given in [2]. A Sylow 2-sub- 
group P of G is a split extension of an elementary abelian group of order q3 
by an elementary abelian group of order q. It is not hard to show that all 
characters of P are realizable in the rational field (this is true of any split 
extension of an elementary abelian 2-group by another elementary abelian 
2-group). We shall use this fact to prove 

THEOREM 8. All characters of G = Sp(4, q), q even, have Schur index 1. 

Proof. We know that all characters of G are real-valued and consequently 
those of odd degree have Schur index 1. Since the majority of characters of G 
are of odd degree we only have a few characters to check. We find that if X 
is a linear character of P in general position, hC contains all characters of G 
whose degrees are polynomials in q of degree 4. This leaves only the characters 
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8, , 8a , 0s and 8, to check. All but & are contained with multiplicity 1 in 
induced characters pG, for suitable linear characters p of P. 

When 4 = 2, e5 is linear, corresponding to the fact that Sp(4,2) is not 
simple. For Q >, 4, we find that 0s contains no linear character of P in its 
restriction to P. However, (&J, consists of (4 - 1)2 distinct characters of P 
of degree q/2. If v is a constituent of (&J, , we know y is realizable in the 
rationals and since 0, occurs once in qG, 0s has Schur index 1. 

The author believes that if P is a Sylow 2-subgroup of Sp(2n, q), where q 
is even, then the rational field is a splitting field for P. If this is true, it may 
prove to be of use in investigating the Schur indices of characters of Sp(2n, q), 
just as we saw it was for Sp(4, q), 

We conclude our investigations by calculating the Schur indices of Suzuki 
and Ree groups. Our findings are simply 

THEOREM 9. Let G be a simple Suzuki group or Ree of type G, . Then all 
characters of G have Schur index 1. 

Proof. Let G be a Suzuki group defined over GF(q), where q is an odd 
power of 2, and let 2q = r2. Let P be a Sylow 2-subgroup of G, and let B 
be its normalizer. P has order q2 and P/P’ is elementary abelian of order p. 
Using the character table of G in [21], we find that if X is a nontrivial linear 
character of P, hG contains all nonlinear characters of G once, with the excep- 
tion of characters X, , X, of degree r(q - 1)/2. Since X is realizable in the 
rationals, we have already shown that all but two characters of G have Schur 
index 1. 

We deal with X, and X2 next. Any nonlinear irreducible character of P 
has degree r/2 and is defined over Q(i). If X is such a nonlinear character, 
X has q - 1 conjugates in B and Xs is irreducible. We can obtain two charac- 
ters of B by the induction process and they are the restrictions to B of X, and 
X2 . Let 0 and 7 be these characters of B. Now o and r are algebraic conjugates 
(and so are X, , X2), with Q(u) = Q(i). Thus there must be an irreducible 
constituent X of up whose algebraic conjugate X1 occurs in 7P . Since P is a 
2-group, and X is not real-valued, a result of Roquette shows that X must 
have Schur index 1, for only real-valued characters of 2-groups have Schur 
index greater than 1 [14; or 5, p. 771. Thus there is a rational representation 
of P whose character 0 = X + Xr. In this case, BE = (T + 7 is the character 
of a rational representation and so is tic. Since (X1, eG) = (aG, X,) + (TV, X1) = 
(0, X,)/3 + (7, Xl), = 1, Xl 7 and hence X2 , has Schur index 1, as required. 

We turn now to the Ree groups, where we encounter more difficulties. 
The character table of a group of Ree type in [22] serves to compute inner 
products of characters. Let G be a Ree group defined over the field GF(q), 
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where q = 3 2k+1, k > 1. Let P be a Sylow 3-subgroup of G, and let B be its 
normalizer. B/P’ is a Frobenius group with kernel PIP’ of order q. Thus, by 
previous arguments, if h is any nontrivial character of P, P is the character 
of an absolutely irreducible rational representation, and any constituent of hc 
which occurs just once has Schur index 1. 

Using the character table we find that only the following nonlinear characters 
of G do not satisfy (X, hG) = 1: characters 2 and 5-10. However character 2 
occurs once in lpG and so has index 1. None of the others contains a linear 
character of P on restriction to P, and we must employ more elaborate 
methods to deal with these characters. 

We first note that a Sylow 2-subgroup of G is elementary abelian. Thus a 
result of [4] implies that the 2-part of the Schur index of each character is 
trivial. We now proceed to show that the 3-part of the index is also trivial. 
Let X be any irreducible character of G, and let 3’ be the 3-part of its Schur 
index. By a theorem of Brauer [I, 70.281, there exists a subgroup M of G and 
an irreducible character 0 of M such that 3’ is the 3-part of the Schur index 
of 8. Furthermore, M has a normal cyclic 3-complement N. The 2-part of the 
order of N is at most 2, as N is cyclic and the Sylow 2-subgroups of G have 
exponent 2. If 2 divides the order of N, the involution of N must be central 
in M, and M is then a direct product of a group of order 2 and one of odd 
order. Thus, as far as properties of the Schur index are concerned, we may 
as well assume that M has odd order. 

Now it is known that the centralizer of any 3-element of G is either a 
3-group or has order 2 x power of 3. As we are assuming that M has odd 
order, it follows that M is either a Frobenius group with kernel N and 
complement a Sylow 3-subgroup, or M has order coprime to 3, or is a 3-group. 
Since, by a theorem of Roquette, [14], the Schur indices of characters of 
3-groups are always 1, I must be 0 in the third case, as it must also be in the 
second. In the first case, we can also show that the Schur indices of the 
characters of M are all 1. For irreducible characters of M have the form X”, 
where h is an irreducible (linear) character of N, or they are irreducible 
characters of M/N [9, 16.13, p. 5611. As M/N is a 3-group, its characters have 
Schur index 1 by l-141. Finally, a character hM has Schur index 1, for by 
Mackey’s theorem, its restriction to a Sylow 3-subgroup H of M is the regular 
representation of H, and we know this implies that hM has Schur index 1. 
Thus, whatever the structure of M, all its characters have Schur index 1. 

To complete the proof, we note that if X is any one of characters 5-10, X 
has p-defect 0 for each prime p distinct from 2 or 3 dividing X(1). It follows 
from a result of Solomon [16], that the Schur index of X is coprime to p. 
Since it is also coprime to 2 and 3, the Schur index of X is 1, and our proof 
is now complete. 

In conclusion, we present our findings of this section in 
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THEOREM. (1) The Schur index of any irreducible character of the follow- 

inggroups is always 1: GL(2, q), GL(3, q), GL(4, q), PSp(4, @), q odd, PSp(4,2”) 
SL(3, q), Suzuki groups 2B,(q), Ree groups eG,(q), PSL(4, q”) (this follows 
easily from Lemma 6 and the proof of Theorem 4). 

(2) PSU(3, q2) has a single irreducible character of Schur index 2. All 
other irreducible characters have Schur index 1. 

(3) If q E 1 (mod 4), all faithful irreducible characters of Sp(4, q) have 
Schur index 2, and all irreducible characters of PSp(4, q) are real-valued and 
of Schur index 1 over the reals. 
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