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Abstract

In a previous paper (C. R. Acad. Sci. Paris Sér. I 333 (2001) 763–768), the author introduced a no
compatibility between a Poisson structure and a pseudo-Riemannian metric. In this paper, we introduce a n
class of Lie algebras called pseudo-Riemannian Lie algebras. The two notions are closely related: we prov
dual of a Lie algebra endowed with its canonical linear Poisson structure carries a compatible pseudo-Rie
metric if and only if the Lie algebra is a pseudo-Riemannian Lie algebra. Moreover, the Lie algebra obta
linearizing at a point a Poisson manifold with a compatible pseudo-Riemannian metric is a pseudo-Rieman
algebra. We also give some properties of the symplectic leaves of such manifolds, and we prove that every
manifold with a compatible Riemannian metric is unimodular. Finally, we study Poisson Lie groups endowe
a compatible pseudo-Riemannian metric, and we give the classification of all pseudo-Riemannian Lie alg
dimension 2 and 3.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The starting point of this work was the search of a notion of compatibility between a Poisson st
and a pseudo-Riemannian metric. Given a Poisson manifold endowed with a pseudo-Riemannia
(P,π, g), it is natural to look for a notion of compatibility between the Poisson tensorπ and the metricg.
The first idea is to assume that∇π = 0, where∇ is the Levi-Civita connection associated withg. Since
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the parallel transport preserves the rank, the Poisson tensor must have a constant rank. However
interesting Poisson structures are degenerate, and this condition is too strong. That is why we int
in [1] another notion of compatibility which will be studied in this paper. It is based on the notio
contravariant connection. This notion has been introduced by Vaisman (see [7, p. 55]) as contr
derivative. Recently, a geometric approach of this notion was given by Fernandes in [2].

Let us summarize the contents of this paper. LetP be a Poisson manifold with Poisson tensorπ .
A pseudo-Riemannian metric of signature(p, q) on T ∗P is a smooth symmetric contravariant 2-for
〈 , 〉 on P such that, at each pointx ∈ P , 〈 , 〉x is non-degenerate onT ∗

x P with signature(p, q). For each
pseudo-Riemannian metric〈 , 〉 onT ∗P , we consider the contravariant connectionD defined in [1] by

2〈Dαβ,γ 〉 = π(α).〈β,γ 〉 + π(β).〈α,γ 〉 − π(γ ).〈α,β〉
(1)+ 〈[α,β]π , γ

〉 + 〈[γ,α]π, β
〉 + 〈[γ,β]π, α

〉
,

whereα,β, γ ∈ Ω1(P ) and the Lie bracket[ , ]π is given by

[α,β]π = Lπ(α)β − Lπ(β)α − d
(
π(α,β)

);
here,π :T ∗P → T P denotes the bundle map given by

β
[
π(α)

] = π(α,β).

The connectionD is the contravariant analogue of the usual Levi-Civita connection. We call it the
Civita contravariant connection associated with the couple(π, 〈 , 〉). The connectionD has vanishing
torsion, i.e.,

Dαβ − Dβα = [α,β]π .

Moreover, it is compatible with the pseudo-Riemannian metric〈 , 〉, i.e.,

π(α).〈β,γ 〉 = 〈Dαβ,γ 〉 + 〈β,Dαγ 〉.
As usual, we denote byXf = π(df ) the hamiltonian vector field associated with the funct

f ∈ C∞(P ).
The following definition was given in [1] with a different terminology.

Definition 1.1. With the notations above, the triple(P,π, 〈 , 〉) is called a pseudo-Riemannian Poiss
manifold if, for anyα,β, γ ∈ Ω1(P ),

(2)Dπ(α,β, γ ) := π(α).π(β, γ )− π(Dαβ, γ ) − π(β,Dαγ ) = 0.

When〈 , 〉 is positive definite we call the triple a Riemannian Poisson manifold.

Now, we give the definition of a pseudo-Riemannian Lie algebra. Let(G, [ , ]) be a Lie algebra and le
a be a bilinear, symmetric and non-degenerate form onG. We define a bilinear mapA :G × G → G by

(3)2a(Auv,w) = a
([u, v],w) + a

([w,u], v) + a
([w,v], u)

for anyu, v,w ∈ G. We callA the infinitesimal Levi-Civita connection associated witha. Indeed, ifG is
a connected Lie group whose Lie algebra isG, a defines a left invariant pseudo-Riemannian metric onG.
The Levi-Civita connection∇ associated with this metric is given by

∇ulvl = (Auv)l, u, v ∈ G,

whereul denotes the left invariant vector field associated withu.
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Definition 1.2. With the notations above, the triple(G, [ , ], a) is called a pseudo-Riemannian Lie algeb
if

(4)[Auv,w] + [u,Awv] = 0

for all u, v,w ∈ G. Whena is positive definite we call the triple(G, [ , ], a) a Riemannian Lie algebra.

Let us state the main results of the paper. In Section 2, we give some basic properties of a
Riemannian Poisson manifold and we prove the following theorems:

Theorem 1.1. Let (P,π, 〈 , 〉) be a pseudo-Riemannian Poisson manifold andx ∈ P a point where the
restriction of 〈 , 〉 to Kerπ(x) is non-degenerate. Then the isotropy Lie algebraGx at x is a pseudo-
Riemannian Lie algebra.

(The definition of the isotropy Lie algebra is given in Section 2.2.)

Theorem 1.2. Let G be a Lie algebra. The dual(G∗, π) of G endowed with its canonical linea
Poisson structure carries a pseudo-Riemannian metric〈 , 〉 for which the triple(G∗, π, 〈 , 〉) is a pseudo-
Riemannian Poisson manifold if and only ifG is a pseudo-Riemannian Lie algebra.

Remark. The assumption onx in Theorem 1.1 is a property of the symplectic leaf throughx. This means
the following: if the restriction of〈 , 〉 to Gx = Kerπ(x) is non-degenerate, then it is non-degenerat
every point of the symplectic leaf throughx, since the parallel transport determined byD (see Fernande
[2]) preserves both Kerπ and〈 , 〉.

In Section 3, we prove the following theorems:

Theorem 1.3. Let (P,π, 〈 , 〉) be a Riemannian Poisson manifold and letS be a symplectic leaf ofP .
ThenS is a Kähler manifold.

Theorem 1.4. Let (P,π, 〈 , 〉) be a Riemannian Poisson manifold and letS be a regular symplectic lea
of P . Then the holonomy group ofS is finite.

In Section 4, we recall the definition of an unimodular Poisson manifold and we prove the follo
theorem:

Theorem 1.5. Every Riemannian Poisson manifold is unimodular. In particular, every Riemannia
algebra is unimodular.

In Section 5, we give a necessary and sufficient condition for a left invariant pseudo-Riemannian
on a Poisson Lie groupG to be compatible with the Poisson structure ofG. We also give a proof of th
following theorem which is the key for finding interesting examples of compact Riemannian P
manifolds.

Theorem 1.6. Let G be a connected Lie group andG its Lie algebra. Let〈 , 〉 be a bi-invariant pseudo
Riemannian metric onT ∗G. Letr ∈ G ∧G be a solution of the generalized Yang–Baxter equation an
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π be the Lie Poisson structure onG given byr . Then(G,π, 〈 , 〉) is a pseudo-Riemannian Poisson L
group if and only if

[ad∗
r(α)γ , β]r + [α,ad∗

r(β) γ ]r = 0, ∀α,β, γ ∈ G∗,

where the bracket[ , ]r is given by

[α,β]r = ad∗
r(β) α − ad∗

r(α) β

and wherer also denotes the linear map fromG∗ to G induced byr .

Remark. If G is connected compact or connected semi-simple, any Poisson Lie group structurG

is given by a solution of the generalized Yang–Baxter equation andG carries a bi-invariant pseudo
Riemannian metric. Consequently, to get a structure of Riemannian Poisson Lie group onG, it suffices
to find a solution of the generalized Yang–Baxter equation which is also a solution of the equa
Theorem 1.6.

The proof of the following theorem is a very long calculation. We will omit it here.

Theorem 1.7. (1) The 2-dimensional abelian Lie algebra is the unique2-dimensional pseudo
Riemannian Lie algebra.

(2) The3-dimensional Lie algebras which have a pseudo-Riemannian Lie algebra structure are:
(a) The Heisenberg Lie algebra given by

[e1, e2] = e3, [e3, e1] = [e3, e2] = 0.

(b) A family of Lie algebras given by

[e1, e2] = αe2 + βe3, [e1, e3] = γ e2 − αe3, [e2, e3] = 0,

whereα,β, γ ∈ R andα2 + βγ 
= 0.
Furthermore, there is no Riemannian Lie algebra structure on the Heisenberg Lie algebra, and

algebra among the above family has a structure of Riemannian Lie algebra if and only ifα2 + βγ < 0
andγ > β.

Finally, we remark that the most general setup for contravariant connections appears in the co
Lie algebroids (see [3]). It will be interesting to study the possible extension of the results discuss
in this general context.

2. From Riemannian Poisson manifolds to Riemannian Lie algebras

2.1. Basic material

In this subsection, we collect the basic material which will be used throughout this paper. Fo
background material we refer to Vaisman’s monograph [7].

Let P be a Poisson manifold with Poisson tensorπ . Let 〈 , 〉 be a pseudo-Riemannian metric onT ∗P
andD the Levi-Civita contravariant connection associated with the couple(π, 〈 , 〉).
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We give now another condition of compatibility between the Poisson tensorπ and the pseudo
Riemannian metric〈 , 〉 which will be useful later. SinceD has vanishing torsion and since t
contravariant exterior differentialdπ associated with the bracket[ , ]π is given bydπ = −[π, .]S , we
can obviously deduce that, for anyα,β, γ ∈ Ω1(P ),

(5)0= −[π,π ]S(α,β, γ ) = Dπ(α,β, γ )+ Dπ(β, γ,α)+ Dπ(γ,α,β).

From this formula and a straightforward calculation, we obtain, for anyα,β, γ ∈ Ω1(P ),

(6)Dπ(γ,α,β) = −dγ
(
π(α),π(β)

) − π(Dαγ,β) − π(α,Dβγ ).

Proposition 2.1. Let (P,π, 〈 , 〉) be a Poisson manifold with a pseudo-Riemannian metric onT ∗P and
let D be the Levi-Civita contravariant connection associated with the couple(π, 〈 , 〉). The following
assertions are equivalent:

(1) The triple(P,π, 〈 , 〉) is a pseudo-Riemannian Poisson manifold.
(2) For anyα,β ∈ Ω1(P ) and anyf ∈ C∞(P ),

(7)π(Dαdf,β) + π(α,Dβdf ) = 0.

(3) For anyα,β, γ ∈ Ω1(P ),

(8)dγ
(
π(α),π(β)

) + π(Dαγ,β) + π(α,Dβγ ) = 0.

2.2. Proof of Theorem1.1

Let us recall the definition of the isotropy Lie algebra at a point in a Poisson manifold(P,π) (see [8]).
If x ∈ P , we setGx = Kerπ(x) and, for anyα,β ∈ Gx , we define the bracket ofα andβ by

[α,β]x = dx

(
π(α̃, β̃)

)
,

whereα̃, β̃ ∈ Ω1(P ), α̃x = α and β̃x = β. The definition of[ , ]x is independent of the extensions a
(Gx, [ , ]x) is a Lie algebra called the isotropy Lie algebra atx.

Let (P,π, 〈 , 〉) be a pseudo-Riemannian Poisson manifold. Fix a pointx ∈ P such that the restrictio
of 〈 , 〉 to Kerπ(x) is non-degenerate. We denote bya the restriction of〈 , 〉 to Gx and byA be the
infinitesimal Levi-Civita connection associated witha.

For everyα ∈ Gx , we denote bỹα any 1-form inΩ1(P ) such thatα̃x = α.
For anyα,β ∈ Gx , we claim that

(Dα̃β̃)x = Aαβ.

In fact, for anyγ ∈ Gx , we deduce from (1) and (3)

2
〈
(Dα̃β̃)x, γ

〉 = 2a(Aαβ, γ ).

It remains to show that(Dα̃β̃)x ∈ Gx . Indeed, for everyµ ∈ Ω1(P ), we have

µ
(
π(Dα̃β̃)

) = π(Dα̃β̃,µ) = π(α̃).π(β̃,µ) − π(β̃,Dα̃µ) = π(α̃).π(β̃,µ) − Dα̃µ
(
π(β̃)

)
.

Sinceπ(α̃)x = π(β̃)x = 0, we deduce that(Dα̃β̃)x ∈ Gx .



284 M. Boucetta / Differential Geometry and its Applications 20 (2004) 279–291

n

at the

e need

f

Now, for eachγ ∈ Gx and for eachf ∈ C∞(P ) such thatdxf = γ, we have from (7),

π(Dα̃df, β̃) + π(α̃,Dβ̃df ) = 0.

Differentiating this relation atx, we obtain

[Aαγ,β]x + [α,Aβγ ]x = 0

and the theorem follows.

2.3. Proof of Theorem1.2

Let a be a bilinear, symmetric and non-degenerate form onG such that the triple(G, [ , ], a) is a
pseudo-Riemannian Lie algebra. We define onT ∗G∗ = G∗ × G a pseudo-Riemannian metric〈 , 〉 by〈

(µ,u), (µ, v)
〉 = a(u, v), µ ∈ G∗, (u, v) ∈ G2.

Each vectorv ∈ G defines a linear form onG∗ which will be denoted also byv. For anyu, v ∈ G and
anyµ ∈ G∗, we have

π(dv, du)(µ) = µ
([u, v]), [du, dv]π = d[u, v], and Ddudv = d(Auv).

It is easy now to show that (4) and (7) are equivalent and hence,(G∗, π, 〈 , 〉) is a pseudo-Riemannia
Poisson manifold.

Conversely, if(G∗, π) carries a pseudo-Riemannian Poisson structure, the isotropy Lie algebra
origin of G∗ is G and the theorem follows by Theorem 1.1.

3. Symplectic leaves of a Riemannian Poisson manifold

This section is devoted to the proofs of Theorems 1.3 and 1.4. Before we give these proofs, w
some lemmas.

Lemma 3.1. Let (P,π, 〈 , 〉) be a pseudo-Riemannian Poisson manifold, letS ⊂ P be a symplectic lea
an letU ⊂ P be an open subset. Ifα,β ∈ Ω1(P ) are 1-forms such thatπ(α)|S∩U = 0 or π(β)|S∩U = 0
then

π(Dαβ)|S∩U = 0,

whereD is the Levi-Civita contravariant connection associated with(π, 〈 , 〉).
Proof. Since the torsion ofD vanishes, we have

π(Dαβ) − π(Dβα) = [
π(α),π(β)

]
.

Hence, ifπ(α)|S∩U = 0 orπ(β)|S∩U = 0, thenπ(Dαβ)|S∩U = π(Dβα)|S∩U .
Suppose thatπ(β)|S∩U = 0. For anyγ ∈ Ω1(P ),

γ
(
π(Dαβ)

) = π(Dαβ, γ ) = π(α).π(β, γ )− π(β,Dαγ ) = 0

sinceπ(α) is tangent toS ∩ U . �
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Lemma 3.2. Let (P,π, 〈 , 〉) be a Riemannian Poisson manifold. LetO be the regular open set where th
rank of the Poisson tensor is locally constant. Then,

(1) D is aF -connection onO in the sense of Fernandes[2]; this means that, for anyx ∈ O and every
α ∈ T ∗

x P , we have

π(α) = 0 ⇒ Dα = 0;
(2) D is a basic connection onO in the sense of Fernandes[2]; this means that for any symplectic le

S ⊂ O and for anyα,β ∈ Ω1(O) such thatπ(β)|S = 0, we have

(Dαβ)|S = [α,β]π |S.
Proof. Let U be an open set inO where the rank of the Poisson tensor is constant. OnU , the cotangen
bundle splits

T ∗P = Kerπ ⊕ (Kerπ)⊥,

where(Kerπ)⊥ is the〈 , 〉-orthogonal of Kerπ .
Let x ∈ U andα ∈ T ∗

x P such thatπ(α) = 0. Choose a 1-form̃α onU such thatπ(α̃) = 0 andα̃x = α.
For anyβ ∈ Ω1(U) we have, by Lemma 3.1,π(Dα̃β) = 0. We claim thatDα̃β ∈ (Kerπ)⊥. Indeed, for
anyγ ∈ Kerπ , we have

〈Dα̃β, γ 〉 = π(α̃).〈β,γ 〉 − 〈β,Dα̃γ 〉 = −〈β,Dα̃γ 〉.
Now, using the splitting ofT ∗P , we can writeβ = β1 + β⊥

1 and so〈β,Dα̃γ 〉 = 〈β1,Dα̃γ 〉. This quantity
vanishes from the definition ofD, soD is aF -connection. It is also a basic connection because its tor
vanishes. �
Lemma 3.3. Let (P,π, 〈 , 〉) be a pseudo-Riemannian Poisson manifold. LetO be the regular open se
where the rank of the Poisson tensor is locally constant. Then,

(1) For anyx ∈ O, for anyα,β ∈ Kerπ(x) and for anyf ∈ C∞(O), we have

LXf

(〈 , 〉)(α,β) = 0;
(2) For any Casimir functionsf,g, the scalar product〈df, dg〉 is also a Casimir function.

Proof. (1) For anyf,g,h ∈ C∞(P ), we have

LXf

(〈 , 〉)(dg, dh) = π(df ).〈dg, dh〉 − 〈LXf
dg, dh〉 − 〈dg,LXf

dh〉
= 〈Ddf dg, dh〉 + 〈dg,Ddf dh〉 − 〈[df, dg]π , dh

〉 − 〈
dg, [df, dh]π

〉
= 〈Ddgdf, dh〉 + 〈dg,Ddhdf 〉.

This implies that

LXf

(〈 , 〉)(α,β) = 〈Dαdf,β〉 + 〈α,Dβdf 〉
and the property follows from Lemma 3.2.

(2) Let (f, g) be a couple of Casimir functions onP . For everyh ∈ C∞(P ), we have{
h, 〈df, dg〉} = Xh.〈df, dg〉 = 〈Ddhdf, dg〉 + 〈df,Ddhdg〉

= 〈
Ddf dh + [dh, df ]π , dg

〉 + 〈
df,Ddgdh + [dh, dg]π

〉
.
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Now [dh, df ]π = d{h,f } = 0 andDdf dh vanishes onO by Lemma 3.2. So{h, 〈df, dg〉} is zero onP
becauseO is dense. �
3.1. Proof of Theorem1.3

Let (P,π, 〈 , 〉) be a Riemannian Poisson manifold and letS ⊂ P be a symplectic leaf. We denote b
ωS the symplectic form ofS.

For any vectors fieldsX,Y tangent toS, we set

(9)∇S
XY = π(Dαβ)|S

whereπ(α)|S = X andπ(β)|S = Y . It follows from Lemma 3.1 that∇S defines a torsionless covaria
connection onS. Obviously, we have

∇SωS = 0.

For anyx ∈ S, we have

T ∗
x P = Kerπ(x) ⊕ (

Kerπ(x)
)⊥

and the linear mapπ(x) : (Kerπ(x))⊥ → TxS is an isomorphism. For anyu, v ∈ TxS, we set

(10)gS(u, v) = 〈
π(x)−1(u),π(x)−1(v)

〉
.

(S, gs) is a Riemannian manifold and∇SgS = 0. This implies that∇S is the Levi-Civita connection ofgS .
Now, it is classical (see [7, p. 39]) thatT S has a∇S -parallel complex structureJ = A(−A2)−1/2,

whereA is given by

ωS(u, v) = gS(Au, v).

SoS is a Kähler manifold.

3.2. Proof of Theorem1.4

The linear Poisson holonomy of a Poisson manifold was introduced by Ginzburg and Golubev
A deeper study of this notion was done by Fernandes in [2]. In his approach, basic connectio
a fundamental role. Fernandes introduces also the notion of (non-linear) Poisson holonomy, a
regular leaf he shows that the (linear) Poisson holonomy coincides with the standard (linear) holo

Let (P,π, 〈 , 〉) be a Riemannian Poisson manifold and letS be a regular symplectic leaf. We pro
that the holonomy group ofS is finite.

First step: The linear holonomy group ofS is finite.
The linear holonomy group ofS coincides with the linear Poisson holonomy because the leaf is reg

Now, the linear Poisson holonomy can be determined by the parallel transport associated with
connection (see [2]). The Levi-Civita contravariant connectionD is, by Lemma 3.2, a basic connectio
on a neighbourhood ofS. D is also aF -connection, so the linear holonomy group is discrete. Moreo
the parallel transport defined byD is given by isometries on Kerπ . This gives the claim.

Second step: The holonomy group ofS is finite.
The holonomy group coincides with the Poisson holonomy group because the leaf is regul

Poisson holonomy is given by Hamiltonian flows. Now, letx ∈ S and(q1, . . . , qk,p1, . . . , pk, y1, . . . , yl)
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a Darboux coordinates defined on a neighbourhoodU of x. We consider the submanifoldN of U defined
by p = q = 0. We define a metricgN onT ∗N by

gN(dyi, dyj ) = 〈dyi , dyj 〉.
By considering (N,gN), we have according to Lemma 3.3 a well-defined notion of “transv
Riemannian structure” alongS and the holonomy preserves this transverse structure. Now, the ele
of the holonomy group are isometries and their differentials atx are elements of the linear holonom
group which is finite. Consequently, the holonomy group is finite.

4. Riemannian Poisson manifolds are unimodular

This section is devoted to the proof of Theorem 1.5. Let us recall the definition of an unimo
Poisson manifold (for more details see [10]).

The modular class of a Poisson manifold(P,π) is the obstruction to the existence of a volume form
P which is invariant with respect to Hamiltonian flows. More explicitly, letµ be a volume form onP . As
shown in [10], the operatorφµ :f �→ divµ Xf is a derivation and hence a vector field called the mod
vector field of(P,π) with respect to the volume formµ. Moreover,Lφµ

π = 0 andLφµ
µ = 0.

If we replaceµ by aµ, wherea is a positive function, the modular vector fields becomes

φaµ = φµ + Xlna.

Thus the first Poisson cohomology class ofφµ is independent ofµ. We call it the modular class of(P,π).
The Poisson manifold is unimodular if its modular class vanishes.

Now, we give a metric version of the modular vector field.
Let (P,π) be a Poisson manifold andg a Riemannian metric onT P . We denote by #g :T ∗P → T P

the musical isomorphism associated withg and byµg the volume form onP given byg. The modular
vector field with respect toµg is given by

(11)φµg
(f ) = divg(Xf ) = −

n∑
i=1

g(∇ei
Xf , ei),

where∇ is the Levi-Civita connection associated withg and(e1, . . . , en) is a local orthonormal basis o
vector fields.

If h(u, v) = g(Ju, v) is another Riemannian metric, we haveµh = √
detJµg and

(12)φµh
= φµg

− 1

2
Xln(detJ ).

Now, we define a Riemannian metric〈 , 〉 onT ∗P by

〈α,β〉 = g
(
#g(α),#g(β)

)
, α,β ∈ T ∗P

(remark that any Riemannian metric onT ∗P can be obtained in this way).
Let D be the Levi-Civita contravariant connection associated with(π, 〈 , 〉). We claim that

(13)φµg
= 1

2

n∑
LXf

(〈 , 〉)(αi, αi) =
n∑

〈Dαi
df,αi〉,
i=1 i=1
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Indeed, we have, for anyα,β ∈ T ∗P ,

LXf
g
(
#g(α),#g(β)

) = Xf .g
(
#g(α),#g(β)

) − g
([

Xf ,#g(α)
]
,#g(β)

) − g
([

Xf ,#g(β)
]
,#g(α)

)
= g

(∇#g(α)Xf ,#g(β)
) + g

(∇#g(β)Xf ,#g(α)
)
.

We have also, for anyh ∈ C∞(P ),[
Xf ,#g(α)

]
(h) = Xf .#g(α)(h) − #g(α)

(
Xf (h)

)
= Xf .〈α,dh〉 − 〈α,LXf

dh〉
= LXf

(〈 , 〉)(α, dh) + 〈LXf
α, dh〉.

This implies that

LXf

(〈 , 〉)(α,β) = −LXf
g
(
#g(α),#g(β)

)
, α,β ∈ T ∗P.

The claim is a consequence of the formula given in the proof of Lemma 3.3.
Now, we consider a Riemannian Poisson manifold(P,π, 〈 , 〉) and we denote byφ〈 ,〉 the modular

vector field defined by(13). We will show thatφ〈 ,〉 is zero on the regular openO. This implies that it is
zero onP , sinceO is dense inP .

Let x ∈ O andS the symplectic leaf ofx. We consider the symplectic formωS of S, the Riemannian
metricgS onS given by(10) and its Levi-Civita connection∇S .

We have, in a neighbourhood ofx,

T ∗P = Kerπ ⊕ (Kerπ)⊥.

We choose(α1, . . . , αl) (respectively(β1, . . . , βn−l)) a local orthonormal frame of Kerπ (respectively
(Kerπ)⊥). According to Lemma 3.2, we have:

φ〈 ,〉(f )(x) =
n−l∑
i=1

〈Dβi
df,βi〉 =

n−l∑
i=1

gS

(∇S
π(βi)

Xf ,π(βi)
) = −divgS

(Xf )(x).

Now, according to Theorem 1.3 there is a Riemannian metrich on S such that(S,h,ωS) is a Kähler
manifold and such that the isomorphismJ given byh(u, v) = gS(Ju, v) is ∇S-parallel. It follows that
detJ is constant and divgS

(Xf ) = divh(Xf ). To conclude, we recall the well-known fact that in a Käh
manifold the divergence with respect to the Kähler metric of any hamiltonian vector field is zero.

Now, let G be a Riemannian Lie algebra. According to Theorem 1.2,G∗ inherits a structure o
Riemannian Poisson manifold which is unimodular and the theorem follows.

5. Riemannian Poisson Lie groups

A Lie groupG is called a Poisson Lie group if it is also a Poisson manifold such that the multiplic
mapm :G × G → G is a Poisson map, whereG × G is equipped with the product Poisson structure.

Let G be a Poisson Lie group with Lie algebraG andπ the Poisson tensor onG. Pullingπ back to the
identity elemente of G by left translations, we get a mapπl :G → G∧G defined byπl(g) = (Lg−1)∗π(g)

where(Lg)∗ denotes the tangent map of the left translation ofG by g. Let

deπ :G → G × G
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be the intrinsic derivative ofπ at e given by

v �→ LXπ(e),

whereX can be any vector field onG with X(e) = v.

The dual map ofdeπ

[ , ]e :G∗ × G∗ → G∗

is exactly the Lie bracket onG∗ obtained by linearizing the Poisson structure ate.
If there is onG a pseudo-Riemannian metric which is compatible with the Poisson structure, th

algebra(G∗, [ , ]e) is a pseudo-Riemannian Lie algebra (see Theorem 1.1).
Now, let a be a bilinear, symmetric and non-degenerate form onG∗ and A :G∗ × G∗ → G∗ the

infinitesimal Levi-Civita connection associated with(a, [ , ]e). We denote by〈 , 〉 the pseudo-Riemannia
metric onT ∗G given by〈 , 〉g = (Lg)∗a.

Lemma 5.1. With the notations above,(G,π, 〈 , 〉) is a pseudo-Riemannian Poisson Lie group if and o
if [

Ad∗
g(Aαγ + ad∗

πl(g)(α) γ ),Ad∗
g(β)

]
e
+ [

Ad∗
g(α),Ad∗

g(Aβγ + ad∗
πl(g)(β) γ )

]
e
= 0

for all g ∈ G and for all α,β, γ ∈ G∗.

Proof. We denote byG∗
l the space of left invariant 1-forms onG and byGr the Lie algebra of righ

invariant vector fields onG.
Let D be the Levi-Civita contravariant connection associated with the couple(π, 〈 , 〉). Since〈 , 〉 is left

invariant and sinceG∗
l is a Lie subalgebra of(Ω1(G), [ , ]π ) (see [9]), we can deduce from the definiti

of D thatDαβ is a left invariant 1-form wheneverα andβ are left invariant 1-forms. Now, we have fro
(8) that(π, 〈 , 〉) is compatible if and only if

(∗)Q := dγ
(
π(α),π(β)

) + π(Dαγ,β) + π(α,Dβγ ) = 0, ∀α,β, γ ∈ G∗
l .

Sinceπ(e) = 0, we getQ(e) = 0 so (∗) is equivalent to

(∗∗)X.Q = 0, ∀α,β, γ ∈ G∗
l , ∀X ∈ Gr .

It is easy to see that (∗∗) is equivalent to

LXdγ
(
π(α),π(β)

) + dγ
([

X,π(α)
]
, π(β)

) + dγ
(
π(α),

[
X,π(β)

]) + LXπ(Dαγ,β)

+ LXπ(α,Dβγ ) + π
(
LX(Dαγ ),β

) + π(Dαγ,LXβ) + π(LXα,Dβγ ) + π
(
α,LX(Dβγ )

) = 0

∀α,β, γ ∈ G∗
l , ∀X ∈ Gr . A straightforward calculation gives[

X,π(α)
] = LXπ(α) + π(LXα).

Now, the Lie derivative of left invariant form by a right invariant vector field vanishes, so(G,π, 〈 , 〉) is a
pseudo-Riemannian Poisson Lie group if and only if

(14)LXπ(Dαγ − iπ(α)dγ,β) + LXπ(α,Dβγ − iπ(β)dγ ) = 0,

for anyα,β, γ ∈ G∗
l and for anyX ∈ Gr . LXπ is right invariant (see [5]) so (14) is equivalent to

(LXπ)e

(
T ∗

e Rg[Dαγ − iπ(α)dγ ], T ∗
e Rg(β)

) + (LXπ)e

(
T ∗

e Rg(α), T ∗
e Rg[Dβγ − iπ(β)dγ ]) = 0,
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∀α,β, γ ∈ G∗
l , ∀X ∈ Gr and∀g ∈ G. We can get easily the following formula

T ∗
e Rg(iπ(α)dγ ) = −Ad∗

g ◦ad∗
πl(g)(αe)

γe.

To get the lemma, we use the fact that(LXπ)e = deπ(X) and the fact that the bracket[ , ]e is the dual of
deπ . �
5.1. Proof of Theorem1.6

See [6] and [5] for the properties of the Poisson Lie groups which arise from the classicalr-matrices.
Let G be a Lie group andG its Lie algebra. Letr ∈ G ∧ G. Define a bivectorπ on G by

π(g) = (Lg)∗r − (Rg)∗r, g ∈ G.

(G,πr) is a Poisson Lie group if and only if the element[r, r] ∈ G ∧ G ∧ G defined by

[r, r](α,β, γ ) =
∮

α
([

r(β), r(γ )
])

is ad-invariant. Such anr is called a solution of the generalized Yang–Baxter equation.
In this case, the bracket[ , ]e is given by

(15)[α,β]e = ad∗
r(β) α − ad∗

r(α) β, α,β ∈ G∗

and

(16)πl(g) = r − Adg(r), g ∈ G.

Now, if a is a bilinear, symmetric and non-degenerate form onG∗ which is invariant with respec
to the coadjoint representation ofG on G∗, we can get that the infinitesimal Levi-Civita connecti
A :G∗ × G∗ → G∗ associated with(a, [ , ]e) is given by

(17)Aαβ = −ad∗
r(α) β, α,β ∈ G∗.

Theorem 1.6 follows from Lemma 5.1, (15), (16), (17) and the following formula

Ad∗
g[ad∗

r(α) β] = ad∗
(Ad

g−1 r)(Ad∗
g α)(Ad∗

g β), α,β ∈ G∗, g ∈ G.
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