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A new numerical approach to entanglement entropies of the Rényi type is proposed for one-dimensional 
quantum field theories. The method extends the truncated conformal spectrum approach and we will 
demonstrate that it is especially suited to study the crossover from massless to massive behavior when 
the subsystem size is comparable to the correlation length. We apply it to different deformations 
of massless free fermions, corresponding to the scaling limit of the Ising model in transverse and 
longitudinal fields. For massive free fermions the exactly known crossover function is reproduced already 
in very small system sizes. The new method treats ground states and excited states on the same footing, 
and the applicability for excited states is illustrated by reproducing Rényi entropies of low-lying states in 
the transverse field Ising model.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Entanglement is a fundamental quantity characterizing correla-
tions in quantum field theories and quantum many-body systems. 
Quantifying entanglement in ground states can be useful to detect 
and describe phase transitions, even when a conventional order 
parameter is unavailable [1], while excited state entanglement can 
shed light on spreading of correlations in out of equilibrium time 
evolution (see e.g. [2]).

Let us consider a one-dimensional system and examine entan-
glement entropies relative to a bipartition as a function of the 
subsystem size. When the subsystem size is much smaller than 
the correlation length, the model becomes effectively gapless. En-
tanglement entropies in this case provide universal information 
about the underlying conformal field theory: in the ground state 
a logarithmic law proportional to the (effective) central charge is 
observed [3–5]. In case of excited states, the leading behavior for 
small subsystems is unchanged, but corrections appear, in scrutiny 
with the operator content of the theory, e.g. scaling dimensions of 
the most relevant operators can be identified [6]. In fact, since con-
formal field theories are exactly solvable, entanglement entropies 
are calculable for any state in the conformal space and recent 
studies have been concentrating on this aspect to understand prop-
erties of excited states in critical systems [7–9].
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If the subsystem size is much larger than the correlation length, 
the area law governs entanglement in the ground state of local 
Hamiltonians: entanglement entropy of a bipartition scales with 
the size of the boundary. In one spatial dimension this predicts a 
constant in the subsystem size [10].

In this paper we will be interested in the crossover between 
these two regimes. It was already shown that the crossover func-
tion is very interesting and encodes certain, generic information 
about the system, e.g. the first correction to the area law is de-
termined only by the masses of stable particle excitations in the 
massive model [11,12]. Our aim here will be to develop and test 
a new approach capable to capture the whole scaling function de-
scribing the crossover from gapless to gapped behavior both for 
the ground state and excited states. We will work in relativistic 
quantum field theories, the scaling limit of many interesting 1D 
systems. Our approach combines two established methods: first we 
will use the truncated conformal space to expand a state in the mas-
sive theory on the UV limiting conformal field theoretical space of 
states, and then we calculate the Rényi entanglement entropy ex-
ploiting conformal symmetry.

Our approach essentially extends the truncated conformal space 
approach (TCSA) to Rényi entropies. The TCSA [13] is a Hamil-
tonian truncation approach that enables to find states in the UV 
limiting CFT Hilbert space that correspond to ground states (or on 
the same footing, excited states) of massive deformations of the 
CFT through the quantum mechanical variational principle. A fi-
nite matrix problem is obtained by going into finite volume and 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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imposing an energy-wise truncation on the basis states. The trun-
cation is justified by the expectation that for relevant perturbations 
and in finite volume the high energy sectors of the perturbed and 
unperturbed theories are the same and they do not couple to the 
low-energy sector. Diagonalizing this finite Hamiltonian matrix nu-
merically, yields the spectrum of the system but also gives the 
corresponding eigenstates in terms of CFT states. The TCSA has 
proven to be a powerful and versatile tool to evaluate not only 
the spectrum [13] but various other quantities depending on the 
expansion of the states, e.g. form factors [14] and boundary g-
functions [15]. We are encouraged by this success and indeed we 
will find that also in the case of Rényi entropy the TCSA is very 
robust.

Via TCSA we reduce the problem of finding the Rényi entropy 
of an arbitrary QFT state to finding it for an arbitrary CFT state. The 
advantage of this approach is that it enables to work in CFT and 
exploit conformal symmetries in the calculations. For CFT states 
Rényi entropies can be calculated efficiently by the replica ap-
proach. In this we use the fact that the nth Rényi entropy of an 
arbitrary state can be represented as a 2n-point functions on a 
Riemann surface, which in CFT can be mapped to 2n-point func-
tions on the plane. These objects can be evaluated using standard 
methods [16]. The replica method was initially described for the 
ground state of a CFT [3,4] and later it was generalized to states 
corresponding to primary fields [6] and more recently also to arbi-
trary elements of the Hilbert space [7]. Our strategy is to use this 
latter generalization in conjunction with the TCSA.

The advantage of our approach is at least two-fold. First, TCSA 
can treat a diverse array of models, including both integrable and 
nonintegrable ones, scaling limits of spin chains, through bosoniza-
tion models relevant in strongly correlated electron physics [17] or 
treating the interchain coupling as a perturbation can even be use-
ful to understand two-dimensional systems [18]. And second, finite 
volume effects are exponentially suppressed in field theory [19], 
making our approach a useful alternative to lattice methods when 
studying the thermodynamic limit.

To demonstrate these features we study two perturbations of 
the massless Ising model, implemented by the energy density op-
erator giving rise to the massive Ising model, and by the mag-
netization operator corresponding to Zamolodchikov’s famous E8
model [20]. We will see that already in very small volumes the in-
finite volume behavior is recovered with great precision and the 
results quickly become volume independent.

The paper is organized as follows. In Section 2 previous theo-
retical results are recalled about Rényi entropies in quantum field 
theories. In Section 3 we outline the idea of the TCSA and its appli-
cation to calculate Rényi entropies. In Section 4 we present results 
on deformation of the massless c = 1/2 Ising field theory, repro-
duce the second Rényi entropies of various low-lying states in the 
massive Ising field theory and its lattice realization, the TFIM, and 
study the effects of the longitudinal field. Section 5 is reserved for 
conclusions.

2. Rényi entropy in quantum field theory

In this paper we will concentrate on the second Rényi entropy, 
a particular measure of entanglement relative to a spatial biparti-
tion of the system, A ∪ B . It and can be defined as

S(2)
A = − log TrAρ2

A, ρA = TrBρ (1)

with ρ = |�〉〈�| full and ρA partial density matrices. |�〉 is a par-
ticular state of the full system. S(2)

A is also equivalent to the purity 
of the subsystem A.

In a field theoretical setting it is useful to reinterpret the quan-
tity TrAρ2 in terms of a Euclidean path integral [3,4]. We find that 
A
the field in the path integral lives on a Riemann surface R with 
nonzero curvature, in case of the ground state,

TrAρ2
A ∝

∫
[dϕ]R exp

⎡
⎣−

∫
R

dτdxL[ϕ](τ , x)

⎤
⎦ (2)

where the proportionality reflects a further normalizing constant 
setting Trρ = 1. The Riemann surface R is composed of two sheets 
sewn together along the subsystem A = (0, a) at Euclidean time 
τ = 0 according to

(−0, A1) ↔ (+0, A2) (3)

(−0, A2) ↔ (+0, A1) (4)

We can obtain a local theory by rewriting this path integral 
in terms of two copies of the original field both living on the 
Euclidean plane R2, however at a price of inserting two local op-
erators into the integral,

TrAρ2
A ∝

∫
[dϕ1dϕ2]R2T(0,0)T̃(0,a) ×

× exp

⎡
⎢⎣−

∫
R2

dτdx (L[ϕ1] +L[ϕ2])(τ , x)

⎤
⎥⎦ (5)

and the local operators, dubbed as branch-point twist fields, im-
plement the following conditions

T(τ ,a) : ϕ1(τ + 0, x) = ϕ2(τ − 0, x) (6)

T̃(τ ,a) : ϕ2(τ + 0, x) = ϕ1(τ − 0, x), x ∈ [a,∞) (7)

respectively. In this way, we obtained the exponentiated Rényi en-
tropy as a two-point function of the twist fields,

TrAρ2
A = N〈T(0,0)T̃(0,a)〉L[ϕ1]+L[ϕ2],R2 (8)

The formalism generalizes to excited states by replacing in the 
previous equation the vacua by the excited states,

TrAρ2
�,A = N〈�|T(0,0)T̃(0,a)|�〉L[ϕ1]+L[ϕ2],R2 (9)

2.1. Massive theories

To calculate the two point function of twist fields in massive 
quantum field theories a form factor approach was developed, ini-
tially in the presence of integrability [11].

The most important result of this program was to determine 
the entanglement entropy’s (S A = −TrA(ρA logρA)) approach of 
the area law when the correlation length and the subsystems size 
is of the same order of magnitude. The formula is quite generic 
and applies irrespective of integrability [12],

S A = c

3
log ξ + U − 1

8

�∑
α=1

K0(2rmα) + O (e−3rm) (10)

where ξ ∼ 1/m1 is the correlation length, U a nonuniversal con-
stant, K0 is the modified Bessel function. In the slowest decaying 
term (in terms of the subsystem length r), interestingly, the spec-
trum of stable particle excitations mα enter [11,12]. The nonuni-
versal constant is such that for r → 0 one would recover the CFT 
result.

For the Rényi entropy the leading behavior is the same, but 
with different constants,
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S(2)
A = c

4
log ξ + U (2) − κ(2)

�∑
α=1

K0(2rmα) + O (e−3rm) (11)

where U (2) = −2 log〈T〉 comes from the vacuum expectation value 
of the twist field. A less suppressed decay of e−rm is also believed 
to be possible for the Rényi entropies, when one-particle form fac-
tors of the twist field are non-vanishing [11], however such decay 
was not yet observed.

When the theory is integrable in principle the form factors can 
be determined exactly by solving the form factor bootstrap and 
further corrections to (10) and (11) could be given, see e.g. [21], 
however such spectral series can converge extremely rapidly and 
the higher particle contributions can be almost zero. In the case of 
free fermions the two-particle form factors give the following,

S(2)
A (r) = 1

8
log ξ + U (2) − log(1 + I(rM)) + . . . (12)

with [11]

I(r) = 1

4π2

∞∫
−∞

K0(2r cosh(x/2))

cosh(x/2)
dx (13)

and

U (2) = −2 log〈T〉 ≈ −0.115. (14)

We compared this approximation to the exact result [22] available 
trough solving an ODE and found that indeed Eq. (12) reproduces 
the exact result very precisely for r � 0.01ξ .

2.2. Massless theories

In massless relativistic QFTs we can directly calculate the path 
integral (2) exploiting conformal invariance and using a consis-
tent regularization scheme. In fact, we can go further and treat 
excited states on the same footing thanks to the state-operator cor-
respondence, i.e. implementing the excited state by inserting local 
operators in the far (Euclidean) past and future.

Following [3,4,6,7] we use a series of conformal maps to ob-
tain the excited state exponentialized Rényi entropy in terms of 
four point functions on the complex plane. First the finite volume 
physical manifold of a cylinder (0 ≤ x ≤ L, τ ∈R) is mapped to the 
complex plane,

ξ = exp

{
2π i

L
(x − iτ )

}
, ξ̄ = exp

{
−2π i

L
(x + iτ )

}
(15)

so that the insertion points of the operators implementing the ex-
cited states will be in 0 and ∞. We identify TrAρ2

A with

TrAρ2
A,� = N〈�(01,01)�(01,01)

†�(02,02)�(02,02)
†〉R (16)

where the indices refer to coordinates on the two different Rie-
mann sheets. In CFT the normalization can readily be determined 
as the ratio Zn/Zn

1 of partition functions of the n-sheeted and 
1-sheeted Riemann surfaces irrespective of the particular state. In 
finite volume this leads to [3,4]

N =
[

L

πε
sin(πd)

]−c/4

(17)

with a UV regularization parameter ε and we introduced d = r/L
the relative subsystem size.

Now using the unifying map

z = fd(ξ) =
√

e−iπdξ − 1

ξ − e−iπd
(18)
prescribed to take the first sheet to the principal branch and the 
second to the other branch of the square root, we express the four 
point function (16) by a four point function on the plane,

TrAρ2
A,� = N〈

2∏
i=1

(T fd�(0i,0i))(T fd �(0i,0i)
†)〉C (19)

We have to track the transformation of the inserted operators un-
der this mapping. We introduce the notation

T f �(ξ, ξ̄ ) = U f �(ξ, ξ̄ )U−1
f (20)

for the transformed operators. The generic transformation rule of 
descendant operators was worked out in Ref. [23] and we recall it 
in Appendix A. Using the composition rule of conformal transfor-
mation we can eliminate the adjoints from (19) and finally observ-
ing the equality fd(1/ξ) = f(−d)(ξ) we arrive at [7]

TrAρ2
A,� = N〈

2∏
i=1

(T fd�(0i,0i))(T f−d �(0i,0i))〉C (21)

where we supposed that the adjoint field is the same as the origi-
nal one.

This four point function can now be evaluated by a system-
atic approach that generates all descendant four point function 
by exploiting the conformal Ward identities and determining the 
differential operator producing it from four point functions of pri-
mary fields. For chiral fields this leads to

NDd(z1, z2, z3, z4)〈�(z1)�(z2)�(z3)�(z4)〉 (22)

with z1,2 = −z3,4 = i exp(±iπd/2). The generalization for fields 
with both chirality is straightforward.

3. Truncated conformal space approach

We will take advantage of the success of the general framework 
for Rényi entropies of excited states in conformal field theories and 
we will approximate the states of the massive theory with a linear 
combination of excited states in the underlying CFT through the 
TCSA.

To outline the approach let us again consider periodic boundary 
conditions. On the corresponding Euclidean space–time cylinder of 
circumference L the Hamiltonian takes the form,

H = HCFT + λ

L∫
0

dx�(0, x) (23)

where HCFT is the Hamiltonian of the UV limiting CFT. We 
will diagonalize this Hamiltonian on the conformal Hilbert space 
H = {|�i〉}. This can be written as

H =
⊕

i

V�i ⊗V�̄i
(24)

where V� is the representation of the Virasoro algebra with high-
est weight �. Supposing a discrete set of primary operators we 
get a finite matrix problem when a truncation is imposed on the 
conformal space by throwing away less important states, e.g. with 
energy greater than some Ecut. We can write the TCSA Hamiltonian
as [13,14]

HTCS
i j = 2π

L

[(
�i + �̄i − c

12

)
δi j + λL2−2�

(2π)1−2�
(G−1 B)i j

]
(25)

where G = 〈�i |� j〉 and Bij = 〈�i |�(1, 1)|� j〉C . In order to diago-
nalize this matrix we need the three-point functions, Bij , which 
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are exactly calculable in a systematic way using the conformal 
Ward identities (see e.g. [24] where this calculation is detailed 
with a superconformal extension). The diagonalization yields the 
following

HTCS|�(r)〉 = E(r)|�(r)〉, |�(r)〉 =
∑

i

ci|�i〉 (26)

Application to Rényi entropies is facilitated by the state-
operator identification

|�(r)〉 =
∑

i

ci |�i〉 ↔
∑

i

ci�i(0,0) (27)

We simply insert this operator into (21) and perform the sum

TrAρ2
A,� = N

∑
i1 j1i2 j2

ci1 c j1 ci2 c j2 ×

× 〈
2∏

k=1

(T fd �ik (0k,0k))(T f−d � jk (0k,0k))〉C (28)

It is clear that the transformation of all the operators in the opera-
tor space and the four point functions of all combinations of them 
will be required to find the Rényi entropy. The transformation rules 
can be worked out in a straightforward way (see e.g. Appendix A) 
but obtaining the four-point functions of all (inequivalent) combi-
nations of local fields seems at first extremely challenging. Our ex-
perience indeed suggested that an exact approach to the four point 
functions is necessary to explore the entire 0 ≤ d ≤ 1 domain, and 
achieving any progress is possible only when a systematic com-
puter algebraic implementation of these calculations is used.

4. Deformations of massless free fermions

We will study deformations of the c = 1/2 Ising CFT. First let 
us recall the Hilbert space structure. It consists of the following 
Verma modules,

V0, V1/16, V1/2 (29)

and the Hilbert space is

H = V0 ⊗V0 +V1/16 ⊗V1/16 +V1/2 ⊗V1/2 (30)

The corresponding spin zero fields are the identity 1, the magneti-
zation σ and the energy density ε operators.

To calculate the Rényi entropies after determining numerically 
the representations of massive states on the CFT basis, we also 
need all the n-point functions up to n ≤ 4 between all possible 
operators. The primary operators have the following n-point func-
tions. One point functions are vanishing except for that of the 
identity,

〈φi(z, z̄)〉 = δi0 (31)

Two point functions are fixed by normalization,

〈φi(z1, z̄1)φ j(z2, z̄2)〉 = δi j

(z1 − z2)2�i (z̄1 − z̄2)2�̄i
(32)

Three-point functions are fixed by global conformal maps and the 
structure constants,

〈φi(z1, z̄1)φ j(z2, z̄2)φk(z3, z̄3)〉
= Cijk(z1 − z2)

�k−�i−� j (z̄1 − z̄2)
�̄k−�̄i−�̄ j

× (z1 − z3)
� j−�i−�k (z̄1 − z̄3)

�̄ j−�̄i−�̄k

× (z2 − z3)
�i−� j−�k (z̄2 − z̄3)

�̄i−�̄ j−�̄k (33)
where the only nonzero nontrivial structure constants are C{εσσ } =
1/2 (with arbitrary permutations of the three operators). The four 
point functions are the following

〈ε(z1, z̄1)ε(z2, z̄2)ε(z3, z̄3)ε(z4, z̄4)〉 = |F1({zi})|2 (34)

〈ε(z1, z̄1)ε(z2, z̄2)σ (z3, z̄3)σ (z4, z̄4)〉 = |F2({zi})|2 (35)

〈σ(z1, z̄1)σ (z2, z̄2)σ (z3, z̄3)σ (z4, z̄4)〉
= |F+

3 ({zi})|2 + |F−
3 ({zi})|2 (36)

with the conformal blocks

F1({zi}) = 1

z12z34
+ 1

z14z23
+ 1

z24z31
(37)

F2({zi}) = z13z24 − z12z34/2

z12z1/2
13 z1/2

14 z1/2
23 z1/2

24 z1/8
34

(38)

F±
3 ({zi}) =

(
z13z24

z12z14z23z34

)1/8
√

1 ±
√

z12z34

z13z24
(39)

n-point functions of descendant can be calculated from the pri-
mary n-point functions using conformal Ward identities. This cal-
culation is based on the same principles as that of the descendant 
three-point functions already needed for the TCSA Hamiltonian. 
However in case of four-point functions the complexity increases 
far quicker and we need to retain the functional dependence on 
the anharmonic ratio throughout the algebraic manipulations. In 
fact, using the Virasoro algebra we could go up only until descen-
dance level 5 using the available computational resources.

4.1. Ground state in the massive deformation

The massive deformation, i.e. giving a finite mass to the 
fermions, corresponds to the perturbation by the operator ε,

H = HCFT + t

L∫
0

ε(0, x)dx (40)

Since this model is that of free fermions it is possible to connect 
the physical mass scale M to the bare coupling by an exact relation 
t/M = 0.159155 [25].

We made numerical TCSA calculations to obtain the ground 
state of the massive deformation of the Ising model. We used a 
mere 30 state basis corresponding to an energy cutoff Ecut = 10 M . 
Calculations are further simplified, since the Hamiltonian is block 
diagonal on the subspaces defined by descendants of |σ 〉 and those 
of |0〉 and |ε〉 (in the lattice picture this is because fermion num-
ber is conserved irrespective of t).

Our results for three settings of the volume L are exhibited in 
Fig. 1. We show results obtained in the subspace based on |0〉
and |ε〉. Surprisingly, already in these small settings of the vol-
ume we could recover the infinite volume exact crossover function 
[22] from logarithmic to massive behavior. We can surmise that 
the remarkable agreement already at LM = 2 is due to exponential 
suppression of finite volume effects. When increasing the volume 
we see a systematic departure from the prediction which can be 
explained as a cutoff effect, indeed it is mitigated by an RG im-
provement according to S(2)

Ecut
− S(2)∞ ∼ E−α

cut , where α = 1 was used. 
(Similar RG improvements for form factors and vacuum expecta-
tion values were discussed in e.g. [18,26].) From these results we 
conclude that the TCS approach to calculate the Rényi entropy is 
feasible and reliable.
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Fig. 1. Crossover of the 2nd Rényi entropy from logarithmic to area law as a func-
tion of relative subsystem size r/L at different finite system sizes LM = 2, 4, 6, and 
comparison to the prediction in the infinite system.

4.2. Excited states and TFIM

To go further, we can check the TCSA against results coming 
from a spin chain realization of massive free fermions, the Trans-
verse Field Ising Model. This lattice model has the Hamiltonian

H = −1

2

N∑
j=1

σ x
j σ

x
j+1 + hσ z

j (41)

and it can be diagonalized in terms of noninteracting fermions. We 
will especially be interested in the performance in reproducing the 
Rényi entropies of excited states. Our approach treats the excited 
states on the same footing as the ground state and a priori we 
expect comparable performance for both cases. The spin chain data 
for the Rényi entropies come from using the approach discussed in 
Refs. [27,28].
Fig. 2. 2nd Rényi entropies of the ground state and first two excited states of the 
TFIM close to the critical point with h = 0.98 and N = 200 and predictions cal-
culated from the TCS (LM = 4). The TCSA data was obtained at an energy cutoff 
Ecut = 10 M . The nonuniversal constant was identified using the ground state to be 
c′

1 = 0.66.

The relationship between the parameters of the lattice and con-
tinuum versions is given by the formula LM = N(1 − h). Then 
scaling with N → ∞ and (1 − h) → 0 we can approach the regime 
of massive QFT where the TCSA can provide data.

To compare the spin chain results to field theory we have to re-
member that there is a nonuniversal constant correction contribu-
tion to the entropies coming from introducing the lattice spacing,

(S(2)
A )lattice = (S(2)

A )QFT + c′
1 (42)

The results for the first three states are shown in Fig. 2. Here 
we see more serious departure from the predictions and again we 
understand this as a cutoff effect. It is interesting that both with 
the ground state and excited states the correction due to cutoff 
seems a constant function in the subsystem size.

4.3. TFIM in a longitudinal field

When the above spin chain is placed in a longitudinal field a 
plethora of interesting physics can be observed ranging from the 
realization of Zamolodchikov’s famous E8 model [20] to noninte-
grable models with particle confinement.

We studied the integrable point [20], which in the scaling 
limit corresponds to a different deformation of the massless Ising 
model,

H = HCFT + s

L∫
0

σ(0, x)dx (43)

where the mass scale is known to be s = 0.06203236 M15/8 [25]. 
Compared to the previous deformation this has the advantage 
being realized by an extremely relevant operator. From this we 
expect better convergence rates a priori. However, the downside is 
that while in the absence of a longitudinal field the states could 
be built using only the tower of σ or equivalently, the towers 1
and ε, here all CFT states contribute to the expansions and we 
need all four point functions to assemble the Rényi entropies. Be-
cause of this complication and numerical instabilities we could 
only achieve a cutoff of Ecut = 8M , or equivalently 18 states.

Results for the Rényi entropies of the ground state are shown 
in Fig. 3. First of all, we observe a pronounced dependence on 
the volume, however we also observe that at LM = 5 the finite 
volume effects are gone and the entropy function becomes inde-
pendent of L. (Slight truncation effects can be seen in the form 



444 T. Palmai / Physics Letters B 759 (2016) 439–445
Fig. 3. 2nd Rényi entropy of the ground state of the E8 model. The TCSA data was 
obtained at an energy cutoff Ecut = 8 M using 18 basis states. The various TCSA 
datasets correspond to different finite volumes LM = 2, 3, 4, 5, 6, 7, 8 and the graphs 
are shown only up to half subsystem size. The inset depicts the difference between 
the saturation value and TCSA data at LM = 5 versus an exponential fit e−2rM as 
predicted by the form factor approach (11).

of a drift with increasing volumes.) We identify the saturation 
value S(2) → −0.557. In the approach of this value we recognize 
the exponential decay S(2)(r) − S(2)(∞) ∼ e−2rM predicted by (11)
confirming that even in this model one-particle form factors of the 
twist fields vanish. This is in contrast with the fact that other oper-
ators, e.g. the trace of the stress energy tensor, have non-vanishing 
one-particle form factors [29].

5. Conclusions

We explored the applicability of the truncated conformal space 
approach to extract entanglement entropies in energy eigenstates 
of massive relativistic quantum field theories. We focused on the 
second Rényi entropy and argued that in possession of all four 
point functions in a truncated conformal space, it is possible to 
determine them numerically in models realized as relevant pertur-
bations of a conformal field theory.

We applied our approach to deformations of the c = 1/2 mass-
less Majorana fermions corresponding to the scaling limit of the 
transverse field Ising model in a longitudinal field. We presented 
results for the two integrable points. In the massive free fermion 
point we could recover the exact crossover function [22] and for 
the first two excited states obtained encouraging agreement with 
data coming from a lattice realization. Finally, we calculated the 
Rényi entropy for the ground state in the other integrable point. 
We could numerically determine the saturation value and deter-
mined from its approach that the twist fields in this model have 
vanishing one-particle form factors.

While we could obtain reliable and relatively precise results, 
we were forced to use extremely low cutoffs when truncating the 
conformal space. The limiting factor is that in our approach four-
point function of all combinations of all the local operators (up 
to the truncation) are needed. It would be very interesting to de-
velop a calculation method to obtain such four point functions 
in a more efficient way, which could be done e.g. in the c = 1
model using the free boson representation. Another exciting ques-
tion is the applicability to other measures of entanglement, e.g. the 
von Neumann entropy and for mixed states negativity, or to study 
nonequilibrium evolution of entanglement entropy.
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Appendix A. Conformal transformation of generic fields

The transformation rules for descendant fields is known [23]
but it is very rarely used and therefore we see it useful to collect 
the formulas that we used in this work. We will focus on only the 
chiral part of the fields and will follow the notations of [16].

Let us consider a generic descendant operator O(z) inserted 
in z and corresponding to the state O(0)|0〉. A generic form for 
the transformation of the descendant field can be taken as

U f O(z)U−1
f =

∑
(p)

H(p)[ f , z)
[
Lp1 . . . LpkO

]
( f (z)) (A.1)

where L j is the j-th Virasoro generator (relative to the origin) sat-
isfying the Virasoro algebra

[Ln, Lm] = (n − m)Ln+m + c

12
(n3 − n)δn+m,0 (A.2)

In the formula (A.1) the coefficients can be given using the state-
operator correspondence [23] and they are implicitly determined 
by
∞∏

n=0

eRn[ f ,z)LnO(0)|0〉 =
∑
(p)

H(p)[ f , z)Lp1 . . . LpkO(0)|0〉 (A.3)

where the coefficients Rn are defined recursively as

R0(z) = log f ′(z), (A.4)

Rn(z) = 1

n + 1
(R ′

n−1(z) − An(z)), n ≥ 1

with the first few An(z) being

A1 = 0, A2 = R2
1, A3 = 0, A4 = 3

2
R2

2, (A.5)

A5 = A6 = A7 = 0 (A.6)

It is easy to check that R2 is of course the Schwarzian of f
multiplied by 1/3!, reproducing the familiar transformation law of 
the stress–energy tensor,

U f T (z)U−1
f = [

f ′(z)
]2

T ( f (z)) + c

12
{ f , z} (A.7)

Another example is the transformation law of the field L−1φ ≡ ∂φ:

U f ∂φ(z)U−1
f = [

f ′(z)
]h+1

∂φ( f (z)) + hf ′′(z)

[ f ′(z)]1−h
φ( f (z)), (A.8)

where φ is a primary field with scaling dimension h. This can be 
deduced, independently, also from the transformation rule of pri-
mary fields and the chain rule of differentiation.
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