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Abstract

Let n be a positive integer. In this paper we estimate the size of the set of linear forms by loga; +
bylogay + - -+ + by logay, where |b;| < B; and 1 < a; < A; are integers, as A;, B; — oo.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

The theory of linear forms in logarithms, developed by A. Baker [1,2] in the 60’s, is a
powerful method in the transcendental number theory. It consists of finding lower bounds for
|biloga; + by logas + - - - + by loga,|, where the b; are integers and the a; are algebraic num-
bers for which loga; are linearly independent over Q. We consider the simpler case where the
a; > 0 are integers, and we let B; =max{|b;|, 1}, and B =max <<, Bj.

Lang and Waldschmidt [4, Introduction to chapter X and XI, p. 212] conjectured the following

Conjecture. Let € > 0. There exists C(€) > 0 depending only on €, such that

C(e)"B
(By---Bpay -- .an)1+e ’

|bylogay + bylogas + - - - + by logay| >

One part of the argument they used to motivate the Conjecture, is that the number of dis-
tinct linear forms by loga; + bylogaz + --- + by logay,, where |b;| < Bj and 0 < a; < Aj, is
=< By---ByAy---A,,if the A; and the B; are sufficiently large.
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In this paper we estimate the number of these linear forms as A;, B; — oo.

An equivalent formulation of the problem is to estimate the size of the following set

R=R(A1,..., A, Bi,...,By):={reQ: r=alay--ab, 1<a; < A;, |bi| < B},
as A;, B; —> oo.

For the easier case A; = A and B; = B for all i, a trivial upper bound on |R| is 2" A" B" /n! +
o(A" B™), since permuting the numbers a?i gives rise to the same number r.

We prove that this bound is attained asymptotically as A, B — oo. Also we deal with the
general case, which is harder since not every permutation is allowed for all the ranges. Indeed
the size of R depends on the ranges of the A; and the B;, as we shall see in Corollaries 1 and 2.

Let E C{(ay,...,an,b1,...,by), 1 <a; < A;, |bi| < B;}. We say that r € QQ has a represen-
tation in E, if r —a'lb‘a};2 .al" for some (aj, ..., an, by, ..., b, )eE.

Forr e R, if 0 € §, satisfies 1 < ay() < A,, and |bs ;)| < B; for all i, we say that o per-
mutes r, or ¢ is a possible permutation for the af . Finally we say that a permutation o € S, is
permissible if

‘{r € R: o permutes r}] > A1---A,By-- By.
The main result of this paper is the following
Theorem. There exists a set E C {(ai,...,an,b1,...,bp), 1 <a; < Aj, |bi| < B;} satisfying
|E|~2"A1Ay--- AyB1By - By,

as A;, Bi — 00, such that any rational number r € {alflaé72 a,l;'": (ai,...,an,b1,...,by) € E}

has a unique representation in E up to permissible permutations.

From this result we can deduce that | R| is asymptotic to the cardinality of the set of 2n-tuples
{(a1,...,an,b1,...,by), 1 <a; < A;, |bj| < B;} modulo permissible permutations.

In the case A; = A, B; = B, every permutation is permissible and we deduce the following
corollary.

Corollary 1. As A, B — 00, we have

2n An Bl‘l

b by , ‘ —
reQ:r=a"ay>---ab, 1<a; <A, |bi| <B}| = — +o0(A"B").
Now suppose that A; =o0(A;41) forall 1 <i<n—1,0r Bi =0(Bjy1) forall 1 <i<n—1.
For a non-identity permutation o € S, there exists j for which o (j) # j. Therefore 1f o per-

mutesr_all’laé’ . as , we must have 1 < aj, as(j) <min(A;, As(j)) and —min(B;, Bs(j)) <

bj, bs(jy <min(Bj, Bs(j)). And so we deduce that

l{reQ: r_alf‘aé’2 cabr, 1 <a; <A, |bi| < By o permutes r }|

( min(Aj, Ag(j)) min(Bj, Bg(j))
max(Aj, Ao'(j)) max(Bj, Bo'(j))

<2"Ay---AyBy - B, >=0(A1--~AnBl-~-Bn),
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by our assumption on the A; and B;. Thus in this case no permutation o # 1 is permissible.
Therefore we have

Corollary 2. If A; = 0(Aj41) forall 1 <i<n—1,or Bi=0(Bjy1) forall 1 <i <n—1, then

l{reQ: r=aq aé’z ca 1<a; < Ay, |bil < Bi}| ~2"Ay---AyBy - By,

n 9
as A;, B; — oc.

We can observe that Corollaries 1 and 2 correspond to extreme cases: in Corollary 1 all per-
mutations are permissible, while none is permissible in Corollary 2. Indeed we can prove

Corollary 3. As A;, B; — oo, we have

21‘[
AL AyBy - By SIRIS 2 AL AuBi - By,

Moreover two bounds are optimal.

Proof. From the Theorem we have that

R~ 3 e Y —

1<a <A 1<an <Ay |{o € S,: o is possible for the af’i H
1b11< B |bn | < By
The result follows from the fact that 1 < |{o € S,;: o is possible for the a < O

For the simple case n = 2, there is only one non-trivial permutation o = (12). This permu-
tation is possible only if 1 < aj,a; < min(Aj, A2) and |b1], |b2| < min(By, B2). Then by the
Theorem, and after a simple calculation we deduce that

by b
{reQ: r=aj"ay’, 1<ai <Ay, 1<ay < Ay, by < By, |bal < B

~4A1A2B1 By —2min(A1, A2)> min(By, By)?.

In general the size of |R| is asymptotic to a homogeneous polynomial of degree 2n in the vari-
ables Ay, ..., Ay, B, ..., B,. Moreover it is also necessary to order the A;’s and B;’s, so without
loss of generality we assume that A} < Ay < -+ < A, and By () < Br(2) < -+ < Brn), where
m € S, is a permutation.

We prove the following

Proposition. Suppose that A < Ay <--- < Ay and Br(1) < Br) < -+ < Brn), wherew € S,
is a permutation. Also let Ao = Br o) = 1.
Then |R| is asymptotic to

o Z Z Z [Teci (Aiy — Aiy—1)(Bx(jy) — Br(ji—1)
i1=1 1<i2<2 1<i, <n |{U € Sn: i(T(l) < ls ja(l) l(l) Vl <l n}|
1<H<e™ ) 1<p <™ @) 1< <)

as A;, Bi — oc.
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2. Preliminary lemmas

Let C be a positive real number. We say that the n-tuple (ay, ..., a,) satisfies condition (1¢),
if there exists a prime p, such that pk | aay - - - a, where k > 2, and pk >C.

Lemma 1. We have

Ay -+ Ay(log C)"
(@1, ... an). 1 <ai < Ai: which satisfy (10)}] <, 2 An108 )"

JC
Proof. First we have
[{(ai....,an), 1 < a; < A;: which satisfy (1¢)}]
<> @i a1 <ar <A 322, pF > Coand pFlarar -y ). (1)
p

Case 1. p </C.
In this case pick k to be the smallest integer such that p* > C, i.e. k = [logC/log p] + 1.
Then the number of (aq, ..., a,) such that pk | ayaz - - - a, is equal to

n
YOI Y 1<) <a ()

d]dzmd,,:pk i=1 1<a;<A; p
dila;

Now d, (p*) = (”H,z_l), and by Stirling’s formula, for k large enough we have

1 1
logdn(pk) = (n—l—k— 1+ E)log(n—i—k— 1) — <k+ §>logk

— <n—1~|—%>log(n—1)~|—0(1)

(ke og(12=1) 4 D jog( =1+
S 2) %8 k "TR) T

<nlogk.

Then summing over these primes gives

Ar---A,(logC)"
S [{(@n . an, 1<ai < Ar pk|a1az~~an}|=0n<1”—(°g)>. @

p<V/C Ve
Case2. p>+/C.
In this case pick k = 2. Then the number of (ap,...,a,) such that p2 | ayaz---ay, is

O(Aq---A,/p?), where the constant involved in the O depends only on 7. Therefore summing
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over these primes gives

A A
> He@n . 1<a < A p2|a1az-~an}\=on(#). (3)
p>+/C

Thus combining (1)—(3) gives the result. O

We say that (ay, ..., a,) satisfies condition (2¢) if at least one of the a; is C-smooth: that is
has all its prime factors lying below C.

Lemma 2. Write C" = A; for all 1 <i < n. Then uniformly for min|¢; <, A; = C > 2, we have
n
Hai.....an), 1 <a; < A;: which satisfy 2¢)}| < A1A2...An(ze—ui/2>.
i=1

Proof. We have that

3

n
YA, C
{(ai1.....an), 1 <a; < A;: which satisfy 2¢)}| <n A1A2-+- A, § ' (Al~ )
i=1 !

where W (x, y) is the number of y-smooth positive integers below x. The result follows by the
following Theorem of de Bruijn [3]

W(A;, C) K Aje /2,
uniformly for A; > C >22. O

We say that (b1, ba, ..., by,) satisfy condition (3¢), if there exists an n-tuple of integers |c;| <
2log C not all zero, such that c1b1 4+ c2b2 + - - - + cpby, =0.

Lemma 3. We have that

"/ (9log C)"
|{(b1, ... by), |bi| < B;: which satisfy condition (3C)}| < B1By--- By <7§ )
i

i=1
Proof. We note that

|{(b1, ..., by), |b;i| < B;: which satisfy condition (3c)}|

< Z {1, ....by), 1bi] < Bi: c1by + c2by + -+ + cpby =0}
lci|<2logC
(c1seesen)#(0,...,0)

“ 1
> (231+1>---<2Bn+1>2(m)
i=1 !

lei|<2log €
(€11 (0,...,0)

n
9log C)"
<BiBy---B, Y (%)
l

i=1

N
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3. Proof of the results

Proof of the Theorem. We begin by choosing C := min(By, ..., B,,logAj,...,logA,). We
consider the following set

E:Z {(a17"'7an5b]5"‘9b}1)5 1 gal <Al7 |bl| SBI:
(a;) do not satisfy any of (1¢), (2¢), (b;) do not satisfy (30)}.

Then by our choice of C, if we combine Lemmas 1-3, we observe that |E| =2"A;---A,B;---
By, (14 o(1)).

Therefore it remains to prove that any representation of a rational number r as aflagz .- 'a,li"
where (ai,...,a,,b1,...,b,) belongs to E, is unique up to possible permutations of the afi,
and finally we can consider only permissible permutations (since the number of » € R which can
be permuted by a non-permissible permutation is negligible).

We begin by considering the following equation

by b by o
a'ay ---a, =elfle{2-~-e,{, @)
where (ai,...,a,,b1,...,b,) and (e1, ..., e, f1,..., fn) are in E. If for some i, a; contains
a prime factor p such that p>fajay---a, and p>{ejes---e,, then b; € {f1, f2...., fn}. Now

suppose that there exists 1 < j <n suchthatb; ¢ { f1, f2, ..., fn}, then for the all primes p that
divide a;, there exists k > 2 for which p* | ajaz -+ ay or p* | ejes - - €4, but the (a;) and the (¢;)
do not satisfy condition (1¢) and so we must have p¥ < C, which implies that a j is C-smooth;
however this contradicts the fact that the (a;) do not satisfy condition (2¢). Therefore we deduce
that

{b19b27"'7b}’l}:{f17f25"'5fn}'
Then up to permutations, we have that b; = f;, and so Eq. (4) becomes

by b by _ b1 b b
al'ay? --a) =el'ey? e 5)
Let p be any prime dividing aja; - - - a,, and let o; > 0 and B; > 0 be the corresponding powers

of p in @; and e; respectively, and let ¢; = o; — ;. Then Eq. (5) implies that
ciby + by + -+ b, =0.

Now the (a;) and the (e;) do not satisfy condition (1¢), and so 0 < «;, i < logC/log2 <
2log C, which implies that |c;| < 21log C. And since the (b;) do not satisfy condition (3¢), we
deduce that ¢; =0, and then «; = S; for all 1 <i < n. Since this is true for every prime factor of
aiaz - - -ap, we must have a; = ¢; for all 1 <i < n, and our Theorem is proved. O

Proof of the Proposition. We want to count the number of elements r = (r1, ..., r,), where
ri = (ai, b;) € [1, A;] x [—B;, Bi]NZ x Z, modulo possible permutations of the r;’s.

Since the number of r for which some b; is 0, is 0(Ay--- A, B; - - - By), we can suppose that
all the b;’s are positive by symmetry.
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Moreover let R; :=[1, A;] x [1, Bi] N Z x Z, and define the following distinct discrete sets
Rij :=[Ai-1, Ai] X [Br(j-1), Bx(jh] NZ x Z,for 1 <i, j <n.
For every 1 < k < n, we have

Ry = |_| Rijy- (6)
1<ir <k
1< <=1k

This implies

Rix RyxxRy= || Ll - Ll RijoxRijx--- X Rigj,
i1=1 1<ih <2 1<ipn<n

I i) 1€ p<r™'@) 1< ()

Now consider the elements r € R;,j; X Riyj, X -+ X Rj,j,, with 1 <ip <k and 1 < ji <
7~ 1(k) being fixed. If o € S, permutes r, then 7o) € Ry forall I <k <n,butryx) € Riswyiswo
also, which implies that R;,, i, () Rk 7 ¥. From (6) this is equivalent to R;, i, < Rk, and
thus to the fact that iy ) < k and jy ) < n_l(k) forall 1 <k <n.

Therefore for any r € R;, j; X Ri,j, X --- X Ry, j,, the number of o € S, which permutes r is
constant and equal to

|{O’ €St iony <UL, Jou gn_l(l), V1< gn}|

Thus the number of elements in Ry X Ry X --- X Ry, modulo possible permutations is

Z Z e Z HZ=1 (Aip — Aiy—1)(Br(j) — Br(jr—1))
i=1 1< <2 G, Mo eSutiony <L jooy <T'0), VIKI< |
IGi<n ™ () 1<p<a @) 1<<a ™ )

which implies the result. O
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