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We use comparison principles, variational arguments and a trunca-
tion method to obtain positive solutions to logistic type equations
with harvesting both in R

N and in a bounded domain Ω ⊂ R
N ,

with N � 3, when the carrying capacity of the environment is not
constant. By relaxing the growth assumption on the coefficients of
the differential equation we derive a new equation which is easily
solved. The solution of this new equation is then used to produce
a positive solution of our original problem.
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1. Introduction

In this paper we mainly study the existence of positive solutions to the problem

{−�u = λau − b g(u) − μh in Ω,

u = 0 on ∂Ω,
(1)

when Ω = R
N , in which case the boundary condition is understood as lim|x|→∞ u(x) = 0, as well as

when Ω ⊂ R
N is a bounded smooth domain. Here N � 3, and both the functions a , b , h , and the
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parameters λ, μ are nonnegative. Problem (1) can be thought of as the steady state of the reaction–
diffusion equation

⎧⎪⎨
⎪⎩

∂u

∂t
= �u + λau − b g(u) − μh, x ∈ Ω,

u(x,0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞).

We interpret this as the evolution equation arising from the population biology of one species. As
such the function u represents the population density of the species. Throughout we assume that

lim
s→0

g(s)

s
= 0 and lim

s→∞
g(s)

s
= ∞, (2)

so that the nonlinearity λau − b g(u) represents a logistic type growth. Furthermore note that both
coefficients a and b depend on the spatial variable, indicating variable linear growth and competition
rates in the environment. The function h is interpreted as the harvesting distribution and μh is the
harvesting rate. Hence, such equations have been used, for example, to model fishery or hunting
management problems. We refer to [9] for further historical background and references. Intuitively,
one expects the survival of the species, i.e. the existence of a positive solution to (1), only for small
values of μ.

Mathematically, the presence of the harvesting term introduces a number of challenging issues in
the study of existence of positive solutions. Indeed the harvesting term makes the right-hand side
of the equation negative at u = 0, and therefore our problem belongs to the class of so-called semi-
positone problems (see [2]). This prevents the direct application of the maximum principle.

The main inspiration for our study was the recent work [3]. There the authors consider problem (1)
in R

N with the positive and bounded function a ∈ LN/2(RN ), the natural setting for the eigenvalue
problem

−�u = λau, u ∈ D1,2(
R

N)
,

where D1,2(RN ) is the completion of C1
0(RN ) with respect to the norm (

∫ |∇u|2)1/2. In addition,

they assume that g(u)
u is monotone, g(u) behaves like up , p > 1, at infinity and most significantly

b = a . These assumptions play a crucial role in the variational approach presented in [3], where,
using some delicate integral inequalities, the authors prove, for a certain range of λ, the existence
of a positive solution bounded below by 1/|x|N−2 at infinity, for μ sufficiently small. On the other
hand, problem (1) was also considered by Du and Ma in [4] and [5] for g(u) = up in the absence of
the harvesting term. The existence of a positive solution was then proved with no restriction on the
growth of the nonnegative function b .

Our first motivation for this work was to study the existence of a positive solution in R
N in the

presence of harvesting under minimal restriction on the growth of b . The novelty of our approach is
that it not only enables us to relax the hypotheses on the nonlinear term g(u) to the more natural
conditions (2), so that it does not require the usual monotonicity and power-like behavior, but also,
more importantly, that it allows for consideration of a broad class of functions b . In particular we will
be able to handle some functions b satisfying b(x) → +∞ as |x| → ∞, reflecting the assumption that
the life conditions are less and less favorable as one moves to infinity.

In our approach we are naturally led to consider equations of the form

−�u = λau

[
1 − k

(
u

d

)]
− μh, (3)

where k is increasing and d is a given function. We note that this reduces to the classical logis-
tic model if k(u) = u and d is a constant. Therefore in line with the classical terminology, letting
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ς = max k−1(1), one may call ςd the carrying capacity of the environment because without harvest-
ing or diffusion the growth rate of the population, λau[1 − k( u

d )], is negative for u > ςd .

As it turns out, for suitable choices of the function d Eq. (3) is relatively simple to solve. In fact,
using variational arguments, the maximum principle and comparison principles, we first prove the
existence of a positive solution to (3). Afterwards this solution is used to obtain a solution of the
original problem decaying at infinity not faster than d . Our method is not only simpler than that in
[3] but also provides more general results under less restrictive hypotheses on the coefficients.

In Section 7 we apply the ideas developed to deal with the case of whole space R
N to the bounded

domain case. This in particular allows us to consider the situation where b blows up at the boundary
of Ω , which to our knowledge has not been considered before. Indeed since the boundary of Ω is
hostile to the population, it is natural to assume that the carrying capacity of the environment should
go to zero at ∂Ω . The blow up of b at the boundary of the domain can then be interpreted as a
consequence of the vanishing of the carrying capacity of the environment at the boundary of the
domain. Our analysis will show that in some sense it is natural to consider a carrying capacity for the
environment that is proportional to the distance to ∂Ω . Our results in this chapter complement and
extend known results in the bounded domain case (see [9]).

The organization of the paper is as follows. In Section 2 we state our hypotheses and make some
preliminary observations. We set up problem (1) in R

N when b does not grow “too fast.” In Section 3
we consider Eq. (3) and obtain a solution for this equation. The existence of a positive solution for
(3) is then proved in Section 4. In Section 5 we use this solution to get a positive solution to (1)
when the function b grows not faster than a certain power of the distance to the origin. In Section 6
we discuss the case when the function b does not satisfy the growth requirements of the previous
section. Section 7 deals with the case of a bounded domain. In Section 8 we generalize to the case
where the function g also depends on the spatial variable. Finally, in Appendix A we prove some
auxiliary results.

Throughout we denote by H := D1,2(RN ), N � 3, and ‖u‖ = ‖u‖D1,2(RN ) = (
∫ |∇u|2)1/2 the norm

on H. When the region of integration is omitted it is understood to be R
N .

2. The setup in RRR
N

We wish to prove the existence of a positive weak solution to the equation

−�u = λau − b g(u) − μh, u ∈ H. (4)

We define a weak solution to be a function u ∈ H satisfying

∫
∇u · ∇v = λ

∫
auv −

∫
b g(u)v − μ

∫
h v (5)

for all v ∈ D(RN ). We state our assumptions.

(Ha) The function a : R
N → R is positive and belongs to LN/2(RN ) ∩ L∞(RN ).

We call

λ1 = inf
u∈H\{0}

‖u‖2∫
au2

.

(Hg) The function g : R → R
+
0 is continuous, with g(s) = 0 for s � 0. Furthermore, it satisfies

lim sup
g(s)

s1+β
< ∞, (6)
s→0
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where β > 0 is a fixed constant, and

lim
s→+∞

g(s)

s
= +∞. (7)

(Hb ) The measurable function b : R
N → R is nonnegative, not identically equal to zero, and satisfies

b � C1ad −β (8)

for some C1 > 0, where d : R
N → R is the Aubin–Talenti instanton defined by

d (x) = (
1 + |x|2)−(N−2)/2

. (9)

Let B0 = {x ∈ R
N : b(x) = 0}. We assume either B0 has measure zero, or B0 = int B0 with ∂ B0

Lipschitz.

In the former case we set λ∗ = +∞ and in the latter case

λ∗ = inf
u∈D1,2(int B0)\{0}

∫
B0

|∇u|2∫
B0

au2
.

By the unique continuation principle [10, p. 519] λ1 < λ∗ .

(Hλ) The value λ is such that λ1 < λ < λ∗ .
(Hh ) The nonnegative and not identically equal to zero function h belongs to the space h ∈ L1(RN )∩

Lq(RN ) ∩ Ls(RN ), for some q > N
2 and some s > N , and there exists a constant C2 > 0 such that

RN/r |h |Lq(RN \B R (0)) � C2 for all R ∈ R
+ (10)

with 1
q + 1

r = 1. Here B R(0) denotes the ball centered at zero with radius R .
(Hμ) The parameter μ is nonnegative.

Remark 2.1. Under the above hypotheses any positive weak solution u of (4) belongs to C1,α
loc (RN ).

Furthermore, lim|x|→∞ u(x) = 0.

Indeed, u satisfies

−�u − λau � 0.

Therefore by [7, Theorem 8.17], for any x ∈ R
N , we have

sup
B1(x)

u � C |u|L2N/(N−2)(B2(x)) � C‖u‖ � C .

So u ∈ L∞(RN ), and lim|x|→∞ u(x) = 0. From elliptic regularity theory [7], it follows u ∈ C1,α
loc (RN ). We

use the letter C to represent various positive constants.
The setting in which we make assumption (Hλ) is clarified in

Proposition 2.2. Suppose u ∈ H is a positive weak solution to (4).
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(i) The value λ satisfies λ1 � λ. This inequality is strict if μ > 0 or if the restriction of g to R
+ is positive.

Suppose in addition int B0 
= ∅.

(ii) If h = 0 on B0 , then λ < λ∗ .
(iii) The inequality λ < λ∗ might not hold if h 
≡ 0 on B0 and μ > 0.

The proof is given in Appendix A so that we focus first on the more important part of the paper.
In the sequel we will sometimes abbreviate weak solution to solution.

3. A related problem

From (6) there exist 0 < s0 � 1 and C4 > 1 such that

g(s)

s
� λ

C4

C1
sβ for s � s0.

We may assume C4 � 1
sβ0

. We take

l :=
(

1

C4

)1/β

, (11)

so

l � s0. (12)

Using (8),

b
g(s)

s
� λa

(
s

ld (x)

)β

for s � s0.

We define

k(s) = sβ (13)

for s > 0, k(s) = 0 for s � 0. We have

b g(s) � λask

(
s

ld

)
for s � s0. (14)

We first consider the equation

−�u = λau

[
1 − k

(
u

ld

)]
− μh . (15)

Although we are primarily interested in the case where k is as in (13), we more generally assume

(Hk) k(s) = 0 for s � 0, k is continuous, increasing (not necessarily strictly) and k(ς) = 1 for some
ς > 0.
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In this and the next sections instead of (Hλ) we assume

(Hλ)′ The value λ is such that λ > λ1.

Theorem 3.1. Under (Ha), (Hk), (Hλ)′ and (Hh ), there exists μ0 > 0 such that for all 0 � μ � μ0 Eq. (15) has
a positive weak solution uμ ∈ H ∩ C1,α

loc (RN ). Furthermore, there exists C3 > 0 such that for all 0 � μ � μ0
this weak solution uμ satisfies

uμ(x) � C3

|x|N−2
for large |x|. (16)

In this section we prove existence of a solution to (21) below. This solution will be used in the
next section to establish Theorem 3.1. We define l̂ by

l̂ = ς l. (17)

Remark 3.2. The function l̂d is a supersolution of (15).

Indeed, this follows from −�d = N(N − 2)d 2∗−1
> 0, where 2∗ = 2N/(N − 2). Consider G : R

N ×
R → R with G(x, u) := λa(x)

∫ u
0 sk( s

ld (x)
)ds and the functional Iμ : H → R ∪ {+∞} defined by

Iμ(u) = 1

2
‖u‖2 − λ

2

∫
a
(
u+)2 +

∫
G( · , u) + μ

∫
hu (18)

if
∫

G( · , u) < ∞, and Iμ(u) = +∞ otherwise. We have used the standard notation u+ = max{0, u}.
The function d belongs to H. The function h belongs to the space L2N/(N+2)(RN ) because
1 < 2N/(N + 2) < N/2 < q. So we have Iμ(l̂d ) < ∞ since

∫
G( · , l̂d ) < ∞. Indeed, k increasing in

R
+ implies

G(x, u) � λa(x)u2k

(
u

ld (x)

)
. (19)

Hence,

∫
G( · , l̂d ) � λl̂2

∫
ad 2

< C‖a‖LN/2(RN )‖d ‖2
L2N/(N−2)(RN )

� C

( ∞∫
0

1

(1 + r2)(N+1)/2
dr

)(N−2)/N

< ∞.

We define the set

N = {
u ∈ H: u � l̂d a.e. in R

N}
. (20)

The set N is weakly closed.

Lemma 3.3. Let L � 0. The functional Iμ is coercive on N, uniformly in μ with 0 � μ � L, i.e. for each C > 0,
there exists R > 0 such that for all 0 � μ � L and u ∈ N, if ‖u‖ > R then Iμ(u) > C.
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Proof. Suppose by contradiction there exists un ∈ N with ‖un‖ → ∞, and μn ∈ [0, L] such that
Iμn (un) � C . The sequence vn := un/‖un‖ is bounded in H and so we may assume vn ⇀ v in H,

vn → v a.e. in R
N . Since un � l̂d we have v+ ≡ 0. Thus

∫
a(v+

n )2 = o(1). Clearly,

Iμn (un) � ‖un‖2
(

1

2
+ o(1) − C

|h |L2N/(N+2)(RN )

‖un‖
)

→ ∞.

This contradiction proves the lemma. �
Since the functional Iμ is weakly lower semi-continuous on H, it admits a minimizer ûμ on N for

each μ � 0. We note the derivative I ′μ(ûμ)ϕ is well defined for any ϕ ∈ H ∩ L∞(RN ) with compact

support because sup ûμ is uniformly bounded (by l̂d ). In Lemma 5.4 we prove the differentiability of
a related functional in a more general situation when we do not know a priori sup ûμ is uniformly
bounded.

Lemma 3.4. The function ûμ is a solution to the equation

−�u = λau+ − λauk

(
u

ld

)
− μh . (21)

The argument of the proof is identical to the one in [11, Section I.2.3].

Lemma 3.5. There exist μ1 , C5 > 0 such that for 0 � μ � μ1 , we have infN Iμ � −C5 < 0.

Proof. From the definition of λ1, there exists a sequence un ∈ D(RN ) \ {0} satisfying

‖un‖2∫
au2

n
→ λ1.

Since

min

{ ‖u+
n ‖2∫

a(u+
n )2

,
‖u−

n ‖2∫
a(u−

n )2

}
� ‖un‖2∫

au2
n

if un changes sign, we may assume each function un is nonnegative. Fix an n large enough so

‖un‖2∫
au2

n
< λ

and let K be the support of un . For small t ∈ R
+ , the energy of tun is

Iμ(tun) = t2

2
‖un‖2 − λt2

2

∫
K

au2
n +

∫
K

G( · , tun) + μt

∫
K

hun

� t2

2
‖un‖2

(
1 − λ

∫
K au2

n

‖un‖2

)
+ t2o(1) + μt

∫
K

hun.

Here o(1) → 0 as t → 0. We have used (19), k is continuous at zero with k(0) = 0 and un ∈ D(RN ).
Note d −1 ∈ L∞(K ). We fix t small enough so tun ∈ N and the sum of the first two terms is negative,
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say equal to −C , with C > 0. For μ sufficiently small, 0 � μ � μ1, the last term can be made smaller
than −C/2. This shows infN Iμ � −C/2 =: −C5. �

As in [3, Proposition 1.4], there exist 0 < r0 < R0 such that

0 � μ � μ1 �⇒ r0 � ‖ûμ‖ � R0. (22)

Indeed, the inequality

Iμ(u) � −C‖u‖2 +
∫

G( · , u) − C‖u‖ � −C‖u‖2 − C‖u‖

implies

lim inf
u→0

Iμ(u) � 0.

Thus (22) follows from Lemmas 3.3 and 3.5.

4. A positive solution for the related problem

In this section we use the minimizers ûμ of Iμ on N obtained above, Lemmas 3.3 and 3.5, and
(22) to complete the

Proof of Theorem 3.1. By the Riesz Representation Theorem there exists w ∈ H satisfying

∫
∇w · ∇φ =

∫
hφ (23)

for all φ ∈ H, as h ∈ L2N/(N+2) . Since also h ∈ Ls for some s > N , by elliptic regularity theory w
belongs to the space C1,α

loc (RN ) for some α > 0. We can rewrite (21) as

−�(ûμ + μw) = λaû+
μ

[
1 − k

(
ûμ

ld

)]
.

The right-hand side satisfies 0 � λa û+
μ[1 − k(

ûμ

ld )] � λa û+
μ , since ûμ � l̂d and k is increasing in R

+ .

As û+
μ ∈ L∞(RN ) and a ∈ L∞(RN ), by elliptic regularity theory ûμ ∈ C1,α

loc (RN ).
There exists 0 < μ2 � μ1 such that for all 0 � μ � μ2 one can choose x0(μ) where ûμ(x0(μ)) > 0.

Otherwise ûμ � 0 and

Iμ(ûμ) = 1

2
‖ûμ‖2 + μ

∫
h ûμ

� 1

2
‖ûμ‖2 − μ|h |L2N/(N+2) C‖ûμ‖ � 0

for small μ because r0 � ‖ûμ‖ � R0 (see (22)). This contradicts Lemma 3.5.
Because the function ûμ2 is a solution of (21) for μ = μ2, the function ûμ2 is a subsolution of (21)

for 0 � μ � μ2. Using Lemma 3.3, we minimize the functional Iμ over the set

M = {
u ∈ H: ûμ2 � u � l̂d a.e. in R

N}
. (24)
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Thus, for 0 � μ � μ2, obtain new solutions uμ of (21), which means

∫
∇uμ · ∇v = λ

∫
au+

μv − λ

∫
auμk

(
uμ

ld

)
v − μ

∫
h v (25)

for all v ∈ D(RN ).
For later reference, we note that using Lemma 3.5, inequality (22) and observing that

Iμ(uμ) � Iμ2(ûμ2 ) + C |μ − μ2|R0,

we may assume, by decreasing μ2 if necessary, that

Iμ(uμ) = inf
M

Iμ � − C5

2
< 0, 0 � μ � μ2. (26)

Here the constant C5 is as in Lemma 3.5.
We fix x0 = x0(μ2). There exists ρ > 0 such that

inf
Bρ (x0)

ûμ2 > 0.

Choose ε sufficiently small satisfying

ε

|x − x0|N−2
< ûμ2 (x) = uμ2 (x) if x ∈ ∂ Bρ(x0).

All the uμ lie above uμ2 and w is positive so

inf
Bρ (x0)

uμ � inf
Bρ (x0)

uμ2 > 0 (27)

and

ε

|x − x0|N−2
< (uμ + μw)(x) if x ∈ ∂ Bρ(x0)

for all 0 � μ � μ2. Let

Sμ =
{

x ∈ Bρ(x0)
C :

ε

|x − x0|N−2
> (uμ + μw)(x)

}
.

Note 0 � λauμk(
uμ

ld ) � λau+
μ. Let v be an arbitrary function in H and vn ∈ D(RN ), vn → v in H.

Using equality (25) with v replaced by vn and passing to the limit, we see (25) is valid for v in H.
Hence, using (23),

∫
∇(uμ + μw) · ∇φ =

∫
λaû+

μ

[
1 − k

(
ûμ

ld

)]
φ for all φ ∈ H. (28)

Also

∫
∇

(
1

|x − x |N−2

)
· ∇φ = 0 (29)
0
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for all φ ∈ H satisfying φ(x) = 0 for x ∈ Bρ(x0). Subtracting (29) from (28),

∫
∇

(
uμ + μw − ε

|x − x0|N−2

)
· ∇φ =

∫
λaû+

μ

[
1 − k

(
ûμ

ld

)]
φ

for all φ ∈ H satisfying φ(x) = 0 for x ∈ Bρ(x0). The function φ := (uμ + μw − ε
|x−x0|N−2 )χSμ belongs

to H, is less than or equal to zero and has support in Bρ(x0)
C . Thus

∫
Sμ

∣∣∣∣∇
(

uμ + μw − ε

|x − x0|N−2

)∣∣∣∣
2

� 0.

Therefore Sμ is empty which means

ε

|x − x0|N−2
� (uμ + μw)(x) for all x ∈ Bρ(x0)

C . (30)

We now recall the following lemma due to Allegretto and Odiobala.

Lemma 4.1. (See [1, Lemma 4].) Let h ∈ L1(RN ) and suppose (10) holds. Then there exists a constant C such
that

w(x) � C

|x|N−2
for all x ∈ R

N \ {0}.

Combining the estimates (27) and (30) with Lemma 4.1, we conclude there exists 0 < μ0 � μ2
such that for all 0 � μ � μ0 the function uμ is positive and uμ(x) � C3

|x|N−2 for x ∈ Bρ(x0)
C . This

completes the proof of Theorem 3.1. �
5. A positive solution in RRR

N

We now turn to Eq. (4).

Theorem 5.1. Under (Ha), (Hg), (Hb ), (Hλ) and (Hh ), there exists μ0 > 0 such that for all 0 � μ � μ0

Eq. (4) has a positive weak solution uμ ∈ H ∩ C1,α
loc (RN ). Furthermore, there exists C3 > 0 such that for all

0 � μ � μ0 this weak solution uμ satisfies

uμ(x) � C3

|x|N−2
for large |x|. (31)

Proof. We take the function k as in (13) and apply Theorem 3.1 to obtain a positive solution uμ of
(15) for 0 � μ � μ0. Using (14) and

uμ � l̂d = ς ld = ld � l � s0 (32)

(see (24), (17), (Hk) and (12)), the function uμ satisfies

−�uμ � λauμ − b g(uμ) − μh,

and so is a subsolution of our problem.
Fix any 1 < p � (N + 2)/(N − 2). For all integers m with m � 1 we define jm : R → R by



584 P. Girão, H. Tehrani / J. Differential Equations 247 (2009) 574–595
jm(s) =
{

g(s) for s � m,

g(m) − mp + sp for s > m.
(33)

We also define j : R → R by

j(s) = inf
m�1

jm(s).

The function j is measurable and in L1
loc(R).

Lemma 5.2. The function j satisfies

lim
s→+∞

j(s)

s
= +∞. (34)

Proof. By contradiction, suppose there exists a constant C > 0 and a sequence sn → +∞ such that
j(sn)

sn
� C . Then there also exists a sequence (mn) with mn � 1 and

jmn (sn)

sn
� C + 1.

From the definition of jmn and using g(sn)
sn

→ +∞, it follows sn > mn for large n. So for large n

jmn (sn)

sn
= g(mn) − mp

n + sp
n

sn
= g(mn) − mp

n

sn
+ sp−1

n � C + 1.

The last inequality implies g(mn) < mp
n for large n and mn → +∞. Thus

C + 1 � jmn (sn)

sn
� g(mn) − mp

n

mn
+ sp−1

n = g(mn)

mn
− mp−1

n + sp−1
n � g(mn)

mn

for large n. From assumption (7), limn→∞ g(mn)
mn

= +∞. We have reached a contradiction. This proves
(34). �

For 0 � μ � μ0 the function uμ satisfies 0 < uμ � l̂d � l̂ = l � 1 � m (see (11) and (17)). Since
every jm coincides with g up to m, we have uμ satisfies

−�uμ � λauμ − b jm(uμ) − μh .

For each 0 � μ � μ0, we define the set

Mμ = {
u ∈ H: uμ � u a.e. in R

N}
.

The set Mμ is weakly closed. Let Jm(s) = ∫ s
0 jm(t)dt and J (s) = ∫ s

0 j(t)dt . The function J is continu-
ous. For m � 1 we also define Im

μ : Mμ → R ∪ {+∞} by

Im
μ(u) = 1

2
‖u‖2 − λ

2

∫
au2 +

∫
b Jm(u) + μ

∫
hu

if
∫

b Jm(u) < ∞, and Im
μ(u) = +∞ otherwise. Similarly, we define I0

μ with J in the place of Jm .
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Lemma 5.3. The functionals Im
μ are coercive on Mμ , uniformly in m and μ with m � 1 and 0 � μ � μ0 , i.e. for

each L > 0, there exists R > 0 such that for all m � 1, 0 � μ � μ0 and u ∈ Mμ , if ‖u‖ > R then Im
μ(u) > L.

Proof. The argument is similar to the one in [5, proof of Theorem 6]. Suppose by contradiction there
exists μn ∈ [0,μ0], mn � 1 and un ∈ Mμn with ‖un‖ → ∞, such that Imn

μn (un) � C . From the definition
of j we also have I0

μn
(un) � C . Clearly

c2
n :=

∫
au2

n → +∞

since J is nonnegative, and
∫

hu � 0 for all u ∈ Mμ . We define a sequence of functions, (vn), with
vn = un

cn
, so that

∫
a v2

n = 1 and

1

2
‖vn‖2 − λ

2
+ 1

c2
n

∫
b J (cn vn) + μn

cn

∫
h vn � C

c2
n
. (35)

Inequality (35) implies ‖vn‖ is uniformly bounded in n. Up to a subsequence, vn ⇀ v in H and
vn → v a.e. in R

N . The function v is nonnegative. Inequality (34) implies lims→+∞ J (s)/s2 = +∞.
Taking the limit inferior on both sides of (35), and using Fatou’s lemma,

1

2
‖v‖2 − λ

2
+

∫
{x∈RN : v(x)>0}

b × (+∞)v2 � 0.

The function v must be zero almost everywhere on the set where the function b is positive, i.e. (aside
from a set of measure zero) v must have support in B0. We also obtain ‖v‖2 � λ. On the other hand,
since

∫
a v2

n = 1 and
∫

a v2
n → ∫

a v2, the function v 
≡ 0 and
∫

a v2 = 1. If B0 has measure zero, then
we are done. Otherwise, (Hb ) implies v ∈ D1,2(int B0) and

λ∗ � ‖v‖2∫
a v2

� λ.

This contradicts λ < λ∗ . The lemma is proved. �
For 0 � μ � μ0 and m � 1, the functional Im

μ has a minimizer um
μ on Mμ , which of course is

positive.

Lemma 5.4. Suppose v ∈ H(RN ) with compact support. For u ∈ H with
∫

b Jm(u) < ∞, the functional Im
μ is

differentiable in the direction v and

d

dt

∫
b Jm(u + tv)

∣∣∣
t=0

=
∫

b jm(u)v.

Proof. Our assumption on p and b ∈ L∞
loc(R

N ) imply
∫

b Jm(u + tv) < ∞. Suppose 0 < |t| � 1.

∫
b[ Jm(u + tv) − Jm(u)]

t
=

∫
{x∈RN : v(x)
=0}

b

(
1

tv

u+tv∫
u

jm(s)ds

)
v dx

=
∫

{x∈RN : v(x)
=0}
b( jm)t v dx,



586 P. Girão, H. Tehrani / J. Differential Equations 247 (2009) 574–595
where ( jm)t : {x ∈ R
N : v(x) 
= 0} → R is defined by

( jm)t(x) := 1

tv(x)

u(x)+tv(x)∫
u(x)

jm(s)ds.

We have

∣∣( jm)t
∣∣ � ε

(
u+ + v+) + Cε

((
u+)p + (

v+)p)
.

The function b[ε(u+ + v+)+ Cε((u+)p + (v+)p)]v is integrable. So the assertion of the lemma follows
from Lebesgue’s Dominated Convergence Theorem. �

Using Lemma 5.4, Im
μ is differentiable at um

μ in the direction of functions ϕ of compact support. As
in Lemma 3.4 one can prove um

μ is a solution of

−�u = λau − b jm(u) − μh, (36)

by showing (Im
μ)′(um

μ)ϕ = 0 for all ϕ ∈ D(RN ). The functions um
μ satisfy

−�um
μ − λaum

μ � 0.

By [7, Theorem 8.17] we have

sup
RN

um
μ � C6

∥∥um
μ

∥∥, (37)

where the constant C6 depends only on N , λ and the norm |a|L∞(RN ) . Furthermore, from (14), (32),
s0 � 1 � m and (26), we have

Im
μ

(
um

μ

)
� Iμ(uμ) < 0.

So using Lemma 5.3 there exists an R > 0 such that ‖um
μ‖ � R . It follows supRN um

μ � C6 R =: C7. If
we take any constant m � C7, the function um

μ is a solution of (4). Since the right-hand side of (4)

belongs to Ls
loc(R

N ) and s > N by elliptic regularity theory u ∈ C1,α
loc (RN ) for some α > 0. Estimate

(31) is immediate from (16). The proof of Theorem 5.1 is complete. �
Suppose d̃ is another function satisfying the properties that we used concerning the function d ,

i.e. suppose d̃ ∈ H is continuous, d̃ 
≡ 0 and −�d̃ � 0. Multiplying the last inequality by d̃
−

and

integrating, d̃
− ≡ 0. From [7, Theorem 8.19], there exists C such that infx∈B1(0) d̃ (x) = C > 0. Hence,

d̃ (x) � C

|x|N−2
(38)

for x ∈ ∂ B1(0). As x �→ C
|x|N−2 is harmonic in B1(0)C , by the maximum principle inequality (38) also

holds for x ∈ B1(0)C . So d̃ � Cd . If b � C̃1ad̃
−β

for some constant C̃1 > 0, then b � C1ad −β for
some constant C1 > 0. So we cannot apply the proof above if b grows faster than in (8). In addition,
inequality (31) shows the bound uμ � l̂d is sharp.
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6. The case where bbb grows fast

Eq. (4) may have positive solutions for b growing faster than in (8), or in other words for d going
faster to zero than 1/|x|N−2 as |x| → ∞. We now prove a theorem regarding such a situation. We
will relax the growth condition on b at infinity and the condition on g at zero, at the expense of
assuming a more restrictive hypothesis for h .

Instead of (Hg), (Hb ) and (Hh ) we now assume

(Hg)′ The function g : R → R
+
0 is continuous, with g(s) = 0 for s � 0. Furthermore,

lim
s→0

g(s)

s
= 0

and (7) holds.
(Hb )′ The measurable function b : R

N → R is nonnegative, not identically equal to zero, and satisfies
b = λaΥ with Υ ∈ L∞

loc(R
N ). Let B0 = {x ∈ R

N : Υ (x) = 0}. We assume either B0 has measure

zero, or B0 = int B0 
= R
N with int B0 
= ∅ and ∂ B0 Lipschitz.

(Hh )′ The measurable, nonnegative and not identically equal to zero function h has compact support
and there exists a constant C8 such that h � C8a .

Theorem 6.1. Under (Ha), (Hg)′ , (Hb )′ , (Hλ) and (Hh )′ , there exists μ3 > 0 such that for all 0 � μ � μ3

Eq. (4) has a positive weak solution uμ ∈ H ∩ C1,α
loc (RN ). Furthermore, there exists a constant C > 0 such that,

for all 0 � μ � μ3 , ‖uμ‖L∞(RN ) � C.

Proof. To solve Eq. (4), we first consider

−�u = λau − 2b̃ g̃(u), (39)

where b̃ = λaΥ̃ , with Υ̃ = max{Υ,1}, and g̃(u) = g(u) + (u+)2. Obviously, zero is a solution to this
equation. We define the set

M = {
u ∈ H: u � 0 a.e. in R

N}
. (40)

For all integers m � 1, we define Im : M → R ∪ {+∞} by

Im(u) = 1

2
‖u‖2 − λ

2

∫
au2 + 2

∫
b̃ Jm(u)

if
∫

b̃ Jm(u) < ∞, and Im(u) = +∞ otherwise. Here Jm is as in Section 5 with g replaced by g̃ . As in

Lemma 5.3, the functionals Im are coercive on M , uniformly in m. Indeed, {x ∈ R
N : b̃(x) = 0} = ∅. For

m � 1, the functional Im has a minimizer um on M . As a consequence of the analogue of Lemma 3.5,
Im(um) < 0. Lemma 5.4 applies as well as the subsequent discussion. Eq. (39) has a nonnegative
solution u ∈ C1,α

loc (RN ). We observe that u 
≡ 0 since it has negative energy. We prove that u is positive.
We may rewrite (39) as

−�u = λau
(
1 − 2Υ̃ k(u)

)
,

with k(s) = g̃(s)/s for s 
= 0 and k(0) = 0. Suppose by contradiction u vanishes at some point
x0. Because u and k are continuous, k(u(x0)) = 0 and Υ̃ ∈ L∞

loc(R
N ), there exists r > 0 such that

1 − 2Υ̃ (x)k(u(x)) > 0 for x ∈ Br(x0). Thus −�u(x) � 0 in the sense of distributions for x ∈ Br(x0).
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From [7, Theorem 8.19], it follows u ≡ 0 in Br(x0). By the unique continuation principle [10, p. 519]
u ≡ 0 in R

N . We have reached a contradiction so u is positive.
There exists a constant c > 0 such that u(x) � c for x in the support of h . Then g̃(u(x)) � c2

for x in the support of h . Let 0 � μ � μ3 := λc2

C8
. Taking into account (Hb )′ and (Hh )′ , b̃ � λa and

h � C8a � C8
λ

b̃ . Then in the support of h , we have

μh � λc2

C8
h � c2b̃ � b̃ g̃(u);

thus μh � b̃ g̃(u) everywhere on R
N . So u satisfies

−�u � λau − b̃ g̃(u) − μh � λau − b g(u) − μh .

We also have

Ĩμ(u) := 1

2

∫
|∇u|2 − λ

2

∫
au2 +

∫
bG(u) + μ

∫
hu

� 1

2

∫
|∇u|2 − λ

2

∫
au2 +

∫
b̃ G̃(u) + μ

∫
hu � C < ∞

because Im(u) < 0, and h has compact support and belongs to the space L∞(RN ). (We could even take

C to be zero if we restricted 0 � μ � λc2

3C8
because this would imply μ

∫
hu �

∫
b̃ G̃(u)). Repeating the

arguments in Section 5 we obtain a positive solution uμ of (4) with Ĩμ(uμ) � Ĩμ(u). The uniform
bound on the L∞(RN ) norm on uμ follows from the uniform coercivity in Lemma 5.3 and (37). �

We mention it is possible to construct examples where Eq. (4) has a positive solution for a b
growing faster than in (8) and an h without compact support.

7. The case of a bounded domain

As we noted in the last paragraph of Section 5, the upper bound (8) we imposed on b was the
weakest one under which our proof goes through. In this sense, the choice we made for d in (9) was
the best one possible. To treat the case of a bounded domain Ω we start by constructing the best
function d for this setting. This is done in the next lemma. We note that in part (i) we do not assume
Ω is bounded (having in mind future extensions to the case of unbounded domains which are not the
whole space R

N ). In fact, if one is just concerned with the case of a bounded domain, then a shorter
proof of (i) can be given.

Lemma 7.1. Let Ω be a smooth domain in R
N , r > 0, y0 ∈ Ω with dist(y0, ∂Ω) > 3r, and G be Green’s

function of the first kind for Ω . In (ii) and (iii) assume Ω is bounded.

(i) There exists a function d ∈ C2(Ω), superharmonic in Ω and harmonic in Ω \ Br(y0), satisfying

cG(x, y0) � d (x) � C G(x, y0) for x ∈ Ω \ B2r(y0) (41)

for some constants c, C > 0.
(ii) A function b : Ω → R

+
0 satisfies

b � C1a
[
dist( · , ∂Ω)

]−β
(42)
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for some constant C1 > 0 if and only if the function b satisfies

b � C1ad −β (43)

for some constant C1 > 0 and the function d as in (i).

(iii) If d̃ ∈ D1,2(Ω) is continuous, d̃ 
≡ 0, −�d̃ � 0 and b � C̃1ad̃
−β

for some constant C̃1 > 0, then
b � C1ad −β for some constant C1 > 0.

Proof. (i) Let

Γ (x) = 1

N(N − 2)ωN
· 1

|x|N−2
,

where ωN is the volume of the unit ball in R
N . The function Γ is uniformly continuous in R

N \ Br(0).
This means for each ε > 0 there exists 0 < δ < r such that y1, y2 ∈ Br(0)C and |y1 − y2| < 2δ implies
|Γ (y1)−Γ (y2)| < ε. If y1, y2 ∈ Bδ(y0) and |x − y1| � r, |x − y2| � r then |Γ (x − y1)−Γ (x − y2)| < ε.
Hence,

y1, y2 ∈ Bδ(y0) and x ∈ Ω \ Br+δ(y0) �⇒ ∣∣Γ (x − y1) − Γ (x − y2)
∣∣ < ε.

Green’s function of the first kind for Ω is

G(x, y) = Γ (x − y) + hy(x),

where

{−�hy(x) = 0 for x ∈ Ω,

hy(x) = −Γ (x − y) for x ∈ ∂Ω.

When Ω is unbounded, we further assume hy satisfies limx→∞ hy(x) = 0. Then the existence of such
an hy can be established by adapting Perron’s method or applying standard variational arguments.
For y1, y2 ∈ Bδ(y0) and x ∈ ∂Ω , we have |hy1(x) − hy2 (x)| < ε, so by the maximum principle

y1, y2 ∈ Bδ(y0) and x ∈ Ω \ Br+δ(y0) �⇒ ∣∣G(x, y1) − G(x, y2)
∣∣ < 2ε.

One easily obtains x ∈ ∂ Br+δ(y0) implies

G(x, y0) � 1

N(N − 2)ωNrN−2

(
1

2N−2
− 1

3N−2

)
=: c > 0.

The value c only depends on r and N . Let

C = max
x∈∂ Br+δ (y0)

G(x, y0).

Choose ε = c/4. We have

y ∈ Bδ(y0) and x ∈ ∂ Br+δ(y0) �⇒ c

2
� G(x, y) � C + c

2
.

So y ∈ Bδ(y0) and x ∈ ∂ Br+δ(y0) implies
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c

2C
G(x, y0) � G(x, y) �

(
C

c
+ 1

2

)
G(x, y0). (44)

By the maximum principle the two inequalities of the last previous line also hold for x ∈ Ω \ Br+δ(y0).
Let η ∈ D(Bδ(y0)), η � 0 and

∫
η = ρ > 0 and consider the function d ∈ D(Ω) defined by

d (x) =
∫

G(x, y)η(y)dy. (45)

Multiplying (44) by η(y) and integrating, for x ∈ Ω \ Br+δ(y0),

ρ
c

2C
G(x, y0) � d (x) � ρ

(
C

c
+ 1

2

)
G(x, y0).

Obviously −�d = η in Ω and d = 0 on ∂Ω .
(ii) Let (Nσ ,proj) (with proj : Nσ → ∂Ω) be a tubular neighborhood of ∂Ω in Ω (see [8,

p. 35]) with the length of the segment proj−1(x) equal to σ for each x ∈ ∂Ω . There exist 0 < σ <

dist(y0, ∂Ω) − 2r and c > 0 satisfying

x ∈ Nσ �⇒ − ∂d
∂νproj x

(x) � c. (46)

The vector νproj x is the exterior outward unit normal to ∂Ω at the point proj x. Indeed, suppose by
contradiction there exist σn ↘ 0 and xn ∈ Nσn satisfying

− ∂d
∂νproj xn

(xn) � 1

n
.

Modulo a subsequence, xn → x0 ∈ ∂Ω . It follows proj xn → proj x0 = x0, νproj xn → νproj x0 and

− ∂d
∂νx0

(x0) � 0. This contradicts Hopf’s lemma. We have established (46). Since d ∈ C2(Ω), there exists

C > 0 such that

x ∈ Nσ �⇒ − ∂d
∂νproj x

(x) � C . (47)

Given x ∈ Nσ , we integrate ∂d
∂νproj x

along the part of the segment proj−1(proj x) between proj x and x.

This part of proj−1(proj x) has length dist(x, ∂Ω). Using (46) and (47),

x ∈ Nσ �⇒ c dist(x, ∂Ω) � d (x) � C dist(x, ∂Ω). (48)

Suppose (42) holds. Using (48), x ∈ Nσ ⇒ b(x) � Ca(x)[d (x)]−β . On the other hand, there exist con-
stants c, C > 0 such that

Ω \ Nσ �⇒ c
diameter(Ω)

2
� d (x) � Cσ .

As a consequence,

x ∈ Ω \ Nσ �⇒ c dist(x, ∂Ω) � d (x) � C dist(x, ∂Ω). (49)

Taking into account (48) and (49), we conclude (42) and (43) are equivalent.
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(iii) Suppose d̃ ∈ D1,2(Ω) is continuous, d̃ 
≡ 0 and −�d̃ � 0. Multiplying the last inequality by

d̃
−

and integrating, d̃
− ≡ 0. From [7, Theorem 8.19], infx∈Bδ (y0) d̃ (x) > 0. Thus there exists C > 0 such

that

d̃ (x) � Cd (x) (50)

for x ∈ Bδ(y0). By the maximum principle, as d is harmonic in Ω \ Bδ(y0), inequality (50) also holds
for x ∈ Ω \ Bδ(y0). So (50) holds for x ∈ Ω . The assertion follows. �

In the remainder of this section we suppose Ω is a smooth bounded domain in R
N , N � 3. We

wish to prove the existence of a positive solution to Eq. (4) where now H = D1,2(Ω). We introduce

(Ha)′′ The function a : Ω → R is positive and belongs to L∞(Ω).
(Hb )′′ The measurable function b : Ω → R is nonnegative, not identically equal to zero, and satisfies

b � C1a
[
dist( · , ∂Ω)

]−β
. (51)

Let B0 = {x ∈ Ω: b(x) = 0}. We assume either B0 has measure zero, or B0 = int B0 (closure
in B0) with ∂ B0 Lipschitz.

(Hh )′′ The nonnegative and not identically equal to zero function h belongs to the space Ls(RN ), for
some s > N .

Remark 7.2. Proposition 2.2 generalizes to the case of a bounded domain.

The proof is given in Appendix A.

Theorem 7.3. Under (Ha)′′ , (Hg), (Hb )′′ , (Hλ) and (Hh )′′ , there exists μ4 > 0 such that for all 0 � μ � μ4
Eq. (4) has a positive weak solution uμ ∈ H ∩ C1,α(Ω).

Proof. We fix any x1 ∈ Ω and r1 < dist(x1, ∂Ω)/3. Let d be as in (i) of Lemma 7.1 with y0 = x1 and
r = r1. By (ii) of the same lemma, the function b satisfies (43). We repeat the arguments in Section 3
but with this new function d . For any nonnegative μ we obtain a solution ûμ ∈ C1,α(Ω) to (21). As
in Lemma 3.5 there exist μ5, C9 > 0 such that for 0 � μ � μ5, we have infN Iμ � −C9 < 0 (with N as
in (20)). As in the beginning of Section 4, there exists 0 < μ6 � μ5 such that for all 0 � μ � μ6 one
can choose x0(μ) where ûμ(x0(μ)) > 0. In addition, there exists ρ > 0 such that

inf
Bρ(x0(μ6))

ûμ6 > 0.

Let r0 < min{ρ,dist(x0(μ6), ∂Ω)/3}. We again use (i) of Lemma 7.1, but this time with y0 = x0(μ6)

and r = r0, to construct a function d̂ ∈ C2(Ω), superharmonic in Ω and harmonic in Ω \ Br0(x0(μ6))

satisfying (41). We fix ε > 0 sufficiently small such that

εd̂ (x) � ûμ6 (x) for x ∈ Bρ

(
x0(μ6)

)
.

Clearly,

εd̂ (x) � (ûμ6 + μ6 w)(x) for x ∈ Bρ

(
x0(μ6)

)
with w as in (23). The maximum principle implies
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εd̂ (x) � (ûμ6 + μ6 w)(x) for x ∈ Ω \ Bρ

(
x0(μ6)

)
.

As in Section 4, we use ûμ6 as a subsolution to (21) when 0 � μ � μ6. We minimize Iμ over the set

{
u ∈ H: ûμ6 � u � l̂d a.e. in R

N}
,

where l̂ is as in (17), to obtain new solutions uμ of (21) for 0 � μ � μ6 with Iμ(uμ) < 0. These
solutions satisfy

εd̂ � uμ + μw. (52)

Combining (48) and (49), there exist constants c, C > 0 such that

c dist( · , ∂Ω) � d̂ � C dist( · , ∂Ω). (53)

On the other hand, since h ∈ Ls(Ω) with s > N , w ∈ C1,α(Ω). Thus from (52) and (53) there exists
0 < μ7 � μ6 such that for all 0 � μ � μ7 the function uμ is positive in Ω . Now we argue as in Sec-
tion 5 and use uμ as subsolutions to (4). For 0 � μ � μ7 and all integers m � 1, we obtain a positive
solution um

μ of (36) with Im
μ(um

μ) � Iμ(uμ) < 0. This time we use [7, Theorem 8.25] to conclude the
um

μ are uniformly bounded. Choosing any sufficiently large m we obtain a positive solution to (4). �
8. Further extensions

The results of the previous sections may be generalized to prove the existence of a positive solution
to the equation

−�u = λa
[
u − g( · , u)

] − μh, u ∈ H. (54)

We give two results related to Theorems 5.1 and 6.1 whose proofs we leave to the reader. First we
replace (Hg) and (Hb ) by

(Hg)d The function g : R
N × R → R

+
0 is Carathéodory, with g(x, s) = 0 for x ∈ R

N and s � 0. Let

B0 = {x ∈ R
N : g(x, s) = 0 for s ∈ R}. We assume either B0 has measure zero, or B0 = int B0

with ∂ B0 Lipschitz. Furthermore, g ∈ L∞
loc(R

N × R),

lim sup
s→0

[d (x)]β g(x, s)

s1+β
< ∞ uniformly for x ∈ R

N , (55)

where β > 0 is a fixed constant and d is defined in (9), and

lim
s→+∞

g(x, s)

s
= +∞ for each x ∈ BC

0 .

Theorem 8.1. Under (Ha), (Hg)d , (Hλ) and (Hh ), there exists μ0 > 0 such that for all 0 � μ � μ0 Eq. (54) has
a positive weak solution uμ ∈ H ∩ C1,α

loc (RN ). Furthermore, there exists C3 > 0 such that for all 0 � μ � μ0
this weak solution uμ satisfies

uμ(x) � C3
N−2

for large |x|.
|x|
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Now we replace (Hg), (Hb ) and (Hh ) as follows:

(Hg)Υ The function g : R
N × R → R

+
0 is continuous, with g(x, s) = 0 for x ∈ R

N and s � 0. Let
B0 = {x ∈ R

N : g(x, s) = 0 for s ∈ R}. We assume either B0 has measure zero, or B0 = int B0
with ∂ B0 Lipschitz. Furthermore, g ∈ L∞

loc(R
N × R),

lim
s→0

g(x, s)

s
= 0 uniformly for x in compact subsets of R

N ,

and

lim
s→+∞

g(x, s)

s
= +∞ for each x ∈ BC

0 .

(Hh )′′′ The measurable, nonnegative and not identically equal to zero function h has compact support
and there exists a constant C > 0 such that h � Ca .

Theorem 8.2. Under (Ha), (Hg)Υ , (Hλ) and (Hh )′′′ , there exists μ3 > 0 such that for all 0 � μ � μ3 Eq. (54)
has a positive weak solution uμ ∈ H ∩ C1,α

loc (RN ).

Appendix A

Proof of Proposition 2.2. (i) We choose an R > 0 such that B R(0) \ B0 
= ∅. If the restriction of g to
R

+ is positive, then b g(u)χB R (0) 
≡ 0. For all v ∈ D(RN ) with v � 0

∫
∇u · ∇v � λ

∫
auv −

∫
b g(u)χB R (0)v − μ

∫
h v. (56)

So (56) holds for all v ∈ H with v � 0. Taking v = u we obtain

‖u‖2 � λ

∫
au2 −

∫
b g(u)uχB R (0) − μ

∫
hu � λ

∫
au2

and the last inequality is strict if μ > 0 or if the restriction of g to R
+ is positive. The conclusion

follows.
(ii) Suppose h = 0 on B0. We write u = u0 + u⊥ where u0|int B0 is the projection of u on

D1,2(int B0) and u0 = 0 on (int B0)
C . This means u0|int B0 ∈ D1,2(int B0) and

∫
∇u · ∇v =

∫
∇u0 · ∇v for all v ∈ D1,2(int B0).

The function u⊥ := u − u0 so that u = u⊥ on (int B0)
C . Note

∫
∇u⊥ · ∇v =

∫
∇(u − u0) · ∇v = 0 for all v ∈ D1,2(int B0),

which means that u⊥ is harmonic in int B0. Since u is superharmonic in int B0 and u⊥ is harmonic
in int B0, u0 is superharmonic in int B0. Thus u0 is nonnegative. The function u0 cannot be identically
zero. Otherwise in int B0 we would have 0 = −�u⊥ = −�u = λau⊥ . This implies u⊥ ≡ 0 in int B0 and
so u ≡ 0 in int B0, contradicting the fact that u is positive. The function u has a positive trace on ∂ B0.
Also u = u⊥ on ∂ B0. So from u⊥ ∈ H, clearly (u⊥)−|int B0 ∈ D1,2(int B0), and hence (u⊥)−|int B0 ≡ 0.
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By the strong maximum principle u⊥ > 0 on B0. Let⎧⎨
⎩

−�φ∗
1 = λ∗aφ∗

1 in int B0,

φ∗
1 > 0 in int B0,

φ∗
1 = 0 on (int B0)

C .

(57)

One can easily see we may also take v such that v|B0 = φ∗
1 and v|BC

0
= 0 in (5). Indeed, this follows

from b ∈ L∞
loc(R

N ) and φ∗
1 |int B0 ∈ D1,2(int B0). We obtain

∫
∇u0 · ∇φ∗

1 +
∫

∇u⊥ · ∇φ∗
1 = λ

∫
au0φ

∗
1 + λ

∫
au⊥φ∗

1 .

This yields

λ∗
∫

au0φ
∗
1 = λ

∫
au0φ

∗
1 + λ

∫
au⊥φ∗

1 > λ

∫
au0φ

∗
1 ,

and so λ < λ∗ .
(iii) We give functions a , b , g , h (with h 
≡ 0 on B0), and a function u ∈ H which is a positive

solution of (4) for λ = λ∗ + μ. Here μ > 0 is the parameter in (4). Since all functions will be radially
symmetric, we introduce the coordinate r = |x| and write them in terms of r. We choose the set
B0 = {x ∈ R

N : r � 1}. The functions a and g are

a(r) =
{

1 for r � 1,
1

r(N−2)β for r > 1,

g(u) =
{

0 for u � 0,

u1+β for u > 0,

with β > 2. We define u using (57),

u(r) =
{

φ∗
1 + κ for r � 1,
κ

rN−2 for r > 1,

with κ = − 1
N−2

∂φ∗
1

∂r |r=1 so that u ∈ C1(RN ). This is possible because φ∗
1 is spherically symmetric [6]

and
∂φ∗

1
∂r |r=1 < 0 (by Hopf’s lemma). The functions b and h are

b(r) =
{

0 for r � 1,
λ
κβ for r > 1,

μh(r) =
{
μφ∗

1(r) + λκ for r � 1,

0 for r > 1.

Our assumptions are all satisfied except for (Hλ) of course. In particular, the function a is positive
and belongs to LN/2(RN ) ∩ L∞(RN ). The measurable function b is nonnegative, not identically equal
to zero, and satisfies (8) for C1 = λ

κβ as ad −β
> 1. Note also u ∈ H. The function u satisfies (4) in

B1(0) and in B1(0)C . In fact, for r < 1,

−�
(
φ∗

1 + κ
) = λ · 1 · (φ∗

1 + κ
) − 0 − (

μφ∗
1 + λκ

) = λ∗φ∗
1 .

For r > 1,

0 = λ
1

(N−2)β

κ
N−2

− λ

β

κ1+β

(N−2)(1+β)
− 0.
r r κ r
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Let v ∈ D(RN ). We recall u ∈ C1(RN ). Multiplying (4) by v and integrating over B1(0) we obtain

−
∫

∂ B1(0)

∂u

∂r
v +

∫
B1(0)

∇u · ∇v = λ

∫
B1(0)

auv −
∫

B1(0)

b g(u)v − μ

∫
B1(0)

h v. (58)

Multiplying (4) by v and integrating over B1(0)C we obtain

∫
∂ B1(0)

∂u

∂r
v +

∫
B1(0)C

∇u · ∇v = λ

∫
B1(0)C

auv −
∫

B1(0)C

b g(u)v − μ

∫
B1(0)C

h v. (59)

Adding (58) and (59), the function u is a positive weak solution of (4). �
Proof of Remark 7.2. The proof of items (i) and (ii) is similar to the case of the space R

N . To check
item (iii) let Ω = B2(0). We may take

a(r) =
{

1 for r � 1,

( 1
rN−2 − 1

2N−2 )β for 1 < r < 2,

u(r) =
{

φ∗
1 + κ(1 − 1

2N−2 ) for r � 1,

κ( 1
rN−2 − 1

2N−2 ) for 1 < r < 2,

μh(r) =
{

μφ∗
1(r) + λκ(1 − 1

2N−2 ) for r � 1,

0 for 1 < r < 2,

and all the parameters and other functions as in the proof of Proposition 2.2. There exists C1 > 0 such
that (42) holds because

0 < lim
r→2

[(
1

rN−2
− 1

2N−2

)
1

2 − r

]β

< ∞. �
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