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Free choice nets are a subclass of Petri nets allowing to model concurrency and nondeterministic 

choice, but with the restriction that choices cannot be influenced externally. Home states are 

ground markings which can be reached from any other reachable marking of a system. A trap is 

a structurally defined part of a net with the property that once it is marked (that is, carries at 

least one token), it will remain marked in any successor marking. 
The main result of this paper characterizes the home states of a live and bounded free choice 

system by the property that all traps are marked. This characterization leads to a polynomial-time 

algorithm for deciding the home state property. Other consequences include the proof that 

executing all parts of a net at least once necessarily leads to a home state; this has been a long 

standing conjecture. 

1. Introduction 

Inductive invariants (sometimes also called stable assertions, that is, predicates 

which remain true once they are true) are frequently used in proofs of correctness 

properties of systems, be they sequential or concurrent. Suppose that for some 

system, some inductive invariant is not true in the initial state. Then either this 

invariant can never be made true, or the initial state is not a home state. Indeed, 

suppose it can be made true; then, by the “once true, always true” property, it 
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cannot become false again, and so, the system is not able to revert to its initial state. 

Hence we may infer that in any home state, all inductive invariants that could 

possibly be made true, hold true already. 

In this paper, we show a strengthened version of the above argument. The 

strengthening consists of two parts. Firstly, we will examine the converse of the 

statement: namely, that the truth of inductive invariants implies that a state is a 

home state. This begs the original question, however, since it happens that the 

statement “this state is a home state” is always an inductive invariant. The second 

and essential point we wish to make in this paper, is that a few, carefully chosen 

and structurally defined inductive invariants in some cases suffice for the converse. 

The system model for which we will show that this is true, is the class of live and 

bounded free choice systems. The structurally defined “inductive invariants” we 

consider are called traps. 

In order to introduce the formalism, consider the free choice system shown in 

Fig. 1. The initial marking is live and bounded (even safe) but not a home state; 

from any other reachable marking, it is impossible to reach the initial marking again. 

The net also has an unmarked trap {so, sZ, x3, s5, s,}, i.e., a set of places carrying 

no tokens with the property that every output transition of the set is also an input 

transition of the set. 

Fig. I. 

This paper presents a proof that the nonexistence of an unmarked trap actually 

characterizes the home state property. It also describes a series of related results 

and consequences, including a polynomial-time decision procedure. It is structured 

as follows. Sections 2, 3 and 4 are devoted to the proof of the main result. They 

are intended to gently introduce the various lemmata and quotations from the 

literature that are necessary for the proof. Section 5 describes a number of con- 

sequences of the main theorem. Section 6 contains a few concluding remarks. 
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We use the concepts of a net, a marking, a transition sequence, the set [M) of 

markings reachable from a given marking M, liveness, boundedness, etc. in their 

usual meaning; the reader is referred to the Appendix of this paper for more details. 

Definition 1.1. A net N = (S, T, F) is free choice iff 

V(s, t)~ Fn(Sx T): s’={t}v’t={s}. 

Definition 1.2. Let (S, T, F) be a net. A set of places Q G S is called a trap iff Q # 0 

and Q’ G ‘Q. A set Q G S is called unmarked under a marking M iff M(Q) = 0 

(respectively, Q is called marked iff M(Q) > 0). 

The salient property of a trap is that if it is marked once (M(Q) > 0) then it is 

marked always (M’(Q) > 0 for all M’ E [M)). 

Definition 1.3, Let 2 = (N, M,,) be a net with an initial marking M0 (a system). We 

call a marking M a home state of 2 iff 

VM’E[MJ: Mc[M’). 

A home state should not be confused with the weaker notion of markings M 

which can always be reached again after they have been reached for the first time, 

i.e. home states of (N, M) with M E [M,). The following argument shows that such 

markings exist for all bounded systems (while there are bounded systems without 

home states [2]). 

Fact 1.4. Let 1 = (N, M,,) be a bounded system. Then there is a marking M E [MO) 

such that M is a home state of (N, M). 

Proof. Define a sequence of markings M,,, M,, . . . as follows. If M, is not a home 

state of (N, Mi) then choose a marking M,,, E [M,) with M; E [M,,,). In this way 

we obtain a sequence of proper inclusions 

Since [M,,) is finite by the boundedness of 1, the sequence stops after at most 

n = I[ M,,)I steps, and the last marking M, of the sequence is a home state of 

(N, M,,). 0 

Throughout Sections 2-4, we assume globally that 1 = (S, T, F, MO) is a live and 

bounded free choice system and that N = (S, T, F) denotes the underlying net of E. 
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2. Weak characterization of the set of home states 

During the next three sections, we intend to show that a marking &? E [M,,) is a 

home state of 2 if and only if I’? marks all traps of N. 

The necessity of this characterization is very easy to prove. 

Lemma 2.1. Let 16 be a home state of 1. Then 16 marks all traps of N. 

Proof. Let Q be an arbitrary trap of N and let s E Q. Since N can be covered by 

cycles (recall that (N, M,) is live and bounded-see the Appendix), a transition 

t E ‘S exists. Since E is live, there is a marking M E [M,) such that M[ t)M’ for a 

marking M’. Hence M’ marks Q. 

Now let it? be a home state of 1. Then, in particular, ,%? E [M’). Since traps, once 

marked, remain marked, this implies that fi marks Q. 0 

The difficult part is the sufficiency of the characterization, i.e. the implication 

A E [MO) marks all traps of N =3 fi is a home state of 1. 

We will approach the proof of this implication gradually. First, we shall prove a 

different-and much weaker-characterization of the set of home states of 1. This 

characterization makes use of the fact that 2 possesses at least one home state. 

Proposition 2.2. There exists a home state 6 of 2. 

Proof. [2,12]. q 

Proposition 2.3. The set of home states of 2 equals the (unique) set A of reachable 

markings of 2 with the following property. If M E A and M [ t) M' for a transition t then 

(a) M’EJ!$ 

(b) ME[M’). 

Proof. The uniqueness of Jl is guaranteed by the fact that sets of markings satisfying 

(a) and (b) are closed under union. 

Obviously, (a) and (b) hold for the set of home states of 2. Hence each home 

state is in &!. 

To prove the other inclusion, let ME A and let 16 be some home state of _E 

(which exists by Proposition 2.2). Then we find an occurrence sequence 

M[t,)M,[t,)M,. . . M,_,[t,)n;l. 

By applying (a) n - 1 times we obtain that for i = 1,. . , n - 1, M, is in JK Hence 

with (b) we get ME [M,), M, E [M-J,. . . , M,_, E [6) and therefore ME [k) (see 

Fig. 2). 

Since I’? is a home state, so are all markings which are reachable from 6’. In 

particular, M is a home state. q 
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Fig. 2. Illustration of the proof of Proposition 2.3 

What remains to be shown to prove the sufficiency of the characterization is that 

each reachable marking which marks all traps is an element of .&. The Property (a) 

is always true for such markings, since a trap, once marked, remains marked for 

each successor marking. Property (b) requires proving that 

if M E [MO) marks all traps of N then (M[ t)M’ =+ M E [M’)). 

3. T-invariants and T-components 

We can reformulate the above-mentioned implication as follows. 

If a marking M E [M,,) marks all traps of N and enables a 

transition t, then there is an occurrence sequence (T which starts 

with t such that M[(T)M. 

Since u reproduces the marking M, it generates a T-invariant. 

Definition 3.1. A (nonnegative) T-invariant is a mapping J : T+ N (where N denotes 

the nonnegative integers) such that 

VsES: c J(1)= c J(f). 
Ii.\ Ii\. 

A T-invariant J is called activated by a marking M iff there exists an occurrence 

sequence M[v)M’ with 9(a) = J (as is easy to see, M = M’ in this case). 

Thus, it is necessary to find a T-invariant J and an occurrence sequence u with 

the following properties: 

(a) 9(u) = J, 

(b) u starts with t, 

(c) (T is enabled by M. 

The crucial item of this list of conditions is (c). Consider the example of Fig. 3. 

The Parikh function of the sequence tt,r, is a T-invariant J’. The transition t is 

enabled by the marking M depicted in Fig. 3. However, M does not enable any 

occurrence sequence u’ with 9’( u’) = J’, in particular it does not enable tf, f3. Hence 

J’ is not activated by the marking M. 

Nevertheless, there is a feasible occurrence sequence which reproduces M and 

starts with t, namely tf2t3f,f4. Thus, the T-invariant J which maps each transition 

to l-rather than J’-is activated by M. 
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t3 t4 

Fig. 3. 

In order to find the activated T-invariant, it will be useful to have criteria for the 

activation of T-invariants. Such criteria are not easy to derive for general T-invariants. 

Since the sum of T-invariants is again a T-invariant, it is possible to compose each 

T-invariant as the sum of minimal nonzero T-invariants. A result in [l] proves that 

minimal T-invariants induce special substructures of nets which are called T- 

components. For T-components, activation criteria are known which are based on 

the theory of T-graphs. 

Definition 3.2. A T-graph is a net N’ = (S’, T’, F’) with Vs E S’: 1.~14 1 A Isol < 1. 

A strongly connected T-graph N’ = (S’, T’, F’) is called T-component of IV iff 

T’c T and Vt E T’: ’ tu t*c S’ (where the pre- and post-sets are taken w.r.t. N). 

Proposition 3.3. Let J be a minimal T-invariant of N. Then 

(a) There is a T-component N’= (S’, T’, F’) of N such that J is the characteristic 

function of T’, i.e. 

J(t) = 
1 iftET’, 

0 iftaT’. 

(b) J is activated at M ifs M marks all cycles of N’. 

(c) Zf M activates J and M [ t) with J(t) = 1, then there is an occurrence sequence 

CT’ such that M[ tc’)M and P( tq’) = J. 

Proof. See [l] for (a); (b) and (c) follow immediately from corresponding results 

for T-graphs [3,8]. 0 

We will call a T-component activated iff its corresponding T-invariant is activated. 

The next corollary follows immediately. 
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Corollary 3.4. If M[ t)M’, and t belongs to a T-component which is activated by M, 

then M E [M’). 

Proof. Use Proposition 3.3(c). •I 

By this corollary, if t belongs to an activated T-component then M can be 

reproduced from M’ as desired. A first result showing that we are heading in the 

right direction is that t belongs to at least one T-component. 

Proposition 3.5 (Hack [lo]). Let t be a transition of T. Then there is a T-component 

N’ = (S’, T’, F’) of N such that t E T’. 

Proof. A short proof can be found in [l]. 0 

Unfortunately, it may be the case that none of the T-components containing t 

are activated, so that Corollary 3.4 may not be immediately applicable (Fig. 3 may 

serve as an example). The next section shows how this problem can be dealt with. 

4. Proof of the main theorem by means of allocations 

First of all let us recall the problem. We have to show: 

If M E [M,,) marks all traps of N and M[ t)M’, then there is an 

occurrence sequence u which starts with t such that M[cr)M. 

If t does not belong to any T-component activated by M, we have no direct argument 

that M E [M’). We proceed as follows: instead of finding a sequence M[cT)M which 

starts with t, we construct a sequence M[cT’)M containing t. Then we show that 

there is a permutation u of c’ starting with t which is also enabled at M. 

This sequence (T’ has four parts: g’= cTlta,u2 with M[v,)M[t(T3)M[v2)M. (T! 

leads to a marking k which enables t and activates a T-component containing t. 

ta, is a reproduction sequence corresponding to the T-invariant generated by the 

T-component. Finally, (T, leads back to M. 

Consider once again the example of Fig. 3. The unique T-component which 

contains t is not activated by the marking M shown in the figure. By the occurrence 

of (T, = tZ, however, a marking fi can be reached which activates this T-component 

and enables t. Hence, we may find a reproducing sequence tv3 = tt?t, with A?[ tr,)A?. 

Finally, the occurrence of u2 = t4 leads back to our original marking M. 

Now consider the transitions t and t2. They have disjoint pre-sets and hence none 

of them disables the other one (i.e. they are concurrent). So we have both M[tt?) 

and M[t,t), and moreover, both sequences lead to the same marking. Hence, we 

get from the above sequence the new sequence M[tt2t3t, t4)M, which starts with t. 
To show that this reasoning can be generalized, we need to prove the premises of 

the following lemma. 



Lemma 4.1. Assume that M marks all traps of N and let M[t)M’. Assume further 

that there exists an occurrence sequence M[a,)fi with the following properties: 

(a) n;i enables t; 

(b) II? activates a T-component which contains t; 

(c) There is an occurrence sequence h?[cr,)M; 

(d) For each transition t’ occurring in o, , we have ‘t n ‘t’ = (3. 

Then M E [M’). 

Proof. Assume that an occurrence sequence M[o,)M satisfies (a)-(d). Let ti[t)n;i’, 

which is possible by (a). Then, by Proposition 3.3(c), we find a sequence $!f[ ta,)k 

since by (b), II? activates a T-component which contains t. Successively, t can be 

interchanged with the respective previous transitions in (T, since they have disjoint 

pre-sets by (d) and hence obtain a sequence M[ta,)M’. Together with CT> which 

exists by (c) and (TV, we have M[ toIoJo2) M. (See Fig. 4.) 0 

Fig. 4 Illustration of the proof of Lemma 4.1. 

We have to find an occurrence sequence LT, with M[a,)@l which can be reversed 

in the sense that there exists another sequence uz satisfying M[aJM. The only 

sufficient condition for a single transition occurrence M[ t)M’ to be reversible that 

we have identified so far is that M activates a T-component which contains t. This 

condition can easily be generalized to occurrence sequences. 

Definition 4.2. An occurrence sequence 

M,[t,)M[t,)M,. . . M,..,[t,-,)M, 

is called involutional iff for each i E { 1, . . . , n - l}, M, activates some T-component 

which contains t,. 
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Corollary 4.3. If M,[u)M,, is involutional then M, E [M,). 

Proof. Follows inductively from the fact that M, E [M;, ,) for i E (1,. . . , n -l} by 

Corollary 3.4. 0 

We restrict ourselves to involutional sequences. Since condition (c) of Lemma 

4.1 always holds for such sequences, it is sufficient to show: 

if M E [M,,) marks all traps of N and M[ t)M’, then there exists an 

involutional occurrence sequence M[a,)A?[t) such that 
_ I6!l activates a T-component which contains t; 
_ l t’ n l t = fl for all transitions t’ occurring in (T, . 

We shall construct such an occurrence sequence. 

The first task is to construct an occurrence sequence M[u,)M such that %I 

activates some T-component which includes t. First of all, by Proposition 3.5 we 

know that such T-components exist; we may choose one of them, say N’. The next 

idea is to direct as many as possible tokens of the system to this T-component if 

they are not there already. This will be done by means of an allocation function. 

Definition 4.4. Let X G S be a set of places. An allocation of X is a function CY : X + T 

with Vs E X: a(s) E s’. An allocation (Y of X is cycle-free iff there is no nonempty 

set of places X’ c X with X’ G (I)‘. 

Cycle-freeness is the property which will serve to prevent the occurrence of cycles 

in the transportation of tokens towards the T-component in question. 

One of the characteristic behavioural properties of free choice systems is that, 

given an arbitrary allocation (Y of S, every live marking enables allocated transitions. 

Proposition 4.5. Let (Y : S+ T be an allocation of all places. Then each M E [M,,) 

enables at least one transition t E a(S). 

Proof. M enables some transition t’E T since 2 is live. From the liveness and 

boundedness of 2, it follows that N is covered by cycles (see the Appendix). Hence 

l t’ # 0. Let s E ‘t’. By the free choice property of N, M enables (Y(S). 0 

We will use this property to direct the tokens to the T-component N’ by means 

of an occurrence sequence containing only transitions in the image of a certain 

allocation. This allocation must satisfy the property that N’ is the only T-component 

all of whose transitions are allocated, in order to ensure that the tokens reach their 

final destination; otherwise they may get trapped in other T-components. The first 

part of the next lemma states that such an allocation always exists. However, we 

also have to make sure that this occurrence sequence is involutional. We will employ, 

for this purpose, the second half of the lemma, stating that the image of an allocation 
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always contains the transitions of at least one T-component. (The reader should be 

warned that in the later use of this lemma, the T-component N’ of part (b) of the 

lemma will differ from the T-component of part (a) of the lemma.) 

Lemma 4.6. (a) Let N’= (S’, T’, F’) be a T-component of N. Then there exists an 

allocation LY : S+ T such that N’ is the only T-component all of whose transitions are 

allocated by a. 

(b) Let a : S + T be an allocation. Then there exists a T-component N’ = (S’, T’, F’) 

of N such that N’ contains only allocated transitions, i.e. T’s (Y(S). 

Proof. (a) Define (Y inductively as follows: 

(1) For all SE S’ define (Y(S) as the unique output transition t of s in N’, i.e. 

{t}=s*n T’. 

(2) Repeatedly select a place s E S with a(s) not defined yet, in such a way that 

there is a place S’E (so)* which already has an allocated transition. Choose a(s) = t 

where t E so n OS’ (this choice is not necessarily unique); the idea is that the allocation 

cy “points towards” N’ (see Fig. 5). 

Fig. 5. Illustration of the construction used in Lemma 4.6. 

This procedure terminates and leads to an allocation CI of S since N is finite and 

strongly connected. It follows from the free choice property that each place finally 

has exactly one allocated transition in its post-set. 

It remains to show that N’ is the only T-component all of whose transitions are 

allocated by (Y. 

Assume that a T-component N” has only allocated transitions. Then each path 

through allocated transitions only, which starts with an element of N”, remains in 

N”. Since by the above procedure, each path of sufficient length ends in N’, N’ 

and N” are not disjoint. Since for every common place of N’ and N” its allocated 

transition belongs to both T-components, for each common transition, all of its 

output places belong to both T-components as well, and since T-components are 

strongly connected, it follows that N’= N”. 

(b) For every allocation cy : S + T there is an occurrence sequence of arbitrary 

length which contains only allocated transitions (by repeated application of 

Lemma 4.5). 
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Let (T be an occurrence sequence of length greater than the size of the set of reachable 

markings of 2 (this set is finite by the boundedness of I) which contains only 

allocated transitions. Then at least one marking M occurs twice in o. The sub- 

sequence of u which starts with the first occurrence of M and ends with the second 

occurrence of M in u reproduces M and hence induces a nonnegative T-invariant. 

Thus, (T contains all the transitions of a T-invariant and hence, by Proposition 

3.3(a), all the transitions of some T-component N’ of N. 

Since o contains only allocated transitions, N’ contains only allocated transitions 

as well. 0 

We will now approach the application of the property that M marks ail traps, a 

premise which so far has not entered the proof. When this condition holds, the next 

lemma proves the following: given an arbitrary allocation (which will be for us the 

one used to direct tokens to the T-component containing t), there is an activated 

T-component whose enabled transitions (a nonempty set) are all allocated. Thus, 

if M marks all traps, then it enables an allocated transition of an activated T- 

component. But, after the occurrence of this transition, the new marking marks all 

traps again. Hence, it enables another allocated transition of another activated 

T-component, and so on. This means that we can construct an arbitrarily large 

involutional sequence containing only allocated transitions. 

Lemma 4.7. Suppose that M marks all traps of N and let a : S+ T be an arbitrary 

allocation. 

Then M activates a T-component N’ = (9, T’, F’) such that all enabled (by M) 

transitions of N’ are allocated by a. 

Proof. Let 3~ S be the set of places which are not marked by M. We make use of 

a result of [I], which states that if X is a set of places, and Q G X is the maximal 

trap in X, then there exists a cycle-free allocation /3 of X\Q. In our case, since all 

traps are marked by M, the maximal trap contained in s is the empty set.’ Hence, 

there exists a cycle-free allocation p : s- T 

Compose the allocation y: S+ T from LY and p as follows: 

Y(S) = 1 ff(s) if .s& S, 

p(s) if SE S. 

By Lemma 4.6(b), there is a T-component N’ which contains only transitions 

allocated by y. Since y is cycle-free on the set of unmarked cycles (inheriting the 

corresponding property from p), N’ does not contain an unmarked cycle, and hence 

is activated. All input places of enabled transitions are marked and hence do not 

I In [I], the empty set has been allowed as a trap. 
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belong to S Thus, by the definition of y, all enabled transitions of N’ are allocated 

by cr. 0 

Taking together all lemmata we are now able to state the main result. 

Theorem 4.8. M E [MO) is a home state of 2 if and only if M marks all traps of N. 

Proof. Lemma 2.1 proves the necessity of this characterization. 

To prove the sufficiency, let JV’ be the set of markings which mark all traps of N, 

let M E K and assume M[ t)M’ for a transition t. By the invariance property of 

traps we get M’E JV. We show now that M E [M’). Once this is proved, we are done, 

because JIX = N and Proposition 2.3 can be applied. 

Let N’ be a T-component which includes the transition t; such a T-component 

exists by Proposition 3.5. Choose an allocation a : S + T such that N’ is the only 

T-component with the property that all of its transitions are allocated by a; such 

an allocation exists by Lemma 4.6(a). 

Now consider a maximal involutional occurrence sequence u from M such that 

only transitions of a(S) occur and such that no marking, except possibly the last 

one, activates N’ or any other T-component containing t. 

The sequence (T is finite, since otherwise it would include a reproduction sequence 

and hence all transitions of some T-component N” would occur (this follows as in 

the proof of Lemma 4.6(b), using, in addition, Proposition 3.3(a)). By the definition 

of (Y, N’= N”, and since N” must be activated during c, we get a contradiction to 

the definition of (T. 

Let M, be the final marking of o. We now show that M, activates a T-component 

containing t. To this end, it suffices to show that M, enables some allocated transition 

which is contained in some activated T-component, since in this case the other 

reason for o to stop at M,-viz. that M, activates a T-component containing t-must 

be true. 

Since M marks all traps of N, so does M,. By Lemma 4.7, there is an activated 

(by M,) T-component N” of N all of whose enabled (by M,) transitions belong to 

the allocation (Y. Any such transition does the job. 

Now we are going to show that the preconditions of Lemma 4.1 are satisfied for 

t and u, = (T. 

First, v activates a T-component containing t, which settles condition (b). 

Moreover, (T does not contain any transitions t # t’ with l t’n*t # 8, since such 

transitions are not cu-allocated; it does not contain t either, since in that case one 

of the intermediate markings reached along the sequence would activate a T- 

component containing t, against the hypothesis (condition (d)). Thus, t is inter- 

changeable with a, which implies that the marking reached after u enables t 

(condition (a)). Finally, involutional sequences can be “undone” (Corollary 4.3), 

yielding condition (c). From Lemma 3.1 we infer ME [M’). q 
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5. Consequences 

We state a variety of consequences of Theorem 4.8. 

The first one shows that any transition sequence which contains every transition 

at least once must necessarily produce a home state. This property has been 

conjectured in [9] where it has been phrased in terms of well-behaved bipolar 

schemata’ which (under the translation given there) correspond to a class of live 

and bounded free choice nets-a class which can be more precisely characterized 

by the results of [4]. 

Corollary 5.1. Let E = (S, T, F, M,,) be a live and bounded free choice system. Let 

M,[ T)M with a transition sequence T E T” such that every transition of T occurs at 

least once in r. Then M is a home state of 2. 

Proof. By the liveness and boundedness of 2, every place of S has at least one 

output transition. Hence during 7, every trap has been marked at least once. Since 

traps, once marked, cannot become unmarked, M must be a marking at which every 

trap is marked. The result follows with Theorem 4.8. El 

Our result implies that the home state property is in a certain sense monotonic. 

Definition 5.2. A system is cyclic iff for any two reachable markings M and M’: 

ME [M’). 

In terms of home states this means that M,, is a home state, or, put differently, 

that the reachability graph is strongly connected. With our result we get the following 

corollary. 

Corollary 5.3. A live and bounded free choice system is cyclic if and only ifits initial 

marking marks all traps of N. 

Since this characterization of reversibility does not say anything about the number 

of tokens on single places we get a monotonicity result on cyclic systems. It requires 

the following well-known lemma. 

Lemma 5.4. If 2 = (N, M,,) is a live and bounded free choice system and M, is a 

marking of N with M, 3 M,) (i.e., M,(s) 2 M,(s) f or all places s) then (N, M,) is live 

and bounded as well. 

’ Actually, the conjecture in [9] is weaker, as it concerns only the reproducibility of the marking in 
question. 
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Proof. See [6]. I7 
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Corollary 5.5. If 2 = (N, M,) is a live, bounded and cyclic free choice system and M, 

is a marking of N with and M, 3 M, then (N, M,) is live, bounded and cyclic as well. 

The last corollary states that the home state property is polynomially decidable. 

The proof is based on the following algorithm, which calculates the maximal trap 

contained in a set of places (assuming this trap exists, otherwise the algorithm 

returns the empty set). 

Algorithm 5.6 (To find the maximal trap contained in a set of places). 

Input: A subset X c S of places of a net N = (S, T, F) 

Output: The maximal trap Q G X 

Initialization: Q = X 

while 3s~ Q: s*Z l Q do 

endwhlleQ := Q\(s) 

The correctness proof is very simple. First, it is immediate that, at the end of the 

algorithm, either Q = 0 or Q is a trap (otherwise the loop cannot have terminated). 

Moreover, it is easy to see inductively that, if X’ G X is a trap, then X’s Q. This 

is due to the fact that none of the places of X’ can ever fulfil the condition of the loop. 

Finally, the algorithm is polynomial. We will give a rough estimation of its 

performance. Each time the loop is executed, a place is removed from Q. Hence, 

the loop is executed at most 1x1 s ISI t’ tmes. In order to find a place s fulfilling the 

condition of the loop, at most IQ1 < ISI places have to be scanned. Checking if 

so g ‘Q for a place s can be done in O(ls*I. I’QI) 4 O(l TI. I TI). Hence, the complexity 

of the algorithm is at most O(ISI*. ITI’). 

Corollary 5.7. Let 2 = (S, T, F, M,) be a live and bounded free choice system. Let 

M E [M,) be a reachable marking. Then it is decidable in polynomial time whether M 

is a home state of 2. 

Proof. Let S’ G S be the set of unmarked places of N at M,,. By Theorem 4.8, M,, 

is a home state iff S’ contains no trap. This happens iff Algorithm 5.6 returns the 

empty set, which can be checked in polynomial time. 0 

6. Concluding remarks 

For live and bounded free choice Petri sets, we have proved a structural charac- 

terization of a marking being a home state. This characterization holds equally for 



extended free choice nets (which satisfy the property Vp, q E S: p* n q’ # 0 3 p’ = 

q* which is slightly weaker than the free choice property), since all proofs go through 

unchanged. However, it might be more difficult to generalize the result to larger 

classes of nets. 

From the characterization, we have derived a variety of consequences, settling, 

amongst others, an open conjecture and providing a polynomial-time algorithm to 

decide the home state property. The result on polynomial decidability-together 

with already known results of this type (see [7])-raises similar questions concerning 

properties of structurally live and bounded free choice nets. Future work will 

therefore concentrate on finding a structural characterization of reachability for live 

and bounded free choice systems. This problem has been solved for cyclic live and 

bounded free choice systems as reported in [5]. 

Appendix 

A net is, as usual, defined as a triple (S, T, F) such that S n T = 0 and F c (S x T) u 

(T x S). We consider only finite and nonempty sets. Since a net can be viewed as 

a directed graph, terminology can be transferred (for instance, strong or weak 

connectedness). We exclude isolated places and isolated transitions and consider 

only connected nets. The pre-set ‘X of x E (S u T) is defined as the set {y E 

(SU T)~(Y,x)E FI, and the post-set x* of x E (Su T) is defined as {y E 

(S u T) 1 (x, y) E F}. The notation is extended to sets X c (S u T) by l X = UrlX l x, 

and similarly for X0. 

A marking is a function M : S+ N. A marked net or system is a net N together 

with an initial marking M,,, written (N, M,,) or, more fully, (S, T, F, MO). For X c S 

we define M(X) =CVtX M(x). 

A marking M enables a transition t E T iff Vs E l t: M(s) 2 1. The enabling of t is 

denoted by M[t). An enabled transition can occur, yielding a new marking M’ 

defined by the rule that M’(s) = M(s)-1 for SE ‘t\t’, M’(s)= M(s)+1 for SE 

t’\‘t, and M’(s) = M(s) otherwise. The occurrence of t is denoted by M[ t)M’. 

An occurrence sequence is a sequence 

o-= M[t,)M,[t,)M?. . . M,,. 

We say that CT starts with M and leads to M,. Sometimes we omit the intervening 

markings since they are determined by M and the sequence of transitions. We also 

say that M enables u (denoted by M[a)) iff there are intermediate markings such 

that v is an occurrence sequence starting with M. The set [M) is defined as the set 

of all markings M’ such that some occurrence sequence leads from M to M’. 

Y(c) : T + N defines the Parikh function of LT, which maps each transition to its 

number of occurrences in (T. 

A system (N, M,,) with N = (S, T, F) is live iff for every t E T and for every 

ME [M,,) there is some M’E [M) such that M’[t). The system is bounded iff for 
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every place s E S there is a number k E N such that all markings M E [TM,,) satisfy 

M(s) s k. Since we consider only finite sets, (N, MO) is bounded iff [MO) is a finite 

set. 

Finally, we shall use the following fact: If a system (N, MO) is both live and 

bounded then N is covered by cycles (for a short proof of this, compare [l]). In 

particular, since we only consider connected nets, N is strongly connected. 
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