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Application of mechanical excavators is one of the most commonly used excavation methods because it
can bring the project more productivity, accuracy and safety. Among the mechanical excavators, road-
headers are mechanical miners which have been extensively used in tunneling, mining and civil in-
dustries. Performance prediction is an important issue for successful roadheader application and
generally deals with machine selection, production rate and bit consumption. The main aim of this
research is to investigate the cutting performance (instantaneous cutting rates (ICRs)) of medium-duty
roadheaders by using artificial neural network (ANN) approach. There are different categories for
ANNs, but based on training algorithm there are two main kinds: supervised and unsupervised. The
multi-layer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM) are the most widely
used neural networks for supervised and unsupervised ones, respectively. For gaining this goal, a
database was primarily provided from roadheaders’ performance and geomechanical characteristics of
rock formations in tunnels and drift galleries in Tabas coal mine, the largest and the only fully-
mechanized coal mine in Iran. Then the database was analyzed in order to yield the most important
factor for ICR by using relatively important factor in which Garson equation was utilized. The MLP
network was trained by 3 input parameters including rock mass properties, rock quality designation
(RQD), intact rock properties such as uniaxial compressive strength (UCS) and Brazilian tensile strength
(BTS), and one output parameter (ICR). In order to have more validation on MLP outputs, KSOFM visu-
alization was applied. The mean square error (MSE) and regression coefficient (R) of MLP were found to
be 5.49 and 0.97, respectively. Moreover, KSOFM network has a map size of 8 � 5 and final quantization
and topographic errors were 0.383 and 0.032, respectively. The results show that MLP neural networks
have a strong capability to predict and evaluate the performance of medium-duty roadheaders in coal
measure rocks. Furthermore, it is concluded that KSOFM neural network is an efficient way for under-
standing system behavior and knowledge extraction. Finally, it is indicated that UCS has more influence
on ICR by applying the best trained MLP network weights in Garson equation which is also confirmed by
KSOFM.
� 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Performance prediction of roadheaders plays a major role in
successful application of these machines. Over the last few years,
some researchers havemade attempts to set up accuratemodels for
predicting roadheaders’ cutting performance. This subject is a vital
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matter, for an accurate evaluation of machine performance can
remarkably reduce the job costs and enhance productivity of the
project. Predicting performance is an essential task for efficient
application of roadheader and is mainly related to evaluation of
instantaneous cutting rate (ICR) for various cutting conditions. ICR
is defined as the amount of rock excavated per time of cutting (tons
or cubic meter/cutting hour). According to Rostami et al. (1994),
there are some factors affecting roadheader performance which
include: (1) intact rock characteristics, (2) rock mass parameters,
(3) machine specifications, and (4) operational parameters.

Sandbak (1985) and Douglas (1985) utilized a rock mass clas-
sification to describe variations in roadheaders’ advance rates at
San Manuel Copper Mine. Gehring (1989) developed equations for
predicting cutting rate of axial and transverse type roadheaders as

mailto:Arash.xer@gmail.com
mailto:A.Ebrahimabadi@Qaemshahriau.ac.ir
http://dx.doi.org/10.1016/j.jrmge.2015.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2015.06.008&domain=pdf
www.sciencedirect.com/science/journal/16747755
http://www.rockgeotech.org
http://dx.doi.org/10.1016/j.jrmge.2015.06.008
http://dx.doi.org/10.1016/j.jrmge.2015.06.008


A. Ebrahimabadi et al. / Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 573e583574
ICR ¼ 719
0:78 (1)
Fig. 1. General view of the location of Tabas coal mine project.
UCS

for transverse type roadheaders, and

ICR ¼ 1739
UCS1:13

(2)

for axial type roadheaders, where ICR and UCS are the instanta-
neous cutting rate (m3/h) and the uniaxial compressive strength
(MPa), respectively. Moreover, Bilgin et al. (1988, 1990, 1996, 1997,
2004) proposed a predictive model as

ICR ¼ 0:28� 0:974RMCIP (3)

RMCI ¼ UCSðRQD=100Þ2=3 (4)

where P, RMCI and RQD are the cutter head power (kW), the rock
mass cuttability index and the rock quality designation (%),
respectively. Copur et al. (1997, 1998) investigated the effects of
machine’s weight and power on cutting performance. Their studies
led to a more precise model presented as below:

ICR ¼ 27:511e0:0023RPI (5)

RPI ¼ PW=UCS (6)

where RPI is the roadheader penetration index,W is the roadheader
weight (t), and e is the base of natural logarithm. Thuro and
Plinninger (1999) proposed a predictive model based on specific
destruction work (Wz, in kJ/m3). The specific destruction work is
the quantity of energy required for a rock sample to be destroyed.
Its predictive equation is presented as follows:

ICR ¼ 107:6� 19:5 ln Wz (7)

Other models are based on specific energy (SE), which is defined
as the required energy to cut a unit volume of rock material. One of
the most reliable ways to determine the SE is to estimate it from
core cutting test. McFeat-Smith and Fowell (1977, 1979) conducted
broad laboratory and field investigations and proposed a predictive
model based on SE for medium- and heavy-duty roadheaders.

Rostami et al. (1994) developed an accurate model involving
cutting power and optimum SE achieved from linear cutting tests in
laboratory, as presented below:

ICR ¼ k
P

SEopt
(8)

where SEopt is the optimum specific energy, and k is the coefficient
of energy transfer. They stated that k changes in 0.45e0.55 for
roadheaders and in 0.85e0.9 for tunnel boring machines (Rostami
et al., 1994).

As mentioned above, notable attempts have been made to
obtain precise prediction models, a brief history of which has been
presented. Nevertheless, few investigations on performance pre-
diction of roadheaders have been reported using artificial in-
telligences such as artificial neural network (ANN), fuzzy logic and
neuro-fuzzy in recent years while these approaches have been
extensively used in other rock mechanics and rock excavation is-
sues (Grima and Babuska, 1999; Grima et al., 2000; Tiryaki, 2008;
Yagiz and Karahan, 2011; Iphar, 2012). In this regard, the main
aim of the current research work is to utilize ANN approach for
predicting roadheader performance and understanding system
behavior. The most extensively used neural network for prediction
is multi-layer perceptron (MLP). Another neural network which is
mainly utilized for knowledge extraction is Kohonen self-
organizing feature map (KSOFM). These networks are discussed
in more detail in Section 4. Salsani et al. (2014) employed ANN to
model the relationship between the roadheader performance and
the factors influencing the tunneling operations. Also, in this
research a multiple variable regression (MVR) approach was
applied and compared with ANN which has shown that ANN is
significantly better (Salsani et al., 2014). It should be noted that the
main drawback of previous models is that these models do not
reflect the brittleness of rock (UCS/BTS) along with RQD for a given
rock mass. In this work, we tried to incorporate these parameters
into the model together.

This paper, at first, describes a brief history of roadheaders’
performance prediction models and then presents a database
established from the field data that consisted of roadheaders’ cut-
ting rates and rock properties in the galleries from the Tabas coal
mine project (the largest and fully mechanized coal mine in Iran).
Then, two different kinds of ANNs are investigated. Finally, using
the data, an ANN model is developed for predicting the perfor-
mance of medium-duty roadheaders and another model is pro-
posed to establish relationships among the process variables.
2. Description of Tabas coal mine project

Tabas coal mine is located in central Iran near the city of Tabas in
South Khorasan Province and is situated 75 km far from the
southern Tabas (Figs. 1 and 2). The mine region is a portion of
TabaseKerman coal field. The main part of this coal field is called
“Parvadeh” which has the largest coal reserve by nearly 1.1 billion
tons within the area of 1,200 km2. The Parvadeh area is considered
to be the main part for current and future coal extraction.

The coal seam expands from east toward west with thinner
proportion of the seam. Seam thickness varies from 0.5 m to 2.2 m
with the average thickness of 1.8 m. Shallow deposits are mined by
room-and-pillar mining method while for deeper deposits, long-
wall mining method is used. The application of roadheaders was
due in part to mechanized coal mining in Tabas coal mine. The
mechanized coal mining needs rapid excavation of access galleries
in which roadheaders can be employed efficiently. There are four
DOSCO MD1100 roadheaders of 34 t in mass, with a 82-kW axial
cutting head in order to excavate drift galleries in the mine.

As for the mechanism of rock or coal excavation by roadheaders,
it is stated that the breaking process of cutting head can be divided



Fig. 2. The location of Tabas coal mine project in Parvadeh region.
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into four stages as follows: (1) Stage of plastic deformation. The
force of cutting pick on coal or rock increases gradually, leading the
stress of coal or rock surrounding the contact to reach the yield
limit firstly, resulting in plastic deformation. (2) Stage of cracking.
When the tensile stress of coal or rock exceeds their ultimate ten-
sile strength, with a further increase in the force with cutting picks,
crack occurs. In this stage, rock strengths (UCS and BTS) play a
major role in rock failure. Moreover, for jointed rocks, such as the
conditions in Tabas mine, RQD is considered to be a crucial factor to
assist rock breakage, leading to a higher cutting rate. (3) Stage of
dense nucleus formation. With the crack expanding, broken coal or
rock powder moves forward with the cutting picks, and dense
nucleus emerges. Then a part of rock powder is ejected from the
pick of blade surface, and dense nucleus volume decreases. (4)
Stage of coal or rock breaking. With the further interaction of cut-
ting picks and coal or rock, more rock powder becomes nucleus,
and nucleus grows up; when the pressure exceeds a certain value,
Fig. 3. The evolution of rock (o
the coal or rock breaks, cutting load on picks decreases instantly,
and a leapfrog cutting cycle is completed (Fig. 3).

Figs. 4 and 5 show the picture of roadheader employed and a
view of rock formations in the tunnel, respectively. Table 1 lists the
basic specifications of DOSCO MD1100 roadheaders (DOSCO Over-
seas Engineering Ltd.).

As seen in Table 1, a comprehensive database was prepared for
62 cutting cases in galleries and entries of the Tabas mine to be
further analyzed to achieve accurate predictive models
(Ebrahimabadi et al., 2011a).
3. Previous prediction models in Tabas coal mine

Many investigations on performance prediction of roadheaders
have been carried out based on detailed field studies in the Tabas
coal mine project (Ebrahimabadi et al., 2011b, 2012). Consequently,
several models to predict the performance of roadheaders based on
brittleness index were proposed. Rock mass brittleness index
(RMBI) was developed to analyze the effect of rock mass properties
on roadheaders cutting performance. Findings indicated that RMBI
is highly correlated with ICR (R2 ¼ 0.98). Furthermore, through the
broad analyses, another model was proposed for predicting pick or
bit consumption rates (PCRs) (R2 ¼ 0.94). The prediction models
were described as below (Ebrahimabadi et al., 2011a, b, 2012):

RMBI ¼ e
UCS
BTS

�
RQD
100

�3

(9)

ICR ¼ 30:74RMBI0:23 (10)

PCI ¼ eRMBI
�
RQD
100

�3

(11)

PCR ¼ 45:1PCI�0:15 (12)
r coal) breakage process.



Fig. 4. DOSCO MD1100 axial type roadheader (DOSCO Overseas Engineering Ltd.).
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where PCI is the pick consumption index and P is equal to 82 kW
(DOSCO MD1100 cutter head power).

It should be stated that the models (Eqs. (9e12)) were attained
from the analysis of 42 cutting cases. After data collection from
other 62 cutting cases, Eq. (10) has been improved as

ICR ¼ 9:07 ln RMBI þ 29:93 (13)

It should be noted that the aforementioned models have been
yielded via statistical modeling. However, in this research, we aim
to investigate the relation between the principal rock formation
properties and roadheaders’ cutting performance through ANN
approach. We consider ANN as a powerful and new approach to
develop more precise models.
4. Artificial neural network (ANN)

ANNs are mathematical features inspired from humans’ brain
biology (Mahdevari et al., 2012). They consist of simple inter-
connected processing elements called neurons under a pre-
specified topology (layers) (Benardos and Kaliampakos, 2004).
Each neuron is connected to its neighbors with varying co-
efficients called weights (Hamed et al., 2004). The knowledge of an
ANN is stored in its weights (Holubar et al., 2002; Hamed et al.,
2004). Due to remarkable ability of the neural networks for
deriving a general solution for complex systems, they can be used
as patterns extraction and trends detection (Yilmaz and Kaynar,
2011). ANNs are classified into several types based on special
characteristics. The most popular classification is based on
learning algorithm which is the ability of the network to learn
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Fig. 5. Schematic cross-section of tunnels (all dimensions are in meter).
from its environments and to improve its performance (Haykin,
1994). The learning algorithm is a dynamic and iterative process
which consists of modification of network’s parameters in
response to the received environmental signals (Moller, 1993). In
the majority of cases, learning results in a change in the amount of
weights (Khataee and Kasiri, 2011). The goal of learning is to
minimize the error between the desired output (target) and
network output (output). Twomain algorithms are supervised and
unsupervised. However, reinforcement learning algorithm is
another one which is not studied in this paper. In supervised
learning, a teacher that may be a training set of data is required. In
this category, training a network includes presenting input and
output data. When the network produces required outputs which
are close to targets, it is considered to be complete. On the other
hand, the network error has the least value. One of the most
extensively used training algorithms is back-propagation as the
workhorse of ANNs (Rumelhart et al., 1986). This algorithm has
two phases (Meulenkamp and Grima, 1999): (1) Presenting an
input pattern and calculating the output by network; and (2)
Calculating the error and propagating backward this error from
the outputs to inputs and finally updating the weights.

In unsupervised learning, despite the external influences on
adjusting weights, there is an internal monitoring of perfor-
mance (Haykin, 1994). The network uses this kind of algorithm to
look for regularities or trends in the input signal. To perform
unsupervised learning, a competitive learning rule may be uti-
lized in which the wining neuron or the best matching unit will
be chosen with “winner-takes-all” strategy (Haykin, 1994;
Rustum et al., 2008).

For each training algorithm, there is a specified neural network.
The most popular and widely used neural network that uses the
supervised learning algorithm is MLP. Generally, this network
contains three layers: input, hidden and output layers. The
numbers of hidden neurons are determined in a trial-and-error
approach. However, the numbers of neurons of input and output
layers depend on the nature of the problem (Salari et al., 2005). Due
to universal approximation theory, a network with a single hidden
layer with a sufficiently large number of neurons can be used for
any inputeoutput structure interpretation (Salari et al., 2005) and it
is sufficient for most related issues (Rahmanian et al., 2011). In an
MLP network, the process of producing output has 4 phases: (1)
entering the inputs, (2) multiplying inputs by weights (the result of
this stage is called net), (3) passing through the net to transfer
function, and (4) producing the outputs. This process is accom-
plished in hidden layer neurons. After that, the hidden neurons
outputs are fed to output layer and the same process will be



Fig. 6. (a) Hexagonal lattice, and (b) rectangular lattice (Vesanto, 1999).

Table 1
Typical specifications of DOSCO MD1100 roadheaders (DOSCO Overseas Engineering Ltd.).

Machine mass
(base machine)
(kg)

Total power
(standard machine)
(kW)

Power on cutting boom
(standard machine)
(kW)

Hydraulic system
working pressure
(MPa)

Tracking speedse
sumping/flitting
(m/s)

Ground pressure
(kg/m2)

Machine size (m)

Length Width Height

34,000 From 157 82 (axial), 112 (transverse) 14 0.038/0.12 14,000 8.06 3 1.7
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applied. To evaluate the performance of the models and find the
best fitted one, various indices are proposed while in this survey
mean square error (MSE) and R (regression coefficient) were cho-
sen as follows:

MSE ¼ 1
N

XN
i¼1

ðTi � OiÞ2 (14)

R ¼

XN
i¼1

�
Ti � Ti

��
Oi � Oi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
Ti � Ti

�2XN
i¼1

�
Oi � Oi

�2vuut
(15)

where Ti and Oi indicate experimental and network outputs,
respectively; Ti and Oi are the average of mentioned data, respec-
tively; N is the total number of data.

For unsupervised learning, there are two main models: KSOFM
and Willshaw-von der Malsburg. KSOFM model has received more
attention and therefore has been chosen in this paper. KSOFM is
one of the most powerful and practical networks (Kohonen et al.,
1996) which can be used at the same time to highlight groups of
elements with similar characteristics (Grieu et al., 2006), and
nonlinear interpolation and extrapolation (Kohonen et al., 1996), to
reduce the amount of data by clustering, and to project the data
nonlinearity onto a lower dimensional display (Hong et al., 2003).
The term ‘self-organizing’ indicates the ability of learning and
organizing informationwithout applying the corresponding output
values for the input patterns (Mukherjee, 1997). This neural
network combines an input layer with a competitive one (Grieu
et al., 2006; Ghaseminezhad and Karami, 2011) in which the
input vectors that have n components (x1, x2, ., xn) are connected
to each neuron (n) by a synaptic weight. Therefore, each neuron is
represented by an n-dimensional weight wi ¼ [wi1, ., win]T (Hong
et al., 2003; Ghaseminezhad and Karami, 2011). These weight
vectors are also named prototype vectors (Garcia and Gonzalez,
2004) or reference vectors (Hong et al., 2003). In a self-organizing
map, the neurons are placed at the nodes of a lattice that is usu-
ally one- or two-dimensional which is more common than higher
dimensional maps (Haykin, 1994). This lattice of neurons called
map can be illustrated as a rectangular, hexagonal or even irregular
organization (Heikkinen et al., 2011). Due to better presentation of
connections between neighboring neurons, the hexagonal one is
more preferable (Hong et al., 2003; Heikkinen et al., 2011). Fig. 6
shows two illustrations of KSOFM map. Depending on the
required application and details, size of the map (number of neu-
rons) is varied. The number of neurons may vary from a few up to
thousands which determines the mapping granularity and affects
the accuracy and generalization capability of KSOFM (Llorens et al.,
2008). To find the side length of any map, heuristic formula is
applied which is proposed as follows (Garcia and Gonzalez, 2004):

M ¼ 2
ffiffiffiffi
N

p
(16)
whereM is the number of map units. In this paper, 62 samples were
used. Therefore, there should be at least 39 map units.

There are two algorithms for training this kind of neural
network: (1) sequential training in which samples are presented to
the map one at a time, and the algorithm gradually moves the
weight vectors towards them, and (2) batch training in which the
data set is presented to the self-organizing map as a whole, and the
newweight vectors are evaluated as the average of the data vectors
(Vesanto, 1999). Training process depends on the attained errors. If
the error is acceptable, training will stop. Two error criteria are
normally used: the quantization error and the topographical error,
as defined as follows (Garcia and Gonzalez, 2004; Rustum et al.,
2008):

qe ¼ 1
N

XN
i¼1

jjxi �mcjj (17)

te ¼ 1
N

XN
i¼1

uðxiÞ (18)

where qe is the quantization error; xi is the i-th data sample or
vector; mc is the prototype vector of the best matching unit for xi;
jj,jj denotes the distance; te is the topographical error; and u is the
binary integer, which is equal to 1 if the first and second best
matching units for the argument of u are not adjacent units on the
map, otherwise, u ¼ 0.



Table 2
Rock geomechanical characteristics and roadheaders’ performance for all cutting cases (Ebrahimabadi et al., 2011a, b, 2012).

Case No. Representative
UCS (MPa)

Representative
BTS (MPa)

RQD (%) Measured
ICR (m3/h)

Case No. Representative
UCS (MPa)

Representative
BTS (MPa)

RQD (%) Measured
ICR (m3/h)

1 14.8 3.8 19 22.2 32 14.7 3.8 19 15.7
2 15.2 3.9 19 25.3 33 17 4.2 20 18.7
3 15.2 3.8 20 24.8 34 15.7 4 19 16.8
4 15.4 4 19 23.7 35 16 3.9 20 18.3
5 15.3 3.9 19 23.2 36 16.2 3.8 21 26.4
6 15 3.9 19 22.8 37 16.7 3.9 22 25.3
7 15.6 3.9 20 27.1 38 17.2 3.9 22 28.5
8 14.5 3.7 20 25.7 39 17.3 4.2 21 25.4
9 16.2 4.2 18 25.6 40 19.2 4.5 24 29.4

10 15.4 4 18 20.2 41 15 3.9 19 22.4
11 16.9 4.2 20 28.2 42 21 3.8 20 36.4
12 14.3 3.8 19 24.4 43 22.3 3.9 20 37.7
13 15.5 4 19 26.4 44 25.6 4.2 19 40.4
14 17.2 4.1 20 25.7 45 26.7 4.3 19 41.1
15 23.9 4.7 27 41.5 46 26.7 4.3 19 41.1
16 27.2 5.3 28 46.2 47 27.2 4.3 19 41.4
17 20.1 4.5 23 32.2 48 27.6 4.4 19 41.6
18 14.1 3.6 19 16.7 49 28 4.4 19 41.8
19 15 3.8 20 17.4 50 19.2 3.7 21 34
20 14.4 3.8 19 16.8 51 25.1 4.1 19 40
21 14.8 3.9 18 17 52 27 4.3 19 41.3
22 14.7 3.8 19 17.5 53 27.1 4.3 19 41.3
23 15.7 4 19 16.8 54 27.4 4.3 19 41.5
24 16.4 4.3 18 16.7 55 27.5 4.3 19 41.5
25 15.1 3.9 19 16.1 56 27.6 4.3 19 41.6
26 14.5 3.7 19 17.7 57 27.7 4.4 19 41.7
27 15.1 3.9 19 16 58 27.9 4.4 19 41.8
28 15.2 4 19 17 59 28 4.4 19 41.8
29 14.4 3.7 19 14.6 60 28.1 4.4 19 41.9
30 15.6 3.9 20 19 61 27.9 4.4 19 41.8
31 14.5 3.7 18 17.7 62 28.2 4.4 19 41.9

UCS

BTS

RQD

ICR

Bias Bias

Input layer
Hidden layer

Output layer

Fig. 7. The structure of MLP network.
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5. ANN results

5.1. Multi-layer perceptron (MLP)

To find the best MLP network, the following stages should be
carried out:

(1) Defining and selecting inputs and output(s) based on dataset.
(2) Preprocessing data. In this work data have fallen in the range of

[�1, 1] by scaling them with respect to the minimum and the
maximum of all the data (Mjalli et al., 2007).

(3) Dividing data into three subsets: training, validation and test.
In this research, 60%, 20% and 20% of data were used for
training, validation and test, respectively. The main reason of
this division is to overcome overfitting which is one of the
most important issues of neural networks (Rafiai and Jafari,
2011). This method is called early-stopping. To avoid random
correlation, these subsets were randomly selected from all the
data (Badalians Gholikandi et al., 2014).

(4) Creating different networks by varying numbers of hidden
neurons and activation functions. The numbers of hidden
neurons were varied from 1 to 20, and for activation functions,
hyperbolic tangent and logarithmic sigmoids were taken for
hidden layer; besides, linear function was utilized for the
output layer. This indicates that for each neuron 6 networks
with different combinations of activation functions and totally
120 networks were created, trained and tested (Badalians
Gholikandi et al., 2014).

(5) Evaluating the performance of created networks by R andMSE.
It should be noticed that, to calculate MSE, an inverse range
scaling must be performed to return network outputs to their
original scale which is necessary for comparing outputs and
targets (Salari et al., 2005).
In this study, LevenbergeMarquardt (LeM) algorithm was used
for training. This algorithm is a combination of GausseNewton al-
gorithm and the steepest descent method, and it inherits the speed
advantage of the former and the stability of the latter. Moreover, Le
M algorithm is 10e100 times faster than usual gradient descent
back-propagation method (Pendashteh et al., 2011) and proved to
be the fastest and most robust algorithm (Charalambous, 1992).

In this study, Matlab software was used for simulation and
modeling. Input parameters are UCS, BTS and RQD and output is
ICR (Table 2). Fig. 7 represents the structure of defined networks.
The best model which has the lowest MSE (MSE¼ 5.49) for all data
was obtained from 3:14:1 structure (14 hidden neurons). The
activation functions of this model were hyperbolic tangent (tansig)
for both hidden and output layers. The MSE value and correlation



Fig. 8. R and MSE for all data and different data subsets.
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(R) between outputs versus targets for all data and different data
subsets are presented in Fig. 8. Fig. 9 shows the reduction of MSE of
the best MLP model during learning. As it seems, the epoch (each
iteration of learning) in which the best network is obtained is 39.
The reason for stopping training network is validation checks
where if the error of this data subset increases (for 6 times in this
study), the training will be stopped and the weights of that
network will be stored as the best network weights. Fig. 10 pre-
sents the comparison of the predicted values (outputs) versus
measured values (targets), which shows that the selected network
has a good level of accuracy for prediction of roadheader perfor-
mance in most cases.
5.2. Relative importance

To find the relative importance of input variables for ICR, Garson
equation (Eq. (19)) was applied which uses the weights of the best
trained MLP network (Elmolla et al., 2010):
Fig. 9. MSE of the best MLP model during learning.
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where Ij is the relative importance of the j-th input variable for the
output variable; Ni and Nh are the numbers of input and hidden
neurons, respectively; and W is used for connection weights. The
superscripts “i”, “h” and “o” are for input, hidden and output layers,
respectively, and the subscripts “k”, “m” and “n” refer to input,
hidden and output neurons, respectively (Delnavaz et al., 2010).
Table 3 shows the best ANN model weights which were used in Eq.
(19).

Table 4 shows the influence of each input variable which in-
dicates that UCS has more influence on ICR. This result is the same
Fig. 10. Comparison of the predicted (outputs) versus measured (targets) values.



Table 3
Weights between input and hidden layers (W1) as well as weights between hidden
and output layers (W2).

Neuron W1, input variables W2, output variables

UCS (MPa) BTS (MPa) RQD (%) Bias ICR (m3/h) Bias

1 1.9993 6.8575 �3.1087 6.9223 �2.117 1.4695
2 2.2266 1.0832 7.0414 �5.6436 0.8853
3 �1.8969 �4.2569 4.878 5.3685 1.0379
4 2.854 �2.3679 �6.3068 �3.2395 �1.6938
5 �6.0247 3.4367 0.2686 3.4794 �1.8793
6 �3.0023 �5.2419 �3.6634 2.1553 �0.4932
7 �0.575 �4.9642 �6.2603 �0.1682 �1.7332
8 0.8073 9.6966 �6.634 �2.5497 3.1359
9 1.0488 3.9225 �6.8637 �0.406 0.8101

10 �5.1908 �6.0878 �1.534 �0.5045 2.5344
11 �3.8754 7.6857 �1.6847 �3.0635 �6.3317
12 4.367 �7.913 7.0525 2.6689 �2.4061
13 7.5232 �2.4736 2.4903 3.3329 1.7906
14 2.705 �3.4497 7.6803 4.1297 3.3819
15 2.5573 0.6353 6.7818 5.3491 �2.5927
16 3.5321 �5.8252 1.0652 7.3234 1.3052

Fig. 11. Simultaneous effect of UCS and BTS.

Fig. 12. Simultaneous effect of UCS and RQD.
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as that in Salsani et al. (2014) in which sensitivity analysis was
conducted to find the most effective parameter for ICR.

5.3. Discussion on the effects of rock parameters on roadheaders’
cutting performance

To have a better understanding of system, three-
dimensional figures were produced by the obtained best MLP
network. For this purpose, two parameters were changed
simultaneously and the other one was constant. The values of
the parameters were considered as their average values. The
average values of UCS, BTS and RQD are 19.6 MPa, 4 MPa and
19.7 MPa, respectively.

5.3.1. The simultaneous effect of UCS and BTS
As Fig. 11 shows, ICR increases with any increase in UCS and this

is against the previous findings obtained from other researches. The
relation between ICR and BTS also shows some variations, not
allowing a consistent trend to be recognized. These results
demonstrate that it is necessary to consider rock mass parameters,
such as RQD, to gain more precise and realistic results.

5.3.2. The simultaneous effect of UCS and RQD
Considering aforementioned results and due to high degree of

jointing and fracturing of existing rock formations, RQD would be
expected to have a crucial effect on cutting performance. On the
other hand, it is clearly known that UCS has a remarkable impact on
ICR. Hence, it is highly recommended to simultaneously investigate
both UCS and RQD to gain more accurate and realistic results. With
this respect, the simultaneous effect of UCS and RQD was studied.
By referring to Fig. 12, ICR increases as UCS increases, but the trend
shows lower RQD; it means that high degree of jointing has a great
impact on rock mass strength, leading to a significant rise in ICR, as
demonstrated in Fig. 12. Furthermore, the vagueness in the relation
between ICR and UCS was clarified.
Table 4
Relative importance of input variables.

Input variables Importance (%)

UCS 39.97
BTS 28.64
RQD 31.39
Total 100
5.3.3. The simultaneous effect of BTS and RQD
Fig. 13 represents the simultaneous effect of BTS and RQD on

ICR. It shows that ICR increases with any increase in RQD and de-
creases as BTS increases along with some variations. It can be
concluded that simultaneous consideration of BTS and RQD is not
enough to give a sensible outcome for predicting ICR. Therefore, it is
extremely recommended that UCS of rock should be taken into
account through the analyses and interpretations.
5.4. Kohonen self-organizing feature map (KSOFM)

To find the regularities and correlations between input vari-
ables, the self-organizing feature map toolbox (CIS, 2005) has been
utilized and applied in Matlab. Due to different magnitudes of in-
puts, all variables were normalized in which they were scaled with
the variance of 1 and the mean of 0 (Cinar, 2005; Badalians
Gholikandi et al., 2014). The map size during training was 8 � 5
which is sufficient by considering Eq. (16). Final quantization and
topographic errors were 0.383 and 0.032, respectively.
Fig. 13. Simultaneous effect of BTS and RQD.



Fig. 14. Component planes of variables and U-matrix.
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One of the most important features of KSOFM neural network is
its visualization which plays an important role in analyzing results
based upon the knowledge extraction (Hong et al., 2003). Two
different kinds of visualizations are (Grieu et al., 2006): (1)
component planes and scatter plots for determining relationships
among process variables and (2) distance matrices and K-means
algorithm for clustering visualization. To study the correlation and
associations between variables, component planes were utilized in
which each hexagon represents onemap node and its colors tell the
value of the component in that node (Hong et al., 2003). In each
component, each hexagon corresponds to the same one in other
component planes (Vesanto et al., 1999; Hong et al., 2003; Grieu
et al., 2006). On the right side of each plane, there is a legend
which indicates the range of each variable. Fig. 14 illustrates the
component planes. In this figure, the U-matrix plane indicates the
distances between neighboring data units (Lee and Scholz, 2006) in
which the high values represent a cluster border and the areas of
the low values represent clusters themselves (Tobiszewski et al.,
2012).

By considering the component planes of UCS and ICR in Fig. 14,
it can be indicated that UCS has more effect on ICR due to the
similarity of their components. By looking at lower part of their
components, it is noticed that by increasing UCS, ICR will also
increase. This result is the same as that in Table 4 obtained by
Fig. 15. Comparison of predicted ICR values achieved from previous model (ICR out-
puts) and new ANN model (ANN outputs) with measured data.
relative importance and has shown that UCS has more effect on
ICR. As mentioned before, ICR increases with any increase in UCS;
hence, there is a need to involve rock mass characteristics in the
analyses. And that is the reason why RQD was taken into account.
From Figs. 12 and 13, it can be seen that ICR increases with any
increase in RQD. It is also contrary to previous findings. With this
respect, it is true in higher values of RQD, while in lower values
such as values in this study, this parameter also contributes to the
increase in ICR. In this particular situation, as soon as the tips of
pick hit the rock, a significant loosening in blocky rocks will be
induced and it can facilitate rock removal instead of crushing and
cutting the rock.
6. Comparison of previous and new ANN models

In order to represent the contribution of the new ANNmodel, as
well as verifying the results of this model for a site-specific project
(Tabas coal mine), the predicted ICR values achieved from previous
model (Eq. (13)) and new ANNmodel are compared with measured
values, as shown in Fig. 15.

As Fig. 15 shows, there is a slight difference between ANN re-
sults and measured data than values obtained from previous
model. The MSEs for previous model and the new ANN model are
8.16 and 5.494, respectively. This result demonstrates that the
ANN model has a higher accuracy to predict ICR of medium-duty
roadheaders.
7. Conclusions

In this paper, a roadheader performance prediction model was
developed using ANN approach in which the ICR can be predicted
more precisely. MLP and KSOFM are the most widely used neural
networks for supervised and unsupervised ones, respectively. To
gain this goal, a database was primarily provided from road-
headers’ performance and geomechanical characteristics of rock
formations in tunnels and drift galleries in Tabas coal mine. Then
the database was analyzed in order to yield the most important
factor for ICR by using relative importance factor. It was indicated
that UCS has more influence on ICR by applying the best trained
MLP network weights in Garson equation. Moreover, from prac-
tical point of view and merely for such RQD values (less than
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28%), ICR increases as RQD increases. The network was trained by
3 input parameters including rock mass properties, RQD, intact
rock properties such as UCS and BTS, and one output parameter,
ICR. This network has one hidden layer with 14 neurons and uses
tansig as activation functions for both hidden and output layers.
Besides, to have more validation on MLP outputs, KSOFM visu-
alization was applied. MSE and regression coefficient (R) of MLP
were found to be 5.49 and 0.97, respectively. Moreover, KSOFM
network has a map size of 8 � 5 and final quantization and
topographic errors were 0.383 and 0.032, respectively. The results
showed that the neural network had a strong capability to predict
and evaluate the performance of medium-duty roadheaders in
coal measure rocks.
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