

Available online at www.sciencedirect.com

JOURNAL OF Number Theory

Journal of Number Theory 125 (2007) 247-253

www.elsevier.com/locate/jnt

On the number of linear forms in logarithms

Youness Lamzouri

Départment de Mathématiques et Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal, QC H3C 3J7, Canada

Received 12 July 2006; revised 26 September 2006

Available online 22 December 2006

Communicated by K. Soundararajan

Abstract

Let *n* be a positive integer. In this paper we estimate the size of the set of linear forms $b_1 \log a_1 + b_2 \log a_2 + \cdots + b_n \log a_n$, where $|b_i| \leq B_i$ and $1 \leq a_i \leq A_i$ are integers, as $A_i, B_i \to \infty$. © 2007 Elsevier Inc. All rights reserved.

1. Introduction

The theory of linear forms in logarithms, developed by A. Baker [1,2] in the 60's, is a powerful method in the transcendental number theory. It consists of finding lower bounds for $|b_1 \log a_1 + b_2 \log a_2 + \cdots + b_n \log a_n|$, where the b_i are integers and the a_i are algebraic numbers for which $\log a_i$ are linearly independent over \mathbb{Q} . We consider the simpler case where the $a_i > 0$ are integers, and we let $B_j = \max\{|b_j|, 1\}$, and $B = \max_{1 \le j \le n} B_j$.

Lang and Waldschmidt [4, Introduction to chapter X and XI, p. 212] conjectured the following

Conjecture. Let $\epsilon > 0$. There exists $C(\epsilon) > 0$ depending only on ϵ , such that

$$|b_1 \log a_1 + b_2 \log a_2 + \dots + b_n \log a_n| > \frac{C(\epsilon)^n B}{(B_1 \cdots B_n a_1 \cdots a_n)^{1+\epsilon}}.$$

One part of the argument they used to motivate the Conjecture, is that the number of distinct linear forms $b_1 \log a_1 + b_2 \log a_2 + \cdots + b_n \log a_n$, where $|b_j| \leq B_j$ and $0 < a_j \leq A_j$, is $\approx B_1 \cdots B_n A_1 \cdots A_n$, if the A_i and the B_i are sufficiently large.

0022-314X/\$ – see front matter $\,$ © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2006.09.019

E-mail address: lamzouri@dms.umontreal.ca.

In this paper we estimate the number of these linear forms as $A_i, B_i \rightarrow \infty$. An equivalent formulation of the problem is to estimate the size of the following set

$$R = R(A_1, \ldots, A_n, B_1, \ldots, B_n) := \{ r \in \mathbb{Q} : r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}, \ 1 \le a_i \le A_i, \ |b_i| \le B_i \},\$$

as $A_i, B_i \to \infty$.

For the easier case $A_i = A$ and $B_i = B$ for all *i*, a trivial upper bound on |R| is $2^n A^n B^n / n! + o(A^n B^n)$, since permuting the numbers $a_i^{b_i}$ gives rise to the same number *r*.

We prove that this bound is attained asymptotically as $A, B \to \infty$. Also we deal with the general case, which is harder since not every permutation is allowed for all the ranges. Indeed the size of *R* depends on the ranges of the A_i and the B_i , as we shall see in Corollaries 1 and 2.

Let $E \subset \{(a_1, \ldots, a_n, b_1, \ldots, b_n), 1 \leq a_i \leq A_i, |b_i| \leq B_i\}$. We say that $r \in \mathbb{Q}$ has a representation in E, if $r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}$, for some $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in E$.

For $r \in R$, if $\sigma \in S_n$ satisfies $1 \leq a_{\sigma(i)} \leq A_i$, and $|b_{\sigma(i)}| \leq B_i$ for all *i*, we say that σ permutes *r*, or σ is a possible permutation for the $a_i^{b_i}$. Finally we say that a permutation $\sigma \in S_n$ is permissible if

$$|\{r \in R: \sigma \text{ permutes } r\}| \gg A_1 \cdots A_n B_1 \cdots B_n.$$

The main result of this paper is the following

Theorem. There exists a set $E \subset \{(a_1, \ldots, a_n, b_1, \ldots, b_n), 1 \leq a_i \leq A_i, |b_i| \leq B_i\}$ satisfying

$$|E| \sim 2^n A_1 A_2 \cdots A_n B_1 B_2 \cdots B_n,$$

as $A_i, B_i \to \infty$, such that any rational number $r \in \{a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n} : (a_1, \dots, a_n, b_1, \dots, b_n) \in E\}$ has a unique representation in E up to permissible permutations.

From this result we can deduce that |R| is asymptotic to the cardinality of the set of 2n-tuples $\{(a_1, \ldots, a_n, b_1, \ldots, b_n), 1 \le a_i \le A_i, |b_i| \le B_i\}$ modulo permissible permutations.

In the case $A_i = A$, $B_i = B$, every permutation is permissible and we deduce the following corollary.

Corollary 1. As $A, B \rightarrow \infty$, we have

$$\left|\left\{r \in \mathbb{Q}: r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}, \ 1 \leq a_i \leq A, \ |b_i| \leq B\right\}\right| = \frac{2^n A^n B^n}{n!} + o(A^n B^n).$$

Now suppose that $A_i = o(A_{i+1})$ for all $1 \le i \le n-1$, or $B_i = o(B_{i+1})$ for all $1 \le i \le n-1$. For a non-identity permutation $\sigma \in S_n$, there exists j for which $\sigma(j) \ne j$. Therefore if σ permutes $r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}$, we must have $1 \le a_j, a_{\sigma(j)} \le \min(A_j, A_{\sigma(j)})$ and $-\min(B_j, B_{\sigma(j)}) \le b_j, b_{\sigma(j)} \le \min(B_j, B_{\sigma(j)})$. And so we deduce that

$$\left|\left\{r \in \mathbb{Q}: r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}, \ 1 \leqslant a_i \leqslant A_i, \ |b_i| \leqslant B_i: \sigma \text{ permutes } r\right\}\right|$$

$$\leqslant 2^n A_1 \cdots A_n B_1 \cdots B_n \left(\frac{\min(A_j, A_{\sigma(j)}) \min(B_j, B_{\sigma(j)})}{\max(A_j, A_{\sigma(j)}) \max(B_j, B_{\sigma(j)})}\right) = o(A_1 \cdots A_n B_1 \cdots B_n),$$

by our assumption on the A_i and B_i . Thus in this case no permutation $\sigma \neq 1$ is permissible. Therefore we have

Corollary 2. If $A_i = o(A_{i+1})$ for all $1 \le i \le n-1$, or $B_i = o(B_{i+1})$ for all $1 \le i \le n-1$, then $|\{r \in \mathbb{Q}: r = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n}, 1 \le a_i \le A_i, |b_i| \le B_i\}| \sim 2^n A_1 \cdots A_n B_1 \cdots B_n,$

as $A_i, B_i \to \infty$.

We can observe that Corollaries 1 and 2 correspond to extreme cases: in Corollary 1 all permutations are permissible, while none is permissible in Corollary 2. Indeed we can prove

Corollary 3. As $A_i, B_i \to \infty$, we have

$$\frac{2^n}{n!}A_1\cdots A_nB_1\cdots B_n \lesssim |R| \lesssim 2^nA_1\cdots A_nB_1\cdots B_n.$$

Moreover two bounds are optimal.

Proof. From the Theorem we have that

$$|R| \sim \sum_{\substack{1 \leq a_1 \leq A_1 \\ |b_1| \leq B_1}} \cdots \sum_{\substack{1 \leq a_n \leq A_n \\ |b_n| \leq B_n}} \frac{1}{|\{\sigma \in S_n : \sigma \text{ is possible for the } a_i^{b_i}\}|}.$$

The result follows from the fact that $1 \leq |\{\sigma \in S_n : \sigma \text{ is possible for the } a_i^{b_i}\}| \leq n!$. \Box

For the simple case n = 2, there is only one non-trivial permutation $\sigma = (12)$. This permutation is possible only if $1 \le a_1, a_2 \le \min(A_1, A_2)$ and $|b_1|, |b_2| \le \min(B_1, B_2)$. Then by the Theorem, and after a simple calculation we deduce that

$$\left| \left\{ r \in \mathbb{Q} : r = a_1^{b_1} a_2^{b_2}, \ 1 \le a_1 \le A_1, \ 1 \le a_2 \le A_2, \ |b_1| \le B_1, \ |b_2| \le B_2 \right\} \right| \\ \sim 4A_1 A_2 B_1 B_2 - 2\min(A_1, A_2)^2 \min(B_1, B_2)^2.$$

In general the size of |R| is asymptotic to a homogeneous polynomial of degree 2n in the variables $A_1, \ldots, A_n, B_1, \ldots, B_n$. Moreover it is also necessary to order the A_i 's and B_i 's, so without loss of generality we assume that $A_1 \leq A_2 \leq \cdots \leq A_n$ and $B_{\pi(1)} \leq B_{\pi(2)} \leq \cdots \leq B_{\pi(n)}$, where $\pi \in S_n$ is a permutation.

We prove the following

Proposition. Suppose that $A_1 \leq A_2 \leq \cdots \leq A_n$ and $B_{\pi(1)} \leq B_{\pi(2)} \leq \cdots \leq B_{\pi(n)}$, where $\pi \in S_n$ is a permutation. Also let $A_0 = B_{\pi(0)} = 1$.

Then |R| is asymptotic to

$$2^{n} \sum_{\substack{i_{1}=1\\1\leqslant j_{1}\leqslant \pi^{-1}(1)}} \sum_{\substack{1\leqslant i_{2}\leqslant 2\\1\leqslant j_{2}\leqslant \pi^{-1}(2)}} \cdots \sum_{\substack{1\leqslant i_{n}\leqslant n\\1\leqslant j_{n}\leqslant \pi^{-1}(n)}} \frac{\prod_{k=1}^{n}(A_{i_{k}}-A_{i_{k}-1})(B_{\pi(j_{k})}-B_{\pi(j_{k}-1)})}{|\{\sigma\in S_{n}: i_{\sigma(l)}\leqslant l, j_{\sigma(l)}\leqslant \pi^{-1}(l), \forall 1\leqslant l\leqslant n\}|},$$

as $A_i, B_i \to \infty$.

2. Preliminary lemmas

Let *C* be a positive real number. We say that the *n*-tuple (a_1, \ldots, a_n) satisfies condition (1_C) , if there exists a prime *p*, such that $p^k | a_1 a_2 \cdots a_n$ where $k \ge 2$, and $p^k \ge C$.

Lemma 1. We have

$$\left|\left\{(a_1,\ldots,a_n), \ 1 \leq a_i \leq A_i: \text{ which satisfy } (1_C)\right\}\right| \ll_n \frac{A_1 \cdots A_n (\log C)^n}{\sqrt{C}}$$

Proof. First we have

$$\left|\left\{(a_1,\ldots,a_n), 1 \leqslant a_i \leqslant A_i: \text{ which satisfy } (1_C)\right\}\right|$$

$$\leqslant \sum_p \left|\left\{(a_1,\ldots,a_n), 1 \leqslant a_i \leqslant A_i: \exists k \geqslant 2, \ p^k \geqslant C, \text{ and } p^k \mid a_1a_2\cdots a_n\right\}\right|.$$
(1)

Case 1. $p \leq \sqrt{C}$.

In this case pick k to be the smallest integer such that $p^k \ge C$, i.e. $k = \lfloor \log C / \log p \rfloor + 1$. Then the number of (a_1, \ldots, a_n) such that $p^k \mid a_1 a_2 \cdots a_n$ is equal to

$$\sum_{d_1d_2\cdots d_n=p^k}\prod_{i=1}^n\sum_{\substack{1\leqslant a_i\leqslant A_i\\d_i|a_i}}1\leqslant d_n(p^k)\frac{A_1\cdots A_n}{p^k}\leqslant d_n(p^k)\frac{A_1\cdots A_n}{C}$$

Now $d_n(p^k) = \binom{n+k-1}{k}$, and by Stirling's formula, for *k* large enough we have

$$\log d_n(p^k) = \left(n + k - 1 + \frac{1}{2}\right) \log(n + k - 1) - \left(k + \frac{1}{2}\right) \log k$$
$$- \left(n - 1 + \frac{1}{2}\right) \log(n - 1) + O(1)$$
$$\leqslant \left(k + \frac{1}{2}\right) \log\left(1 + \frac{n - 1}{k}\right) + \left(n - \frac{1}{2}\right) \log\left(\frac{n - 1 + k}{n - 1}\right)$$
$$\leqslant n \log k.$$

Then summing over these primes gives

$$\sum_{p \leqslant \sqrt{C}} \left| \left\{ (a_1, \dots, a_n), \ 1 \leqslant a_i \leqslant A_i \colon p^k \mid a_1 a_2 \cdots a_n \right\} \right| = O_n \left(\frac{A_1 \cdots A_n (\log C)^n}{\sqrt{C}} \right).$$
(2)

Case 2. $p > \sqrt{C}$.

In this case pick k = 2. Then the number of (a_1, \ldots, a_n) such that $p^2 | a_1 a_2 \cdots a_n$ is $O(A_1 \cdots A_n / p^2)$, where the constant involved in the O depends only on n. Therefore summing

over these primes gives

$$\sum_{p>\sqrt{C}} \left| \left\{ (a_1, \dots, a_n), \ 1 \leqslant a_i \leqslant A_i \colon p^2 \mid a_1 a_2 \cdots a_n \right\} \right| = O_n \left(\frac{A_1 \cdots A_n}{\sqrt{C}} \right). \tag{3}$$

Thus combining (1)–(3) gives the result. \Box

We say that (a_1, \ldots, a_n) satisfies condition (2_C) if at least one of the a_i is C-smooth: that is has all its prime factors lying below C.

Lemma 2. Write $C^{u_i} = A_i$ for all $1 \le i \le n$. Then uniformly for $\min_{1 \le i \le n} A_i \ge C \ge 2$, we have

$$\left|\left\{(a_1,\ldots,a_n),\ 1\leqslant a_i\leqslant A_i: \text{ which satisfy } (2_C)\right\}\right|\ll_n A_1A_2\cdots A_n\left(\sum_{i=1}^n e^{-u_i/2}\right).$$

Proof. We have that

$$\left|\left\{(a_1,\ldots,a_n), 1 \leq a_i \leq A_i: \text{ which satisfy } (2_C)\right\}\right| \ll_n A_1 A_2 \cdots A_n \sum_{i=1}^n \frac{\Psi(A_i,C)}{A_i},$$

where $\Psi(x, y)$ is the number of y-smooth positive integers below x. The result follows by the following Theorem of de Bruijn [3]

$$\Psi(A_i, C) \ll A_i e^{-u_i/2},$$

uniformly for $A_i \ge C \ge 2$. \Box

We say that $(b_1, b_2, ..., b_n)$ satisfy condition (3_C) , if there exists an *n*-tuple of integers $|c_i| \leq 2 \log C$ not all zero, such that $c_1b_1 + c_2b_2 + \cdots + c_nb_n = 0$.

Lemma 3. We have that

$$|\{(b_1,\ldots,b_n), |b_i| \leq B_i: \text{ which satisfy condition } (3_C)\}| \leq B_1 B_2 \cdots B_n \sum_{i=1}^n \left(\frac{(9 \log C)^n}{B_i}\right).$$

Proof. We note that

$$\begin{split} &\{(b_1, \dots, b_n), \ |b_i| \leq B_i: \text{ which satisfy condition } (3_C)\} \\ &\leq \sum_{\substack{|c_i| \leq 2\log C \\ (c_1, \dots, c_n) \neq (0, \dots, 0)}} \left| \{(b_1, \dots, b_n), \ |b_i| \leq B_i: \ c_1 b_1 + c_2 b_2 + \dots + c_n b_n = 0\} \right| \\ &\leq \sum_{\substack{|c_i| \leq 2\log C \\ (c_1, \dots, c_n) \neq (0, \dots, 0)}} (2B_1 + 1) \dots (2B_n + 1) \sum_{i=1}^n \left(\frac{1}{2B_i + 1}\right) \\ &\leq B_1 B_2 \dots B_n \sum_{i=1}^n \left(\frac{(9\log C)^n}{B_i}\right). \quad \Box \end{split}$$

3. Proof of the results

Proof of the Theorem. We begin by choosing $C := \min(B_1, \ldots, B_n, \log A_1, \ldots, \log A_n)$. We consider the following set

$$E := \{ (a_1, \dots, a_n, b_1, \dots, b_n), \ 1 \le a_i \le A_i, \ |b_i| \le B_i :$$

$$(a_i) \text{ do not satisfy any of } (1_C), (2_C), (b_i) \text{ do not satisfy } (3_C) \}.$$

Then by our choice of *C*, if we combine Lemmas 1–3, we observe that $|E| = 2^n A_1 \cdots A_n B_1 \cdots B_n (1 + o(1))$.

Therefore it remains to prove that any representation of a rational number r as $a_1^{b_1}a_2^{b_2}\cdots a_n^{b_n}$ where $(a_1, \ldots, a_n, b_1, \ldots, b_n)$ belongs to E, is unique up to possible permutations of the $a_i^{b_i}$, and finally we can consider only permissible permutations (since the number of $r \in R$ which can be permuted by a non-permissible permutation is negligible).

We begin by considering the following equation

$$a_1^{b_1}a_2^{b_2}\cdots a_n^{b_n} = e_1^{f_1}e_2^{f_2}\cdots e_n^{f_n},$$
(4)

where $(a_1, \ldots, a_n, b_1, \ldots, b_n)$ and $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ are in *E*. If for some *i*, a_i contains a prime factor *p* such that $p^2 \nmid a_1 a_2 \cdots a_n$ and $p^2 \nmid e_1 e_2 \cdots e_n$, then $b_i \in \{f_1, f_2, \ldots, f_n\}$. Now suppose that there exists $1 \leq j \leq n$ such that $b_j \notin \{f_1, f_2, \ldots, f_n\}$, then for the all primes *p* that divide a_j , there exists $k \geq 2$ for which $p^k \mid a_1 a_2 \cdots a_n$ or $p^k \mid e_1 e_2 \cdots e_n$, but the (a_i) and the (e_i) do not satisfy condition (1_C) and so we must have $p^k \leq C$, which implies that a_j is *C*-smooth; however this contradicts the fact that the (a_i) do not satisfy condition (2_C) . Therefore we deduce that

$$\{b_1, b_2, \ldots, b_n\} = \{f_1, f_2, \ldots, f_n\}.$$

Then up to permutations, we have that $b_i = f_i$, and so Eq. (4) becomes

$$a_1^{b_1}a_2^{b_2}\cdots a_n^{b_n} = e_1^{b_1}e_2^{b_2}\cdots e_n^{b_n}.$$
(5)

Let *p* be any prime dividing $a_1a_2 \cdots a_n$, and let $\alpha_i \ge 0$ and $\beta_i \ge 0$ be the corresponding powers of *p* in a_i and e_i respectively, and let $c_i = \alpha_i - \beta_i$. Then Eq. (5) implies that

$$c_1b_1 + c_2b_2 + \dots + c_nb_n = 0.$$

Now the (a_i) and the (e_i) do not satisfy condition (1_C) , and so $0 \le \alpha_i$, $\beta_i \le \log C / \log 2 \le 2\log C$, which implies that $|c_i| \le 2\log C$. And since the (b_i) do not satisfy condition (3_C) , we deduce that $c_i = 0$, and then $\alpha_i = \beta_i$ for all $1 \le i \le n$. Since this is true for every prime factor of $a_1a_2\cdots a_n$, we must have $a_i = e_i$ for all $1 \le i \le n$, and our Theorem is proved. \Box

Proof of the Proposition. We want to count the number of elements $r = (r_1, ..., r_n)$, where $r_i = (a_i, b_i) \in [1, A_i] \times [-B_i, B_i] \cap \mathbb{Z} \times \mathbb{Z}$, modulo possible permutations of the r_i 's.

Since the number of r for which some b_i is 0, is $o(A_1 \cdots A_n B_1 \cdots B_n)$, we can suppose that all the b_i 's are positive by symmetry.

Moreover let $R_i := [1, A_i] \times [1, B_i] \cap \mathbb{Z} \times \mathbb{Z}$, and define the following distinct discrete sets $R_{ij} := [A_{i-1}, A_i] \times [B_{\pi(j-1)}, B_{\pi(j)}] \cap \mathbb{Z} \times \mathbb{Z}$, for $1 \leq i, j \leq n$. For every $1 \le k \le n$, we have

$$R_k = \bigsqcup_{\substack{1 \le i_k \le k \\ 1 \le j_k \le \pi^{-1}(k)}} R_{i_k j_k}.$$
(6)

This implies

$$R_1 \times R_2 \times \cdots \times R_n = \bigsqcup_{\substack{i_1=1\\1 \leqslant j_1 \leqslant \pi^{-1}(1)}} \bigsqcup_{\substack{1 \leqslant i_2 \leqslant 2\\1 \leqslant j_2 \leqslant \pi^{-1}(2)}} \cdots \bigsqcup_{\substack{1 \leqslant i_n \leqslant n\\1 \leqslant j_n \leqslant \pi^{-1}(n)}} R_{i_1 j_1} \times R_{i_2 j_2} \times \cdots \times R_{i_n j_n}.$$

Now consider the elements $r \in R_{i_1j_1} \times R_{i_2j_2} \times \cdots \times R_{i_nj_n}$, with $1 \leq i_k \leq k$ and $1 \leq j_k \leq k$ $\pi^{-1}(k)$ being fixed. If $\sigma \in S_n$ permutes r, then $r_{\sigma(k)} \in R_k$ for all $1 \leq k \leq n$, but $r_{\sigma(k)} \in R_{i_{\sigma(k)}j_{\sigma(k)}}$ also, which implies that $R_{i_{\sigma(k)}j_{\sigma(k)}} \cap R_k \neq \emptyset$. From (6) this is equivalent to $R_{i_{\sigma(k)}j_{\sigma(k)}} \subseteq R_k$, and thus to the fact that $i_{\sigma(k)} \leq k$ and $j_{\sigma(k)} \leq \pi^{-1}(k)$ for all $1 \leq k \leq n$.

Therefore for any $r \in R_{i_1j_1} \times R_{i_2j_2} \times \cdots \times R_{i_nj_n}$, the number of $\sigma \in S_n$ which permutes r is constant and equal to

$$\left|\left\{\sigma \in S_n : i_{\sigma(l)} \leq l, \ j_{\sigma(l)} \leq \pi^{-1}(l), \ \forall 1 \leq l \leq n\right\}\right|.$$

Thus the number of elements in $R_1 \times R_2 \times \cdots \times R_n$, modulo possible permutations is

$$\sum_{\substack{i_1=1\\1\leqslant j_1\leqslant \pi^{-1}(1)}}\sum_{\substack{1\leqslant i_2\leqslant 2\\1\leqslant j_1\leqslant \pi^{-1}(2)}}\cdots\sum_{\substack{1\leqslant i_n\leqslant n\\1\leqslant j_n\leqslant \pi^{-1}(n)}}\frac{\prod_{k=1}^n (A_{i_k}-A_{i_k-1})(B_{\pi(j_k)}-B_{\pi(j_k-1)})}{|\{\sigma\in S_n\colon i_{\sigma(l)}\leqslant l, \ j_{\sigma(l)}\leqslant \pi^{-1}(l), \ \forall 1\leqslant l\leqslant n\}|},$$

which implies the result. \Box

Acknowledgment

I sincerely thank my advisor, Professor Andrew Granville, for suggesting the problem, for many valuable discussions, and for his encouragement during the various stages of this work.

References

- [1] A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1966) 204–216.
- [2] A. Baker, Linear forms in the logarithms of algebraic numbers II, Mathematika 14 (1967) 102–107;
- A. Baker, Linear forms in the logarithms of algebraic numbers III, Mathematika 14 (1967) 220–228.
- [3] N.G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors > y. II, in: Nederl. Akad. Wetensch. Proc. Ser. A 69, Indag. Math. 28 (1966) 239-247.
- [4] S. Lang, Elliptic Curves: Diophantine Analysis (Fundamental Principles of Mathematical Sciences), Grundlehren Math. Wiss., vol. 231, Springer, Berlin, 1978, xi+261 pp.