Growth of solutions of second order linear differential equations

Jun Wanga, Ilpo Laineb,*,1

a School of Mathematics Science, Fudan University, Shanghai 200433, PR China
b Department of Mathematics, University of Joensuu, FI-80101 Joensuu, Finland

Received 21 September 2007
Available online 19 November 2007
Submitted by D. Khavinson

Abstract

This paper is devoted to studying the growth of solutions of equations of type $f'' + h(z)e^{az}f' + Q(z)f = H(z)$ where $h(z)$, $Q(z)$ and $H(z)$ are entire functions of order at most one. We prove four theorems of such type, improving previous results due to Gundersen and Chen.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Linear differential equations; Entire solutions; Growth

1. Introduction and main results

We assume that the reader is familiar with the usual notations and basic results of the Nevanlinna theory [8,11]. We also use basic notions and results of the Wiman–Valiron theory, see [9]. Let now $f(z)$ be a nonconstant meromorphic function in the complex plane. We remark that $\rho(f)$, respectively $\rho_2(f)$ will be used to denote the order, respectively the hyper-order, of f. In particular, the hyper-order $\rho_2(f)$ is defined as

$$\rho_2(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log \log r},$$

see [17].

For a set $E \subset R^+$, let $m(E)$, respectively $\lambda(E)$, denote the linear measure, respectively the logarithmic measure, of E. By $\chi_E(t)$, we denote the characteristic function of E. Moreover, the upper logarithmic density and the lower logarithmic density of E are defined by

$$\log \text{dens}(E) = \limsup_{r \to \infty} \frac{\lambda(E \cap [1, r])}{\log r}, \quad \log \text{dens}(E) = \liminf_{r \to \infty} \frac{\lambda(E \cap [1, r])}{\log r}.$$

Observe that E may have a different meaning at different occurrences in what follows.

* Corresponding author.

E-mail addresses: majwang@fudan.edu.cn (J. Wang), ilpo.laine@joensuu.fi (I. Laine).

1 The author has been partially supported by the Academy of Finland grant 210245.

0022-247X/S – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.11.022
We now recall some previous results concerning linear differential equations of type
\[f'' + e^{-z} f' + Q(z)^2 f = 0, \quad (1.1) \]
where \(Q(z) \) is a transcendental entire function of finite order. In the case of a polynomial \(Q(z) \), properties of solutions of (1.1) have been studied, e.g., in \([2,4,13,16]\). Provided that \(Q(z) \) is an entire function of order even if \(\rho(Q) < 1 \), and where \(a, b \) are complex constants. If \(ab \neq 0 \) and \(\arg a = \arg b \) or if \(a = cb \) for some \(c > 1 \), then all nontrivial solutions \(f \) of (1.2) are of infinite order, see \([3]\). Li and Wang recently investigated the non-homogeneous equation related to (1.1) in the case when \(Q(z) = h(z)e^{bz} \), where \(h(z) \) is a transcendental entire function of order \(\rho(h) < \frac{1}{2} \), and \(b \) is a real constant, see \([14]\).

Example 1. The exponential function \(f_0(z) = e^z \) satisfies equation
\[f'' + e^{-z} f' + Q(z)f = (1 + Q(z))e^z + 1, \]
where \(Q(z) \) can be any entire function. Moreover, choosing \(Q(z) = -1 \) shows that (1.3) may admit a solution of finite order even if \(\rho(H) < 1 \).

Example 2. The function \(f_0(z) = e^{z^2} \) satisfies the equation
\[f'' + e^{-z} f' + Q(z)f = (4z^2 + 2 + 2ze^{-z} + Q(z))e^{z^2}, \]
where the entire function \(Q(z) \) can be arbitrarily chosen.

In this paper, we continue to consider (1.1) in the case of \(\rho(Q) = 1 \). Moreover, we extend our considerations to non-homogeneous equations of type
\[f'' + A_1(z)e^{a_z} f' + A_0(z)e^{bz} f = H(z), \quad (1.4) \]
where \(A_0(z), A_1(z), H(z) \) are entire functions of order less than one, and \(a, b \in \mathbb{C} \). We now proceed to prove four theorems concerning the growth of solutions of Eq. (1.4):

Theorem 1.1. Suppose that \(A_0 \neq 0, A_1 \neq 0, H \) are entire functions of order less than one, and the complex constants \(a, b \) satisfy \(ab \neq 0 \) and \(b \neq a \). Then every nontrivial solution \(f \) of Eq. (1.4) is of infinite order.

Corollary 1.2. Suppose that \(Q(z) = h(z)e^{bc} \), where \(h \) is a non-vanishing entire function with \(\rho(h) < 1 \), and the complex constant \(b \) satisfies \(b \neq 0, -1 \). Then every nontrivial solution \(f \) of (1.1) is of infinite order.

Theorem 1.3. Suppose that \(A_0 \neq 0, A_1 \neq 0, D_0, D_1, H \) are entire functions of order less than one, and the complex constants \(a, b \) satisfy \(ab \neq 0 \) and \(b/a < 0 \). Then every nontrivial solution \(f \) of equation
\[f'' + \left(A_1(z)e^{az} + D_1(z)\right)f' + \left(A_0(z)e^{bz} + D_0(z)\right)f = H(z) \]
is of infinite order.

Defining \(Q(z) = -(1 + e^{-z}) \) it is immediate to see that Eq. (1.1) admits a solution \(f_0 = e^z \) of finite order. This prompts us to prove
Theorem 1.4. Let $A_0 \not\equiv 0, A_1 \not\equiv 0$ are entire functions of order less than one, and $\alpha(z)$ is transcendental entire with $\rho(\alpha) < \frac{1}{2}$. Then every nontrivial solution f of

$$f'' + A_1(z)e^{-z}f' + (A_0(z)e^{-z} + \alpha(z))f = 0$$

(1.6)

is of infinite order.

Finally, concerning the case of an entire function Q of order $\rho(Q) = 1$, we consider the equation

$$f'' + h(z)e^{-z}f' + Q(z)f = 0$$

(1.7)

where $h(z)$ is an entire function of order $\rho(h) < \rho(Q) = 1$. By the preceding theorems, every nontrivial solution f of Eq. (1.7) is of infinite order, provided the coefficients h,Q have certain special forms. It is natural to ask about conditions on Q, independent of the special form of (1.7), which imply that every nontrivial solution f of (1.7) is of infinite order. As a partial answer, we consider Eq. (1.7) under the condition

$$\lim_{r \to \infty} \frac{T(r, Q)}{\log M(r, Q)} = 1$$

(1.8)

assumed to hold in a set $E \subset [0, +\infty)$ of linear measure large enough:

Theorem 1.5. Suppose that $Q(z)$ and $h(z)$ are entire functions of order $\rho(h) < \rho(Q) = 1$, and that $Q(z)$ satisfies (1.8) in a set E such that $\log \text{dens}(E) > 0$. Then every nontrivial solution f of Eq. (1.7) is of infinite order.

For previous related results of similar type, see [12] and [10].

2. Preliminary lemmas

Lemma 2.1. (See [9].) Let $g(z)$ be an entire function of finite order ρ, and let $v_k(r)$ be the central index of g. Then

$$\rho = \limsup_{r \to \infty} \frac{\log v_k(r)}{\log r}.$$

Lemma 2.2. (See [1].) Let $w(z)$ be an entire function of order $\rho(w) = \beta < \frac{1}{2}$. $A(r) = \inf_{|z|=r} \log |w(z)|$ and $B(r) = \sup_{|z|=r} \log |w(z)|$. If $\beta < \alpha < 1$, then

$$\log \text{dens}\{r: A(r) > \cos(\pi \alpha)B(r)\} \geq 1 - \frac{\beta}{\alpha}.$$

Lemma 2.3. (See [5].) Let $f(z)$ be a meromorphic function of finite order ρ. Given $\zeta > 0$ and $0 < l < \frac{1}{2}$, there exist a constant $K(\rho, \zeta)$ and a set $E_\zeta \subset [0, \infty)$ of lower logarithmic density greater than $1 - \zeta$ such that

$$r \int_{J} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| d\theta < K(\rho, \zeta) \left(l \log \frac{1}{l} \right) T(r, f)$$

(2.1)

for all $r \in E_\zeta$ and for every interval $J \subset [0, 2\pi)$ of length l.

Lemma 2.4. Let $f(z)$ be an entire function of finite order ρ, and $M(r, f) = |f(re^{i\theta})|$ for every r. Given $\zeta > 0$ and $0 < C(\rho, \zeta) < 1$, there exists a constant $0 < l_0 < \frac{1}{2}$ and a set E_ζ of lower logarithmic density greater than $1 - \zeta$ such that

$$e^{-5\pi} M(r, f)^{1-C(\rho, \zeta)} \leq |f(re^{i\theta})|$$

(2.2)

for all $r \in E_\zeta$ large enough and all θ such that $|\theta - \theta_r| \leq l_0$.

For previous related results of similar type, see [12] and [10].
Proof. Restricting log $f(re^{i\theta})$ into its principal branch, i.e. $0 \leq \arg log f(z) < 2\pi$, we start from
\begin{equation}
\log f(re^{i\theta}) = \log f(re^{i\theta}) + \int_{\theta}^{\theta_1} d \log f(re^{i\theta}) = \log f(re^{i\theta}) + ri \int_{\theta}^{\theta_1} \frac{f'(re^{i\theta})}{f(re^{i\theta})} e^{i\theta} d\theta. \tag{2.3}
\end{equation}

Taking moduli of both sides of (2.3), and assuming that r is large enough, we obtain
\[|\log f(re^{i\theta})| \geq |\log f(re^{i\theta})| - r \int_{\theta}^{\theta_1} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| d\theta \geq \log M(r, f) - 2\pi - r \int_{\theta}^{\theta_1} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| d\theta.|]

By Lemma 2.3, there is a set E_ς with $1 - \varsigma \leq \underline{\log dens}(E_\varsigma)$ such that
\[\log M(r, f) - K(\rho, \varsigma) \left(l \log \frac{1}{l} \right) T(r, f) \leq |\log f(re^{i\theta})| + 2\pi \tag{2.4}\]

for all $r \in E_\varsigma$ and $0 < |\theta - \theta_1| = l < \frac{\pi}{2}$, where $K(\rho, \varsigma)$ is a constant depending only on ρ and ς. Obviously, there exists l_0 such that
\[K(\rho, \varsigma) \left(l \log \frac{1}{l} \right) \leq C(\rho, \varsigma) < 1\]

for all $l < l_0 < \frac{\pi}{2}$. Since $T(r, f) \leq \log M(r, f)$, this and (2.4) implies
\[(1 - C(\rho, \varsigma)) \log M(r, f) \leq |\log f(re^{i\theta})| + 2\pi \leq \sqrt{\log^2 |f(re^{i\theta})| + (3\pi)^2} \leq |\log f(re^{i\theta})| + 5\pi, \tag{2.5}\]

which leads to (2.2).

\[\square\]

Lemma 2.5. Let $f(z)$ and $g(z)$ be two nonconstant entire functions with $\rho(g) < \rho(f) < +\infty$. Given ε with $0 < 4\varepsilon < \rho(f) - \rho(g)$ and $0 < \delta < 1/4$, there exists a set E with $\log dens(E) > 0$ and a positive constant r_0 such that
\[\left| \frac{g(z)}{f(z)} \right| \leq \exp\{-r^{\rho(f) - 2\varepsilon}\} \tag{2.6}\]

for all z such that $r \in E$ is sufficiently large and that $|f(z)| \geq M(r, f)\nu_f(r)^{-\frac{1}{2} + \delta}$.

Proof. Clearly,
\[\nu_f(r) \leq r^{\rho(f) + 1}, \quad \left| g(z) \right| \leq \exp\{r^{\rho(g) + \varepsilon}\} \tag{2.7}\]

for all r sufficiently large. Let then r_n' be a sequence tending to infinity such that
\[\rho(f) = \lim_{n \to \infty} \frac{\log \log M(r_n', f)}{\log r_n'}.
\]

Define $E := \bigcup_{n=1}^{\infty} [r_n', r_n'^{1 + 2\kappa}]$ for $\kappa > 0$. Then
\[\log dens(E) \geq \limsup_{n \to \infty} \frac{\lambda(E \cap [1, r_n'^{1 + 2\kappa}])}{(1 + 2\kappa) \log r_n'} \geq \limsup_{n \to \infty} \frac{\lambda(E \cap [r_n', r_n'^{1 + 2\kappa}])}{(1 + 2\kappa) \log r_n'} = \frac{2\kappa}{1 + 2\kappa} > 0. \tag{2.8}\]

Since $M(r, f)$ is increasing, we have
\[\frac{\log \log M(r, f)}{\log r} \geq \frac{\log \log M(r_n', f)}{(1 + 2\kappa) \log r_n'}\]

for $r \in [r_n', r_n'^{1 + 2\kappa}]$. Therefore, taking $2\rho(f)\kappa = \varepsilon$, we obtain
\[\frac{\log \log M(r, f)}{\log r} \geq \frac{\rho(f)}{1 + 2\kappa} \geq \rho(f)(1 - 2\kappa) = \rho(f) - \varepsilon.\]
This means that for \(r \in E \),
\[
M(r, f) \geq \exp\{r^{\rho(f)} - \epsilon\}. \tag{2.9}
\]
Combining (2.7) and (2.9), we conclude that there exists a positive constant \(r_0 \) such that
\[
\left| \frac{g(z)}{f(z)} \right| \leq r(\rho(f) + 1)\left(1 - \frac{1}{4}\right)\exp\{r^{\rho(f)} - 2\epsilon\}
\]
for all \(z \) satisfying \(|f(z)| \geq M(r, f)\nu f(r) - \frac{1}{4} + \delta \) such that \(r \in E \) is sufficiently large.

The next lemma describing the behavior of \(e^{P(z)} \), where \(P(z) \) is a linear polynomial, is a special case of a more general result in [15, p. 254].

Lemma 2.6. Suppose that \(P(z) = (\alpha + i\beta)z \), where \(\alpha, \beta \) are real numbers, \(|\alpha| + |\beta| \neq 0 \), and that \(A(z) \neq 0 \) is a meromorphic function with \(\rho(A) < 1 \). Set \(g(z) = A(z)e^{P(z)} \), \(z = re^{i\theta} \), \(\delta(P, \theta) = \alpha \cos(\theta) - \beta \sin(\theta) \). Then for any given \(\epsilon > 0 \), there exists a set \(E \subset (1, +\infty) \) of finite linear measure such that for any \(\theta \in [0, 2\pi) \setminus H \), there is \(R > 0 \) such that for \(|z| = r > R \) and \(r/\in E \), we have

(i) if \(\delta(P, \theta) > 0 \), then
\[
\exp\left((1 - \epsilon)\delta(P, \theta)r\right) < \left| g(re^{i\theta}) \right| < \exp\left((1 + \epsilon)\delta(P, \theta)r\right); \tag{2.10}
\]

(ii) if \(\delta(P, \theta) < 0 \), then
\[
\exp\left((1 + \epsilon)\delta(P, \theta)r\right) < \left| g(re^{i\theta}) \right| < \exp\left((1 - \epsilon)\delta(P, \theta)r\right), \tag{2.11}
\]
where \(H = \{\theta \in [0, 2\pi); \delta(P, \theta) = 0\} \).

Lemma 2.7. (See [7].) Let \(f(z) \) be a transcendental meromorphic function of finite order \(\rho \), and let \(\epsilon > 0 \) be a given constant. Then there exists a set \(H \subset (1, \infty) \) that has finite logarithmic measure, such that for all \(z \) satisfying \(|z| \notin H \cup [0, 1] \) and for all \(k, j \), \(0 \leq j < k \), we have
\[
\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leq |z|^{(k-j)(\rho-1+\epsilon)}. \tag{2.12}
\]

Similarly, there exists a set \(E \subset [0, 2\pi) \) of linear measure zero such that for all \(z = re^{i\theta} \) with \(|z| \) sufficiently large and \(\theta \in [0, 2\pi) \setminus E \), and for all \(k, j \), \(0 \leq j < k \), the inequality (2.12) holds.

3. Proof of Theorem 1.1

Suppose first that \(f \) is a nontrivial solution of (1.4) with \(\rho(f) < \infty \). By [17, Theorem 1.48], we obtain \(\rho(f) \geq 1 \). From (1.4), we have
\[
\frac{f''}{f} + A_1(z)e^{az} \frac{f'}{f} + A_0(z)e^{bz} = \frac{H}{f}. \tag{3.1}
\]
Recalling the Wiman–Valiron theory, for any given \(0 < \delta < \frac{1}{4} \), there exists a set \(E_1 \) of finite logarithmic measure such that
\[
\frac{f^{(j)}(z)}{f(z)} = \left(\frac{\nu_f(r)}{z} \right)^j (1 + o(1)), \quad j = 1, 2, \tag{3.2}
\]
whenever \(|f(z)| \geq M(r, f)\nu_f(r)^{-\frac{1}{4} + \delta} \), \(r \notin E_1 \). Furthermore, from the definition of the central index, we know that \(\nu_f(r) \to \infty \) as \(r \to \infty \). By Lemma 2.1,
\[
\nu_f(r) \leq r^{\rho(f)+1} \tag{3.3}
\]
for all r sufficiently large. By Lemma 2.7, we have

$$|f^{(j)}(z)| \leq |z|^{j \rho(f) - 1 + \epsilon}, \quad j = 1, 2,$$

(3.4)

for all z satisfying $|z| = r \notin E_2$ where $\lambda(E_2) < \infty$, and ϵ is any given constant with $0 < 4\epsilon < 1 - \rho(H)$. By Lemma 2.5, there is a set E_3 with $\xi = \log \text{dens } E_3 > 0$ such that

$$\frac{v_f(r)^{p-\delta} H(z)}{M(r, f)} \leq \exp \{-r^{1-2\epsilon}\}$$

(3.5)

as soon as $r \in E_3$ is large enough. We may take θ_r such that $M(r, f) = |f(re^{i\theta_r})|$ for every r. By Lemma 2.4, given a constant $0 < C < 1$, there exists a constant l_0 and a set E_4 with $1 - \frac{\xi}{2} \leq \log \text{dens } (E_4)$ such that

$$e^{-5\pi} M(r, f)^{1-C} \leq |f(re^{i\theta})|$$

(3.6)

for all $r \in E_4$ and $|\theta - \theta_r| \leq l_0$. Recall now that the characteristic functions of E_3 and E_4 satisfy the relation

$$\chi_{E_3 \cap E_4}(t) = \chi_{E_3}(t) + \chi_{E_4}(t) - \chi_{E_3 \cup E_4}(t).$$

Clearly, $\log \text{dens } (E_3 \cup E_4) \leq 1$. Thus, we get

$$\frac{\xi}{2} \leq \log \text{dens } E_3 + \log \text{dens } (E_4) - \log \text{dens } (E_3 \cup E_4) \leq \log \text{dens } (E_3 \cap E_4).$$

Since $\lambda(E_1 \cup E_2) < \infty$, we have $\log \text{dens } ((E_3 \cap E_4) \setminus (E_1 \cup E_2)) > 0$. Thus, there exists a sequence of points $z_n = r_n e^{i\theta_n}$ with r_n tending to infinity and

$$|f(z_n)| = M(r_n, f), \quad r_n \in (E_3 \cap E_4) \setminus (E_1 \cup E_2).$$

Passing to a subsequence of $\{\theta_n\}$, if needed, we may assume that $\lim_{n \to \infty} \theta_n = \theta_0$.

We now discuss three cases separately.

Case 1. First assume that $\delta(az, \theta_0) > 0$. From the continuity of $\delta(az, \theta)$, we have

$$\frac{1}{2} \delta(az, \theta_0) < \delta(az, \theta_n) < \frac{3}{2} \delta(az, \theta_0)$$

(3.7)

for sufficiently large n. From (2.10), we deduce that

$$\exp \left\{ \frac{1 - \epsilon}{2} \delta(az, \theta_0) r_n \right\} \leq |A_1(z_n) e^{az_n}| \leq \exp \left\{ \frac{3(1 + \epsilon)}{2} \delta(az, \theta_0) r_n \right\}$$

(3.8)

for all n sufficiently large. From (3.1), we have

$$\left| \frac{f'(z_n)}{f(z_n)} + \frac{A_0(z_n)}{A_1(z_n)} e^{(b-a)z_n} \right| \leq \frac{e^{-az_n}}{A_1(z_n)} \left(\frac{f''(z_n)}{f(z_n)} + \frac{|H(z_n)|}{M(r_n, f)} \right).$$

(3.9)

We now divide our consideration in Case 1 in three subcases:

Subcase 1.1. We first assume that θ_0 satisfies $\eta := \delta((b - a)z, \theta_0) > 0$. From the continuity of $\delta((b - a)z, \theta)$, we also have

$$\frac{1}{2} \delta((b - a)z, \theta_0) \leq \delta((b - a)z, \theta_n) \leq \frac{3}{2} \delta((b - a)z, \theta_0)$$

for sufficiently large n. Again from (2.10), we obtain that

$$\exp \left\{ \frac{1 - \epsilon}{2} \eta r_n \right\} \leq \frac{A_0(z_n)}{A_1(z_n)} \left| e^{(b-a)z_n} \right| \leq \exp \left\{ \frac{3(1 + \epsilon)}{2} \eta r_n \right\},$$

(3.10)

when n is large. Substituting (3.2), (3.3) and (3.5) into (3.9), we obtain

$$\left| \frac{v_f(r_n)}{z_n} (1 + o(1)) + \frac{A_0(z_n)}{A_1(z_n)} e^{(b-a)z_n} \right| \leq \frac{r_n 2^{\rho(f)+1}}{A_1(z_n) e^{az}}$$

(3.11)
for sufficiently large n. Considering (3.8), clearly
\[\frac{r_n^{2\rho(f)+1}}{A_1(z_n)e^{a z_n}} e^{\frac{1}{2} \delta(a z, \theta_0) r_n} \leq \exp \left\{ -\frac{(1-2\varepsilon)}{2} \delta(a z, \theta_0) r_n \right\}. \]

Combining this with (3.3), (3.10) and (3.11), we conclude that
\[\exp \left\{ \frac{(1-\varepsilon)}{2} \eta r_n \right\} \leq \left| A_0(z_n) e^{(b-a)z_n} + \frac{v_f(r_n)}{r_n} - \frac{v_f(r_n)}{r_n} \right| \leq \exp \left\{ -\frac{(1-2\varepsilon)}{2} \delta(a z, \theta_0) r_n \right\} + 2r_\rho r_n \leq 3r_\rho, \]
a contradiction.

Subcase 1.2. Next assume that $\eta := \delta((b-a)z, \theta_0) < 0$. Then from (2.11), for n large enough, we deduce that
\[\exp \left\{ \frac{3(1+\varepsilon)}{2} \eta r_n \right\} \leq \left| A_0(z_n) e^{(b-a)z_n} \right| \leq \exp \left\{ \frac{(1-\varepsilon)}{2} \eta r_n \right\}. \] (3.12)

It follows from (3.11) and (3.12) that
\[\frac{v_f(r_n)}{r_n} (1 + o(1)) \leq \exp \left\{ \frac{(1-\varepsilon)}{2} \eta r_n \right\} + \exp \left\{ -\frac{(1-2\varepsilon)}{2} \delta(a z, \theta_0) r_n \right\} \]
as $n \to \infty$. This implies that
\[v_f(r_n) \to 0, \quad n \to \infty, \]
which is impossible.

Subcase 1.3. Assume finally that $\eta := \delta((b-a)z, \theta_0) = 0$. Here, (3.6) may be used to construct another sequence of points $z_n^* = r_n e^{i\theta_n^*}$ with $\lim_{n \to \infty} \theta_n^* = \theta_0^*$ such that $\eta_1 := \delta((b-a)z, \theta_0^*) > 0$. Indeed, we may suppose, without loss of generality, that
\[
\delta((b-a)z, \theta) > 0, \quad \theta \in (\theta_0 + 2k\pi, \theta_0 + (2k+1)\pi),
\]
\[
\delta((b-a)z, \theta) < 0, \quad \theta \in (\theta_0 + (2k-1)\pi, \theta_0 + 2k\pi),
\]
with $k \in \mathbb{Z}$. When n is large enough, we have $|\theta_0 - \theta_n| \leq l_0$. Choose now θ_n^* such that $\frac{l_0}{2} \leq \theta_n^* - \theta_n \leq l_0$. Then
\[\theta_n + \frac{l_0}{2} \leq \theta_n^* \leq \theta_n + l_0, \]
and
\[\theta_0 + \frac{l_0}{2} \leq \theta_0^* \leq \theta_0 + l_0. \] (3.13)

For sufficiently large n, we have (3.6) for z_n^*, and $\eta_1 := \delta((b-a)z, \theta_0^*) > 0$. Therefore,
\[\left| \frac{H(z_n^*)}{f(z_n^*)} \right| \leq \frac{v_f(r_n)^{1-\delta} M(r_n, H)}{e^{-5\gamma} M(r_n, f)^{1-C}} \]
and
\[\exp \left\{ \frac{(1-\varepsilon)}{2} \eta_1 r_n \right\} \leq \left| A_0(z_n^*) e^{(b-a)z_n^*} \right| \leq \exp \left\{ \frac{3(1+\varepsilon)}{2} \eta_1 r_n \right\}. \] (3.14)

By the proof of Lemma 2.5, we may assume that
\[M(r_n, f) \geq \exp\{r_\rho(f)^{1-\varepsilon}\}. \]
Therefore, previous estimates may be combined to result in
\[
\frac{|H(z_n^*)|}{f(z_n^*)} \leq r_n^{(\rho(f)+1)(\frac{1}{2} - \delta)} \exp[r_n^{\rho(H)+\epsilon}] \exp[r_n^{\rho(f) - \frac{1}{2} \epsilon}] \leq \exp[-r_n^{1-2\epsilon}]
\] (3.15)
for all \(n \) large enough. Taking now \(l_0 \) small enough, we have \(\delta(az, \theta_0^*) > 0 \) by the continuity of \(\delta(az, \theta) \). This yields
\[
\exp\left\{ \frac{(1 - \epsilon)}{2} \delta(az, \theta_0) r_n \right\} \leq |A_1(z_n^*) e^{az}| \leq \exp\left\{ \frac{3(1 + \epsilon)}{2} \delta(az, \theta_0) r_n \right\}.
\] (3.16)
Substituting (3.4) and (3.15) into (3.9), we have
\[
(3.19)
\]
for the sequence of points \(z \).

Case 2. Suppose now that \(\delta(az, \theta_0) < 0 \). Then from the continuity of \(\delta(az, \theta) \) and (2.11), we have
\[
\exp\left\{ \frac{3(1 + \epsilon)}{2} \delta(az, \theta_0) r_n \right\} \leq |A_1(z_n^*) e^{az}| \leq \exp\left\{ \frac{(1 - \epsilon)}{2} \delta(az, \theta_0) r_n \right\}
\] (3.17)
for all \(n \) sufficiently large. From (3.1), we have
\[
\left\| \frac{f''(z_n^*)}{f(z_n^*)} + A_0(z_n^*) e^{bz_n} \right\| \leq \left\| A_1(z_n^*) e^{az} \right\| \left\| \frac{f'(z_n^*)}{f(z_n^*)} \right\| + \frac{|H(z_n)|}{M(r_n, f)}
\] (3.18)
as \(n \to \infty \). Again, we have to treat three subcases separately.

Subcase 2.1. Assume first that \(\delta(bz, \theta_0) > 0 \). From the continuity of \(\delta(bz, \theta) \) and (2.10), we deduce that
\[
\exp\left\{ \frac{(1 - \epsilon)}{2} \delta(bz, \theta_0) r_n \right\} \leq |A_0(z_n^*) e^{bz}| \leq \exp\left\{ \frac{3(1 + \epsilon)}{2} \delta(bz, \theta_0) r_n \right\}
\] (3.19)
for \(n \) large enough. Substituting (3.2), (3.3), (3.5) and (3.17) into (3.18) results in
\[
\left\| \frac{v_f(r_n)}{z_n^*} \right\|^2 (1 + o(1)) + A_0(z_n) e^{bz_n} \leq \exp\left\{ -r_n^{1-2\epsilon} \right\}.
\] (3.20)
Combining this with (3.3) and (3.19), we have
\[
\exp\left\{ \frac{(1 - \epsilon)}{2} \delta(bz, \theta_0) r_n \right\} \leq \exp\left\{ -r_n^{1-3\epsilon} \right\} + r_n^{2\rho(f)} \leq 2r_n^{2\rho(f)},
\]
a contradiction.

Subcase 2.2. We assume that \(\delta(bz, \theta_0) < 0 \). By continuity of \(\delta(bz, \theta) \) and (2.11), we now have
\[
\exp\left\{ \frac{3(1 + \epsilon)}{2} \delta(bz, \theta_0) r_n \right\} \leq |A_0(z_n) e^{bz}| \leq \exp\left\{ \frac{(1 - \epsilon)}{2} \delta(bz, \theta_0) r_n \right\}
\] (3.21)
for all \(n \) sufficiently large. It follows from (3.17), (3.18), (3.21) and Lemma 2.5 that \(v_f(r_n) \to 0 \) as \(n \to \infty \), which is impossible.

Subcase 2.3. Suppose that \(\delta(bz, \theta_0) = 0 \). Arguing similarly as in Subcase 1.3, we may again construct another sequence of points \(z_n^* \) satisfying \(\frac{1}{2} \leq |\theta_n^* - \theta_0| \leq l_0 \) such that \(\delta(az, \theta_0^*) < 0 \) < \(\delta(bz, \theta_0^*) \) where \(\theta_0^* = \lim_{n \to \infty} \theta_n^* \). Replacing \(\delta(az, \theta_0) \) with \(\delta(az, \theta_0^*) \) in (3.17) and \(\delta(bz, \theta_0) \) with \(\delta(bz, \theta_0^*) \) in (3.19), respectively, we obtain (3.17) and (3.19) for the sequence of points \(z_n^* \). Arguing as in Subcase 1.3, we also have (3.15) for the points \(z_n^* \). Similarly as before, we get
\[
|A_0(z_n^*) e^{bz_n^*}| \leq |A_1(z_n^*) e^{az}| r_n^{\rho(f)+\epsilon} + \exp\left\{ -r_n^{1-2\epsilon} \right\} + r_n^{2\rho(f)+\epsilon}
\]
for all \(n \) sufficiently large. A contradiction follows by combining this inequality with (3.17) and (3.19) for \(z_n^* \).
Case 3. In this final case, we suppose that $\delta(az, \theta_0) = 0$. We discuss three subcases according to $\delta(bz, \theta_0)$ as follows.

Subcase 3.1. Suppose that $\delta(bz, \theta_0) > 0$. By an argument similar to that in Subcase 1.3, we can choose another sequence of points $z_n^* = r_n e^{i\theta_n^*}$ with $\theta_n^* = \lim_{n\to\infty} \theta_n^*$ and $l_0 \leq |n_0 - \theta_n^*| \leq l_0$ such that z_n^* satisfies (3.15) and $\delta(az, \theta_n^*) < 0 < \delta(bz, \theta_n^*)$. Similarly as in Subcase 2.3, a contradiction follows as $n \to \infty$.

Subcase 3.2. Suppose next that $\delta(bz, \theta_0) < 0$. By the definition of $\delta(P, \theta)$ in Lemma 2.6, we may define

$$\delta'(az, \theta) := -\alpha \sin \theta - \beta \cos \theta = \delta(az, \theta + \pi/2)$$

where $a = \alpha + i\beta$. Since $a \neq 0$, we have $\delta'(az, \theta_0) \neq 0$. For $z_n' = r_n e^{i\theta_n'}$ satisfying $0 < |\theta_n' - \theta_0| \leq l_0$, we know that z_n' satisfies (3.15) and $\delta(az, \theta_n') \neq 0$. By continuity of $\delta(bz, \theta)$, we may assume that $\delta(bz, \theta_n') < 0 < \delta(az, \theta_n')$ for a suitable l_0, $0 < \theta_n' - \theta_0 \leq l_0$. Then $\delta'(az, \theta_0) > 0$, which means that for a suitable l_0, $\delta'(az, \theta_0) \leq \delta'(az, \theta) \leq \frac{3}{2} \delta'(az, \theta_0), \quad \theta \in (\theta_0, \theta_0 + l_0)$.

Since we have chosen z_n such that $|f(z_n)| = M(r_n, f)$ and $\theta_n \to \theta_0$ as $n \to \infty$, we have $|f(r_n e^{i\theta_0})| \geq M(r_n, f) v_f(r_n)^{-\frac{1}{2}+\delta}$ for n sufficiently large. From (3.1), we have

$$\left| \frac{f'(z_n')}{f(z_n')} \right| \leq \left| \frac{1}{A_1(z_n')} e^{-az_n'} \right| \left(|A_0(z_n') e^{b z_n'}| + \left| \frac{f''(z_n')}{f(z_n')} \right| + \left| \frac{H(z_n')}{f(z_n')} \right| \right).$$ \hspace{1cm} \text{(3.22)}$$

By Lemma 2.6, we have

$$\exp\{-(1 + \varepsilon)\delta(az, \theta_n')\} \leq \left| \frac{1}{A_1(z_n')} e^{-az_n'} \right| \leq \exp\{-(1 - \varepsilon)\delta(az, \theta_n')\}$$ \hspace{1cm} \text{(3.23)}$$

and

$$\exp\{(1 + \varepsilon)\delta(bz, \theta_n')\} \leq |A_0(z_n') e^{b z_n'}| \leq \exp\{(1 - \varepsilon)\delta(bz, \theta_n')\}$$ \hspace{1cm} \text{(3.24)}$$

for all n sufficiently large. Making use of (3.4), (3.15), (3.23) and (3.24), (3.22) implies that

$$\left| \frac{f'(r_n e^{i\theta})}{f(r_n e^{i\theta})} \right| \leq \exp\{-(1 - 2\varepsilon)\delta(az, \theta) r_n\}.$$$$

As θ_n' may be taken arbitrarily in $(\theta_0, \theta_0 + l_0)$, for sufficiently large r_n, we in fact obtained

$$\left| \frac{f'(r_n e^{i\theta})}{f(r_n e^{i\theta})} \right| \leq \exp\{-(1 - 2\varepsilon)\delta(az, \theta) r_n\}, \quad \theta \in (\theta_0, \theta_0 + l_0).$$ \hspace{1cm} \text{(3.25)}$$

Therefore, for $\theta \in (\theta_0, \theta_0 + l_0)$, we have

$$\xi(r_n, \theta) = r_n \theta_0^\theta \left| \frac{f'(r_n e^{i\theta})}{f(r_n e^{i\theta})} \right| d\theta \leq r_n \theta_0^\theta e^{-\eta_1(\theta) r_n} d\theta = \frac{1}{\eta_1(\theta)} e^{-\eta_2(\theta) r_n} d(\eta_2(\theta) r_n),$$

where $\eta_1(\theta) = (1 - 2\varepsilon)\delta'(az, \theta), \quad \eta_2(\theta) = (1 - 2\varepsilon)\delta(az, \theta)$. Since $\delta(az, \theta) > 0$ for all $\theta \in (\theta_0, \theta_0 + l_0)$, it is easy to see

$$0 \leq \xi(r_n, \theta) \leq \frac{2}{(1 - 2\varepsilon)\delta'(az, \theta_0)} (e^{-\eta_2(\theta_0) r_n} - e^{-\eta_2(\theta) r_n}).$$

This leads to

$$0 \leq \xi(r_n, \theta) \leq \frac{2}{\eta_1(\theta_0)}$$ \hspace{1cm} \text{(3.26)}$$

for all n large enough. By the proof of Lemma 2.4, we have

$$\log|f(r_n e^{i\theta_0})| - \xi(r_n, \theta) \leq \log|f(r_n e^{i\theta})| + 2\pi.$$
It follows from this and (3.26) that
\[v_f(r_n)^{-\frac{1}{4} + \delta} M(r_n, f) = \exp\{ -2\pi - 2/\eta_1(\theta_0) \} v_f(r_n)^{-\frac{1}{4} + \delta} M(r_n, f) \leq |f(r_n e^{i\theta})| \]
(3.27)
for \(\theta \in (\theta_0, \theta_0 + l_0) \), where \(0 < \delta' < \delta < \frac{1}{4} \). Therefore, we can choose another sequence of points \(z_n^* = r_n e^{i\theta_n^*} \) with \(\theta_n^* = \frac{l_0}{2} + \theta_0 \) such that \(z_n^* \) satisfies (3.15). Furthermore, from (3.27), when \(n \) is sufficiently large, \(z_n^* \) satisfies (3.2). Thus, (3.2) and (3.25) imply that \(v_f(r_n) \to 0 \) as \(n \to \infty \), which is impossible.

When \(\delta(bz, \theta_n') < 0 < \delta(az, \theta_n') \) for \(-l_0 < \theta_n' - \theta_0 < 0\), clearly \(\xi(r_n, \theta) \leq 0 \) for all \(\theta \in (\theta_0 - l_0, \theta_0) \). Therefore, we similarly get
\[v_f(r_n)^{-\frac{1}{4} + \delta} M(r, f) = \exp\{ -2\pi \} v_f(r_n)^{-\frac{1}{4} + \delta} M(r, f) \leq |f(r_n e^{i\theta})| \]
(3.28)
for \(\theta \in (\theta_0, \theta_0 + l_0) \), where \(0 < \delta' < \delta < \frac{1}{4} \), a contradiction.

Subcase 3.3. Finally, suppose that \(\delta(bz, \theta_0) = 0 \). We now have \(a/b = c \in \mathbb{R}, c \neq 0, 1 \), and so \(az = cbz, \quad (b - a)z = (1 - c)bz \).

If \(c < 0 \), we may take \(l_0 \) small enough such that \(\delta(bz, \theta) < 0 < \delta(az, \theta) \), provided that either \(\theta \in (\theta_0, \theta_0 + l_0) \) or \((\theta_0 - l_0, \theta_0) \). By an argument similar to that in Subcase 3.2, we have (3.25) and (3.27). Then by Wiman–Valiron theory, we get \(v_f(r_n) \to 0 \) as \(n \to \infty \), a contradiction.

If \(0 < c < 1 \), we similarly obtain \(\delta((b - a)z, \theta) > 0 \) and \(\delta(az, \theta) > 0 \), provided that either \(\theta \in (\theta_0, \theta_0 + l_0) \) or \((\theta_0 - l_0, \theta_0) \), for some \(l_0 \) small enough. By an argument similar to that in Subcase 1.3, a contradiction follows.

Finally, if \(c > 1 \), we obtain \(\delta((b - a)z, \theta) < 0 < \delta(az, \theta) \) for either \(\theta \in (\theta_0, \theta_0 + l_0) \) or \((\theta_0 - l_0, \theta_0) \). Furthermore, \(z_n' = r_n e^{i\theta_n'} \) satisfies (3.15), provided \(\theta_n' \in (\theta_0, \theta_0 + l_0) \) or \((\theta_0 - l_0, \theta_0) \). Hence, (3.1) implies that
\[|f'(z_n')| = \left| \frac{A_0(z_n') e^{(b - a)z_n'}}{A_1(z_n')} + \frac{1}{A_1(z_n')} e^{-a'z_n'} \left(\frac{H(z_n')}{f(z_n')} \right) \right| \leq |f(z_n')| \]
Similarly as in Subcase 3.2, we get (3.25) and (3.27). By a standard Wiman–Valiron argument, a contradiction again follows.

4. Proof of Theorem 1.3

Suppose that \(f \) is a nontrivial solution of (1.6) with finite order. By [17], Theorem 1.48 again, \(\rho(f) \geq 1 \). Rewrite now (1.6) as
\[\frac{f''}{f} + (A_1(z) e^{az} + D_1(z)) f' f + (A_0(z) e^{bz} + D_0(z)) = \frac{H(z)}{f}. \]
(4.1)
Since \(q = \max(\rho(D_0), \rho(D_1)) < 1 \), we have
\[|D_j(z)| \leq \exp\{ \rho^{q + e} \}, \quad j = 0, 1, \]
(4.2)
for any \(e \) such that \(0 < 3e < 1 - q \). Similarly as in the proof of Theorem 1.1, we may choose a sequence of points \(z_n = r_n e^{i\theta_n}, r_n \to \infty \), such that \(\lim_{n \to \infty} \theta_n = \theta_0 \) and that
\[|f(z_n)| = M(r_n, f), \quad r_n \in (E_3 \cap E_4) \setminus (E_1 \cup E_2). \]
In particular, the sequence of points \(z_n \) satisfies (3.2)–(3.6). Since \(a/b = c < 0 \), there are three case to be discussed, according to the signs of \(\delta(az, \theta_0) \) and \(\delta(bz, \theta_0) \).

Case 1. First assume that \(\delta(bz, \theta_0) < 0 < \delta(az, \theta_0) \). By Lemma 2.6, and the continuity of \(\delta(az, \theta) \) and \(\delta(bz, \theta) \), we deduce that
\[\exp\left\{ \frac{1 - e}{2} \delta(az, \theta_0) r_n \right\} \leq |A_1(z_n) e^{az_n}| \leq \exp\left\{ \frac{3(1 + e)}{2} \delta(az, \theta_0) r_n \right\} \]
(4.3)
and
\[\exp \left\{ \frac{3(1 + \varepsilon)}{2} \delta(bz, \theta_0)r_n \right\} \leq |A_0(z_n)e^{bza_n}| \leq \exp \left\{ \frac{1 + \varepsilon}{2} \delta(bz, \theta_0)r_n \right\} \] (4.4)
for all \(n \) sufficiently large. From (4.1), we get
\[\left| \left(A_1(z_n)e^{aza_n} + D_1(z_n) \right) \frac{f'(z_n)}{f(z_n)} \right| \leq \left| \frac{H(z_n)}{M(r_n, f)} \right| + \left| \frac{f''(z_n)}{f(z_n)} \right| + \left| A_0(z_n)e^{bza_n} + D_0(z_n) \right|. \] (4.5)
Combining (4.2) with (4.3) and (4.4), respectively, we conclude that
\[|A_0(z_n)e^{bza_n} + D_0(z_n)| \leq \exp \left\{ r^{\theta + 2\varepsilon} \right\} \]
and
\[\exp \left\{ \frac{1 - 2\varepsilon}{2} \delta(az, \theta_0)r_n \right\} \leq |A_1(z_n)e^{aza_n} + D_1(z_n)| \]
provided \(n \) is large enough. Substituting these estimates with (3.2) and (3.5) into (4.5), we obtain
\[v_f(r_n) \leq 2r_n \exp \left\{ - \frac{1 - 2\varepsilon}{2} \delta(az, \theta_0)r_n \right\} \left(2 \left(\frac{v_f(r_n)}{r_n} \right)^2 + \exp \{ r^{\theta + 2\varepsilon} \} \right) \]
for \(n \) large enough. Considering (3.3), this leads to \(v_f(r_n) \to 0 \), which is a contradiction.

Case 2. Suppose next that \(\delta(az, \theta_0) < 0 < \delta(bz, \theta_0) \). Similarly as in Case 1, we obtain by Lemma 2.6 that
\[\exp \left\{ \frac{3(1 + \varepsilon)}{2} \delta(az, \theta_0)r_n \right\} \leq |A_1(z_n)e^{aza_n}| \leq \exp \left\{ \frac{1 + \varepsilon}{2} \delta(az, \theta_0)r_n \right\} \] (4.6)
and
\[\exp \left\{ \frac{1 - \varepsilon}{2} \delta(bz, \theta_0)r_n \right\} \leq |A_0(z_n)e^{bza_n}| \leq \exp \left\{ \frac{3(1 + \varepsilon)}{2} \delta(bz, \theta_0)r_n \right\} \] (4.7)
for all \(n \) sufficiently large. It now follows from (4.1) that
\[|A_0(z_n)e^{bza_n} + D_0(z_n)| \leq \left| \frac{H(z_n)}{M(r_n, f)} \right| + \left| \frac{f''(z_n)}{f(z_n)} \right| + \left| \left(A_1(z_n)e^{aza_n} + D_1(z_n) \right) \frac{f'(z_n)}{f(z_n)} \right|. \] (4.8)
Combining (4.2) with (4.6) and (4.7), respectively, we obtain
\[|A_1(z_n)e^{aza_n} + D_1(z_n)| \leq \exp \left\{ r^{\theta + 2\varepsilon} \right\} \]
and
\[\exp \left\{ \frac{1 - \varepsilon}{2} \delta(bz, \theta_0)r_n \right\} \leq |A_0(z_n)e^{bza_n} + D_0(z_n)| \]
for \(n \) large enough. Substituting these inequalities with (3.4) and (3.5) into (4.8), we conclude that
\[\exp \left\{ \frac{1 - \varepsilon}{2} \delta(bz, \theta_0)r_n \right\} \leq r_n^2 \rho(f) \exp \left\{ r_n^{\theta + 2\varepsilon} \right\}, \]
which is impossible.

Case 3. Finally, we have to assume that \(\delta(az, \theta_0) = \delta(bz, \theta_0) = 0 \). Similarly as in Subcase 1.3 of the proof of Theorem 1.1, we may again use (3.6) to construct a sequence of points \(z_n^* = r_ne^{i\theta_n^*} \) with \(\lim_{n \to \infty} \theta_n^* = \theta_0^* \) such that \(\delta(az, \theta_0^*) < 0 \) and that (3.15) holds for \(z_n^* \). Indeed, we may assume, without loss of generality, that
\[\delta(az, \theta_0) > 0, \quad \theta \in (\theta_0 + 2k\pi, \theta_0 + (2k + 1)\pi), \quad \delta(bz, \theta_0) < 0, \quad \theta \in (\theta_0 + (2k - 1)\pi, \theta_0 + 2k\pi), \]
for all \(k \in \mathbb{Z} \). Provided \(n \) is large enough, we have \(|\theta_0 - \theta_n| \leq l_0 \). Choosing now \(\theta_0^* \) such that \(\frac{l_0}{2} \leq \theta_n^* - \theta_0^* \leq l_0 \), then \(\theta_0 - l_0 \leq \theta_0^* \leq \theta_0 - \frac{l_0}{2} \) and so \(\delta(az, \theta_0^*) < 0 \). Since now \(\delta(bz, \theta_0^*) > 0 \), a contradiction follows as in Case 2 above.
5. Proof of Theorem 1.4

Suppose that \(f \) is a nontrivial solution of (1.6) with finite order. Observing that \(\rho(\alpha) < \frac{1}{2} \rho(\alpha) + \frac{1}{4} < 1 \), we may apply Lemma 2.2 to find a set \(E_1 \) with \(\log \text{dens} E_1 \geq \frac{1-2\rho(\alpha)}{1+2\rho(\alpha)} > 0 \) such that

\[
\left| \alpha(z) \right| \geq M(r, \alpha)^\gamma, \quad \gamma = \cos \left(\frac{2\rho(\alpha) + 1}{4} - \frac{\pi}{4} \right),
\]

for all \(|z| = r \in E_1 \). We may choose a sequence of points \(z_n = r_n e^{i\theta_0} \) such that (3.4) and (5.1) apply at the same time and that \(\delta(-z, \theta_0) < 0 \). Rewriting

\[
\frac{f''(z)}{f(z)} + A_1(z)e^{-z} \frac{f'(z)}{f(z)} + A_0(z)e^{-z} + \alpha(z) = 0,
\]

we may apply (2.11) to conclude that

\[
\max \left(|A_1(z_n)e^{-z_n}|, |A_0(z_n)e^{-z_n}| \right) \leq \exp \left\{ \frac{1 - \varepsilon}{2} \delta(-z, \theta_0) r_n \right\}.
\]

Combining (5.3) with (5.1) and (5.2), we obtain

\[
M(r_n, \alpha)^\gamma \leq |\alpha(z_n)| \leq \left| \frac{f''(z_n)}{f(z_n)} \right| + \left| A_1(z_n)e^{-z_n} \frac{f'(z_n)}{f(z_n)} \right| + |A_0(z_n)e^{-z_n}| \leq r_n^{2\rho(f)}.
\]

This implies that \(\alpha(z) \) is a polynomial, a contradiction.

6. Proof of Theorem 1.5

Suppose that \(f \) is a transcendental solution of (1.7) of finite order. Given \(0 < d < \frac{1}{4} \), define

\[
K_r := \left\{ \theta \mid \log |Q(re^{i\theta})| \leq (1 - d) \log M(r, Q) \right\}.
\]

Since \(Q(z) \) satisfies the condition (1.8) in a set \(E \) of upper logarithmic density \(\zeta > 0 \), it is not difficult to see that the linear measure \(m(K_r) \) approaches to zero as \(r \to \infty \) through \(r \in E \). Indeed,

\[
T(r, Q) \leq \left(1 - \frac{m(K_r)}{2\pi} \right) \log M(r, Q) + (1 - 2d) \frac{m(K_r)}{2\pi} \log M(r, Q)
\]

for \(r \in E \) sufficiently large. This now results in a contradiction with (1.8), if \(m(K_r) \) does not approach to zero as \(r \to \infty \). By Lemma 2.4, we may now choose a sequence of points \(z_n = r_n e^{i\theta_0} \) such that \(z_n \) satisfies (2.12) and

\[
(1 - 2d) \log M(r, Q) < \log |Q(re^{i\theta})| \]

at the same time and, moreover, \(\delta(-z, \theta_0) < 0 \). Then, by (2.11),

\[
\exp \left\{ \frac{3(1 + \varepsilon)}{2} \delta(-z, \theta_0) r_n \right\} \leq |h(z_n)e^{-z_n}| \leq \exp \left\{ \frac{1 - \varepsilon}{2} \delta(-z, \theta_0) r_n \right\}
\]

for all \(n \) large enough. Writing now Eq. (1.7) in the form

\[
\frac{f''(z)}{f(z)} + h(z)e^{-z} \frac{f'(z)}{f(z)} + Q(z) = 0
\]

and substituting (2.12), (6.2) and (6.3) into (6.4), we obtain

\[
M(r_n, Q)^{1-2d} \leq |Q(r_n e^{i\theta_0})| \leq r_n^{2(\rho(f)+\varepsilon)},
\]

and therefore

\[
M(r_n, Q) \leq r_n^{4(\rho(f)+\varepsilon)}.
\]

This is a contradiction, as \(Q(z) \) is transcendental entire.
References