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ABSTRACT The intrinsically disordered region (IDR) of a protein is an important topic in molecular biology. The functional sig-
nificance of IDRs typically involves gene-regulation processes and is closely related to posttranslational modifications such as
phosphorylation. We previously reported that the Drosophila facilitates chromatin transcription (FACT) protein involved in chro-
matin remodeling contains an acidic ID fragment (AID) whose phosphorylation modulates FACT binding to nucleosomes. Here,
we performed dynamic atomic force microscopy and NMR analyses to clarify how the densely phosphorylated AID masks the
DNA binding interface of the high-mobility-group domain (HMG). Dynamic atomic force microscopy of the nearly intact FACT
revealed that a small globule temporally appears but quickly vanishes within each mobile tail-like image, corresponding to
the HMG-containing IDR. The lifespan of the globule increases upon phosphorylation. NMR analysis indicated that phosphor-
ylation induces no ordered structure but increases the number of binding sites in AID to HMG with an adjacent basic segment,
thereby retaining the robust electrostatic intramolecular interaction within FACT even in the presence of DNA. These data lead to
the conclusion that the inhibitory effect of nucleosome binding is ascribed to the increase in the probability of encounter between
HMG and the phosphorylated IDR.
INTRODUCTION
In recent years data derived from bioinformatics, protein
physical chemistry, and tertiary structure analyses, such
as x-ray crystallography and NMR, have led to the conclu-
sion that numerous functional proteins contain regions or
domains that do not form well-defined orderly three-
dimensional structures but rather exist as dynamic ensem-
bles of interconverting flexible conformers (1–3). These
intrinsically disordered regions (IDRs) are ubiquitously
found in eukaryotic proteins that play crucial roles in
gene regulation within nuclei (4–8). It is known that these
IDRs are involved in functionally important molecular
recognition, where they fold into ordered conformations
through binding to rigid ordered protein subunits or do-
mains, a process that is generally termed coupled folding
(9,10). Conversely, IDRs in a number of proteins do not
necessarily undergo global disorder-to-order transitions
upon binding. Moreover, several important regulatory in-
teractions involve dynamic complexes in which main
chains of IDRs continue to fluctuate without forming
defined architectures (11,12). These binding events appear
to be modulated by critical posttranslational modifications
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including phosphorylation, acetylation, methylation, and
ubiquitination (8,11,13).

Our previous work reported that high-speed atomic force
microscopy (HS-AFM) can simultaneously visualize each
behavior of IDRs and rigid domains of Drosophila chro-
matin transcription-facilitating protein (dFACT) on a sub-
strate surface in solution (14). This method is suitable for
studying proteins involved in gene expression, such as tran-
scriptional regulators and chromatin-remodeling factors.
For example, FACT, classified as a chromatin remodeler,
is a heterodimer complex that consists of SSRP1 and
SPT16 subunits (Fig. 1). Both subunits contain several rigid
domains and IDRs that play crucial roles in chromatin
remodeling and transcriptional elongation (15–19). Thus,
FACT is a suitable target for investigating the mechanistic
and functional aspects of IDRs in solution through HS-AFM
and NMR analyses.

In a previous study on interactions between dFACT and
nucleosomes, we found that dFACT initially binds nucleo-
somes and/or nucleosomal DNA via a high-mobility-group
domain (HMG) and an HMG-flanking basic ID segment
(BID) of the dSSRP1 subunit, which jointly forms a
DNA-binding element (Fig. 1) (20). The acidic ID segment
(AID), adjacent to BID, forms intramolecular interactions
with both HMG and BID (Fig. 1). Extensive phosphoryla-
tion of AID strikingly increases the number of negative
charges, thereby strengthening the intramolecular interac-
tions. As a result, the binding of dFACT to nucleosomal
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FIGURE 1 A schematic drawing of the domain organization of dSPT16

and dSSRP1, the two subunits in dFACT. The fragments used in this work

are listed: AID; SB-HMG (residues 543–554), which contains a part of the

BID region colored in purple (residues 519–554); andAB-HMG.These frag-

ments jointly constitute the regulatory region of dSSRP1 binding to DNA.

The heterodimeric complex, consisting of dSPT16 (residues 401–887) and

the full-length dSSRP1, was used for HS-AFM measurements.
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DNA is blocked, preventing the formation of rigid structures
(20). The physiological significance of this control mecha-
nism is highlighted by rapid chromatin transactions during
early embryogenesis through dephosphorylation in the
maternally transmitted dSSRP1 after fertilization (20). In
humans, the dephosphorylated SSRP1, including the
HMG, is essential for FACT to exhibit higher binding affin-
ity with nucleosomes (19). In contrast, the yeast FACT-
HMG functions as an isolated Nhp6a/b protein (15,21,22).
Thus, the phosphorylation-dependent regulation is likely
to be conserved only in higher eukaryotes. Despite the
importance of AID phosphorylation, the detailed blocking
mechanism remains unresolved at the atomic level.

To clarify the mechanism of intramolecular interaction
between the AID segment and the DNA-binding elements,
we investigated the detailed effects of phosphorylation by
combining NMR spectroscopy and HS-AFM. Specifically,
we prepared large amounts of various fragments, which
were labeled with stable isotopes for NMR in both the phos-
phorylated and nonphosphorylated states, whereas FACT
molecules nearly intact in size were observed by HS-AFM.
Thus, this study allowed us to conclude that dense phosphor-
ylation causes an electrostatic reinforcement of the interac-
tions between the acidic ID region and the DNA-binding
elements, and that the essence of the interactions is dynamic
and transient, thus lacking specific and stable binding sites
in domains or fragments.
MATERIALS AND METHODS

Protein preparation

The dFACT used was the same as that described in detail in our previous

study (20). The fragments used in this work are schematically drawn in

Fig. 1: AID, the short basic IDR plus HMG (SB-HMG), and the acidic

and basic IDRs plus HMG (AB-HMG). These fragments were expressed

in Escherichia coli. Details of the purification of each fragment and phos-
phorylation of the AID and AB-HMG fragments by casein kinase II (CK2)

are described in the Supporting Material.

For the dynamic AFM experiments, the His-tagged Drosophila SPT16

(401–887) (dSPT16) and Drosophila SSRP1 (dSSRP1) were cloned into

a pFastBacDual plasmid. To obtain the Ser/Thr-to-Ala mutants at the

10 phosphorylation sites (10SA; S443A, S472A, S476A, T477A, S488A,

S496A, S500A, S502A, S506A, and S515A (Fig.S1 in the Supporting

Material)), site-directed mutagenesis of the dFACT proteins was performed

by the QuikChange method (Stratagene, La Jolla, CA). The nearly intact

dFACT heterodimers (His-dSPT16 (401–887) þ dSSRP1) were coex-

pressed as the fully phosphorylated form (wild–type (WT)) and a nonphos-

phorylated form (10SA) in Sf9 insect cells and purified as described

previously (20).
Dynamic AFM analysis of the dFACT heterodimer

Dynamic AFM imaging experiments of the nearly intact dFACT hetero-

dimers (Fig. 1) were carried out as described previously (14) using a lab-

oratory-built HS-AFM (23,24). Briefly, we diluted the dFACT-WT or

dFACT-10SA samples to ~2 nM with buffer A (20 mM Tris-HCl,

pH7.5, 50 mM KCl, 10 mM MgCl2, and 0.5% glycerol (vol/vol)). The

diluted samples were used within 3 h. A droplet (2 mL) of a diluted sample

was deposited on a freshly cleaved mica surface (~1 mm in diameter

and <0.05 mm in thickness), which had been glued onto a glass stage

(2 mm in diameter and 2 mm in height). After incubation for 3 min, mol-

ecules that were not attached to the mica surface were removed by rinsing

with ~20 mL of buffer A. The sample surface was not allowed to dry. Sub-

sequently, the sample stage was immersed in a liquid cell filled with

~60 mL of buffer A in which a small cantilever had been fixed. Imaging

was carried out by HS-AFM in tapping mode. Details of the HS-AFM

imaging experiments were summarized in a recent work (25). For image

analysis, we applied three filters in the following order. First, a low-pass

filter to remove spike noise; second, a flattening filter to make the xy-plane

flat; third, a line-to-line base collection filter to minimize the base height

difference between lines.
NMR spectroscopy

The backbone 1H/13C/15N resonance assignments of AID and phosphory-

lated AID fragments were performed with a standard set of triple resonance

experiments on a DMX600 spectrometer (Bruker, Billerica, MA). (BMRB

entry 11511) Details are available in the Supporting Material.
NMR titration experiments

The interactions between the isolated AID and SB-HMG fragments were

performed in two ways: one experiment used nonlabeled AID titrated

into 15N-labeled SB-HMG, and the other experiment involved titrating non-

labeled SB-HMG into 15N-labeled AID. To explore how phosphorylation of

AID influenced its interaction with binding partners, a phosphorylated AID

fragment was also used in the titration experiments. The chemical-shift

changes observed in a series of two-dimensional (2D) 1H-15N heteronuclear

single-quantum coherence (HSQC) spectra during the titration were

analyzed by numerical curve fitting to elucidate the number of effective

binding sites, n, and the dissociation constants, KD, according to a previ-

ously published procedure (26). In the calculations, we applied a global

fitting procedure that incorporates all the chemical-shift-change profiles

for the residues under study, with n and KD as global adjustables (27).

Monte Carlo simulation was applied to estimate the statistical errors for

n and KD, assuming an uncertainty for each peak position on a 1H-15N

HSQC spectrum of 0.002 ppm (1H) and 0.02 ppm (15N), respectively,

and using 64 synthetic data sets with Gaussian noise (28). Experimental de-

tails in the titration experiments between the isolated AID and SB-HMG

fragments are described in the Supporting Material.
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NMR analysis on the interaction between AB-HMG
and double-stranded DNA

Wecarried outNMRspectral analysis for the 15N-labeled nonphosphorylated

andphosphorylatedAB-HMGfragments in the absence andpresence ofDNA

(Fig. 1). The limited solubility and the severe spectral overlap in the spectra

of AB-HMG did not permit complete assignment of the resonances arising

from the backbone nuclei. Only a limited number of resonances were as-

signed for AB-HMG. We used double-stranded DNA (dsDNA) with the

sequence 50-d(CGCGATATCGCG)2-30. The reaction mixture including the

dsDNA was passed through a NAP-10 column to exchange the buffer to

50 mM Tris-HCl, pH 6.6, the buffer used for the NMR experiments.
RESULTS

Molecular features of phosphorylated and
nonphosphorylated dFACT heterodimers
visualized by HS-AFM

The wild-type dFACT (dFACT-WT) is spontaneously phos-
phorylated in Sf9 insect cells and is expressed as the fully
phosphorylated form at 10 phosphorylation sites. In
contrast, a dFACT mutant containing Ser/Thr-Ala substitu-
tions at each of these sites, dFACT-10SA, is expressed as
the nonphosphorylated form, as described previously (20).
The molecular features of dFACT-WT (the phosphorylated
form) and dFACT-10SA (the nonphosphorylated form)
attached to mica surfaces in the buffer solution were directly
visualized by HS-AFM (Fig. 2, A and B, respectively; also
see Movies S1 and S2). At first glance, it appears that
both molecules consist of a large globular domain and a
long tail region. The large globular domain appears to be
well adsorbed onto the mica surface, and its position does
not change significantly over time. In contrast, the long
tail region exhibits rapid fluctuations because of thermal
agitations, indicating that this region has less affinity to
the mica surface. These molecular features are consistent
with the results of our previous study (14). Considering
our previous data (14), we can assign the large globular
domain (termed GD1, see Fig. 2 C) to the structured domain
consisting of dSPT16 (401�887) and dSSRP1 (1�404)
(Fig. 1). The long tail region can be assigned to the IDR
connected to the HMG (Fig. 1).

With careful observations, we noticed that the IDR has
two small globular domains, which were connected with
IDR1–2 and IDR2–3 (Fig. 2 C). One of the small globular
domains (GD3 (see Fig. 2 C)) was consistently observed at
the end of the IDR and its appearance is not substantially
different between the two constructs. In our previous study,
this small globular domain was not observed, although the
sample was prepared using the E. coli expression system.
Furthermore, the amino acid sequence indicates no tertiary
structure at the end of the IDR. Taken together, we postulate
that unknown posttranslational modifications would induce
a globular domain at the end of the IDR.

On the other hand, the other small globular domain (GD2

(Fig. 2 C)) appears temporally around the middle of the IDR
Biophysical Journal 104(10) 2222–2234
but shortly vanishes. In other words, we observed that the
height of GD2 changes over time. In addition, the figure of
GD2 appears to be retained for a longer period in dFACT-
WT than in dFACT-10SA, whereas the length of the IDR
appears to be slightly shorter in dFACT-WT than in
dFACT-10SA. Notably, the distance between GD1 and
GD2 appears to be much shorter in dFACT-WT; however,
the distance between GD2 and GD3 is similar in both con-
structs. Similar tendencies were observed for most of the
other protein molecules examined in each construct.
Quantitative analysis of distinct HS-AFM images
between phosphorylated and nonphosphorylated
dFACT

To quantitatively evaluate minute variations of the above-
mentioned molecular features, we performed image anal-
ysis. Because the IDRs are highly flexible and can adopt
similar molecular features at an arbitrary time, successive
AFM images must be analyzed without skipping images
to maintain arbitrariness of data sampling. To identify
IDRs that contribute to changes in molecular features, a
straightforward approach is required for contour length
analysis of IDRs. However, considering the spatiotemporal
resolution of the HS-AFM, it is currently not possible to
apply contour-length analysis to successive AFM images
without skipping images. As an alternative, we created a
simple schematic representation of the molecular features
of dFACT observed by HS-AFM (Fig. 2 C). In this sche-
matic, the heights of the three globular domains (H1–H3)
and the end-to-end distances between the two globular
domains (D1–2, D2–3, and D1–3) were obtained from a single
AFM image. This approach allowed us to analyze almost all
AFM images, even when the AFM images had poor signal/
noise (S/N) ratios. The end-to-end distance can be used to
adequately evaluate the length of a biological polymer on
a surface, as described previously (29), and our data there-
fore support our interpretation. The analysis was performed
on three typical molecules for the phosphorylated (dFACT-
WT) and nonphosphorylated (dFACT-10SA) constructs, and
the results are summarized in Table 1. We believe that the
three molecules selected lie within the population as a whole
of each construct, because most of the molecules observed
displayed similar molecular features. For example, we
can see four molecules of dFACT-10SA simultaneously
(Movie S3), all of which appear to have similar molecular
features. Note that the parameters described herein are not
likely to have reached the most probable values, because
we analyzed 4586–5770 images of only three molecules
for each construct. However, we believe that these parame-
ters will be convincing for our conclusions because they
represent well the molecular features of each construct.
The details are described below.

The distributions of H1 appeared to be similar for both
constructs, and the mean height was 3.9 nm (Fig. 3, A



FIGURE 2 Typical HS-AFM images showing the molecular features of dFACT-WT (A) and dFACT-10SA (B). These HS-AFM images were clipped from

the movie files (see Movie S1 for dFACT-WTand Movie S2 for dFACT-10SA). Every image was taken at 67.08 ms/frame (~15 frames/s). The time from the

beginning of the clip is indicated at the upper left of each image. Scanning area, 100� 100 nm2 with 80� 80 pixel; Z-scale, 4.0 nm. The observed molecular

features of dFACTare schematized according to the definitions in C. These schematics were drawn freehand by tracing the AFM images by visual estimation.

(C) Top-view (upper) and side-view (lower) schematics simply represent the characteristics of dFACT observed by HS-AFM. Gray-colored ellipses and

black-colored thick solid lines represent the GDs and the IDRs, respectively. The symbols used for image analysis are also depicted. For every image,

we selected three points (P1–P3) (green dots) representing the peak heights (Hi) in their respective GDs. Using these points, a distance from the highest point

of one GD to that of another was determined. For example, the distance from P1 of GD1 to P2 of GD2 was expressed as D1–2. In some images, the appearance

of GD2 or GD3 was unclear; there was no point with distinct heights around the area usually seen. In this case, P2 and P3 with the highest height around the

middle and the end of the IDR were selected.
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and D, and Table 1), indicating no significant difference in
the GD1 for the two constructs. This height is the same as
that obtained in our previous study (14). Although the distri-
butions of H3 appeared to differ, the mean height was
1.6 nm, with similar standard deviations for both constructs
(Fig. 3, C and F, and Table 1), indicating that the GD3

domain may not differ between the two constructs. In
contrast, distributions for H2 were notably higher for
dFACT-WT than for dFACT-10SA (Fig. 3, B and E). Two
peaks could be seen in the H2 distribution of dFACT-
10SA around 1.1 nm and 1.7 nm (Fig. 3 E). The peak around
1.1 nm was higher and wider than that around 1.7 nm, and
the ratio of the areas of the two peaks was ~2:1 (low/high)
(Fig. 3 E). Because we observed at least two physical states
in GD2 (i.e., a lower-height and a higher-height state), this
result indicates that the GD2 of dFACT-10SA tends toward
a lower-height state than a higher one. On the other hand,
the H2 distribution of dFACT-WT appears to be a combina-
tion of a large peak around 1.6 nm and a small peak around
1.1 nm because a small shoulder around 1.1 nm could be
seen in the distribution (Fig. 3 B). The area of the large
peak was more than twice as wide as that of the small
peak, indicating that the GD2 of dFACT-WT tends toward
a higher-height state than a lower one. Consequently, these
results suggest that the GD2 of dFACT-WT resides in the
higher-height state much longer than does that of dFACT-
10SA. Considering the two height values seen in the H2

distributions (i.e., 1.1 nm for the lower-height state and
Biophysical Journal 104(10) 2222–2234



TABLE 1 Summary of the AFM image analysis

Parameter dFACT-WT dFACT-10SA

H1 3.9 5 0.3 nm 3.9 5 0.3 nm

H3 1.6 5 0.3 nm 1.6 5 0.4 nm

D1–2 15 5 5 nm 17 5 5 nm

D2–3 10 5 3 nm 11 5 4 nm

D1–3 21 5 5 nm 23 5 7 nm

D1–2/(D1–2 þ D2–3) 0.59 5 0.11 0.62 5 0.11

Number of molecules analyzed 3 3

Number of frames analyzed 5770 4586

Heights and distances are shown by mean 5 SD. Units of areas are arbi-

trary. The accuracy of the HS-AFM measurement for the z-direction (i.e.,

background noise) was 0.15 nm. The standard deviations of the Gaussian

fits were therefore restricted to >0.15 nm. Note that we did not apply

Gaussian fittings to the H2 distributions because the results obtained had

no statistical relevance.
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1.6–1.7 nm for the higher-height state), the height of the
HMG on one side corresponded to ~1 nm (30) and the height
of the IDR was determined to be 0.4–0.6 nm. These data
collectively suggest that the lower-height state (H2 of
~1.1 nm) and higher-height state (H2 of 1.6–1.7 nm) repre-
sent the HMG alone and the HMG associated with the IDR,
respectively.

The distributions of D2–3 were similar between dFACT-
WT and dFACT-10SA (Fig. 3, H and K), and the mean
length of D2–3 showed almost the same values (Table 1).
The length of IDR2–3 did not change in response to phos-
phorylation. Meanwhile, the mean length of D1–2 of
dFACT-WT (15 5 5 nm) was shorter by ~2 nm than that
of dFACT-10SA (175 5 nm) (Fig. 3, G and J, and Table 1).
Therefore, the shorter state of IDR1–2 within dFACT-WT
(the phosphorylated form) is generated by the interaction
between HMG and IDR1–2, which contains the phosphory-
lated AID, but not that between HMG and IDR2–3. The
mean length of D1–3 of dFACT-WT (21 5 5 nm) was also
shorter by ~2 nm than that of dFACT-10SA (23 5 7 nm)
(Fig. 3, I and L, Table1). This difference can be ascribed
to the difference in the D1-2 for the two constructs because
we observed no difference greater than 2 nm in D2-3.

To estimate the mean position of the GD2 in the long tail
domain, the ratios of D1–2/(D1–2 þ D2–3) for dFACT-WT
(0.59 5 0.11) and dFACT-10SA (0.62 5 0.11) were deter-
mined (Fig. 4), indicating that phosphorylation of IDR1–2

shifts the mean position of GD2 to GD1 but not to GD3.
Combined with the results in Fig. 3, these results demon-
strate that the height change for GD2 and the length changes
for D1–2 in dFACT-WT result from the interaction between
the HMG and IDR1–2, but not between the HMG and
IDR2–3. This observation is in good agreement with our pre-
vious model (20).

To summarize the HS-AFM data, GD2 temporally ap-
pears and then vanishes in both constructs. However, it is
important that the lifetime of the higher-height state in
dFACT-WT is much longer than that in dFACT-10SA. In
addition, dFACT-WT seems to have a shorter IDR than
Biophysical Journal 104(10) 2222–2234
dFACT-10SA. These data indicate that the higher-height
state of GD2 originates from the interaction between the
HMG and IDR1–2, which contains the phosphorylated AID
(Fig. 1). Analysis by HS-AFM is highly suitable for directly
observing the dynamic behavior of large protein complexes
on the surface of a substrate in solution. The findings
described here should be analyzed by NMR, which can
provide detailed local and atomic information on protein-
protein interactions.
Structural characterization of the phosphorylated
AID fragment

The fragments used in the NMR analysis are schematically
drawn in Fig. 1. These fragments were expressed in E. coli
and were phosphorylated by CK2 in vitro (Fig. S2). The
limited signal dispersion of the isolated AID fragment in
the 2D 1H-15N HSQC spectrum is typical of a disordered
protein (Fig. 5 A). The 15N{1H} heteronuclear nuclear Over-
hauser effect (NOE) values for most residues of the AID
were negative, indicating that the fragment is essentially
in a disordered state. Residues around 453 showed positive
heteronuclear NOE values. This region is rich in hydropho-
bic amino acids and is therefore likely to have restricted
local backbone motions; although the motional properties
do not seem functionally relevant (Fig. 5 C). CK2 success-
fully phosphorylated all nine canonical phosphoacceptor
serines within the AID, as revealed from high-field NMR
chemical shift changes in both the 1H and 15N dimensions
(Fig. 5 B); T477 was not phosphorylated in this sample
preparation, presumably due to the lower activity of CK2
toward Thr residues (31). The phosphorylation of AID did
not induce any structural changes, because the increase in
the resonance dispersion in the 2D 1H-15N HSQC spectrum
(data not shown) was negligible. The 15N{1H} heteronu-
clear NOE profile for the phosphorylated AID (pAID) also
indicated that it is in a disordered state (Fig. 5 C). Nonethe-
less, the heteronuclear NOE values of pAID did show an
overall small but significant increase in the size of the
NOE values when compared with the data for the nonphos-
phorylated form (Fig. 5 C). Presumably, electrostatic repul-
sion among phosphate groups may induce some fragment
stiffness.
Interactions between the isolated AID
and SB-HMG fragments

To elucidate the binding modes between isolated fragments,
both the AID and pAID were titrated to the 15N-labeled
SB-HMG (Fig. 6, A and B), which contains a short basic
IDR and the HMG (Fig. 1). The normalized chemical-shift
changes observed in the 2D 1H-15N HSQC spectra of
15N-labeled SB-HMG in the titration (Fig. 6, A and B) are
plotted versus the residue numbers (Fig. 6, C and D). The
comparison between the two profiles showed that AID and



FIGURE 3 Height distributions of three GDs and distributions of distance between two GDs of dFACT. Height distributions (H1–H3) are shown for

dFACT-WT (A–C) and dFACT-10SA (D–F). Distance distributions (D1–2, D2–3 and D1–3) are shown for dFACT-WT (G–I) and dFACT-10SA (J–L). Green

lines represent single-Gaussian fitting. Note that we did not apply Gaussian fittings to the H2 distributions because the results obtained had no statistical

relevance. A summary of the analysis is presented in Table 1. These results were obtained from analysis applied to three molecules for each construct.

Phosphorylated ID region dynamics 2227
pAID share similar binding sites on SB-HMG, irrespective
of phosphorylation. Although they do have contact with
the DNA binding surface of the HMG, both fragments pri-
marily bind to the BID, because the residues in the BID
showed greater chemical shifts than those in the HMG
(Fig. 6, C and D). Furthermore, we found in our previous
work that the BID is essential for intramolecular interaction
with the AID (20). The magnitudes of the chemical shift
changes by the addition of pAID are overall greater than
those observed for AID binding, indicating that pAID is
likely to have higher affinity to SB-HMG. That is, the
increase in the population of the bound form of SB-HMG
with pAID causes greater spectral changes relative to the
free-state spectrum (27).

The numerical fittings to the chemical shift changes
against the molar ratios of AID or pAID to SB-HMG
showed that phosphorylation alters their binding modes to
SB-HMG (Fig. 6, E and F) (26,32). To determine the KD

and n values from the experiments by using 15N-labeled
SB-HMG, we included in our calculation 11 residues for
AID and 30 residues for pAID, showing that the significant
changes deviated more than the mean þ 1 SD (Fig. 6, C and
D, red bars). The number of SB-HMG-binding sites on AID
was estimated at n ¼ 2.05 0.1 with a dissociation constant
of KD ¼ 9.7 5 0.3 mM, assuming that all the binding sites
on AID have equivalent affinities for SB-HMG. In the case
of SB-HMG binding to pAID, the number of binding sites
was estimated at n ¼ 3.9 5 0.1 with KD ¼ 1.01 5
0.02 mM. This indicates that phosphorylation of AID dou-
bles its number of SB-HMG-binding sites in addition to
enhancing its affinity for SB-HMG. In agreement with these
data from NMR, isothermal calorimetry (ITC) experiments
Biophysical Journal 104(10) 2222–2234



FIGURE 4 Plots showing the ratio of D1–2/(D1–2 þ D2–3), which indicate

the mean positions of GD2 in the tail regions of dFACT-WT (A) and dFACT-

10SA (B). Green lines represent single-Gaussian fitting. A summary of the

analysis is presented in Table 1. These results were obtained from analysis

applied to three molecules for each construct.
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using the SB-HMG and AID or pAID showed that the num-
ber of binding sites on AID approximately doubles, depend-
ing upon phosphorylation (data not shown).

The SB-HMG titration to 15N-labeled AID or pAID was
also examined. The spectral changes in the 2D 1H-15N
HSQC spectra for AID and pAID are shown in Fig. 7, A
and B, respectively. The 20 residues in AID showed signif-
icant spectral changes (chemical-shift changes deviating by
more than the mean þ 1 SD of the entire data) upon binding
to SB-HMG. It is thus likely that these residues are involved
in binding to SB-HMG (Fig. 7 E). The residues are classified
into two groups according to their affinity (nine high-affinity
residues (Fig. 7 C, left, and Fig. 7 E, blue bars) and 11 low-
affinity residues (Fig. 7 C, right, and Fig. 7 E, red bars)).
The global fitting calculation, using the chemical shift pro-
files for the nine high-affinity residues gave a KD value of
3.7 5 0.1 mM, whereas the KD value for the 11 low-affinity
residues was 435 1 mM. It should be noted that one-to-one
binding was assumed in these calculations. The residues
showed linear spectral changes according to SB-HMG con-
centration (Fig. 7 A), indicating that the high- and low-affin-
ity residues do not form individual binding sites. If residues
with different affinities form individual binding sites, the
chemical-shift-change profiles should become nonunidirec-
tional (33). Therefore, the binding surfaces on AID for
SB-HMG may contain both high- and low-affinity residues.
In fact, the residues of 15N-labeled SB-HMG (Fig. 6 C, red
bars) showed a slightly lower affinity for AID (KD ¼ 9.75
0.3 mM) than did the high-affinity residues in AID (KD ¼
3.7 5 0.1 mM). These results imply that the high- and
Biophysical Journal 104(10) 2222–2234
low-affinity residues of AID do not interact with SB-HMG
in an individual manner but form multiple complexes in a
dynamic equilibrium (i.e., a dynamic complex) (34).

The titration experiments using 15N-labled pAID showed
that pAID could accommodate up to four SB-HMG mole-
cules (Fig. 7, B and D), which is consistent with the result
from the analysis using 15N-labeled SB-HMG (n ¼ 3.9 5
0.1). Some residues in pAID showed nonunidirectional
spectral changes in the titration of SB-HMG (Fig. 7 B).
These residues are localized in the C-terminal half, which
is rich in phosphoserine and acidic residues (Fig. 7 F, green
bars). Similar to the nonlinear spectral changes in multiple
ligands binding to the protein (27,35), it is likely that
multiple SB-HMGs bind to the phosphor-Ser-rich region
of pAID. The nonunidirectional spectral changes may there-
fore be caused by the expansion of the phosphor-Ser-rich re-
gion in response to the multiple bindings of SB-HMG.

Taken together, these data allowed us to conclude that non-
phosphorylated AID contains binding surfaces that can
accommodate up to two SB-HMGmolecules, whereas phos-
phorylation of AID expands the surface by a factor of 2. The
binding surfaces expanded by phosphorylation should in-
crease the intramolecular encounter probability between
the AID and BID-HMG segments in the dSSRP1 subunit.
Changes of intramolecular interactions between
AID and BID-HMG in response to phosphorylation
and dsDNA binding

To explore how AID forms intramolecular interactions with
BID-HMG, we compared the 2D 1H-15N HSQC spectra of
an AB-HMG fragment and the isolated AID (Fig. S3).
The limited solubility (<0.1 mM) and the longer IDR of
AB-HMG hampered assignment of the resonances of the
backbone nuclei. Only a limited number of signals for rather
isolated Ser residues were assigned based on the close prox-
imity (i.e., similar chemical shifts) of the resonances for the
AB-HMG construct to those assigned in the spectra of iso-
lated AID or SB-HMG fragments (Fig. S3).

The significant spectral differences between AB-HMG
and the isolated AID demonstrated that part of the AID
segment binds to the other part of the AB-HMG intramolec-
ularly (Fig. S3 A). The spectral difference between the two
fragments remained in the presence of double-stranded
DNA (dsDNA) (Fig. S3 B). This observation shows that
the AID segment in the AB-HMG fragment still contacts
other parts of the fragment without being released to behave
as an isolated fragment, which would give NMR signals that
match more closely to those for the isolated AID fragment.

The spectral difference between the pAB-HMG and the
isolated pAID was apparent, indicating that the pAID
segment in the pAB-HMG fragment has intramolecular con-
tacts with other parts of the fragment (Fig. S3 C). The pres-
ence of the dsDNA did not completely reverse the spectral
difference (Fig. S3 D), indicating that it does not block



FIGURE 5 NMR spectral characterization of AID fragments. (A) Backbone resonance assignments of 15N-labeled AID in the 2D 1H-15N HSQC spectrum.

(B) Spectral comparison in a region of the 2D 1H-15N HSQC spectra for nonphosphorylated (red) and phosphorylated AID (blue). The backbone amide sig-

nals of the phosphorylated Ser shows an upfield shift in both the 1H and 15N dimensions. (C) Comparison of the 15N{1H} heteronuclear NOE profiles between

nonphosphorylated (red) and phosphorylated (blue) AID fragments.
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FIGURE 6 NMR titration experiments using the
15N-labeled SB-HMG fragment. (A) Chemical-

shift changes in the titration of nonphosphorylated

AID fragment (AID) to 15N-labeled SB-HMG;

AID/SB-HMG molar ratios were 0.0 (black),

0.3 (red), 0.7 (blue), 1.0 (orange), 1.5 (pink),

2.0 (green), and 3.0 (yellow). (B) The correspond-

ing spectral changes observed for phosphorylated

AID (pAID); pAID/SB-HMG ratios were

0.00 (black), 0.07 (red), 0.21 (blue), 0.49 (orange),

0.70 (pink), and 1.04 (green). (C and D)

Histograms of the chemical-shift differences in

SB-HMG upon binding with AID (C) and pAID

(D). Chemical-shift differences are plotted against

residue numbers of SB-HMG. Red bars indicate

that the chemical-shift differences are over the

average plus one standard deviation. Short bars in

cyan and purple along the x axis represent prolines

and the residues for which assignment information

was missing. Chemical-shift changes are shown for

the representative residues in SB-HMG in the titra-

tions with AID (E) and pAID (F). The numerically

determined dissociation constant, KD, and number

of binding sites, n, for the AID and pAID titration

experiments were KD ¼ 9.75 0.3 mM, n ¼ 2.0 5

0.1 and KD ¼ 1.01 5 0.02 mM, n ¼ 3.9 5 0.1,

respectively. Values for KD and n were determined

by global fitting using the residues marked by red

bars in C and D (see Supporting Material).
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the intramolecular contacts of the pAID segment with parts
of the pAB-HMG fragment.

The absence of a complete set of resonance assignments
for the AB-HMG and pAB-HMG fragments allows only a
limited analysis of the intramolecular interactions between
the AID and BID-HMG segments. Despite the experimental
limits of this study, the spectral comparison shows that intra-
molecular interactions between the segments happen irre-
spective of phosphorylation, and that these interactions
remain even in the presence of dsDNA; however, the modes
of binding seem to change.

The intramolecular interactions were monitored using a
limited number of assigned HMG signals (Fig. S4). In addi-
tion to the limited solubility of the AB-HMG fragment,
intense signals from the long unstructured part in the AB-
HMG prohibited observation of the signals from the HMG.

Despite the limited residues monitored, these NMR data
collectively indicate that, irrespective of the phosphorylation
Biophysical Journal 104(10) 2222–2234
state, the residues in HMG and BID retain contact with
the AID segment, as suggested by the spectral difference
in the HMGs in the AB-HMG and pAB-HMG fragments
relative to the isolated HMG (Fig. S4). In the presence of
dsDNA, the intramolecular contacts of HMG with the AID
segment appear to change according to the phosphorylation
state of the AID segment, as evinced by the spectral com-
parisons for residues A606, K621, and G553 (Fig. S4).
The phosphorylation-dependent spectral changes for the
HMG induced by the addition of dsDNA suggest that phos-
phorylation of the AID segment alters its interaction with
the HMG box and thus changes the HMG-mediated binding
to dsDNA.
DISCUSSION AND CONCLUSIONS

The combination of HS-AFM and NMR analyses has shown
that phosphorylation of multiple serine residues in the AID



FIGURE 7 Spectral changes on 15N-labeled AID

and pAID in the titration with the unlabeled

SB-HMG. (A) Spectral changes induced by the

titration of AID; SB-HMG/AID ratios were

0.0 (black), 0.1 (green), 0.3 (red), 0.7 (cyan),

1.0 (yellow), 1.5 (purple), 2.0 (blue), and

3.0 (pink). (B) Spectral changes by pAID;

SB-HMG/pAID ratios were 0.0 (black), 0.3 (green),

1.0 (red), 2.0 (cyan), 3.0 (yellow), 5.0 (purple),

7.0 (blue), and 9.0 (pink). (C) Chemical-shift-

change profiles for representative residues in AID,

showing the high (left) and low (right) affinities to

SB-HMG. (D) The 15N chemical-shift changes

observed for representative residues in pAID

according to the titration. Spectral changes deter-

mined that the maximal binding number of

SB-HMG to pAID is 4. (E and F) Histograms of

the chemical-shift differences in AID (E) and

pAID (F) upon binding with SB-HMG. Chemical-

shift differences are plotted against residue

numbers for AID and pAID. Residues with a

mean þ 1 SD are colored. Residues in AID with

blue bars have higher affinity (KD ¼ 3.7 5

0.1 mM) than those with red bars (KD ¼ 43 5

1 mM). The residues in pAID with green bars

showed kinked titration traces, as in B. Short

down bars in cyan and purple along the x axis indi-

cate prolines and unassigned residues, respectively.

Short down bars in red indicate phosphorylated Ser

residues. Short down orange bars are residues

whose signals were incompletely traced due to

severe signal overlap during the titration.
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modulates the intramolecular interactions between the AID
and the DNA-binding element, which consists of BID and
HMG. Our data collectively provide mechanistic insights
into dynamic interactions between AID and the DNA-bind-
ing elements in FACT, as follows.

1. AID makes intramolecular contact with the DNA-bind-
ing elements. Phosphorylation of AID expands the bind-
ing epitope to the DNA-binding element by a factor of 2
when compared with the nonphosphorylated region.

2. The intramolecular contact of the nonphosphorylated
AID with the DNA-binding element should be relatively
weak, as demonstrated by the limited spectral changes in
resonances from the isolated AID (Fig. S3). This is
consistent with our HS-AFM observation that the non-
phosphorylated FACT retains mostly extended IDRs
(Fig. 3). Thus, the intramolecular contact between the
nonphosphorylated AID and the DNA-binding element
remains dynamic and transient.

3. Phosphorylation of AID reinforces its intramolecular
interaction with the DNA-binding element, as shown
by the larger spectral changes for the resonances repre-
senting the phosphorylated serines in the AID when
compared with the same resonances in the isolated
Biophysical Journal 104(10) 2222–2234



FIGURE 8 Summary of the mechanism underly-

ing phosphorylation-dependent inhibition with

respect to nucleosomal DNA. The intramolecular

contact of nonphosphorylated AID with BID-

HMG is nonspecific and dynamic. This situation

allows BID-HMG to transiently bindwith the nucle-

osomal DNA. In contrast, dense phosphorylation

expands the AID region by elevating repulsive

forces. This results in an increase of the probability

of encounter between BID-HMG and pAID, thereby

forming a more robust complex between BID-HMG

and pAID. AID and BID are symbolically repre-

sented by the red and purple strings, respectively.

Red and purple spheres indicate negative and posi-

tive net charges, respectively. The HMG is denoted

by the cyan L-shaped structure. Red open circles

labeled P indicate phosphorylation sites.
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pAID (Fig. S3). The phosphorylated AID retained intra-
molecular contacts with the DNA-binding elements in
the presence of DNA (Fig. S3), thus indicating that this
AID element impairs FACT binding to DNA. In the pres-
ence of DNA, several resonances representing residues
within the HMG showed chemical-shift changes, despite
the fact that these residues retain contact with phosphor-
ylated AID (Fig. S4). Our HS-AFM observation revealed
dynamic behavior between folding and unfolding of the
globular domain, which is putatively formed by pAID
and BID-HMG (Fig. 3). Taken together, FACT involves
dynamic and transient intramolecular interactions, even
in the phosphorylated state.

The structure of the dSSRP1-HMG was similar to the
yeast Nhp6a protein structure isolated from SSRP1 (30).
The DNA-binding surface on the dSSRP1-HMG structure
was similar to the DNA-binding surface in Nhp6A. The
NMR structure of the Nhp6A-DNA complex revealed a
characteristic L-shaped HMG fold, which contacts the
minor groove of DNA, whereas an extended N-terminal
BID region interacts with the adjacent major groove (36).
The DNA-binding interface contains numerous conserved
lysine and arginine residues that participate in electrostatic
interactions with the phosphate backbone. Although some
hydrophobic stacking/wedge interactions are formed
between a number of Nhp6A residues and DNA bases, the
interactions of Nhp6Awith DNA are predominantly electro-
static. Our NMR data indicate that DNA and AID occupy
almost the same electrostatic interaction interfaces on the
HMG and BID regions regardless of the phosphorylation
state of AID.

An apparently similar mechanism was proposed for the
autoinhibition of DNA binding by phosphorylation of a tran-
scription factor, Ets-1 (37,38). The affinity of Ets-1 to DNA
is allosterically regulated by the flexibility of the unstruc-
tured serine-rich region and the inhibitory module, which
is adjacent to the ETS domain responsible for DNA binding
Biophysical Journal 104(10) 2222–2234
(38). Previous NMR experiments demonstrated that phos-
phorylation at several sites within the serine-rich region
gradually shifts the equilibrium more to the rigid-inactive
form, which is stabilized by stronger intramolecular interac-
tions with both the inhibitory module and the DNA-binding
domain (39). However, this inhibitory effect of Ets-1 is
considerably different from our previous results, which
showed no additive reduction of DNA-binding inhibition
in response to the number of phosphorylated Ser/Thr muta-
tions of dFACT (20). In the FACT mutant containing the
SSRC motif, AID, BID, and HMG (Fig. 1), Ser/Thr-to-
Ala mutations at two phosphorylation sites showed negli-
gible inhibition of DNA binding, whereas mutations at
four and six sites dramatically decreased the inhibitory
effect (as shown in Fig. 3 C of Tsunaka et al. (20)). In other
words, the inhibitory effect appears to be ultrasensitive, but
not linear.

Our HS-AFM data provide, to our knowledge, a novel
structural view, where the dynamic behavior of the FACT-
IDR is drastically altered in response to phosphorylation.
The NMR data showed that dense phosphorylation of the
AID region increases binding sites with the DNA-binding
elements containing the HMG. Presumably, the phosphory-
lation expands the AID region by elevating the repulsive
forces, thus inducing a stronger interaction without protein
folding. Moreover, the increase in binding sites caused by
the phosphorylation of residues can be ascribed to a dy-
namic equilibrium among multiple binding states but not a
simple two-state equilibrium, thereby blocking DNA bind-
ing (Fig. 8). This notion relates to the concept of encounter
probability and differs to the mechanism observed for Ets-1.

This dynamic binding mode is rather similar to that in
the electrostatic model proposed for the interaction be-
tween Cdc4 and Sic1 (34,40); the SCF ubiquitin ligase
subunit Cdc4 interacts with the cyclin-dependent kinase in-
hibitor Sic1 in a dense phosphorylation-dependent manner
(34). Multiple phosphorylation in the N-terminal IDRs
of Sic1 leads to equilibrium engagement by an
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interchange between phosphorylation sites (34). The de-
gree of phosphorylation fine-tunes the complex formation
of Sic1 with Cdc4 via long-range electrostatic interactions,
ensuring ultrasensitivity of the Sic1-Cdc4 interaction
caused by a net charge reversal (40). In agreement with
this ultrasensitive change, our previous data showed that
simultaneous mutations at four or six phosphorylation sites
drastically enhance the binding ability of FACT to nucleo-
somal DNA (as shown in Fig. 3 C of Tsunaka et al. (20)).
It is thus likely that the inhibitory mechanism of the
phosphorylated FACT is essentially based on the electro-
static model.

Furthermore, a notable feature of this regulation mecha-
nism is that the cooperative action of the tandemly linked
AID and BID regions directs nucleosomal DNA binding
through their interaction with the HMG in FACT. These
tandemly linked IDRs may enhance the probability of
encounter between the DNA-binding elements and the phos-
phorylated IDR in the inhibitory mechanism (Fig. 8). In fact,
our HS-AFM analyses indicate that the lifetime of the glob-
ular domain in phosphorylated dFACT is much longer than
that of the nonphosphorylated form.

Many atomic structures of protein complexes provide a
general view that domain and/or subunit contacts take place
on well-ordered surfaces that complement each other. How-
ever, functionally important complexes frequently involve
dynamic, or transient, properties, which are derived from
unstructured IDRs even upon complex formation. It is
very likely that such flexibilities of protein complexes
should change in response to posttranslational modifica-
tions, thereby regulating physiological functions. Thus, the
combination of NMR and HS-AFM analysis used in this
study potentially can be applied to many other protein com-
plexes in which IDRs play important roles.
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