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1. DiscussioN oF THE RESULTS

1.I. By a linear group over a commutative ring R we shall understand
here a group of automorphisms of some finitely generated module over R. Our
object is to establish Theorem 0 below. But the proof of this theorem
involves two results that are useful in other contexts. The first of these
{'Theorem 2) states that if X is a class of groups that is subject to two mild
restrictions and such that all finite ¥-groups are soluble, then every linear
X-group over a noetherian ring is also soluble. The second result (Theorem 4),
which merely codifies a well-known method of proof, asserts that if 9 is a
class of groups satisfying a certain list of conditions, then every linear group
over a noetherian ring is a 9P-group. Our arguments depend on a simple but
rather useful reduction principle (Proposition 1). This may be paraphrased as
stating that if a theorem of a certain type can be established for linear groups
over R when R is a field, then the same theorem is automatically true when R
is a noetherian ring.

In order to state Theorem 0 we must introduce some notation and termi-
nology. Let G be a group. We denote the Hirsch-Plotkin radical of G (i.c.,
the unique maximal locally nilpotent normal subgroup) by 5(G) and the
Fitting subgroup of G (i.e., the product of all nilpotent normal subgroups)
by 7,(G). The upper central series of G is the ascending series (a,(G); A <X 7),
where ay(G) = 1, for each A - 7 the center of Gja (G) is nontrivial and equals
o, 1(G)/a(G), but Gja(G) has trivial center. The order type 7 of the series
will be called the central height of G and «(G) is the hypercenter of G. When
we wish to leave the central height of ¢ unspecified we shall write the hyper-
center as o G). A group which coincides with its hypercenter will be called a
hypercentral group. (This would seem to be 2 more natural and informative
term than the frequently used “Z.A4-group.”) We also adopt the notation

[xvy’ sersy y] - [x’ ry]-

r
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THEOREM 0. Let R be a noetherian commutative ring, A a finitely generated
R-module and G a group of R-automorphisms of A. Then G has the following
properties:

(1) w(G) is hypercentral and a e +(G) if, and only if, [x, ,a} = 1 for all x
in G and some v, possibly depending on x;

(2) (G is nilpotent and a € v,(G) tf, and only if, [x, ,a] =1 forall x in G
and some v independent of x;

(3) G has central height at most w -- k, for some finite k, and a € o{G) if,
and only if, |a, ,x] -~ | for all x in G and some r, possible depending on x;

(4) acaG)if, and only if, [a, ,x] 1 for all x in G and some r independ-
ent of x.

To the best of my knowledge, this theorem includes all the results on this
topic that have been obtained so far. These all refer to the case when R is a
field. Then G may be thought of as a group of matrices over R. Garascuk [J]
(see also [14], Proposition 2.3) proved that 5((’) is hypercentral; Garadtuk
and Suprunenko [6] showed that if [x, .y] = | for all ¥, y in G with # possibly
depending on x and v, then G = (G); and finally, the same authors [7]

is nilpotent. These facts are all contained in parts (1) and (2) of Theorem 0.
The first mentioned result of Garaicuk and Suprunenko reappears below in a
considerably generalized form as the Corollary to Proposition 4 (Section 2.1).

It is easy to sce that if G is a linear group, then »(G), ,(G), «(G) and o (G)
(the four subgroups of Theorem 0) may all be distinct from cach other. For
let w; be a primitive complex 2%h root of 1 ( = I, 2, ---) and let s, , #; be the
automorphisms of the two-dimensional complex vector space C? given,
respectively, by (x, ¥) — (w;x, ¥) and (¥, v) — (%, w,¥). If g is (%, y) — (¥, x),
and . is the subgroup generated by g and s;, ¢,, 7 = 1,2, -, then A 13
hypercentral of central height o + 1. Let BB denote the symmetric group
on three letters in its faithful permutational representation on C?® Then
A x B is a subgroup of the automorphism group of C* and in 4 » B the
functions 7, 7, , a, «, determine four distinct subgroups.

1.2. Theorem 0 is really a join of two results: first, it asserts that the
various types of Engel elements constitute subgroups and secondly, it gives
information on the structure of these subgroups.

We propose to employ the same notation as in our earlier paper [/0],
but we recapitulate the salient features. If 4 and B are subsets of an arbitrary
group G, then A e B means [a, 0] = | forallain 4, bin B and some # =:#{a, b).
We write 4 ie B, or A ¢| B, if 7 can be chosen independently of a in .4, or of
b in B, respectively. Then L(G), I{G), R(G), R(G) denote the sets of all
gin Gsatisfying Geg,G e g, g e G, g ¢ G, respectively (called the left, bounded
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left, right and bounded right Engel elements of G). (Cf. [/0], Section [.3,
p. 439.) It is still an unsolved problem whether any of these subsets can ever
fail to be a subgroup. (In this connexion, confer the Corollary to Proposition 4,
below.)

The Engel elements are closely connected with four characteristic sub-
groups of G. Let H be a subgroup and suppose there exists an ascending
scries from H to G. We write H -1 G and we shall call A an ascendant
subgroup of G. (This term, due to P. Hall, is preferable to the term “serial
subgroup” introduced in [9], p. 152.) If the series is finite we shall say H is
subnormal in G (instead of finitely-serial) and write /7 <J<j G. In particular,
H k<1 G shall mean that the series has length at most & (so that H [ <] G
or /1 <1 G means that A is normal in ). The four characteristic subgroups
referred to above may now be defined as follows: (1) o(G) is the union of all
cyclic ascendant subgroups of G (2) 5(G) is the union of all cyclic subnormal
subgroups of G; (3) p((7) is the set of all  so that for every x in G we have
Gp{x} oo <1 Gp{x, a“}; and (4) 5(G) is the set of all @ so that for every x in ¢
we have Gp{x} k<l Gpix, a®} with some k independent of x. (Here o
denotes the conjugacy class of a.) All these characteristic subgroups lie in
the Hirsch-Plotkin radical »(G). The Fitting subgroup 7,(G) is contained
in o(G).

We let € denote the class of all groups G in which o(G) = L(G),
&(G) = L(G), p(G) = R(G) and p(G) = R(G). The first of these equalities
mmplies 6(G) == 9»(G). A result of L. G. Kovacs and B. H. Neumann (un-
published) shows that this equality is not universally true. Hence € is certainly
not the class of all groups. It is now also known that the inequality
7(G) < L(G) may be strict: this follows from the recent important work of
E.S. Golod and I. R. Safarevié [8]. We remark that Golod’s finitely generated
non-nilpotent Engel group cannot be isomorphic to a linear group over any
commutative ring: this is a consequence of the Corollary to Proposition 4
(Section 2.1).

The results of [10] (particularly Theorems 1.2 and 1.3, p. 438) suggest a
criterion for judging whether the above four characteristic subgroups are
well-behaved in a given group or not. Let D denote the class of all groups &
such that »(G) 1s hypercentral (and therefore o(G) = %((G)), 6(G) is nilpotent
(and therefore 7,(G) = &(G)), p(G) = G) and p(G) = a (G). The class
D N ¢ may be thought of as the class of groups with a good Engel structure.

Let R be a commutative ring and £(R) the class of all groups that are
1somorphic to a group of automorphisms of some finitely generated R-module.
Then Theorem 0 may be restated as

Tueorem 1. If R is noetherian, then
) R <

481/3/3-3
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(i) LR) < D; and
(1)  all groups in (R) have central height << w2.

[.3. Inorder to prove Theorem 1 (i) it is enough to show that if G € 2(R)
and G = Gp{L(G) U R(G)}, then G 1s soluble. This follows from Theorem
1.5 of [10]. (The hypothesis of that theorem concerning local nilpotence is
redundant in view of Theorem 4 of [9].)

We let A, §, ® and S denote, respectively, the class of all abelian, finite,
finitely generated, and soluble groups and we shall employ the usual product
notation for extensions (cf. [10], Section 1.2, p. 347). In addition we use
Hall’s calculus of closure operations (cf. [12], Section 1.3, p. 533). We shall
need S (subgroup closure), Q (quotient group closure), L (local closure) and
Ry which we define as follows: X == R X means that whenever G/K, X
and G/K,eX then GIK, N K, e X.

Tueorem 2. If X 45 a class of groups satisfying (1) QX = X,
(1) ¥ < (6 N X), (iil) X N F < G, and R is a noetherian commutative ring,
then X N L(R) < S.

Condition (i1) says that if G is in X, then every finitely generated subgroup
lies in a finitely generated X-subgroup. Of course, this is automatically true
if X is S-closed. But we wish to apply the theorem when X is all groups G
such that G Gp{L(G) v R(G)}. There is no obvious reason why this class
need be S-closed. But it clearly satisfies (if). Also (i) is obvious and (iii) is a
theorem of Baer [7]. Hence linear groups in the class are soluble and there-
fore, by our earlier remark, Theorem | (i) follows.

Other applications of Theorem 2 come to mind. 'F'hus X could be the class
of groups in which every element has finite order divisible by at most two
fixed primes: condition (iii) is the pg-theorem of Burnside. Again, X could be
the class of all groups in which every two-generator subgroup is soluble:
here (1i1) 1s an unpublished result of John Thompson.

t.4. 'l'urning now to part (ii) of Theorem I, we shall deduce this from
the following result.

THEOREM 3. Let R be a noetherian commutative ring and G € (R). If
H is a normal subgroup of G, then

(i) H ¢ Gimplies H < o(G); while

(1} H |e Gimplies H < o(G) for some fintte t.

Proof of Theorem [ (11). Let G € ¢(R). Then p(G) ¢ G implies p(G) < o G),
by Theorem 3 (i), and thus p(G) = «(G). In particular, p(n(G)) = a(n(G)).
But p(n(G)) - = 9(G), by Theorem 1 (1), and therefore 7(G) is hypercentral.
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If aep(G) and A = Gpla®), then 4 le G. Thus A < aG), by Theo-
rem 3 (ii), and so p(G) == o, (G). Finally, G le 6(G) implies &(G) |e 6(G)
and therefore, again by Theorem 3 (i1), 6(G) is nilpotent.

Theorem 3 will follow, in turn, from

TreEOREM 4. Let R be a noetherian commutative ring and suppose 9 is a

class of groups subject to the following conditions:
() LR N DF <

(11) if G is a group of automorphisms of a finitely generated R-moduie A and
Z is the group of all automorphic scalar multiplications (i.e., all automorphisms
xl, . where x is an tnvertible element of R), then G7 € W if, and only if, G ¢ 9;

(1) if G €(R) and »(G) € F then G € 9);

(iv) if G is a group of automorphisms of a finitely generated R-module A
and B is a G-invariant submodule such that the automorphism groups induced
by G on A]B and B both lie in ) then G is in 9).

Under these civcumstances, L(R) << 9.

Let ), be the class of all groups such that for every locally nilpotent normal
subgroup H satisfying H ¢ G we have {1 < «(G). Further, let 9, be the class
of all groups with the following property: if A is a locally nilpotent normal
subgroup of G such that /7 e G, then fI I «,(G) for some finite ¢. Suppose
we can verify the listed conditions for both 9, and 9,. Then Theorem 4
asserts Y(R) <X W, N Y, [Fnow G e Q(R), H <1 Gand H ¢ G, then H < 5(G)
by Theorem | (1). Since &7 =9, N Y, , Theorem 3 is proved.

Condition (i1) obviously holds for both 9, and 9,, while the verification
of (1) and (ii1) is straightforward (and given in Section 3.2). Condition (iv)
is more interesting. If 7 is a group as in (iv) and K is the subgroup of all
elements that act trivially on both 4/B and B, then G/K & Ry9). It is obvious
that 9, and 9, are R -closed. Hence if 9 =9, (# =1,2), GIK<¥,. To

deduce that G itself is in 9, we shall need

THEOREM 5. If R is a noetherian commutative ring, A is a finitely generated
R-module and A is a R-algebra of endomorphisms of A, generated as R-module
by locally nilpotent endomorphisins, then /A is nilpotent.

We mention in passing the following immediate corollary.

COROLLARY. If R is a noetherian commutative ring and A is a R-algebra
that is generated as R-module by a finite number of nilpotent elements, then A is
nilpotent.

This corollary improves Proposition 2.1 of [10] as well as two theorems of
Barnes [2].
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I.5. In order to prove T'heorems 2, 4, and 1 (iii) we shall make use of
the following result.

ProposiTion 1. Let X be a Q-closed class of groups and 9 a class satis-
Jying condition (iv) of Theorem 4. If X N L(R) <L Y for all fields R, then
XN YR) << Y for all noetherian commutative rings R.

Let 3 denote the class of all groups with central height ~. w2. We shall
find that this class satisfics condition (iv) of Theorem 4 and thus, by Proposi-
tion | (with X the class of all groups), we only need to prove Theorem 1 (iii)
when R is a field. Then we may even assume R to be an algebraically closed
field. To deal with this case we must know that «{G') contains a triangulable
subgroup, say M, of finite index in «(G) and normal in G. Then «(G)/M
is a finite normal subgroup of G/M. 'T'hercefore there exists an integer £ such
that [(G), ,G] = T'is contained in M and hence 7' 1s triangulable. The proof
of Theorem 1 (i11) will then be completed by establishing

ProposiTioN 2. If F is a field, G € Q(F) and T is a triangulable normal
subgroup of G contained in the hypercenter, then T <. o (G).

'T'he proof of the existence of the subgroup M, mentioned above, involves
the well-known theorem of Kolchin-Mal'cev that cvery soluble group of
matrices over an algebraically closed field contains a triangulable normal
subgroup of finite index. It may be worth remarking (although we shall
make no use of it here) that Proposition 1 enables one to generalize this
theorem in the following form:

if R is a noetherian commutative ring and G is a soluble group of automorphisms
of the finitely generated R-module 4, then G contains a subgroup of finite index
whose commutator group stabilizes a finite series of A.

'T'he remainder of the paper is divided into three sections. The first of these
contains the proofs of Theorems 2 and 4; the sccond is devoted to the proof
of 'Theorem 5 and the verification of conditions (1), (111), and (iv) of Theorem 4
for the classes 9, and 9, (thereby completing the proof of Th.eorem 3); and
the last section contains the proof of 'Theorem | (1),

2. Proors oF THEOREM 2 AND THEOREM 4

2.1. If A is a finitely gencrated R-module, we shall denote the group of all
R-automorphisms of 4 by Aut, 4. If G is a subgroup of Aut, A and B
is a G-invariant submodule of 4, we shall write G, for the image of G
under the homomorphism induced by 4 — A/B and G, for the image of G
under the restriction G — Aut, B.
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Lemma 1. Suppose X is a class of groups satisfying the conditions (i) and
(iii) of Theorem 2 and that R is a finitely generated ring. Let A be a free R-module
of rank n and t* = 0, where 1 is the nilradical of R. If G is an X-subgroup of
Auty A, then G € U*, where k depends only on n and t.

Proof. If m is a maximal ideal of R then R/m is finite and r is the inter-
section of all such m (cf. Corollary 1, p. 68 [4]).! For each m, G 4, is finite
and hence soluble (by the hypothesis on X). Since /4m is a vector space over
the field R/m of dimension 7, by a theorem of Zassenhaus [15], there exists an
integer »’, depending only on #, so that G, 4, has derived length at most #".
Hence G/K € A" where K is the intersection of the kernels of all homomor-
phisms G — G 4, . Since A4 is a direct sum of copies of R, N Am = 4r
and thus 4(K — 1) < 4.

For each positive integer 7, define K, to be all elements g in G
such that A(g — 1) << Ar’. Then K, is the kernel of the homomorphism
G—>Autp, A/Av, Ky, =K and K, = 1. If xe K,;, y€K;, then clearly
A — 1) (y — 1) < Ar**7 and hence

Afx, y] — 1) = A{xy — yx) < Art
Thus [K;, K;] < K,.;and so K is nilpotent of class < z.

PROPOSITION 3. Let X be a class of groups satisfying the conditions (1), (ii),
(i) of Theorem 2. Suppose R is a commutative ring with nilpotent nilradical and
that A is a finitely generated free R-module. If G is an X-subgroup of Auty A4,
then G is soluble.

Proof. Let H be a finitely generated X-subgroup of G and supposc
H = Gp{h, , -+, b, }, where each ;' equals some 2, . If A =a,R P -+ P a,R,
then each a4, can be written as a R-linear sum of @, , **+, a,, , say

k
(k) . .
a;h, = Zal-r“ , j=1 = n k=1, m

t=1

Let S be the subring of R generated by
=1, mk =1, m}

and let B =aS @ - @ a,S. Then B is H-invariant and H <{ Autg B.
If ' =0, where r is the nilradical of R, then (S N r)! = 0, where S N1
is the nilradical of S. It follows from Lemma I that H € %%, where & = k(n, t).

1] wish to thank Hyman Bass for drawing my attention to the use of Hilbert’s

zero theorem in this connexion. Apart from this, the present proof is essentially a
repeat of the argument in [6].
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We now conclude, using condition (ii) on ¥, that G & LW* and thus G € Y~

Proof of Proposition |.  Lct R be a noctherian ring, 4 a finitely generated
R-module and G an X-subgroup of Aut, 1. If G ¢ 9, then there exists a
G-invariant submodule C such that G, . ¢ 9 but G, , € ¥ for all G-invariant
submodules B = C. We shall obtain a contradiction by proving that
G40 € 9. Without loss of gencrality we may assume that C = (.

Let p be a maximal element of Ass () (3], Corollary 1, p. 132) and denote
by B the set of all @ in A4 such that ap + 0. Then B is a fully invariant sub-
module and hence it admits G. Supposc a is a nonzero clement in B and x
an clement in R such that ¢x (. Then the annihilator o of @ contains p
and x. But a «J p’ for some p’ € Ass (1) ([3], Proposition 8, p. 137) and hence
p -= p’ by the maximality of p. T'herefore v & p and consequently B is torsion-
free as a module over the integral domain 5 R/p.

Let I be the quotient field of S. Then 650 1 is a S-monomorphism
of B into By - B¢l and this induces a monomorphism £
Gp— Aut, By . Since X = QX, G ¢ X and then, by hypothesis, G,¢ ¢ 9.
Hence also G € 9. Now (.5 € 9 by construction, and thercfore, by con-
dition (iv) on 9, G 9, as required.

Theorem 2 s now an immediate consequence. For by Proposition 3,
X NER) <L & for all fields R and thus Proposition | yields the result
provided € is seen to satisfy the condition (iv) of Theorem 4. But this is
clear: in the notation of that condition, if K is the set of all elements in G
that induce the identity automorphism on /B and on B, then G/K is soluble
and K is Abelian since A(x - 1)(y 1) - Oforallx, yin K.

We remark that Theorem 2 also has the following corollary.

ProposITION 4. Let X be a class of groups satisfying conditions (i), (ii),
(iii) of Theorem 2. Then X N L(R) << LS for every commutative ring R.

Proof. If GeX M E(R), choose a finite subset and a finitely generated
X-subgroup £ containing this. As in the proof of Proposition 3, we find a
finitely generated subring .5 of R such that the submodule B generated by a
set of R-generators of A is /f-invariant and H - Autg B. (The fact that 1

was a direct sum in Proposition 3 was not relevant to that part of the proof.)
Now S is noctherian and hence 1 is soluble by Theorem 2.

CoroLLary. If G € &(R), for any commutative ring R, then L(G) = n(G)
and this contains R(G) as a subgroup.

Proof. 1f we take X to be the class of groups generated by their Engel
elements, then Proposition 4 asserts that H = Gp{L(G) U R(G)} is locally
soluble. Hence (e.g., by Theorem 4 of [9]), H is locally nilpotent and thus
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equals 7(G). Since now R(G) < n(G), R(G) is a subgroup, by Lemma 14
of [9].

2.2. Proof of Theorem 4. If we take X to be the class of all groups in
Proposition 1, then the proposition asserts that we only need to consider
the case when R is a field. It is clear that we may even assume R to be alge-
braically closed. The proof now follows the usual pattern for results of this
type (cf., in particular, the proof of Theorem 9.4 in [1/].)

Let G < Autg V, where J7 is a n-dimensional vector space over R. We
shall prove G € 9 by an induction on n. If W is a G-invariant subspace such
that 0 << W << V| then G, G}, €9 by induction and hence G €Y by
condition (iv). So assume that ] is a simple RG-module.

If K <1G, then V is semi-simple as RK-module and we may write
'=V,®--@®V,, where ecach I; is a direct sum of isomorphic simple
RK-modules and each simple summand of V; is nonisomorphic to each in
I, for all £ 4 j. Then G acts as a permutation group on {V; , ---, /,} and the
kernel H of this representation consists of all g in G that fix each I;. If
r -1, then Hy and Hy,, lie in 9 by the induction hypothesis and hence
H € Y by condition (iv). Thus G € 9F and hence G €9 by condition ().

Henceforth we assume that for every K <1 G, I/ 1s the direct sum of
isomorphic simple RK-modules. If K is Abelian then every element of K
is a scalar multiple of the identity mapping (because R is algebraically closed).

Let Z be the subgroup of Autg I” consisting of all x1,, for x 2 0 in R,
and form G; = GZ. Then also G, = [17, where H is the set of all elements in
G, of determinant 1. By condition (ii), G € 9 if, and only if, G; € 9 and this
holds if, and only if, H € 9. We may therefore confine attention to H.

Every Abelian normal subgroup of H is contained in 7. Hence every
nilpotent normal subgroup N of H has its center in Z, and thus, since all
elements are of determinant 1, NV is finite (Lemma 9.3, [77]). Now n(H) is
locally nilpotent and hence is soluble (by the theorem of Zassenhaus referred
to in the proof of Lemma 1). Thus () is finite by Lemma 2, below, and
consequently f € 9, by condition (iii) on 9.

The following lemma occurs as part of the argument on p. 40 of [//].
We wish to refer to it again in the next section and therefore reproduce it
for the convenience of the reader.

Lemmva 2. If S is a soluble normal subgroup of a group G such that every
nilpotent normal subgroup of G contained in S is finite, then S itself is finite.

Proof. LetS = S® = S~ ... = §0) = ] be the derived series of S.
Suppose S is finite and let C be the centralizer of S in S"-1), Then C
is normal in G, S1/C is finite and [C’, C] = 1 (because ¢’ < §). Hence



300 GRUENBERG

C is finite, by hypothesis, so that S is finite. Therefore .S is finite, by an
induction on k.

3. Proors or THEOREM 3 aAND THEOREM 5

3.1. Proof of Theorem 5. Since ¢l satisfies the maximal condition on
R-submodules, we may assume (cf. the proof of Proposition 1) that the action
of A on A4/B is nilpotent for every A-invariant nonzero submodule B but
that the action of /1 on A4 is not nilpotent. Our aim is to produce a contra-
diction.

Precisely as in the proof of Proposition |, we construct a fully invariant
nonzero submodule B such that Bp == 0 where p is a prime ideal of R and B
is torsion-free as R/p-module. It follows from Lemma 2.2 of [/0] (cf. the
remark at the end of the proof there, on p. 447) that /1 has nilpotent action
on B. Since the action on /B is nilpotent by construction, the action on
is nilpotent and thus we have our desired contradiction.

ProposrtioN 5. Let A be a finitely generated module over the noetherian
ring R and G a subgroup of Auty, A. Suppose B is a G-invariant submodule
and H a normal subgroup of G such that

Ah—1)<B and Bh- 1) =0

Jor all hin H. Then H ¢ G implies H < o (G) for some finite t.

Proof. If hel, then a + B—a(h -- 1) is a well-defined mapping,
call it 2. Clearly #" € Homy (4/B, B) and k-~ k' is a monomorphism of H
mto the additive group Homy (4/B, B). Since R is noetherian and A is
finitely generated, Homg (4/B, B) is finitely genecrated as an R-module.
Therefore the R-submodule generated by H', call it M, is also finitely gene-
rated over R.

Now Homg (A/B, B) i1s a G-module i the standard way: if
¢ € Homg (4/B, B) and g € G, gg is the mapping

a+ B—((ag”' - B)op)g.

On the other hand, the Abelian normal subgroup H is a G-module by con-
jugation. It is now easy to check that #— 7’ is a G-module homomorphism.

Hence [k, g] =h'(g — 1) for £ in H and g in G. Therefore H ¢ G implies
that, for each g in G, g — 1 acts as a locally nilpotent endomorphism on M.
Now by Theorem 5, there is an integer 7 such that

Mg —1D (g~ 1)=0
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forall g, , -+, g;in G. This implies [H, g, , -, g,] -~ lforallg,, -+, g,in G,

as required.

3.2. We ask the reader to turn back to the two paragraphs immediately
after the statement of Theorem 4 (in Section 1.4). He will then see that in
order to complete the proof of Theorem 3 we need now only verify condi-
tions (i), (iii), and (iv) of Theorem 4 for the classes 9); and 9, .

Verification of condition (iv). Let G <. Auty A and suppose K is the
intersection of the kerncl of G — G, with the kernel of G— Gy . Let H
be a locally nilpotent normal subgroup of G satistying HeG. If G z¢ 9,
and Gz €9, , then HK/K is contained in «{G/K). Now HNK ¢ G and thus
H N K <C oy(G) for some finite ¢, by Proposition 5. Hence 17 < oG).

If Hle G, then we argue with ¥, in exactly the samc way and show
H < . (G) for some finite ¢ + 7.

Vertfication of condition (ii). If H e G, where H is a normal subgroup
of G contained in 7(G) and 7(G) is finite, then H < ay(G) for some finite ¢,
by Theorem 3.1 (i) of [/0] (with /N of that theorem equal to 9(G)).

Verification of condition (i). Let N be a normal subgroup of finite index
in G and /7 a locally nilpotent normal subgroup. We suppose either (a) that
HeG and N9, or (b) that Hle G and N e®,. In either case,
K = [H, .G] < N for some finite v (since § <Y, N Y,). Now K = o N)
in case (a), while K < a (V) for some finite s, in case (b).

Let K, = K N oy(N) for each A 2 0. Then K, /K, is 2 G/ N-module and
hence, by Proposition 2.2 of [[0], K,,,/K, < «,(G/K,) in case (a), while
Ky1/K, << «,(G/K,)) for some finite z, in case (b). It follows that K, and there-
fore also [, is contained (a) in «(G) or (b) in «,(G) for some finite #, as the
case may be.

The proof of Theorem 3 is now complete.

4. ProoF oF THEOREM [ (iii)

The class 3 of all groups of central height < w2 satisfies condition (iv) of
Theorem 4. For let G5 and Gy be in 3 and suppose K is the meet of the
kernel of G — G, with the kernel of G — Gy, If U is the inverse image
in G of «,(G ) and I the inverse image of «,(Gp), then there exists a finite
s such that

M =[uG), Gl UnTV.

Hence MK/K < o (G/K), since clearly (U N V) K/K < a,(G/K). But
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by Proposition 5, o G) M K < a(G) for some finite . Therefore M < «
as required.

It now follows from Proposition 1 that we only have to prove Theorem | (iii)
for linear groups over a field. Morccver, without loss of generality, we may

(G),

0

supposc the field to be algebraically closed.

Let G € £(F), where F is an algebraically closed field, and denote by S the
soluble radical of G (i.e., the unique maximal soluble normal subgroup of G).
The existence of this radical was established by Zassenhaus [15] (cf. also [13],
Theorem 8.12, p. 56). We wish to prove that S contains a triangulable sub-
group of finite index in S and normal in G.

The best way to see this is to use the Zariski topology on G.? The closure,
in this topology, of a soluble subgroup is itself soluble ([/3], Corollary 2,
p. 54} and therefore S'is closed in G. It follows that the connected component
of the identity in S, call it D, is closed in G and hence is normal in G, But D
has finite index in S ([/3], Lemma 4.5, p. 28) and D is triangulable by the
theorem of Kolchin ([/3], Theorem 4.11, p. 30).

Alternatively we may argue as follows. If 9 is the class of all groups in
() which possess a triangulable normal subgroup and of finite index in
their soluble radical, then it is easy to verify the four conditions listed in
Theorem 4 for the class 9 (condition (iii) being an immediate consequence of
Lemma 2). Hence a repeat of the argument used to establish Theorem 4 in
the case when R was an algebraically closed field shows that ¢(F) = 9. (The
reader should note however that 9 is here not an abstract class of groups.)

It D is the triangulable normal subgroup of G such that (S : D) is finite,
then M = o(G) N D is a triangulable normal subgroup of G and («(G) : M)
is finite (because ofG) <2.S). Now the remarks immediately preceding the
statement of Proposition 2, in Section 1.5, show that it only remains to
establish that proposition.

Proof of Proposition 2. l.et G < Autg l™ and use an induction on the
dimension of I, Since 7' is triangulable, there exists a common eigenvector
for the elements of T, say e. Let £2 be the FG-submodule generated by ¢ and
suppose £ 5= I, Since eg, for every g in G, is an eigenvector for all the
elements of 7', therefore 1'; 1s diagonable and 7', is triangulable. Hence,
by induction, Ty < o (Gg) and Typ = o (Gyg). If T is the subgroup of
T consisting of all elements that induce the identity on F/J and on £, then
we have shown that T/T < o (G/T,). But T, < «(G) for some finite ¢,
by Proposition 5. Hence T < a (G), as required.

Now assume [ =1, ie, T s diagonable. We may write
[" = By tri- (@ E,, where cach E; is a direct sum of isomorphic simple
FT-modules and each simple summand of %, is nonisomorphic to each in

2T am indebted to Mr. B. Wehrfritz for showing me this short proot.



THE ENGEL STRUCTURE OF LINEAR GROUPS 303

E;vor all 54 j. Thus if ¢ € T, the restriction of ¢ to £; is multiplication by
some nonzero scalar, call it #(¢); and if 7/ # j, there exists ¢ in 7T such that
i(t) =# j(t). Every element of G induces a permutation on {£, , -+, £,}. Let C
be the kernel of this permutational representation of G. We assert C is the
centralizer of T in G. For if g centralizes T, then for any e in F; and ¢t in T,

(eg) t = (et) g =1(2) (eg),

whence eg € E, . Thus g € C. Conversely, if g  C|

(eg) 1 = (1) (eg) = (1) e) ¢ = (et) &,
so that g centralizes 7. It follows that 7' is a G/C-module, where G;C is a
finite group. Now T ¢ G implies T' < «, (G), by Proposition 2.2 (ii) of [/0].

An interesting and still open question concerning Theorem [ (1it) was
raised by Dr. Otto Kegel. If & is a group of # X n matrices over a ficld, then
we know that the central height of G is at most w - &, for some finite k.
Kegel asks if & is bounded above by some integer depending only on #, and
if so, what such a bound might be like.

REFERENCES

/. Baegr, R. Engelsche Elemente Noetherscher Gruppen. Math. Ann. 133 (1957),
256-270.
2. Barngs, D. W. Conditions for nilpotency of Lic rings. II. Math. Z. 81 (1963),
416-418.
3. Boursaki, N. “Algebre Commutative,” Chapter 4. Hermann, Paris.
4. Boursaki, N. “Algebre Commutative,” Chapter 5. Hermann, Paris.
5. Garas¢ux, M. S. On the theory of generalized nilpotent linear groups. Dokl.
Akad. Nauk BSSR 4 (1960), 276-277.
6. GaraSCuk, M. S. AND SUPRUNENKO, DD. A, Linear nilgroups. Dokl. Akad. Nauk
BSSR 4 (1960), 407-408.
7. GARASCUK, M. S. anD SuprRUNENKO, DD. A. Linear groups with Engel’s condition.
Dokl. Akad. Nauk BSSR 6 (1962), 277-280.
8. Gorop, E. S. On nilalgebras and finitely approximable p-groups. Izzv. dkad.
Nauk SSSR Ser. Mat. 28 (1964), 273-276.
9. GRUENBERG, K. W. The Engel elements of a soluble group, Illinois §. Math.
3 (1959), I51-168.
10. GRUENBERG, K. W. The upper central series in soluble groups. lllinois §. Math.
5 (1961), 436-466.
11. Harc, P. Nilpotent Groups. Canadian Mathematical Congress, Summer Seminar,
University of Alberta, 1957.
12. HainL, P. On non-strictly simple groups. Proc. Cambridge Phil. Soc. 59 (1963),
531-553.
13. KarrLansky, I. “An Introduction to Differential Algebra,” Hermann, Paris.
{4. KeGeL, O. On the solvability of some factorized linear groups. Illinois . Math.
9 (1965), 535-547.
15. ZassenHaus, H. Beweis eines Satzes iiber diskrete Gruppen. Abhandl. Math. Sem.
Univ. Hamburg 12 (1938), 289-312.



