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A b s t r a c t - - L e t  A be the class of analytic functions in the open unit disk U. Given 0 ~ A < 1, 
let ~x be the operator defined on ,4 by 

(nx f )  (z) = F ( 2 -  A)zXD~/(z), 

where D~I is the fractional derivative of f of order A. A function f in ,4 is said to be in the class SPx 
if ~Af is a parabolic starlike function. In this paper, several basic properties and characteristics of 
the class SPA are investigated. These include subordination, inclusion, and growth theorems, clara- 
preserving operators, Fekete-Szeg6 problems, and sharp estimates for the first few coefficients of the 
inverse function. © 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - U n i f o r m l y  convex functions, Parabolic starlike functions, Fractional derivative, Sub- 
ordination, Fekete-Szeg5 problems, Inverse functions. 

1. I N T R O D U C T I O N  

Let `4 be the class of functions analytic in the open unit disk 

/ , / : =  {z : z E C and  Izl < 1} 

and let ,40 be the family of functions f in ,4 satisfying the normalization condition (cf. [1]): 

f(O) = f '(O) - 1 = O. 

A func t ion  f in .40 is said to be uniformly convex i n / 4  if f is a univalent convex func t ion  along 

wi th  the  proper ty  tha t ,  for every circular arc 7 conta ined in U, wi th  centre  ~ also in 14, the  image 
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curve f (7)  is a convex arc. The class of uniformly convex functions is denoted by UCV (for 
details, see [2]). It is well known from [3,4] that 

Izf"(z)  { z f"(z)  } 
f • U C V ¢ : = ~  ~ < R e  1 +  f'(z----~ ' (z • u) .  (1.1) 

Condition (1.1) implies that  

lies in the interior of the parabolic region 

zf"(z) 
l + - -  

f ' (z)  

T~ := {w : w = u + i v  and v 2 < 2 u -  1} 

for every value of z E b/. Let 

P := { p : p  • A, p(0) = 1 and Re{p(z)} > 0, (z • /d )}  

and 
PAR := {p : p • P and p (b/) C 7~}. 

A function f • A0 is said to be in the class of parabolic starlike functions, denoted by SP 
(cf. [4]), if 

zf ' (z)  • 7e, (z • U). 
f(z) 

Let 

~"  (a)nz"+l (z • u; c # 0 , - 1 , - 2 , .  ), ~(a,c;z)  := z _ . , -  , "" 
. - - 0  ( c ) ~  

where (A)n is the Pochhammer symbol defined, in terms of Gamma functions, by 

(1.2) 

r(~+n) {1, (n=O), 
(A)n:= F(A) = A(A+I) . . . (A+n+I) ,  (neN:={1,2,3, . . .}) .  

Further, let (cf. [5,6]) 
£(a, c) f (z)  = ~(a, c; z) • f(z) ,  ( f  e A), (1.3) 

in terms of the Hadamard product (or convolution). Note that  £(a,  a) is the identity operator 
and 

£(a,c) =E(a,b)£(b,c), (b,c ~ 0, -1 ,  -2 ,  . . . ). 

It is well known that,  if c > a > 0, then £ maps ,4 into itself. 
We also need the following definitions of a fractional derivative. 

DEFINITION 1. (See [6,7]; see also [8,9].) Let the function f (z)  by analytic in a simply-connected 
region of the z-plane containing the origin. The fractional derivative of f of order A is defined 
by 

1 d fn z f ( ( )  d(, (O<A D~f(z)  := F(1 A-------) dz _ (z---() ~ < 1), 

where the multiplicity of (z - ()~ is removed by requiring log(z - () to be real when z - ( > O. 

Using Definition 1 and its known extensions involving fractional derivatives and fractional 
integrals, Own and Srivastava [6] introduced the operator f ~  : A -* ,4 defined by 

f ~ f ( z )  := F(2 - A)z ~ D~zf(z), (A ~ 2, 3, 4 . . .  ). (1.4) 
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DEFINITION 2. Suppose that the functions f and F are in A. We say that f is subordinate to F 
in U, written as f ~ F, if  F is univalent in U, 

y(o) = F(O) and f(U) C_ F(ld). 

In a recent paper [10], the authors studied the class SA(a) (0 < a < 1; 0 < A < 1) of functions f 
such that f~xf is a univalent starlike function of order a. In the present sequel to our earlier 
paper [10], we study a class of analytic functions, related to UCV and SP, using the operator f ~  
defined by (1.4). 

DEFINITION 3. Let SPA (0 < A < 1) be the class of functions f E ,40 satisfying the inequality: 

z ( ~ X f ( z ) )  ' <Re~Z(~Af ( z ) ) '~ ' "  ( zEL/ ) .  (1.5) 1 
f~AI(z) [ ' 

It  follows that 
SP1 - U C V  and SP0 -- SP. (1.6) 

We investigate here several basic properties and characteristics of the general class SPA. 
These include inclusion, subordination, and growth theorems, class-preserving operators (like 
the Hadamard product and various integral transforms), Fekete-Szeg6 problems, and sharp esti- 
mates for the first few coefficients of the inverse function. 

2.  B A S I C  P R O P E R T I E S  O F  T H E  C L A S S  S P  A 

We need the following results in our investigation of the class SPA. 

LEMMA 1. (See [11].) Let F and G be univalent convex functions in ld. Then the Hadamard 
product F • G is also univalent convex in bl. 

LEMMA 2. (See [12].) Let the functions F and G be univalent convex in ld. Also let f -~ F 
and g -~ G. Then f , g -~ F * G. 

LEMMA 3. (See [11].) Let each of the functions f and g be univalent starlike of order 1/2. Then, 
for every function F E A, 

S(z) * g(z)F(z) 
f ( z )  * g(z) 

where CH denotes the dosed convex hull 

THEOREM 1. I f0  _ /z < A < 1, then 

PROOF. Let f E SPA. Then 

and 

e Kff{F(u)}, (z eu ) ,  

SPA C SP, .  

~ f  = L(2,2 - / z ) f  = L(2 - A,2 - / z ) ~ f  

= ~(2 - A, 2 - ~; z) * ~ f  

z (ff~f)t = AZ(2, 1) AE(2 - A, 2 -/z)ff~Af 
-- A , 2 - . ; z / .  {z 

Also it is known that (cf. [13]) 

~ ( 2 -  A , 2 -  #;z) E 8" ( ~ ) .  

Since 7"¢ is a convex region, using Lemma 3, we get 

- 2 - . ;  z )  • y ( z )  

Thus f E SP, .  This completes the proof of Theorem 1. 

ET~. 
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COROLLARY 1. / f 0  _< A < 1, then the functions in SPa are parabolic starlike and UCV c SP. 

PROOF. Clearly, we have (of. equation (1.6)) 

SPa C SPo = SP and UCV = SP1 C SP0 = SP. 

It can ]be verified that  the Riemann map q of b /onto  the region TO, satisfying q(0) = 1 and 
q~(0) > 0, is given by 

2 ( l + v q )  2 
q(z) = l + ~.~ l O g l _ v , ~  

8 ~ ( 1 ~  1 ) z n  
= 1 + ~--~ 2 k + l  

-~ kffiO 

c~ 8 ( 2 2 23.3 44z4 ) = E Bnzn = l +-~'~ z +-~z + - ~ z  + ~-~ + ' "  , 
n = O  

(2.1) 

• u). (2.2) 

We define the function G by 

1 (  ( ~ o Z q ( s ) - i  ) }  G(z) := - Z ( 2 - A , 2 ) z e x p  ds , 
z 8 

(z e b/). (2.3) 

THEOREM 2. Let 0 <_ A < 1 and let G(z) be defined by (2.3). Then G(z) is a convex univalent 
function. Furthermore, if f E SPa, then 

f(z)  
- -  V ( z ) .  

z 

PROOF. We first note that  

G(z) ~o(2-A,2;z)  (foZ q(s) - I ) = * exp ~ ds , (z e 14), (2.4) 
z 8 

where each member of the Hadamard product in (2.4) is known to be a convex univalent function 
(cf. [3,13]). Therefore, by Lemma 1, G(z) is a univalent convex function. 

Next, if f E SPa, then (cf. Definition 2) 

z 
-< q(z). 

naf(z)  

Thus there exists a function ¢ satisfying the Schwarz Lemma such that  

~af(z------~) - e x p ( ~ o Z q ( ¢ ( s ) ) - l d s )  s ( z E U ) .  

Since q(z) - 1 is a univalent convex function, a result of [14]; (see also [15, p. 50]) yields 

f~af(z) (~oZq(s) - 1  ) 
- -  -< exp ds . 

z s 

It now follows from a known result of [13, p. 508, Theorem 2] that 

f(z)  
z 

The proof Theorem 2 is evidently completed. 

- -  -~ G ( z ) .  
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REMARK 1. Taking A = 1 in Theorem 2, we immediately obtain a subordination result due to 
[3, p. 169, Theorem 3]. 

THEOREM 3. Let 0 <_ ;~ < 1. If f e SPA, then 

a ( - r )  <_ ] f(z___~)z <- G(r), (Izl = r) (2.5)  

and 

arg/f-~tzZ-)) I < ' ' ' \ '  max {arg(G(rei°))} ( z=re  ~°) (2.6) 
- -  0E[0,2~r]  ' ' 

where G(z) is delqned by (2.3). Equality holds true in (2.5) and (2.6) for some z # 0 if and only 
i[ f is a rotation of zG(z). 
PROOF. Let f E SPA. Then, by Theorem 2 and Lindel6f's principle of subordination, we get 

inf Re{G(z)}< inf R e { ~ ! } _ <  s u p R e { ~ }  
Izl=r Izl<_r Izl<r 

(2.7) 
< sup f (z)  <_ sup Re{a(z)} .  

Iz l_<, ' l  z I I~1<," 

Since G(z) is a univalent convex function and has real coefficients, G(U) is a convex region 
symmetric with respect to real axis. Hence, 

and 

inf Re{G(z)} = inf a(x) = G(-r) (2.8) 
Izl_<r -r<x<r 

sup Re{G(z)} = sup G(x) = G(r). (2.9) 
[z]<_r - r < x < r  

Thus, (2.7) gives the assertion (2.5) of Theorem 3. Also we readily have the assertion (2.6) of 
Theorem 3. 

The sharpness in inequalities (2.5) and (2.6) is also a consequence of the principle of subordi- 
nation. This completes the proof of Theorem 3. 

COROLLARY 2. Let f e SPA. Then 

{w : Iwl ~ a(-1)} c f (U). 

The result is sharp. 

REMARK 2. Taking A = 1 in Theorem 3, we get a result of [3, p. 170, Corollary 3]. 

3. C L A S S - P R E S E R V I N G  O P E R A T O R S  A N D  T R A N S F O R M S  

THEOREM 4. I f f  E S~(1/2) and g E SP~ (A <_ ~), then 

f2~f • fFg  e SP,.  

In particular, if f e SA(1/2) and g E SPA, then 

f~Af. 12Xg e SPA. 

PROOF. Let f E SA(1/2) and g E SP,  (A < #). By definition, 

f E S * ( 1 )  and f ~ ' g e S P c S * ( 1 ) .  
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The commutative and associative properties of the Hadamard product yield 

z (fl'~f * a"g) '  ---- £(2,1) (a'~f * a~'g) 

= f ~ f  • £(2, 1) f l 'g  

{z 

Therefore, using Lemma 3, we get 

~xS, ((z (n,'g)') / (~,'g)) n,'g 
~,xf ,  ~ g  ~ f .  ~ g  

(3.1) 

This completes the proof of Theorem 4. 

COROLLARY 3. (See [4].) I f  f E S*(1/2) and g E SP, then f . g  E SP. In particular, if f E SP 
and g E SP, then f * g E SP. 

THEOREM 5. Let f E SP andg  E SP~ (0 < # _< 1). Then f . g  E SP,. In particular, i f f  E UCV 
and g E UCV, then f * g E UCV. 

PROOF. The proof of Theorem 5 is similar to that of Theorem 4. Let f E SP and g E SP, 
(0 _< # _< 1). We first note that 

z ( O " ( f  * g) (z)) '  = ~ ' g  (z) * z f '  (z) and ~ ' ( f  • g) (z) = ~ ' g  (z) * f ( z ) .  (3.3) 

Therefore, using Lemma 3, we get 

z ( ~ . ( f  • g ) (z ) ) '  = n . g ( z )  • ((zy'(z)) I ( f ( z ) ) )  y(z) 
fy-,(f * g)(z) f~"g(z) * f ( z )  

E 7~, (z E/d).  (3.4) 

Thus f * g  E SP,. Next, by Corollary 1, UCV C SP. Thus, by taking# = 1, we see that 
the Hadamard product of two uniformly convex functions is a uniformly convex function. This 
completes the proof of Theorem 5. 

THEOREM 6. Let f j  E SPx (j = 1 , . . . , n ) .  Also let 

n 

aj > 0 and E a04 = I. (3.5) 
o4----1 

Define a function g by 
n 

I-[ (a sD °' 
j=l  

Then g E SP~. 

PROOF. Let fj E SPx (j = 1, . . . ,  n) and let g be defined by (3.6). Direct calculation gives 

I 

z 1 z ( fta f04.) ' I (~.Xg)' ~a04  1 
04=1 I 

° ( < Zo~04I:te z(a'\f04)"~ 
04:, ) 

= Re ~Xg ] " 

Thus, by Definition 2, g E SPA. This completes the proof of Theorem 6. 

(3.6) 

(3.7) 

E T~, (z E/d). (3.2) 



THEOREM 7. Let f • SPA (0 < A < 1). 

c + l  L z 
F(z )  := z c f f - l f ( t )  dt, 

is also in the class SPA. 

PROOF. We begin by noting that 
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Then the function F(z )  defined by the integral transform 

(z • u; c > - 1 )  (3.8) 

F(z)  = £ ( c +  1,c + 2)f(z) 

z (~tAf(z)) ' -- E(2, 1) E(2, 2 - A) E(c + 1, c + 2)f(z) 

= E(c + : , c +  2){z(~Af(z))  ' }  = ~ ( c  + 1,c + 2:z)* { z ( ~ A f ( z ) ) ' } .  

and 

e ~ ,  (3.9) 

Using a result of Bernardi [16], it can be verified that 

~(c + 1 , c  + 2;z) • $* ( ~ )  . 

Also, by hypothesis, f~Af(z) • SP _c S*(1/2). Thus, using Lemma 3, we get 

: ,c+ ( 
a;~ f ( z )  ~(c + 1, c + 2; z) * ~A f ( z )  

which completes the proof of Theorem 7. 

4. THE FEKETE-SZEGO PROBLEM FOR THE C L A S S  SPA 

Let the function f ,  given by 

f ( z )  = z + a2z 2 + a3z 3 + . . .  , (z • U), 

be in the class SPA. Then there exists a function w E A, satisfying 

w(O)=O and I w ( z ) l < l ,  

such that 
z ( aA f ( z ) )  t 

f lAf(z)  = q (w(z) ) ,  

Let the function Pl in P be defined by 

p l ( Z  ) ---- 1 + w(z.._....~) = 1 + clz + 
1 - w(z)  

Then, by using (2.2), (4.2), and (4.3) in the form 

w ( z )  - p l ( z )  - 1 
pl(z)  + 1' 

we find that  

4r(3 - A) 
a2 = 7r2F(3)r(2 _ A)cl, 

2F (4 -A)  [ 1 ( 24)c~] 
a 3 =  ~r2F~" ~-A) c2-~ 1-~-~  , 

(z c u),  

(z • U). 

c2z 2 + . . . .  

and 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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4F(5-A)  [ 1 ( 1 8 )  2 ( 45 180'~ c~] " (4.6) 
a4 = 37r2~-~---A~-~(5) c3 - ~ 1 - ~ ClC 2 --[- ~-~ 1 - ~ + --~-] 

These expressions shall be used throughout the rest of the paper. 
Define the functions k(z, T, V) in SPA by 

k ( z , v , v ) : L ( 2 - A , 2 ) z e x p ( g C  [qlei~'~((+v)~\ -~:~-~ ] - 1 ]  ~ ) ,  (4.7) 

( O < T < 2 ~ r ; O < v < l ) .  

Note that k(z, O, 1) = z G(z) defined by (2.3) and that k(z, T, 0) is an odd function. We also need 
the following lemma in our investigation. 

LEMMA 4. Let g E P, where 

g(z) = 1 + clz + c2z 2 + . . . .  1 + G(z). (4.8) 

Then 

and 

Ic~l ~ 2, (n E N) 

p .p 1 
C2 -- ~#Cl --~ 27 t- ~ (1# -- 1[ -- 1)Icll  2 

Furthermore, if  we define the sequence {An}n°°__1 by 

where 

(4.9) 

(4.10) 

CO oO 

E (-1)n-17n-1 {G(z)}n = E Anzn' (4.11) 
n----1 n = l  

'[ ] 70 = 1 and 7n = ~~ 1 + Bn , (4.12) 

S oo and the sequence { n}n=l is given by 

then 

oO 

h(z) = 1 + E Bnzn' (4.13) 

REMARK 3. 
found in [17]. For n = 2 and n = 3, (4.10) reduces to 

IA.[ ~ 2, (n e 51). (4.14) 

Inequalities (4.9) and (4.10) are well known (cf. [1]) and estimate (4.14) can be 

and 

IA3[ = Ic3 - 2"~1ClC2 + "/2c31 ~ 2, 

Let the function f ,  given by (4.1), be in the class SPA. Then, 

(~ >_ G1), 

(42 < ~ < a l ) ,  

( ,  < ~2), 

respectively. 

THEOREM 8. 

12(2 - A)~ 4 

2 
[ . a  2 -- {231 _~ ~-~2 (3 -- ~)(2 ~), 

4o ;~1r,(3- A)(2 A) + ~ - _ ~ - ~  
1,  

(4.15) 

(4.16) 

(4.17) 
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where, for convenience, 

a l : =  2 - A  + 72 ) and 0" 2 : =  - -  
3 - A ( ~  ~r 2 )  
2 ---A ~-~ . (4.18) 

Each of the estimates in (4.17) is sharp. 

PROOF. Using (4.4) and (4.5), we write 

IPa 2 -a31  = ( 2 -  A) (3 -  A)[(24_.(2--A)# 
61r 2 \ (3 - A)Tr 2 ÷ 

< (2 - ~)(3 - ~) ('} 24(2 - ~)~ 
- 6~2 \1 (3 - ;~).2 

1 8 / 2c2 3 ~-2 c~- (4.19) 

3 ~2 Icl -~- 21 c21 --C2[ ' (4.20) 

If # > a l ,  then the expression inside the first modulus on the right-hand side of (4.20) is non- 
negative. Thus, by applying Lemma 4, we get 

i#a~ _a31 < 4 ( 2 -  A) (3 -  A) ( 1 2 ( 2 -  A)# 4 ~ )  (4.21) 

which is the first part of assertion (4.17). Equality in (4.21) (or, equivalently, in (4.20)) holds 
true if and only if I c l l=  2. Thus the function f is k(z, 0, 1) or one of its rotations for p > al .  

Next, if ~ _< a2, we rewrite (4.19) as 

( 2 - A ) ( 3 - A )  2c2 ( 8  
a31 

1 24_(2_.: ~ ) , ~  [ 
3 ( 3 - ~ ) ~ ] c ~  

1 24(2-- ~)#~ ic, l~}. 

The  estimates Ic21 <_ 2 and ICl[ ~ 2, after simplification, yield the second part of the asser- 
tion (4.17), in which equality holds true if and only if f is a rotation of k(z,O, 1) for # < a2. 

If # = a2, then equality holds true if and only if Ic2[ --- 2. Equivalently, we have 

z) 
2 \ 1 - z / + - 7  ~ ' 

(0 < v < 1; z • U ) .  

Thus, the function f is k(z, O, v) or one of its rotations. 
If # = aI,  then 

24(2 - A)# 5 8 
= 0 .  

(3 - A)Ir 2 3 7r 2 

Therefore, equality holds true if and only if Ic 2 - c21 = 2. This happens if and only if 

1 (lz ) 
pl(Z---~ = - - 7 -  ~ 1 - - - ~ / +  - - V -  ~ ' (0 < ~ < 1; z • u) .  

Thus the function f is k(z, Tr, v) or one of its rotations. 
Finally, we see that  

1.a~_a3{=(2 ~){3 ~)2 c2- 67r2 ~ el + + 

and 
2 24(2 - A)# 

m a x  + 3 -5 -- A- <_ I, (0-2 <-- ~t < 0-i). 
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Therefore, using Lemma 4, we get 

I]ta2--a31 ~ (2-)Q(3-A) {2(2 - 1 6 7 r 2  ~,Cl]2]~ ÷,Cl,2} 

2 
= 3zr2 (2 - A)(3 - A), (0"2 _< # _< 0"1). 

If a2 < p < 0"1, then equality holds true if and only if Icll = 0 and ]c21 = 2. Equivalently, we 
have 

1 + v z  2 
= (0 < v < 1; z e bf) p l  ( z )  1 - v z  2 '  

Thus the function f is k ( z ,  0, 0) or one of its rotations. The proof of Theorem 8 is evidently 
completed. 

REMARK 4. The second part of assertion (4.17) can be improved as follows: 

3 - A ( 3  ,a2, 2 - - 

and 

I#a22-a31÷ ~ ÷ 72 ] -  # la2 -< ~ r  2 ( 3 - A ) ( 2 - A ) '  

where 0"1 and as are given, as before, by (4.18), and 

as := 2---Z-f + ~ ' 

PROOF. For the values of # prescribed in (4.22), we have 

I,a - a31,1÷ {. 

6.2 { ] 
1 8) } 

+ \ . 2 ( a _  ~) + 3 ~ 1~112 

< (2-- ~)(3-- ~) {4--[C1] 2 ÷ ( 8 2 24(2--)~),~ 
- 61r 2 ~ ÷ 3 -~': ~)'-~ ,/Ic'12 

/ ' 2 4 ( 2 - A ) #  1 8 )  } 
+ \ ~ - ~ ) ~ + 3  ~-2 loll 2 

2 
= 3 .  2 (3 - ~ ) ( 2  - ~) ,  (0-2 _< ~ < 0"3), 

which establishes (4.22). Similarly, for the values of # prescribed in (4.23), we have 

]#a~ - a31 ÷ '{ 3-A2 ---'Z~' (3 ÷ 5r2'~72]- #} ]a2'2 

= ( 3 -  A ) ( 2 -  A) 2 1 2 2 2 4 ( 2 -  A)#~ Cl 2 

+ ~ + 3  (3-~)~-2]1~1 ~ 

- 61r2 k (3 - A)~'r 2 "zr 2 IC112 

3 ( 3 - ~ ) ~ 2 ) r C l J  2 
+ 

2 
= 31r2 (3 - A)(2 - A), (0" 3 ___~ ~t <~ 0"1), 

which proves (4.24). 

(a2 <: # _< a3) (4.22) 

(a3 ~ # _< a l ) ,  (4.23) 

(4.24) 
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REMARK 5. A special case of Theorem 8 when A = 1 would yield a result due to [18, p. 280, 
Theorem 2]. Furthermore, by setting A = 0 in Theorem 8, we readily obtain the following 
corollary. 

COROLLARY 4. Let the function f ,  given by (4.1), be in the class SP. Then 

8 / 4 ( 2 ~ - 1 )  

4 
[.a~ - a31 _< -~, (52 - < ,  <_ 51), (4.25) 

8 ( ~  4 ( 2 , - 1 ) )  

where, for convenience, 

1 57r 2 1 ~2 
51 := ~ + 48 and 52 := ~ - 4--8' (4.26) 

5. C O E F F I C I E N T  B O U N D S  
F O R  T H E  I N V E R S E  F U N C T I O N S  O F  SP A 

We first state the following theorem. 

THEOREM 9. Let the function f ,  given by (4.1), be in the class SPA. Also let the function f - l ,  
defined by 

f -1  ( f (z ) )  = z = f ( f - l ( z ) )  , (5.1) 

be the inverse of f . If  

= d f - l ( w )  w + nW , wl < r0; r0 > (5.2) 
n=2 

then 

4(2 - A) 
Id2[ < r ~ ,  (0 < A < 1), (5.3) 

{ 3 ~ ( 3 - A ) ( 2 - A ) ,  (Pl_<A_~ 1) 
Id3[ _< (5.4) 

3-~(3 ~)(2 :~), ( o <  <p~) ,  A 

and 
(4 - A)(3 - A)(2 - A) 

[d41 _~ 

where, for convenience, 

216 - 15~r 2 
0.9618... Pl := 120-5~r 2 

Each of the estimates in (5.3)-(5.5) is sharp. 

PROOF. Relation (5.2) gives 

d 2 = - a 2 ,  d 3 = 2 a 2 2 - a 3 ,  

Thus, making use of (4.4), we get 

97r2 
(p2 < ~ < 1), (5.5) 

4 (72 - 5 .  2) u 0 .8443. . . .  (5.6) 
and P2 := 162 - 57r 2 

and d4 = -a4  + 5a3a2 - 5a 3. (5.7) 

I 2 ( 2 - A ) 4 ( 2 - A )  <A< 
[d21 = ~-~ cl <_ 7r------5-~, (0 1) 

in which equality holds true if and only if h is the inverse of k(z, O, 1) or one of its rotations. 
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An application of Theorem 8 (with # -- 2) gives the estimate for [d31. Since the estimates in 
Theorem 8 are all sharp, the bounds on [d3[ are also the best possible. 

Next, using the expressions for a2, a3, and a4 given by (4.4)-(4.6), respectively, we have 

F ( 5 -  A) 1 { 1 -  18 (1 10(2- A)'~ 
[d4[ - 18~-y~ ---A) C3 3 ~ -4----~ /] } CIC2 

[2  1 ~10(2-A) ) 8 { 30(2-A)('3(2-A) 

r(5 - ~) - 18~2-F~ ~ A) Ic3 - 2 " / l C l C 2  -'~ ~2C3[  ' 

where 

and 

Thus, 

and 

"h----~l { 1 -  18 ( 1 ~  10(2-A)4__)( )}----5 1 (  1+1/31 ) (5.9) 

2 1 ( 10 (~ -~ /~  s ( 30 (2 -~)  90(~-~)~ ~ 
~'2-  45 7r 2 1 -~22~" ] + ~  1 4 - , ~  + (4 - ,X) (3 - ,X) ) 

(5.10) 
1 ( 1 + / 3 1 + 1 / 3 2 ) .  
4 

12 / 10_._((2-- A) ) 4 (5.11) 
/3'--- ~ \ 4 - A  1 3 

) 45 ~ 2 \  4 - A  1 + f i  1 4 - ~  + ( 4 - - ~ ) - ~ - ~ ) )  (5.12) 

In order for the inequality 
]C 3 -- 2~'1CiC 2 q- "~2C3[ _____ 2 

of Lemma 4 to be applicable here, we must have [/31[ _< 2 and [/32[ _< 2. The condition [/31] _< 2 
simplifies to 

P2 _< A _< 1, (5.13) 

where P2 is given by (5.6). Using the estimates 

2 - A  1 2 - A  1 
- - > -  and - - < -  ( 0 < A < I )  
3 - A  - 2 4 - A  - 2' ' 

it can be verified that/32 > 0. Thus, in order to show that 1/321 <_ 2, it is sufficient to establish 
that ) 1o( , ,  

zr 2 ~---~ 1 + ~ 1 4 - A + (4---A)~---'A)] -< 4-5' (5.14) 

The left-hand side of inequality (5.14) can be rewritten as 

~, 10(2--- 

which, for the values of A given by (5.12), is less than or equal to 

10 ( ~  4 )  2 A(3- 2A) 
8-]" + - -  + ~-2 10(2 - A)(3 - A)' 
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Now it is sufficient to  show t h a t  

10 (~.0 4 )  2 A ( 3 -  2A) 11 

8--I + + ~ 10(2 - A)(3 - A) <- --'45 

This is equivalent to 

which is t rue  for all real values of k. Thus  ]/321 <_ 2 for the  values of A given by (5.13). 

F ina l ly ,  by  app ly ing  (4.17), we arr ive at  (5.5). 

In  o rde r  to  es tab l i sh  t h a t  our  es t imates  are sharp ,  we need to find a funct ion f co r respond ing  

to (4.13) with/31 and/32 given as above. One such funct ion is 

f ( z ) = - ~  -4 ---- -A 1 - -f - -  z ~ \ -$ ----A" 1 - 5 1 - ~ z 2 ' 

where  ) 00(  
45 1 1 

5 6 f10(2= ) ) 
3 r 2 \  4 - A  1 

This completes the proof of Theorem 9. 

REMARK 6. The choice X = 1 in Theorem 9 gives a recent result of [18, p. 283, Theorem 3]. 

(5.16) 
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