# On the number of linear forms in logarithms 

Youness Lamzouri<br>Départment de Mathématiques et Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal, QC H3C 3J7, Canada<br>Received 12 July 2006; revised 26 September 2006<br>Available online 22 December 2006<br>Communicated by K. Soundararajan


#### Abstract

Let $n$ be a positive integer. In this paper we estimate the size of the set of linear forms $b_{1} \log a_{1}+$ $b_{2} \log a_{2}+\cdots+b_{n} \log a_{n}$, where $\left|b_{i}\right| \leqslant B_{i}$ and $1 \leqslant a_{i} \leqslant A_{i}$ are integers, as $A_{i}, B_{i} \rightarrow \infty$. © 2007 Elsevier Inc. All rights reserved.


## 1. Introduction

The theory of linear forms in logarithms, developed by A. Baker $[1,2]$ in the 60 's, is a powerful method in the transcendental number theory. It consists of finding lower bounds for $\left|b_{1} \log a_{1}+b_{2} \log a_{2}+\cdots+b_{n} \log a_{n}\right|$, where the $b_{i}$ are integers and the $a_{i}$ are algebraic numbers for which $\log a_{i}$ are linearly independent over $\mathbb{Q}$. We consider the simpler case where the $a_{i}>0$ are integers, and we let $B_{j}=\max \left\{\left|b_{j}\right|, 1\right\}$, and $B=\max _{1 \leqslant j \leqslant n} B_{j}$.

Lang and Waldschmidt [4, Introduction to chapter X and XI, p. 212] conjectured the following
Conjecture. Let $\epsilon>0$. There exists $C(\epsilon)>0$ depending only on $\epsilon$, such that

$$
\left|b_{1} \log a_{1}+b_{2} \log a_{2}+\cdots+b_{n} \log a_{n}\right|>\frac{C(\epsilon)^{n} B}{\left(B_{1} \cdots B_{n} a_{1} \cdots a_{n}\right)^{1+\epsilon}}
$$

One part of the argument they used to motivate the Conjecture, is that the number of distinct linear forms $b_{1} \log a_{1}+b_{2} \log a_{2}+\cdots+b_{n} \log a_{n}$, where $\left|b_{j}\right| \leqslant B_{j}$ and $0<a_{j} \leqslant A_{j}$, is $\asymp B_{1} \cdots B_{n} A_{1} \cdots A_{n}$, if the $A_{i}$ and the $B_{i}$ are sufficiently large.

[^0]In this paper we estimate the number of these linear forms as $A_{i}, B_{i} \rightarrow \infty$.
An equivalent formulation of the problem is to estimate the size of the following set

$$
R=R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right):=\left\{r \in \mathbb{Q}: r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}, 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}\right\},
$$

as $A_{i}, B_{i} \rightarrow \infty$.
For the easier case $A_{i}=A$ and $B_{i}=B$ for all $i$, a trivial upper bound on $|R|$ is $2^{n} A^{n} B^{n} / n!+$ $o\left(A^{n} B^{n}\right)$, since permuting the numbers $a_{i}^{b_{i}}$ gives rise to the same number $r$.

We prove that this bound is attained asymptotically as $A, B \rightarrow \infty$. Also we deal with the general case, which is harder since not every permutation is allowed for all the ranges. Indeed the size of $R$ depends on the ranges of the $A_{i}$ and the $B_{i}$, as we shall see in Corollaries 1 and 2 .

Let $E \subset\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}\right\}$. We say that $r \in \mathbb{Q}$ has a representation in $E$, if $r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}$, for some $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \in E$.

For $r \in R$, if $\sigma \in S_{n}$ satisfies $1 \leqslant a_{\sigma(i)} \leqslant A_{i}$, and $\left|b_{\sigma(i)}\right| \leqslant B_{i}$ for all $i$, we say that $\sigma$ permutes $r$, or $\sigma$ is a possible permutation for the $a_{i}^{b_{i}}$. Finally we say that a permutation $\sigma \in S_{n}$ is permissible if

$$
\mid\{r \in R: \sigma \text { permutes } r\} \mid \gg A_{1} \cdots A_{n} B_{1} \cdots B_{n} .
$$

The main result of this paper is the following
Theorem. There exists a set $E \subset\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}\right\}$ satisfying

$$
|E| \sim 2^{n} A_{1} A_{2} \cdots A_{n} B_{1} B_{2} \cdots B_{n}
$$

as $A_{i}, B_{i} \rightarrow \infty$, such that any rational number $r \in\left\{a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}:\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \in E\right\}$ has a unique representation in $E$ up to permissible permutations.

From this result we can deduce that $|R|$ is asymptotic to the cardinality of the set of $2 n$-tuples $\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}\right\}$ modulo permissible permutations.

In the case $A_{i}=A, B_{i}=B$, every permutation is permissible and we deduce the following corollary.

Corollary 1. As $A, B \rightarrow \infty$, we have

$$
\left|\left\{r \in \mathbb{Q}: r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}, 1 \leqslant a_{i} \leqslant A,\left|b_{i}\right| \leqslant B\right\}\right|=\frac{2^{n} A^{n} B^{n}}{n!}+o\left(A^{n} B^{n}\right)
$$

Now suppose that $A_{i}=o\left(A_{i+1}\right)$ for all $1 \leqslant i \leqslant n-1$, or $B_{i}=o\left(B_{i+1}\right)$ for all $1 \leqslant i \leqslant n-1$. For a non-identity permutation $\sigma \in S_{n}$, there exists $j$ for which $\sigma(j) \neq j$. Therefore if $\sigma$ permutes $r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}$, we must have $1 \leqslant a_{j}, a_{\sigma(j)} \leqslant \min \left(A_{j}, A_{\sigma(j)}\right)$ and $-\min \left(B_{j}, B_{\sigma(j)}\right) \leqslant$ $b_{j}, b_{\sigma(j)} \leqslant \min \left(B_{j}, B_{\sigma(j)}\right)$. And so we deduce that

$$
\begin{aligned}
& \mid\left\{r \in \mathbb{Q}: r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}, 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}: \sigma \text { permutes } r\right\} \mid \\
& \quad \leqslant 2^{n} A_{1} \cdots A_{n} B_{1} \cdots B_{n}\left(\frac{\min \left(A_{j}, A_{\sigma(j)}\right) \min \left(B_{j}, B_{\sigma(j)}\right)}{\max \left(A_{j}, A_{\sigma(j)}\right) \max \left(B_{j}, B_{\sigma(j)}\right)}\right)=o\left(A_{1} \cdots A_{n} B_{1} \cdots B_{n}\right),
\end{aligned}
$$

by our assumption on the $A_{i}$ and $B_{i}$. Thus in this case no permutation $\sigma \neq 1$ is permissible. Therefore we have

Corollary 2. If $A_{i}=o\left(A_{i+1}\right)$ for all $1 \leqslant i \leqslant n-1$, or $B_{i}=o\left(B_{i+1}\right)$ for all $1 \leqslant i \leqslant n-1$, then

$$
\left|\left\{r \in \mathbb{Q}: r=a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}, 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}\right\}\right| \sim 2^{n} A_{1} \cdots A_{n} B_{1} \cdots B_{n}
$$

as $A_{i}, B_{i} \rightarrow \infty$.
We can observe that Corollaries 1 and 2 correspond to extreme cases: in Corollary 1 all permutations are permissible, while none is permissible in Corollary 2. Indeed we can prove

Corollary 3. As $A_{i}, B_{i} \rightarrow \infty$, we have

$$
\frac{2^{n}}{n!} A_{1} \cdots A_{n} B_{1} \cdots B_{n} \lesssim|R| \lesssim 2^{n} A_{1} \cdots A_{n} B_{1} \cdots B_{n}
$$

Moreover two bounds are optimal.
Proof. From the Theorem we have that

$$
|R| \sim \sum_{\substack{1 \leqslant a_{1} \leqslant A_{1} \\\left|b_{1}\right| \leqslant B_{1}}} \ldots \sum_{\substack{1 \leqslant a_{n} \leqslant A_{n} \\\left|b_{n}\right| \leqslant B_{n}}} \frac{1}{\mid\left\{\sigma \in S_{n}: \sigma \text { is possible for the } a_{i}^{b_{i}}\right\} \mid}
$$

The result follows from the fact that $1 \leqslant \mid\left\{\sigma \in S_{n}\right.$ : $\sigma$ is possible for the $\left.a_{i}^{b_{i}}\right\} \mid \leqslant n!$.
For the simple case $n=2$, there is only one non-trivial permutation $\sigma=(12)$. This permutation is possible only if $1 \leqslant a_{1}, a_{2} \leqslant \min \left(A_{1}, A_{2}\right)$ and $\left|b_{1}\right|,\left|b_{2}\right| \leqslant \min \left(B_{1}, B_{2}\right)$. Then by the Theorem, and after a simple calculation we deduce that

$$
\begin{aligned}
& \left|\left\{r \in \mathbb{Q}: r=a_{1}^{b_{1}} a_{2}^{b_{2}}, 1 \leqslant a_{1} \leqslant A_{1}, 1 \leqslant a_{2} \leqslant A_{2},\left|b_{1}\right| \leqslant B_{1},\left|b_{2}\right| \leqslant B_{2}\right\}\right| \\
& \quad \sim 4 A_{1} A_{2} B_{1} B_{2}-2 \min \left(A_{1}, A_{2}\right)^{2} \min \left(B_{1}, B_{2}\right)^{2} .
\end{aligned}
$$

In general the size of $|R|$ is asymptotic to a homogeneous polynomial of degree $2 n$ in the variables $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$. Moreover it is also necessary to order the $A_{i}$ 's and $B_{i}$ 's, so without loss of generality we assume that $A_{1} \leqslant A_{2} \leqslant \cdots \leqslant A_{n}$ and $B_{\pi(1)} \leqslant B_{\pi(2)} \leqslant \cdots \leqslant B_{\pi(n)}$, where $\pi \in S_{n}$ is a permutation.

We prove the following
Proposition. Suppose that $A_{1} \leqslant A_{2} \leqslant \cdots \leqslant A_{n}$ and $B_{\pi(1)} \leqslant B_{\pi(2)} \leqslant \cdots \leqslant B_{\pi(n)}$, where $\pi \in S_{n}$ is a permutation. Also let $A_{0}=B_{\pi(0)}=1$.

Then $|R|$ is asymptotic to

$$
\begin{aligned}
& 2^{n} \sum_{\substack{i_{1}=1 \\
1 \leqslant j_{1} \leqslant \pi^{-1}(1)}} \sum_{\substack{1 \leqslant i_{2} \leqslant 2 \\
1 \leqslant j_{2} \leqslant \pi^{-1}(2)}} \cdots \sum_{\substack{1 \leqslant i_{n} \leqslant n \\
1 \leqslant j_{n} \leqslant \pi^{-1}(n)}} \frac{\prod_{k=1}^{n}\left(A_{i_{k}}-A_{i_{k}-1}\right)\left(B_{\pi\left(j_{k}\right)}-B_{\pi\left(j_{k}-1\right)}\right)}{\left|\left\{\sigma \in S_{n}: i_{\sigma(l)} \leqslant l, j_{\sigma(l)} \leqslant \pi^{-1}(l), \forall 1 \leqslant l \leqslant n\right\}\right|} \text {, } \\
& \text { as } A_{i}, B_{i} \rightarrow \infty .
\end{aligned}
$$

## 2. Preliminary lemmas

Let $C$ be a positive real number. We say that the $n$-tuple $\left(a_{1}, \ldots, a_{n}\right)$ satisfies condition ( $1_{C}$ ), if there exists a prime $p$, such that $p^{k} \mid a_{1} a_{2} \cdots a_{n}$ where $k \geqslant 2$, and $p^{k} \geqslant C$.

Lemma 1. We have

$$
\mid\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: \text { which satisfy }\left(1_{C}\right)\right\} \left\lvert\,<_{n} \frac{A_{1} \cdots A_{n}(\log C)^{n}}{\sqrt{C}}\right.
$$

Proof. First we have

$$
\begin{align*}
& \mid\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: \text { which satisfy }\left(1_{C}\right)\right\} \mid \\
& \quad \leqslant \sum_{p} \mid\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: \exists k \geqslant 2, p^{k} \geqslant C, \text { and } p^{k} \mid a_{1} a_{2} \cdots a_{n}\right\} \mid \tag{1}
\end{align*}
$$

Case 1. $p \leqslant \sqrt{C}$.
In this case pick $k$ to be the smallest integer such that $p^{k} \geqslant C$, i.e. $k=[\log C / \log p]+1$. Then the number of $\left(a_{1}, \ldots, a_{n}\right)$ such that $p^{k} \mid a_{1} a_{2} \cdots a_{n}$ is equal to

$$
\sum_{d_{1} d_{2} \cdots d_{n}=p^{k}} \prod_{i=1}^{n} \sum_{\substack{1 \leqslant a_{i} \leqslant A_{i} \\ d_{i} \mid a_{i}}} 1 \leqslant d_{n}\left(p^{k}\right) \frac{A_{1} \cdots A_{n}}{p^{k}} \leqslant d_{n}\left(p^{k}\right) \frac{A_{1} \cdots A_{n}}{C} .
$$

Now $d_{n}\left(p^{k}\right)=\binom{n+k-1}{k}$, and by Stirling's formula, for $k$ large enough we have

$$
\begin{aligned}
\log d_{n}\left(p^{k}\right)= & \left(n+k-1+\frac{1}{2}\right) \log (n+k-1)-\left(k+\frac{1}{2}\right) \log k \\
& -\left(n-1+\frac{1}{2}\right) \log (n-1)+O(1) \\
\leqslant & \left(k+\frac{1}{2}\right) \log \left(1+\frac{n-1}{k}\right)+\left(n-\frac{1}{2}\right) \log \left(\frac{n-1+k}{n-1}\right) \\
\leqslant & n \log k
\end{aligned}
$$

Then summing over these primes gives

$$
\begin{equation*}
\sum_{p \leqslant \sqrt{C}}\left|\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: p^{k} \mid a_{1} a_{2} \cdots a_{n}\right\}\right|=O_{n}\left(\frac{A_{1} \cdots A_{n}(\log C)^{n}}{\sqrt{C}}\right) \tag{2}
\end{equation*}
$$

Case 2. $p>\sqrt{C}$.
In this case pick $k=2$. Then the number of $\left(a_{1}, \ldots, a_{n}\right)$ such that $p^{2} \mid a_{1} a_{2} \cdots a_{n}$ is $O\left(A_{1} \cdots A_{n} / p^{2}\right)$, where the constant involved in the $O$ depends only on $n$. Therefore summing
over these primes gives

$$
\begin{equation*}
\sum_{p>\sqrt{C}}\left|\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: p^{2} \mid a_{1} a_{2} \cdots a_{n}\right\}\right|=O_{n}\left(\frac{A_{1} \cdots A_{n}}{\sqrt{C}}\right) \tag{3}
\end{equation*}
$$

Thus combining (1)-(3) gives the result.
We say that $\left(a_{1}, \ldots, a_{n}\right)$ satisfies condition $\left(2_{C}\right)$ if at least one of the $a_{i}$ is $C$-smooth: that is has all its prime factors lying below $C$.

Lemma 2. Write $C^{u_{i}}=A_{i}$ for all $1 \leqslant i \leqslant n$. Then uniformly for $\min _{1 \leqslant i \leqslant n} A_{i} \geqslant C \geqslant 2$, we have

$$
\mid\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: \text { which satisfy }\left(2_{C}\right)\right\} \mid<_{n} A_{1} A_{2} \cdots A_{n}\left(\sum_{i=1}^{n} e^{-u_{i} / 2}\right)
$$

Proof. We have that

$$
\mid\left\{\left(a_{1}, \ldots, a_{n}\right), 1 \leqslant a_{i} \leqslant A_{i}: \text { which satisfy }\left(2_{C}\right)\right\} \left\lvert\, \ll_{n} A_{1} A_{2} \cdots A_{n} \sum_{i=1}^{n} \frac{\Psi\left(A_{i}, C\right)}{A_{i}}\right.
$$

where $\Psi(x, y)$ is the number of $y$-smooth positive integers below $x$. The result follows by the following Theorem of de Bruijn [3]

$$
\Psi\left(A_{i}, C\right) \ll A_{i} e^{-u_{i} / 2}
$$

uniformly for $A_{i} \geqslant C \geqslant 2$.
We say that $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ satisfy condition $\left(3_{C}\right)$, if there exists an $n$-tuple of integers $\left|c_{i}\right| \leqslant$ $2 \log C$ not all zero, such that $c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n}=0$.

Lemma 3. We have that

$$
\mid\left\{\left(b_{1}, \ldots, b_{n}\right),\left|b_{i}\right| \leqslant B_{i}: \text { which satisfy condition }\left(3_{C}\right)\right\} \left\lvert\, \leqslant B_{1} B_{2} \cdots B_{n} \sum_{i=1}^{n}\left(\frac{(9 \log C)^{n}}{B_{i}}\right)\right.
$$

Proof. We note that

$$
\begin{aligned}
& \mid\left\{\left(b_{1}, \ldots, b_{n}\right),\left|b_{i}\right| \leqslant B_{i}: \text { which satisfy condition }\left(3_{C}\right)\right\} \mid \\
& \quad \leqslant \sum_{\substack{\left|c_{i}\right| \leqslant 2 \log C \\
\left(c_{1}, \ldots, c_{n}\right) \neq(0, \ldots, 0)}}\left|\left\{\left(b_{1}, \ldots, b_{n}\right),\left|b_{i}\right| \leqslant B_{i}: c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n}=0\right\}\right| \\
& \leqslant \sum_{\substack{\left|c_{1}\right| \leqslant 2 \log C \\
\left(c_{1}, \ldots, c_{n}\right) \neq(0, \ldots, 0)}}\left(2 B_{1}+1\right) \cdots\left(2 B_{n}+1\right) \sum_{i=1}^{n}\left(\frac{1}{2 B_{i}+1}\right) \\
& \quad \leqslant B_{1} B_{2} \cdots B_{n} \sum_{i=1}^{n}\left(\frac{(9 \log C)^{n}}{B_{i}}\right) .
\end{aligned}
$$

## 3. Proof of the results

Proof of the Theorem. We begin by choosing $C:=\min \left(B_{1}, \ldots, B_{n}, \log A_{1}, \ldots, \log A_{n}\right)$. We consider the following set

$$
\begin{aligned}
E:= & \left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), 1 \leqslant a_{i} \leqslant A_{i},\left|b_{i}\right| \leqslant B_{i}:\right. \\
& \left.\left(a_{i}\right) \text { do not satisfy any of }\left(1_{C}\right),\left(2_{C}\right),\left(b_{i}\right) \text { do not satisfy }\left(3_{C}\right)\right\} .
\end{aligned}
$$

Then by our choice of $C$, if we combine Lemmas $1-3$, we observe that $|E|=2^{n} A_{1} \cdots A_{n} B_{1} \cdots$ $B_{n}(1+o(1))$.

Therefore it remains to prove that any representation of a rational number $r$ as $a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}$ where $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ belongs to $E$, is unique up to possible permutations of the $a_{i}^{b_{i}}$, and finally we can consider only permissible permutations (since the number of $r \in R$ which can be permuted by a non-permissible permutation is negligible).

We begin by considering the following equation

$$
\begin{equation*}
a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}=e_{1}^{f_{1}} e_{2}^{f_{2}} \cdots e_{n}^{f_{n}} \tag{4}
\end{equation*}
$$

where $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ and $\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right)$ are in $E$. If for some $i, a_{i}$ contains a prime factor $p$ such that $p^{2} \nmid a_{1} a_{2} \cdots a_{n}$ and $p^{2} \nmid e_{1} e_{2} \cdots e_{n}$, then $b_{i} \in\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$. Now suppose that there exists $1 \leqslant j \leqslant n$ such that $b_{j} \notin\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$, then for the all primes $p$ that divide $a_{j}$, there exists $k \geqslant 2$ for which $p^{k} \mid a_{1} a_{2} \cdots a_{n}$ or $p^{k} \mid e_{1} e_{2} \cdots e_{n}$, but the ( $a_{i}$ ) and the ( $e_{i}$ ) do not satisfy condition $\left(1_{C}\right)$ and so we must have $p^{k} \leqslant C$, which implies that $a_{j}$ is $C$-smooth; however this contradicts the fact that the $\left(a_{i}\right)$ do not satisfy condition $\left(2_{C}\right)$. Therefore we deduce that

$$
\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}
$$

Then up to permutations, we have that $b_{i}=f_{i}$, and so Eq. (4) becomes

$$
\begin{equation*}
a_{1}^{b_{1}} a_{2}^{b_{2}} \cdots a_{n}^{b_{n}}=e_{1}^{b_{1}} e_{2}^{b_{2}} \cdots e_{n}^{b_{n}} \tag{5}
\end{equation*}
$$

Let $p$ be any prime dividing $a_{1} a_{2} \cdots a_{n}$, and let $\alpha_{i} \geqslant 0$ and $\beta_{i} \geqslant 0$ be the corresponding powers of $p$ in $a_{i}$ and $e_{i}$ respectively, and let $c_{i}=\alpha_{i}-\beta_{i}$. Then Eq. (5) implies that

$$
c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n}=0
$$

Now the $\left(a_{i}\right)$ and the $\left(e_{i}\right)$ do not satisfy condition $\left(1_{C}\right)$, and so $0 \leqslant \alpha_{i}, \beta_{i} \leqslant \log C / \log 2 \leqslant$ $2 \log C$, which implies that $\left|c_{i}\right| \leqslant 2 \log C$. And since the $\left(b_{i}\right)$ do not satisfy condition ( $3_{C}$ ), we deduce that $c_{i}=0$, and then $\alpha_{i}=\beta_{i}$ for all $1 \leqslant i \leqslant n$. Since this is true for every prime factor of $a_{1} a_{2} \cdots a_{n}$, we must have $a_{i}=e_{i}$ for all $1 \leqslant i \leqslant n$, and our Theorem is proved.

Proof of the Proposition. We want to count the number of elements $r=\left(r_{1}, \ldots, r_{n}\right)$, where $r_{i}=\left(a_{i}, b_{i}\right) \in\left[1, A_{i}\right] \times\left[-B_{i}, B_{i}\right] \cap \mathbb{Z} \times \mathbb{Z}$, modulo possible permutations of the $r_{i}$ 's.

Since the number of $r$ for which some $b_{i}$ is 0 , is $o\left(A_{1} \cdots A_{n} B_{1} \cdots B_{n}\right)$, we can suppose that all the $b_{i}$ 's are positive by symmetry.

Moreover let $R_{i}:=\left[1, A_{i}\right] \times\left[1, B_{i}\right] \cap \mathbb{Z} \times \mathbb{Z}$, and define the following distinct discrete sets $R_{i j}:=\left[A_{i-1}, A_{i}\right] \times\left[B_{\pi(j-1)}, B_{\pi(j)}\right] \cap \mathbb{Z} \times \mathbb{Z}$, for $1 \leqslant i, j \leqslant n$.

For every $1 \leqslant k \leqslant n$, we have

$$
\begin{equation*}
R_{k}=\bigsqcup_{\substack{1 \leqslant i_{k} \leqslant k \\ 1 \leqslant j_{k} \leqslant \pi^{-1}(k)}} R_{i_{k} j_{k}} \tag{6}
\end{equation*}
$$

This implies

Now consider the elements $r \in R_{i_{1} j_{1}} \times R_{i_{2} j_{2}} \times \cdots \times R_{i_{n} j_{n}}$, with $1 \leqslant i_{k} \leqslant k$ and $1 \leqslant j_{k} \leqslant$ $\pi^{-1}(k)$ being fixed. If $\sigma \in S_{n}$ permutes $r$, then $r_{\sigma(k)} \in R_{k}$ for all $1 \leqslant k \leqslant n$, but $r_{\sigma(k)} \in R_{i_{\sigma(k)} j_{\sigma(k)}}$ also, which implies that $R_{i_{\sigma(k)} j_{\sigma(k)}} \cap R_{k} \neq \emptyset$. From (6) this is equivalent to $R_{i_{\sigma(k)} j_{\sigma(k)}} \subseteq R_{k}$, and thus to the fact that $i_{\sigma(k)} \leqslant k$ and $j_{\sigma(k)} \leqslant \pi^{-1}(k)$ for all $1 \leqslant k \leqslant n$.

Therefore for any $r \in R_{i_{1} j_{1}} \times R_{i_{2} j_{2}} \times \cdots \times R_{i_{n} j_{n}}$, the number of $\sigma \in S_{n}$ which permutes $r$ is constant and equal to

$$
\left|\left\{\sigma \in S_{n}: i_{\sigma(l)} \leqslant l, j_{\sigma(l)} \leqslant \pi^{-1}(l), \forall 1 \leqslant l \leqslant n\right\}\right|
$$

Thus the number of elements in $R_{1} \times R_{2} \times \cdots \times R_{n}$, modulo possible permutations is

$$
\sum_{\substack{i_{1}=1 \\ 1 \leqslant j_{1} \leqslant \pi^{-1}(1)}} \sum_{\substack{1 \leqslant i_{2} \leqslant 2 \\ 1 \leqslant j_{2} \leqslant \pi^{-1}(2)}} \cdots \sum_{\substack{1 \leqslant i_{n} \leqslant n \\ 1 \leqslant j_{n} \leqslant \pi^{-1}(n)}} \frac{\prod_{k=1}^{n}\left(A_{i_{k}}-A_{i_{k}-1}\right)\left(B_{\pi\left(j_{k}\right)}-B_{\pi\left(j_{k}-1\right)}\right)}{\left|\left\{\sigma \in S_{n}: i_{\sigma(l)} \leqslant l, j_{\sigma(l)} \leqslant \pi^{-1}(l), \forall 1 \leqslant l \leqslant n\right\}\right|},
$$

which implies the result.

## Acknowledgment

I sincerely thank my advisor, Professor Andrew Granville, for suggesting the problem, for many valuable discussions, and for his encouragement during the various stages of this work.

## References

[1] A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1966) 204-216.
[2] A. Baker, Linear forms in the logarithms of algebraic numbers II, Mathematika 14 (1967) 102-107;
A. Baker, Linear forms in the logarithms of algebraic numbers III, Mathematika 14 (1967) 220-228.
[3] N.G. de Bruijn, On the number of positive integers $\leqslant x$ and free of prime factors $>y$. II, in: Nederl. Akad. Wetensch. Proc. Ser. A 69, Indag. Math. 28 (1966) 239-247.
[4] S. Lang, Elliptic Curves: Diophantine Analysis (Fundamental Principles of Mathematical Sciences), Grundlehren Math. Wiss., vol. 231, Springer, Berlin, 1978, xi+261 pp.


[^0]:    E-mail address: lamzouri@dms.umontreal.ca.

