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Abstract

Let n be a positive integer. In this paper we estimate the size of the set of linear forms b1 loga1 +
b2 loga2 + · · · + bn logan, where |bi | � Bi and 1 � ai � Ai are integers, as Ai,Bi → ∞.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

The theory of linear forms in logarithms, developed by A. Baker [1,2] in the 60’s, is a
powerful method in the transcendental number theory. It consists of finding lower bounds for
|b1 loga1 + b2 loga2 + · · · + bn logan|, where the bi are integers and the ai are algebraic num-
bers for which logai are linearly independent over Q. We consider the simpler case where the
ai > 0 are integers, and we let Bj = max{|bj |,1}, and B = max1�j�n Bj .

Lang and Waldschmidt [4, Introduction to chapter X and XI, p. 212] conjectured the following

Conjecture. Let ε > 0. There exists C(ε) > 0 depending only on ε, such that

|b1 loga1 + b2 loga2 + · · · + bn logan| > C(ε)nB

(B1 · · ·Bna1 · · ·an)1+ε
.

One part of the argument they used to motivate the Conjecture, is that the number of dis-
tinct linear forms b1 loga1 + b2 loga2 + · · · + bn logan, where |bj | � Bj and 0 < aj � Aj , is
� B1 · · ·BnA1 · · ·An, if the Ai and the Bi are sufficiently large.
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In this paper we estimate the number of these linear forms as Ai,Bi → ∞.
An equivalent formulation of the problem is to estimate the size of the following set

R = R(A1, . . . ,An,B1, . . . ,Bn) := {
r ∈ Q: r = a

b1
1 a

b2
2 · · ·abn

n , 1 � ai � Ai, |bi | � Bi

}
,

as Ai,Bi → ∞.

For the easier case Ai = A and Bi = B for all i, a trivial upper bound on |R| is 2nAnBn/n! +
o(AnBn), since permuting the numbers a

bi

i gives rise to the same number r .
We prove that this bound is attained asymptotically as A,B → ∞. Also we deal with the

general case, which is harder since not every permutation is allowed for all the ranges. Indeed
the size of R depends on the ranges of the Ai and the Bi , as we shall see in Corollaries 1 and 2.

Let E ⊂ {(a1, . . . , an, b1, . . . , bn), 1 � ai � Ai, |bi | � Bi}. We say that r ∈ Q has a represen-
tation in E, if r = a

b1
1 a

b2
2 · · ·abn

n , for some (a1, . . . , an, b1, . . . , bn) ∈ E.
For r ∈ R, if σ ∈ Sn satisfies 1 � aσ(i) � Ai , and |bσ(i)| � Bi for all i, we say that σ per-

mutes r , or σ is a possible permutation for the a
bi

i . Finally we say that a permutation σ ∈ Sn is
permissible if

∣∣{r ∈ R: σ permutes r}∣∣ � A1 · · ·AnB1 · · ·Bn.

The main result of this paper is the following

Theorem. There exists a set E ⊂ {(a1, . . . , an, b1, . . . , bn), 1 � ai � Ai , |bi | � Bi} satisfying

|E| ∼ 2nA1A2 · · ·AnB1B2 · · ·Bn,

as Ai,Bi → ∞, such that any rational number r ∈ {ab1
1 a

b2
2 · · ·abn

n : (a1, . . . , an, b1, . . . , bn) ∈ E}
has a unique representation in E up to permissible permutations.

From this result we can deduce that |R| is asymptotic to the cardinality of the set of 2n-tuples
{(a1, . . . , an, b1, . . . , bn), 1 � ai � Ai, |bi | � Bi} modulo permissible permutations.

In the case Ai = A, Bi = B , every permutation is permissible and we deduce the following
corollary.

Corollary 1. As A,B → ∞, we have

∣∣{r ∈ Q: r = a
b1
1 a

b2
2 · · ·abn

n , 1 � ai � A, |bi | � B
}∣∣ = 2nAnBn

n! + o
(
AnBn

)
.

Now suppose that Ai = o(Ai+1) for all 1 � i � n − 1, or Bi = o(Bi+1) for all 1 � i � n − 1.
For a non-identity permutation σ ∈ Sn, there exists j for which σ(j) 	= j . Therefore if σ per-
mutes r = a

b1
1 a

b2
2 · · ·abn

n , we must have 1 � aj , aσ(j) � min(Aj ,Aσ(j)) and −min(Bj ,Bσ(j)) �
bj , bσ(j) � min(Bj ,Bσ(j)). And so we deduce that

∣∣{r ∈ Q: r = a
b1
1 a

b2
2 · · ·abn

n , 1 � ai � Ai, |bi | � Bi : σ permutes r
}∣∣

� 2nA1 · · ·AnB1 · · ·Bn

(
min(Aj ,Aσ(j))min(Bj ,Bσ(j))

max(A ,A )max(B ,B )

)
= o(A1 · · ·AnB1 · · ·Bn),
j σ (j) j σ (j)
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by our assumption on the Ai and Bi . Thus in this case no permutation σ 	= 1 is permissible.
Therefore we have

Corollary 2. If Ai = o(Ai+1) for all 1 � i � n − 1, or Bi = o(Bi+1) for all 1 � i � n − 1, then

∣∣{r ∈ Q: r = a
b1
1 a

b2
2 · · ·abn

n , 1 � ai � Ai, |bi | � Bi

}∣∣ ∼ 2nA1 · · ·AnB1 · · ·Bn,

as Ai,Bi → ∞.

We can observe that Corollaries 1 and 2 correspond to extreme cases: in Corollary 1 all per-
mutations are permissible, while none is permissible in Corollary 2. Indeed we can prove

Corollary 3. As Ai,Bi → ∞, we have

2n

n! A1 · · ·AnB1 · · ·Bn � |R| � 2nA1 · · ·AnB1 · · ·Bn.

Moreover two bounds are optimal.

Proof. From the Theorem we have that

|R| ∼
∑

1�a1�A1|b1|�B1

· · ·
∑

1�an�An|bn|�Bn

1

|{σ ∈ Sn: σ is possible for the a
bi

i }| .

The result follows from the fact that 1 � |{σ ∈ Sn: σ is possible for the a
bi

i }| � n!. �
For the simple case n = 2, there is only one non-trivial permutation σ = (12). This permu-

tation is possible only if 1 � a1, a2 � min(A1,A2) and |b1|, |b2| � min(B1,B2). Then by the
Theorem, and after a simple calculation we deduce that

∣∣{r ∈ Q: r = a
b1
1 a

b2
2 , 1 � a1 � A1, 1 � a2 � A2, |b1| � B1, |b2| � B2

}∣∣
∼ 4A1A2B1B2 − 2 min(A1,A2)

2 min(B1,B2)
2.

In general the size of |R| is asymptotic to a homogeneous polynomial of degree 2n in the vari-
ables A1, . . . ,An,B1, . . . ,Bn. Moreover it is also necessary to order the Ai ’s and Bi ’s, so without
loss of generality we assume that A1 � A2 � · · · � An and Bπ(1) � Bπ(2) � · · · � Bπ(n), where
π ∈ Sn is a permutation.

We prove the following

Proposition. Suppose that A1 � A2 � · · · � An and Bπ(1) � Bπ(2) � · · · � Bπ(n), where π ∈ Sn

is a permutation. Also let A0 = Bπ(0) = 1.
Then |R| is asymptotic to

2n
∑
i1=1

1�j1�π−1(1)

∑
1�i2�2

1�j2�π−1(2)

· · ·
∑

1�in�n

1�jn�π−1(n)

∏n
k=1(Aik − Aik−1)(Bπ(jk) − Bπ(jk−1))

|{σ ∈ Sn: iσ (l) � l, jσ(l) � π−1(l), ∀1 � l � n}| ,

as Ai,Bi → ∞.



250 Y. Lamzouri / Journal of Number Theory 125 (2007) 247–253
2. Preliminary lemmas

Let C be a positive real number. We say that the n-tuple (a1, . . . , an) satisfies condition (1C ),
if there exists a prime p, such that pk | a1a2 · · ·an where k � 2, and pk � C.

Lemma 1. We have

∣∣{(a1, . . . , an), 1 � ai � Ai : which satisfy (1C)
}∣∣ �n

A1 · · ·An(logC)n√
C

.

Proof. First we have

∣∣{(a1, . . . , an),1 � ai � Ai : which satisfy (1C)
}∣∣

�
∑
p

∣∣{(a1, . . . , an),1 � ai � Ai : ∃k � 2, pk � C, and pk | a1a2 · · ·an

}∣∣. (1)

Case 1. p �
√

C.
In this case pick k to be the smallest integer such that pk � C, i.e. k = [logC/ logp] + 1.

Then the number of (a1, . . . , an) such that pk | a1a2 · · ·an is equal to

∑
d1d2···dn=pk

n∏
i=1

∑
1�ai�Ai

di |ai

1 � dn

(
pk

)A1 · · ·An

pk
� dn

(
pk

)A1 · · ·An

C
.

Now dn(p
k) = (

n+k−1
k

)
, and by Stirling’s formula, for k large enough we have

logdn

(
pk

) =
(

n + k − 1 + 1

2

)
log(n + k − 1) −

(
k + 1

2

)
log k

−
(

n − 1 + 1

2

)
log(n − 1) + O(1)

�
(

k + 1

2

)
log

(
1 + n − 1

k

)
+

(
n − 1

2

)
log

(
n − 1 + k

n − 1

)
� n logk.

Then summing over these primes gives

∑
p�

√
C

∣∣{(a1, . . . , an), 1 � ai � Ai : pk | a1a2 · · ·an

}∣∣ = On

(
A1 · · ·An(logC)n√

C

)
. (2)

Case 2. p >
√

C.
In this case pick k = 2. Then the number of (a1, . . . , an) such that p2 | a1a2 · · ·an is

O(A1 · · ·An/p
2), where the constant involved in the O depends only on n. Therefore summing



Y. Lamzouri / Journal of Number Theory 125 (2007) 247–253 251
over these primes gives

∑
p>

√
C

∣∣{(a1, . . . , an), 1 � ai � Ai : p2 | a1a2 · · ·an

}∣∣ = On

(
A1 · · ·An√

C

)
. (3)

Thus combining (1)–(3) gives the result. �
We say that (a1, . . . , an) satisfies condition (2C) if at least one of the ai is C-smooth: that is

has all its prime factors lying below C.

Lemma 2. Write Cui = Ai for all 1 � i � n. Then uniformly for min1�i�n Ai � C � 2, we have

∣∣{(a1, . . . , an), 1 � ai � Ai : which satisfy (2C)
}∣∣ �n A1A2 · · ·An

(
n∑

i=1

e−ui/2

)
.

Proof. We have that

∣∣{(a1, . . . , an), 1 � ai � Ai : which satisfy (2C)
}∣∣ �n A1A2 · · ·An

n∑
i=1

Ψ (Ai,C)

Ai

,

where Ψ (x, y) is the number of y-smooth positive integers below x. The result follows by the
following Theorem of de Bruijn [3]

Ψ (Ai,C) � Aie
−ui/2,

uniformly for Ai � C � 2. �
We say that (b1, b2, . . . , bn) satisfy condition (3C), if there exists an n-tuple of integers |ci | �

2 logC not all zero, such that c1b1 + c2b2 + · · · + cnbn = 0.

Lemma 3. We have that

∣∣{(b1, . . . , bn), |bi | � Bi : which satisfy condition (3C)
}∣∣ � B1B2 · · ·Bn

n∑
i=1

(
(9 logC)n

Bi

)
.

Proof. We note that∣∣{(b1, . . . , bn), |bi | � Bi : which satisfy condition (3C)
}∣∣

�
∑

|ci |�2 logC
(c1,...,cn) 	=(0,...,0)

∣∣{(b1, . . . , bn), |bi | � Bi : c1b1 + c2b2 + · · · + cnbn = 0
}∣∣

�
∑

|ci |�2 logC
(c1,...,cn) 	=(0,...,0)

(2B1 + 1) · · · (2Bn + 1)

n∑
i=1

(
1

2Bi + 1

)

� B1B2 · · ·Bn

n∑
i=1

(
(9 logC)n

Bi

)
. �
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3. Proof of the results

Proof of the Theorem. We begin by choosing C := min(B1, . . . ,Bn, logA1, . . . , logAn). We
consider the following set

E := {
(a1, . . . , an, b1, . . . , bn), 1 � ai � Ai, |bi | � Bi :

(ai) do not satisfy any of (1C), (2C), (bi) do not satisfy (3C)
}
.

Then by our choice of C, if we combine Lemmas 1–3, we observe that |E| = 2nA1 · · ·AnB1 · · ·
Bn(1 + o(1)).

Therefore it remains to prove that any representation of a rational number r as a
b1
1 a

b2
2 · · ·abn

n

where (a1, . . . , an, b1, . . . , bn) belongs to E, is unique up to possible permutations of the a
bi

i ,
and finally we can consider only permissible permutations (since the number of r ∈ R which can
be permuted by a non-permissible permutation is negligible).

We begin by considering the following equation

a
b1
1 a

b2
2 · · ·abn

n = e
f1
1 e

f2
2 · · · efn

n , (4)

where (a1, . . . , an, b1, . . . , bn) and (e1, . . . , en, f1, . . . , fn) are in E. If for some i, ai contains
a prime factor p such that p2 � a1a2 · · ·an and p2 � e1e2 · · · en, then bi ∈ {f1, f2, . . . , fn}. Now
suppose that there exists 1 � j � n such that bj /∈ {f1, f2, . . . , fn}, then for the all primes p that
divide aj , there exists k � 2 for which pk | a1a2 · · ·an or pk | e1e2 · · · en, but the (ai) and the (ei)

do not satisfy condition (1C) and so we must have pk � C, which implies that aj is C-smooth;
however this contradicts the fact that the (ai) do not satisfy condition (2C). Therefore we deduce
that

{b1, b2, . . . , bn} = {f1, f2, . . . , fn}.

Then up to permutations, we have that bi = fi , and so Eq. (4) becomes

a
b1
1 a

b2
2 · · ·abn

n = e
b1
1 e

b2
2 · · · ebn

n . (5)

Let p be any prime dividing a1a2 · · ·an, and let αi � 0 and βi � 0 be the corresponding powers
of p in ai and ei respectively, and let ci = αi − βi . Then Eq. (5) implies that

c1b1 + c2b2 + · · · + cnbn = 0.

Now the (ai) and the (ei) do not satisfy condition (1C), and so 0 � αi,βi � logC/ log 2 �
2 logC, which implies that |ci | � 2 logC. And since the (bi) do not satisfy condition (3C), we
deduce that ci = 0, and then αi = βi for all 1 � i � n. Since this is true for every prime factor of
a1a2 · · ·an, we must have ai = ei for all 1 � i � n, and our Theorem is proved. �
Proof of the Proposition. We want to count the number of elements r = (r1, . . . , rn), where
ri = (ai, bi) ∈ [1,Ai] × [−Bi,Bi] ∩ Z × Z, modulo possible permutations of the ri ’s.

Since the number of r for which some bi is 0, is o(A1 · · ·AnB1 · · ·Bn), we can suppose that
all the bi ’s are positive by symmetry.
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Moreover let Ri := [1,Ai] × [1,Bi] ∩ Z × Z, and define the following distinct discrete sets
Rij := [Ai−1,Ai] × [Bπ(j−1),Bπ(j)] ∩ Z × Z, for 1 � i, j � n.

For every 1 � k � n, we have

Rk =
⊔

1�ik�k

1�jk�π−1(k)

Rikjk
. (6)

This implies

R1 × R2 × · · · × Rn =
⊔
i1=1

1�j1�π−1(1)

⊔
1�i2�2

1�j2�π−1(2)

· · ·
⊔

1�in�n

1�jn�π−1(n)

Ri1j1 × Ri2j2 × · · · × Rinjn .

Now consider the elements r ∈ Ri1j1 × Ri2j2 × · · · × Rinjn , with 1 � ik � k and 1 � jk �
π−1(k) being fixed. If σ ∈ Sn permutes r , then rσ(k) ∈ Rk for all 1 � k � n, but rσ(k) ∈ Riσ(k)jσ(k)

also, which implies that Riσ(k)jσ(k)

⋂
Rk 	= ∅. From (6) this is equivalent to Riσ(k)jσ(k)

⊆ Rk , and
thus to the fact that iσ (k) � k and jσ(k) � π−1(k) for all 1 � k � n.

Therefore for any r ∈ Ri1j1 × Ri2j2 × · · · × Rinjn , the number of σ ∈ Sn which permutes r is
constant and equal to ∣∣{σ ∈ Sn: iσ (l) � l, jσ(l) � π−1(l), ∀1 � l � n

}∣∣.
Thus the number of elements in R1 × R2 × · · · × Rn, modulo possible permutations is

∑
i1=1

1�j1�π−1(1)

∑
1�i2�2

1�j2�π−1(2)

· · ·
∑

1�in�n

1�jn�π−1(n)

∏n
k=1(Aik − Aik−1)(Bπ(jk) − Bπ(jk−1))

|{σ ∈ Sn: iσ (l) � l, jσ(l) � π−1(l), ∀1 � l � n}| ,

which implies the result. �
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