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1. INTRODUCTION

The negative criterion of Bendixson and its generalization by Dulac are
widely used to eliminate the possibility of limit cycles for differential
equations in the plane. We present a natural generalization of these criteria
which applies to situations not covered by the Bendixson-Dulac criterion,
and which includes as direct special cases several known results which had
been proved by other means. We illustrate the use of this criterion by
obtaining computable necessary conditions that exclude limit cycles and
closed phase polygons for certain classes of dynamical systems. In
particular, we treat homogeneous systems and some population dynamics
equations. Finally, we define the notion of a closed loop solution for
retarded functional differential equations and derive criteria that rule out
their existence.
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We start by giving our first result and its simple proof in sufficient
generality to allow us to cover the application we have mentioned above.

THEOREM 1.1. Ler X be a real Banach space and f+ X — X be Lipschitz
continuous. Let 7(t) be a closed, piecewise smooth curve which is the bound-
ary of a smooth orientable surface S = R* with unit normal v. Set (1) =7y,(t),
telt, v t;], i=1, .., n, and assume that 7,(t)=P,x,(1), where P, X —R?
are continuous linear operators and y,€ C'([t, |, 1], R*). Suppose that
g:R* > R? is defined and piecewise smooth in a neighborhood of S, and that
it satisfies

j (A1) - P f(x (1) dt <O (or <0), (1.1)

Vi

and

j(curlg)-vdA>o (or >0). (1.2)
S

Then x,(t), te[t,_,,t;] are not trajectories of
x' = f(x) (1.3)

such that y,(t)= P,x;(t} are traversed in the positive sense relative to the
orientation defined by v.

Proof. Suppose that x; = f{x,) and note that by Stokes’ theorem

_I‘T gy (2))-y'(1) dt=_US (curl g) - v dA.

Hence, by (1.2)

0< [ o) 70 di= Y [ g6, Pxi0)de

i=1"7

n

=Y | &(0) Pfx ) de

=1

since x;=f(x;) for te{t,_,,¢;]. By (1.1) the last expression in this
inequality is non-positive, hence, we have a contradiction, and the theorem
is proved. The alternate case of the theorem follows in the same
manner. §
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The following result is an immediate corollary of the above theorem

COROLLARY 1.2.  Suppose that in Theorem 1.1, P: X — R? is a continuous
linear operator, and conditions (1.1) and (1.2} are replaced by

g(Px)-Pf(x)<0 (or <0) ae.on S, (1.1
and
(curlg)-v>0 (or =0) ae.on S. (1.27)

Then there does not exist any closed, piecewise smooth curve (1) on S such
that (1) = Px(t), where x is a solution of (1.3) and y(t) is traversed in the
positive sense relative to the orientation defined by v.

Remark 1. The simplicity of the proof of these results points to the fact
that much of the work in applying them lies in the construction of the
function g. In both aspects, simplicity of proof and the labor necessary for
application, this mirrors the situation of the Bendixson-Dulac criterion
(see Hahn [9, p.67] or Lefschetz [14]). We show that the present
generalization allows the treatment of many cases not covered by the
Bendixson—Dulac criterion. Qur aim here is to illustrate the breath of these
applications. The Bendixson-Dulac criterion is also related to the theorem
of Liouville which connects the divergence of f to the evolution of the
volume in state space under the flow induced by (1.1) (see Arnold
(1, p. 198] and Hartmann {12, Chap. 14]). Recent extensions of this latter
type of result with applications to the question of existence of periodic
solutions are given by Butler, Schmid, and Waltman [6] and by
Muldowney [15].

Remark 2. A special case of the above results is proved by Hall and
Busenberg [11] where S is the surface of a sphere and X =R>. Busenberg
and van den Driessche {4] prove the above result for X=R® and
P,=identity on R?, in order to resolve a question in population disease
dynamics involving a homogeous dynamical system. A further application
of the result in [4] to homogeneous systems is given in Hadeler [8].

Remark 3. 1t is clear that the conclusions of the theorem remain valid
if the inequalities in (1.1) and (1.2) and the orientation of y(r) are all
reserved. Also, if (1.1) is replaced by g(y.(r))- P f(x,(1))=0 ae. on
[¢;_,,1.] then the result holds with either the strict inequality in (1.2), or
with this inequality in (1.2) reserved.

In [4] we have shown that the Bendixson—Dulac criterion is a simple
consequence of Theorem t.1. We next show that the following resuit of
Chen [7] also follows from Theorem 1.1,
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COROLLARY 1.3. Let G<R? he an open region and let P, Q. G — R? be
of class C'. Suppose that there exist functions B, M, Ne C'(G, R?) with
M20,N20 M+ N>0o0n G, and

-

A !
” [g_(smNQ)+:‘—<BQ—MP>]dxdv>0 (1.4)
Yo I 0X cy

Then the two dimensional system

x'= P(x, v), v=0(x,y), (L.5)

has no limit cycles or closed phase polygons in G which are traversed clock-
wise. If the inequality in (1.4) is reserved, there are no limit cycles or closed
phase polygons of (1.5) in G which are traversed counterclockwise.

Proof. 1f y is a limit cycle of (1.5) in G then it is also a limit cycle of
the system x'=P, y'=0Q, z'=0, in R". In Theorem 1.1, choose X=R",
g=(BO—-MP, —BP— NQ.,0), and note that the vector (P, Q,0) is
tangent to y. However,

g()-(P.0.0)= — MP? — NQ? <0,

and condition (1.1) of Theorem 1.1 holds. Now, if y is traversed clockwise
in the x — y plane, the outward normal to the planar surface S < G that it
bounds in R? is v=(0,0, —1). Thus

A

(curl g) - v =% (BP + NQ)+~%— (BQ — MP),
éx oy

and by hypothesis (1.4) condition (1.2) of Theorem 1.1 also holds.
Consequently, y cannot be a limit cycle of (1.5), contradicting our initial
hypothesis. Thus y cannot be traversed clockwise. The proof for the case of
cycles which are traversed counterclockwise is entirely analogous. The
extension to phase polygons is obtained by partitioning the polygon into
n trajectories ), and applying Theorem 1.1 as above. |

A special case of Corollary 1.3, which parallels Corollary 1.2, is obtained
by imposing the condition

0
E;(BP+NQ)+%(BQ—MP)>O (or <0) ae.onG, (14')

and concluding that there are no periodic solutions of {1.5) in G which are
traversed clockwise (or counterclockwise).
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The hypotheses of Corollary 1.2 can be easily strengthened in order
to eliminate periodic solutions regardless of the sense in which they are
traversed.

COROLLARY 1.4.  Suppose that in Theorem 1.1, P: X — R? is a continuous
linear operator, and conditions (1.1) and (1.2) are replaced by either

g(Px)-Pf(x)<0  (or >0)  ae.onS, (1.6)

and
(curlg) v=0  ae.onsS; (1.7)

or
g(Px)-Pflx)=0  ae onS, (1.8)

and
(curlg) v<0  (or >0}  ae.onS. (1.9)

Then there does not exist any closed, piecewise smooth curve y(t) on S such
that (1) = Px(t), where x is a solution of (1.3).

Proof. The proof follows the lines of that of Theorem 1.1 with the
contradiction occurring because one of the equivalent integrals in that
proof is zero by condition (1.7) or (1.8), while the other integral must be
either strictly positive or strictly negative by conditions (1.6) or (1.9),
regardiess of the orientation of y(r7). ||

Another special result which includes the Bendixson-Dulac criterion as
a special case is given in the following corollary.

CoROLLARY 1.5. Let G<=R? be an open region and let P, Q: G — R? be
of class C'. Suppose that there exists a function Be C'(R?, R) such that

8(BQ

2(BP
A ‘)¢Q V(x, 1)eG, (1.10)

ax

2B
—+
cZ

—(P+Q) Ly

then (1.5) has no limit cycles or closed phase polvgons in G.
Proof. Consider the system

X' = P(x. v), Y =0(x,¥5), o= —Plx, 1) —0(x,y), (L.11)

and note that the plane S={(x,».x):x+v+z=1} with normal
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v=(1,1,1) is invariant under the flow induced by (1.11). Letting
g=(—BQ, BP,0), we have g- (P, Q, —P—(Q)=0, and

~ 0B 3(BP) 4(BQ)
(curlg)-\——(P"’Q)a:“L ox oy

# 0.

The proof now follows from a direct application of Corollary 1.4. |

Note that by choosing B(x, y, z) = p(x, y) condition (1.10) reduces to the
Bendixson—-Dulac criterion. If we choose B(x, vy, z)=p(x,»)e *5, (1.6)
becomes

5(PP)+@(PQ)

éx ay

kp(P+ Q)+ #0, (1.12)

which again yields the Bendixson-Dulac criterion when £ =0.

The proofs of Corollaries 1.3 and 1.5 illustrate the ease with which
Theorem 1.1 can be used to obtain results concerning planar systems. In
the remainder of this paper we present a number of other applications of
this theorem. In Section 2 we treat a general class of systems which are
motivated by population dynamics and epidemic modelling problems and
derive results for the non-existence of limit cycles, periodic solutions, or
closed phase polygons for such systems. These results are natural exten-
sions of our previous work [4]. In Section3 we treat homogeneous
systems and derive general computable conditions for the non-existence of
limit cycles. In Section 4 we consider certain classed of retarded functional
differential equations. We introduce the notion of closed loop solutions,
and give necessary conditions for the non-existence of such solutions. In
each of these sections we discuss the applicability of the criteria we derive.

2. A CLASs OF POPULATION DYNAMICS PROBLEMS

A number of population dynamics and epidemiological models lead to
dynamical systems of the form

x'=Ax+ f(x), xeR”, (2.1)
with 4= (a;) an essentially non-negative n x n matrix, that is,
a; 20, if (#], (2.2)

and f continuous and homogeneous of degree 1, that is, f(ax)=af(x), for
all « > 0. The components x, of x are restricted to be non-negative, and we
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assume that the components f; of f satisfy fi|._,>0, hence, the flow
induced by (2.1) leaves R”, invariant.
Introducing the variable

X
pea—, (23)
2o X

we note that 3 y,=1, and that y satisfies

== (3 an)r=( S 40 r+s00 (24)

ij=1 i=1

Clearly, the simplex
S={y:y,~>0, Y y,»=1} (2.5)

is invariant under the flow induced by (2.4) since on S, (3 y,)' =0. We are
interested in obtaining general conditions which rule out the existence of
periodic solutions of (24) on S. These results have some direct
applications, and we refer the reader to our previous work [4,5] for a
detailed discussion of a class of epidemic models which are special cases of
(2.1). Here we consider systems of the form (2.1) which occur in ecological
models. The case of mutualistic (or competitive) systems has been widely
studied and there are several basic results that limit the complexity of their
dynamic behavior, see, for example, Hirsch [137], Smith [17], and Butler,
Schmid, and Waltman [6]. In such situations the homogeneous non-
linearity often takes the form

f(x) = (D]ag x} ¢(x) = (x1¢|(x), ey xn¢n(x))s (26)

where Diag x denotes the diagonal matrix with x; as the ith diagonal entry,
and ¢ is continuous and homogeneous of degree zero:

dlax) = ¢(x), Va>0. (2.7)

In this case we have the following theorem.

THEOREM 2.1. Let A be a 3 x3 matrix whose entries satisfy condition
(2.2), let ¢ CY(RY ,R?) satisfy (2.7), and f be given by (2.6). If

w¢, o, (4. ¢, o -
Ex ox; (@r ax)<0 i#j, =123, (2.8)

then the svstem (2.1), leaves the simplex S={y,;20,Y y,=1} invariant and
has no periodic solutions, limit cycles, or closed phase polygons on S.
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Proof. Starting with (2.4) and using (2.6) we obtain

¥y =Ay -(Z a;) ,) v+ (Diag .\‘)(ﬁ()’)—(z }‘,¢.~(.V)),\'.

(2.9)

Using the fact that 3" v, =1, it is easily seen that the vector field defined by
the right-hand side of (2.9) is orthogonal to the vector (1, 1, 1), hence, that
it is tangent to S. From this follows the invariance of S under the flow

induced by (2.9).

Next, for simplicity, denote the right-hand side of (2.9) by A(y), with
components A, (y), i=1,2, 3, and note that for y€ S, we can rewrite h,(y)

in the equivalent forms

Hy(yiy)shdy,re, 1

=H (v, 13)

Hy(y,, yva)=hoty, va =3y — o) =

= Hiylya, ¥a)

Hy(y, vy)=hs(y. -0

= Hy(va, Vi)

Now, let g: R> — R be defined by

yi—m)=

My L=y — 3, 03)
hz(l — ¥a— Vi, Vs, }'3)
_"Js}'za}'_x)

—Vnry)=hs(l =y, —

YoHy (v, vs3)— VzHﬂ( Yis¥2)

gly)=
Yiya2ls

yyH (), ) —
Hys(ya, ya) — )’

la(}u}a)

and compute curlg to obtain, after some lengthy but straightforward

calculations,

1

(curtg)-1 1 |=—
1

]

_+__

V3

1

_+__

V2

1

_+_._..

Vi

1

c’¢
| Oy,
(‘;¢|
(’\,
o6,
_5}7

¢,
617
(¢3
61'3

]

(};

—-da
)'1}'2}’3 INNEY Vi

&

_<*

(o

i

a¢,
dy,
¢,
0y,
’¢z
0y,

9¢z
ﬂh)

28]
cyy

“ae)

<0,

(2.10)
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the last inequality following by the hypotheses (2.2) and (2.8) of the
theorem. Now, by the definition of g, we see that

J
g‘S = X hv
AR

hence, g- =0 on S, and applying Corollary 1.4, the theorem is proved. |

Remark 4. The conclusions of Theorem 2.1 hold if the inequalities in
(2.2) and (2.8) are both reversed. Also, a somewhat more general condition
than the requirement that (2.2) and (2.8) hold, and which still leaves the
theorem valid, is that the inequality in (2.10) holds. This, of course, is a
more complicated condition to check.

Remark 5. The conditions (2.2) and (2.8) can be viewed from the
perspective of the population model in several ways depending on par-
ticular added hypotheses. For example, in a model of symbiotic mutualism,
but where crowding causes self regulation of each of the species, then (2.2)
and (2.8) are automatically satisfied, and Theorem 2.1 rules out the
possibility of periedic solutions. On the other hand, when crowding can
result in both interspecific and intraspecific competition, requiring
0¢,/0x, <0, then (2.8) states that the net effect of interspecific competition
between any pair of the three species does not exceed the total effect of
intraspecific competition for the same two species. In that situation, the
theorem again rules out periodic states. Other similar interpretations that
apply to different biological situation can clearly be obtained from either
(2.2) and (2.8), or from (2.10); or else from situations where the signs are
reversed in (2.2) and (2.8) or in (2.10). A parallel result to Theorem 2.1
which imposes conditions that are specific to epidemic models is given in

(5]

3. HOMOGENEOUS SYSTEMS
Let /:R?— R* be continuous and positive homogeneous of degree &.
That is,
Slax) = a°f(x), xeR?3, and a>0.
We consider the homogeneous, autonomous system
xX'= f(x), (3.1)

and use Corollary 1.2 to obtain conditions which exclude certain types of
oscillatory solutions. We then combine these results with a condition
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characterizing the stability of homogeneous systems that is due to
Busenberg and Jaderberg [3] to obtain computable conditions for the
asymptotic stability of the origin of such systems.

First, let ¢: R* =R, be of class C', homogeneous of degree one, and
positive definite. Define

y:;%c—), S={x:d(x)=1}, (3.2)

and note that ¢(y)=¢'(y)- y =1, the second equality following from the
Euler equation for homogeneous functions, and where the gradient of ¢ is
denoted by ¢'. Now, use the homogeneity of f and ¢ to get

V=¢""/)—¢'(»)- S y].

For any solution x(¢) which does not vanish for any >0, introduce the
new time variable

. =j”' 8 (x(s)) ds
4]

to obtain the equivalent autonomous system

dY
L f =9SO 1, (33)
T

which describes the projection of the flow of (3.1) onto the surface S.
Noting that (3.3) is the same for all nonvanishing solutions x(z) of (3.1),
we have the following lemma.

LemMma 3.1, Let f: R? = R be continuous and homogeneous of degree 8,
and let ¢ CY(R? R, ) be homogeneous of degree one and positive definite.
Then, the projection y(t) of any non-zero solution x(t) of (3.1) on the level
surface S coincides with an orbit of (3.3).

Applying Corollary 1.4, we note that if g: R’ - R’ is orthogonal to
the right hand side of (3.3) on S (whose unit normal is v(y)=

¢'(¥)/[¢'(¥)-¢'(¥)]), that is, if
gy -LAy)=¢(y)-f(¥)»]1=0, (3.4)
then the condition

{curl g(»)) - ¢'(¥)>0 (or <0), yeS§ (3.5)
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rules out the existence of periodic solutions to (3.1) on S. Note that, when
g¥)=p(¥)#'(y). p:R*—>R, then (3.4) is automatically satisfied, but
(curl g(v))-¢'(¥)=0, hence, (3.5) cannot hold. Thus we need to use vector
fields g which satisfy (3.4) and are orthogonal to ¢'(y) for y € S. One such
class of fields is

g)=p(Y)¢'(MxLAY)=&'(¥)- f(¥)y] (3.6)

Different choices of p yield different sufficient criteria for the non-existence
of limit cycles. For example, choosing

|
P = 0y

substituting (3.6) in (3.5), and collecting terms, we obtain
¢'(y) - (curl g(y))=trace f'(y) —3¢"(y)- f(y)
>0 (or <0) onS (3.7)

as a condition for the non-existence of periodic solutions, limit cycles, or
closed phase polygons of (3.3) on S. The condition (3.7) was obtained for
the case 4 =1 by Hadeler [8] who gave a proof based on the special case
of Theorem 1.1 that we gave in [4].

Other such computable sufficient conditions can be derived from
Corollary 1.2. For example, if we choose g such that

#'(y)-(curl g(y))=0, (3.8)
then the condition
gy)- Lf(»y)—¢'(¥)-f(¥)p]>0  (or<0) ae.onS (39)

again rules out periodic solutions. An example of a special case of (3.9) is
obtained by choosing

@)
Vi

3]
Y3

where ¢ #0 is a constant. Then (3.8) holds, and the criterion becomes

3 3
C[Z yELN = (V) S Y y?‘“]

I=1 i=1

>0 (or <0)on S. (3.10)

409 172 2-12
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In terms of the original variable x, when ;= «, this condition becomes

3 3
c [fﬁ(-r) Y XX fi(x)—¢'(x)- f(x) Y X?“]

i=1 =1

>0 (or <0, for x #0). (3.11)

A particularly simple version of (3.10) is obtained by choosing ;=0 or
a,=—1for all i=1, 2,3, in which case (3.10) becomes, respectively,

3

S A0 =AY 1,>0  (or <0),0n S, (3.12)

i=1 i=1

and

Zf'_('-‘;)_3¢'(y).f(_y)>0 (or <0), on . (3.13)

i=1 i

We collect these special results in the following theorem.

THEOREM 3.2. Let f:R* — R? be continuous and homogeneous of degree
8, and let ¢:R> > R be positive definite, homogeneous of degree one, and
smooth. Suppose that any one of the conditions (3.7), (3.9)-(3.13) holds.
Then the system (3.3) has no periodic solutions, limit cycles, or closed phase
polygons on S={yeR*: ¢(y)=1}.

We now use the above results in order to obtain computable criteria for the
asymptotic stability of the origin for certain classes of homogeneous
systems. In order to do this we recalil the following result of Busenberg and
Jaderberg [3].

THEOREM 3.3 Letr f:R* - R? be continuous and homogeneous of degree
>0, and let ¢:R>— R, be positive definite, homogeneous of degree one,
and smooth. Then the origin is an asymptotically stable solution of (3.1), if
and only if every solution y(t) of (3.3) satisfies

l T
lim sup;L &' (v(s)) - f(y(s))ds<O. (3.14)

T~

Remark 6. Theorem 3.3 gives only one of several equivalent conditions
obtained in [3]. The proofs in [3] are actually given only for
P(x)= \/Z xf, however, they extend directly to the more general case that
we are discussing here.
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THEOREM 34. Let [ and ¢ C? satisfy the conditions of Theorem 3.3.
Suppose that the nonlinear eigenvalue problem f(y)= Ay has only a finite
number of solutions (4, y;) on S={yeR*: ¢(y)=1}, and that any one of
the conditions (3.7), (3.9)-(3.13) hold. Then the origin is an asymptotically
stable solution of (3.1) if and only if

¢'(y:)-fly) <0, (3.15)
for every eigenvector y; of [ on S.

Proof. Since the surface S<R? is two-dimensional and of class C?, any
solution of the system (3.3) on S either tends to an equilibrium, that is, to
an eigenvector y, of f on S, or to a limit cycle, or to an oriented phase
polygon on S. This follows by the generalization due to Schwartz [16] of
the Poincaré—Bendixson theorem on §. Now, by Theorem 3.2, any one of
the conditions (3.7), (3.9)-(3.13) implies that such a solution must tend to
an equilibrium y; on S, that is, v(¢) — y; as t — oc. Thuy, the limit in (3.14)
exists and is equal to ¢'(y,)- fly;). Applying Theorem 3.3, we see that
the origin is asymptotically stable if, and only if, (3.15) holds for every
eigenvector y; of fon S. |

Special choices of ¢ can yield particularly simple criteria for the
non-existence of limit cycles. For example, if

$lx) = (i x?)llz,

i=1

then condition (3.12) becomes

S fily)- (z ») S L)

i=1 =1 i=1

>0 (or <0)onS={yeR’: ¢(y)=1}.

Remark 7. The above results have a natural generalization to the case
where f: K — K, where K is a cone with nonempty interior in R*. In that
situation it suffices to require that the hypotheses of Theorem 3.2 hold on
Sy={xeK:¢(x)=1} only, in order to obtain the non-existence of limit
cycles or phase polygons on S.. Similarly, in this situation, if the
conditions of Theorem 3.4 hoid only on Sy, then the origin will attract all
solutions of (3.1) whose initial point lies in K. A special case of such a cone
K which occurs in many biological and physical applications is R . In this
case, we can take ¢: R’ >R, as for example, ¢(x)=Y x,.
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4. APPLICATION TO DELAY DIFFERENTIAL EQUATIONS

In this section we apply our results to the study of certain classes of
solutions of delay differential equations. Using the standard notation in this
field (see the basic books by Bellman and Cooke [2] and by Hale [10]),
we let C be the Banach space of continuous functions 4: [ —r, 0] - R” with
uniform norm. For any continuous function x: [ —r, oc] we let x, e C be
the function giving the “past history” of x at >0 and defined by
x(s)=x(t+s), se[—r,0]. We let f/: C—>R", and consider the delay
differential equation

X' = f(x,). (4.1)

We give criteria for the non-existence of certain types of solutions for such
equations.

Before proceeding, we note that the graphs of periodic solutions of (4.1)
in R” may have several self intersection points, and in fact, entire intervals
where they self intersect. This is possible because the Cauchy problem for
(4.1) has a unique solution in the function space C but not necessarily a
non-intersecting trajectory in the state space R”. For example, the delay
differential equation for (x(t), y(¢))e R’

(= —xf T = —x [T
x'(ty= x<t 2), y'(t) x(t 2), (4.2)

has the 2z periodic solution {x(¢), y(t}} = (sin ¢, sin ¢) which traces the line
(x,x),xe[—1,1] in R? twice over each period. Moreover, this periodic
solution does not have a graph in R’ which is the boundary of any region.
These considerations lead us to introduce the following definition.

DEFINITION. A simple loop solution of (4.1) is any solution x e C of (4.1)
with orbit x(¢)eR”, n>2, teR, containing a piecewise smooth, oriented,
simple, closed curve in R".

Note that a simple loop solution of (4.1} need not be a periodic or even
bounded solution of (4.1) and, as shown in the above example, a periodic
solution of a delay differential equation need not be a simple loop solution.
This concept of simple loop solutions can be used with equations in R' by
introducing auxiliary variables. For example, if we define y(¢)= x(t+ 1),
>0, and use the corresponding equation y'(¢) = f(x,, ), we can couple
this equation with (4.1), to obtain a redundant system in R? for which the
above definition applies. For specific equations other auxiliary variables
may be more natural. For instance, for the equation x'(¢)=
S(x(t), x(¢— 1)), the variable y(¢) = x(t — 1) leads to the coupled system in

R%, x'=flx, y), y' = fily,y).
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We have the following result concerning simple loop solutions.

THEOREM 4.1.  Suppose that f:C([—r,0], R*)> R® is Lipschitz
continuous and that S is an oriented smooth surface in R*® with unit
normal v. Let the boundary of S consist of a smooth, simple, closed curve y(t)
parametrized as a periodic function of 1. If there exists a function
ge C'(R*, R®) such that

gly(1))- fly) <0 (4.3)

and

(curl g(x))-v=0, on S and >0 at some x,€ S, (44)

then (1) is not the orbit of a simple loop solution of (4.1) which is traversed
in the clockwise sense defined by v. If the inequality in (4.3) is replaced by
equality, then (1) is not the orbit of any simple loop solution of (4.1)

Proof. The proof of this result follows the same lines as the proofs of
Theorem 1.1 and Corollary 1.4. However, note that if y(¢) is the orbit of a
simple loop solution, then y'(7)= f(y,) since, by the definition of such
solutions, this graph is traversed in one direction only. ||

It is worth noting that the conclusion of this result cannot be
strengthened to claim that y(¢) is not an oriented subset of the graph of a
simple loop solution, even when the period of y(¢) is greater than or equal
to the delay r, since the past history 7, need not coincide with a point x,
of the solution of (4.1) on the space C.

An immediate corollary of this result is the following:

COROLLARY 4.2. Suppose that S, f, and g satisfy the smoothness
conditions of Theorem 4.1 and that g(y(t)- f(y,) =0 holds for every smooth
curve y: [t —r, 1] — S for some 12 0. Then if (4.4) holds, there is no simple
loop solution of (4.1) whose orbit is in S.

A simple application of the above result is obtained by considering the
following delay differential equation system,

xX(y=F(x,p)h(x,, y )+ 1i(x,))
¥ =Fyx, pyh(x,, y )+ L(x, ),

(4.5)

with /[, F, =1/, F, and satisfying the smoothness conditions of Theorem 4.1.
Suppose that there exists p(x, y)e C'(4) for some open region A € R* with

-

: ¢
(pF\)++(pF)>0  (or <0)on A. (4.6)
Ox oy
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Then the system (4.5) cannot have any simple loop solutions with graph
contained in A. In order to see this, note that we can augment (4.5) with
an additional equation z'(t) =0, and choose g =(—pF,, pF,, 0). Then, for
any curve (1) = (x(¢), ¥(¢)) in A we have

gp() - (Fi{y()) hx,, y )+ 1 (0), Fo(y(0) Alx,, y,) + 1(3(1)), 0) =0,
(4.7)

by the hypotheses on F; and /;. Now, when A is regarded as a surface S
embedded in R?, it has the unit normal v = (0, 0, 1), hence,

¢ i}
(curl g(x))-v=—=(pF)) + = (pF,),
dx dy

which is either always positive or always negative. The conclusion now
follows from an application of Coroliary 4.2.

We note that for a delay differential equation with constant delays, the
checking of condition (4.7) becomes simpler since # now depends on the
values of the solution at a discrete set of points. For example, if A(x,, y,) =
H(x(1), x(1 —r,), y(1), ¥(t —r5)), then the condition /,F, =/ F, can be
replaced by the condition that for any two pairs of points (x, ¥), (4, v) e A
we have

&(x, 3) - (Fi(x, pY hlw, 0) +1,(x, ¥), Fo(x, y) h(u, v} + L(x, 3),0)=0.  (4.8)

We note again that these conditions do not rule out the possibility of
periodic solutions of the delay differential equations on the function space
C. In fact, the system (4.2) satisfies the conditions of the above example
with /,=0, and F, = F,= —1. If one chooses p(x, y)=x, and the region A4
to be all of R?, we get

é é
=~ (pF\)+ 5= (pFy) =~ 1.
Ox oy

However, as we have seen above, this system has a period solution. This
is not a simple loop solution since its graph in R? is a line segment. In fact,
our result shows that the system (4.2) does not have any simple loop
solutions.
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