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1. Introduction

Chiral perturbation theory [1,2] provides a successful descrip-
tion of the Goldstone boson sector of QCD (see, e.g., Ref. [3] for a
recent review). A straightforward power counting, i.e. correspon-
dence between the loop expansion and the chiral expansion in
terms of momenta and quark masses at a fixed ratio [2], is ob-
tained by using dimensional regularization in combination with
the modified minimal subtraction scheme. Therefore, a systematic
and controllable improvement is possible in perturbative calcula-
tions of physical quantities at low energies. The construction of
a consistent power counting in effective field theories with heavy
degrees of freedom turns out to be a more complex problem. For
example, power counting is violated in baryon chiral perturbation
theory if dimensional regularization and the minimal subtraction
scheme are applied [4]. The problem has been handled by employ-
ing the heavy-baryon approach [5] and, alternatively, by choosing
a suitable renormalization scheme [6–9]. Using the mass difference
between the nucleon and the �(1232) resonance as an additional
expansion parameter, the � resonance can also be consistently in-
cluded in the framework of effective field theory [10–14]. On the
other hand, the inclusion of heavier baryon resonances such as
the Roper resonance requires a non-trivial generalization. In this
case the problem of power counting can be solved by using the
complex-mass scheme (CMS) [15–19] which can be understood as
an extension of the on-mass-shell renormalization scheme to un-
stable particles. In previous papers we have calculated the pole
masses and the widths of the ρ meson and the Roper resonance
[20,21]. In the current Letter we consider the magnetic moment
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of the Roper up to O(q3).1 While the extraction of these quan-
tities from experimental measurements at present seems to be
unfeasible, our expression for the magnetic moment may be used
in the context of lattice QCD. Effective field theories predict the
quark-mass dependence of physical observables and can be used
to extrapolate simulations in the framework of lattice QCD per-
formed at unphysically large masses of the light quarks. In return,
lattice QCD provides a way to determine the low-energy constants
from the underlying theory.

2. Effective Lagrangian

In this section we specify the effective Lagrangian relevant for
the subsequent calculation of the electromagnetic vertex of the
Roper at O(q3). We include the pion, the nucleon, the Roper, and
the � as explicit degrees of freedom. The effects of other degrees
of freedom are buried in low-energy coupling constants. We write
the effective Lagrangian as2

L = L0 +Lπ +LR +LN R +L�R , (1)

where L0 is given by

L0 = N̄(i/D − mN0)N + R̄(i/D − mR0)R

− Ψ̄μξ
3
2
[
(i/D − m�0)gμν − i

(
γ μDν + γ ν Dμ

) + iγ μ/Dγ ν

+ m�0γ
μγ ν

]
ξ

3
2 Ψν. (2)

Here, N and R denote nucleon and Roper isospin doublets
with bare masses mN0 and mR0, respectively. Ψν represents the
vector–spinor isovector–isospinor Rarita–Schwinger field of the �

1 Here, q stands for small parameters of the theory such as the pion mass.
2 To simplify the notation only bare masses are supplied with a subscript 0.
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resonance [22] with bare mass m�0, ξ
3
2 is the isospin-3/2 projec-

tor (see Ref. [14] for more details). The covariant derivatives are
defined as follows:

DμH = (
∂μ + Γμ − iv(s)

μ

)
H,

(DμΨ )ν,i = ∂μΨν,i − 2iεi jkΓμ,kΨν, j + ΓμΨν,i − iv(s)
μ Ψν,i,

Γμ = 1

2

[
u†∂μu + u∂μu† − i

(
u† vμu + uvμu†)] = τkΓμ,k, (3)

where H stands either for the nucleon or the Roper. The pion fields
are contained in the unimodular, unitary, (2 × 2) matrix U and
u = √

U . The external electromagnetic four-vector potential Aμ

enters into vμ = −e τ3
2 Aμ and v(s)

μ = − e
2Aμ (e2/(4π) ≈ 1/137,

e > 0).
The lowest-order Goldstone-boson Lagrangian including the

quark-mass term and the interaction with the external electro-
magnetic four-vector potential Aμ reads

L(2)
π = F 2

4
Tr

(
∂μU∂μU †) + F 2M2

4
Tr

(
U † + U

)

+ i
F 2

2
Tr

[(
∂μU U † + ∂μU †U

)
vμ

]
. (4)

F denotes the pion-decay constant in the chiral limit: Fπ = F [1 +
O(q2)] = 92.4 MeV; M is the pion mass at leading order in the
quark-mass expansion: M2 = 2Bm̂, where B is related to the quark
condensate 〈q̄q〉0 in the chiral limit [2].

The interaction terms LR , LN R , and L�R are constructed in
analogy to Ref. [23]. The leading-order (O(q)) pion-Roper coupling
is given by

L(1)
R = gR

2
R̄γ μγ5uμR, (5)

where gR is an unknown coupling constant and

uμ = i
[
u†∂μu − u∂μu† − i

(
u† vμu − uvμu†)]. (6)

The second- and third-order Roper Lagrangians relevant for our
calculation read

L(2)
R = R̄

[
c∗

6

2
f +
μν + c∗

7

2
v(s)
μν

]
σμν R + · · · ,

L(3)
R = i

2
d∗

6 R̄
[

Dμ, f +
μν

]
Dν R + h.c. + 2id∗

7 R̄
(
∂μv(s)

μν

)
Dν R

+ h.c. + · · · , (7)

where

v(s)
μν = ∂μv(s)

ν − ∂ν v(s)
μ ,

f +
μν = u fμνu† + u† fμνu,

fμν = ∂μvν − ∂ν vμ − i[vμ, vν ], (8)

and c∗
6, c∗

7, d∗
6, and d∗

7 are unknown coupling constants. The ellip-
sis denote those terms of the most general second- and third-order
Roper Lagrangians which do not contribute to the electromagnetic
vertex of the Roper at O(q3) and h.c. refers to the Hermitian con-
jugate. The leading-order interaction between the nucleon and the
Roper is given by

L(1)
N R = gN R

2
R̄γ μγ5uμN + h.c. (9)

with an unknown coupling constant gN R . Finally, the leading-order
interaction between the � and the Roper reads

L(1) = −g�R Ψ̄μξ
3
2
(

gμν + z̃γ μγ ν
)
uν R + h.c., (10)
�R
where g�R is a coupling constant and we take the “off-mass-shell
parameter” z̃ = −1. Note that at O(q3) the N� Lagrangian does
not contribute.

3. Perturbation theory, renormalization, and power counting

The CMS [15–19] originates from the Standard Model where
it was developed to derive properties of W , Z0, and Higgs bosons
obtained from resonant processes. What makes the situation some-
what different in the case of the strong interactions is the fact
that hadrons, including resonances, are thought to be composite
objects made of quarks and gluons. The characteristic properties
of hadron resonances eventually have to be described by QCD.
Within the present effective-field-theory approach, to a given reso-
nance we assign an explicit field with corresponding spin, isospin,
and parity content. Furthermore, for a generic resonance R , we
introduce a complex renormalized mass zχ defined as the loca-
tion of the corresponding complex pole position in the chiral limit,
zχ = mRχ − iΓRχ/2. We assume ΓRχ to be small in comparison
to both mRχ and the scale of spontaneous chiral symmetry break-
ing, Λχ = 4π F . Corrections to the complex pole position due to
the finite quark masses are treated perturbatively. Our perturba-
tive approach to EFT is based on the path integral formalism. In
this framework the physical quantities are obtained from Green’s
functions represented by functional integrals. The integration over
classical fields corresponding to particles is performed in the stan-
dard way, i.e., the Gaussian part is treated non-perturbatively and
the rest perturbatively. In particular, the functional integral is per-
formed for both stable and unstable degrees of freedom. For stable
particles the path integral formalism is equivalent to the operator
formalism based on the Dirac interaction representation. Unfortu-
nately, it is not obvious how to apply this representation to field
operators for unstable particles, because, strictly speaking, there is
no free Hamiltonian for unstable particles. Therefore, we stick to
the functional integral where one can perform the integration in-
dependently of the nature of the field.

In the following, we apply the CMS to have a consistent power
counting also applicable to loop diagrams. This renormalization
scheme is realized by splitting the bare parameters (and fields)
of the Lagrangian into, in general, complex renormalized parame-
ters and counter terms. We choose the renormalized masses as the
poles of the dressed propagators in the chiral limit:

mR0 = zχ + δzχ ,

mN0 = mχ + δm,

m�0 = z�χ + δz�χ , (11)

where zχ is the complex pole of the Roper propagator in the chi-
ral limit, mχ is the mass of the nucleon in the chiral limit, and
z�χ is the complex pole of the � propagator in the chiral limit.
We include the renormalized parameters zχ , m, and z�χ in the
propagators and treat the counter terms perturbatively. The renor-
malized couplings c∗

6 and c∗
7 of L(2)

R are chosen such that the
corresponding counter terms exactly cancel the power-counting-
violating parts of the loop diagrams.

While the starting point is a Hermitian Lagrangian in terms
of bare parameters and fields, the CMS involves complex param-
eters in the basic Lagrangian and complex counter terms. Although
the application of the CMS seems to violate unitarity, the bare
Lagrangian is unchanged and unitarity cannot be violated in the
complete theory. On the other hand, it is not obvious that the ap-
proximate expressions to the S-matrix generated by perturbation
theory also satisfy the unitarity condition since the conventional
Cutkosky cutting equations [24] are not valid in the framework
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Fig. 1. One-loop self-energy diagrams of the Roper. Dashed and solid lines refer to the pion and nucleon, respectively, and double-solid lines correspond to the Roper and
delta. The numbers in the vertices indicate the chiral order.
of CMS. However, it is possible to derive generalized cutting rules
for loop integrals involving propagators with complex masses to
show that unitarity is satisfied perturbatively [25]. In agreement
with Ref. [26], the S-matrix connecting stable states only is uni-
tary.

We organize our perturbative calculation by applying the stan-
dard power counting of Refs. [27,28] to the renormalized diagrams,
i.e., an interaction vertex obtained from an O(qn) Lagrangian
counts as order qn , a pion propagator as order q−2, a nucleon
propagator as order q−1, and the integration of a loop as order q4.
In addition, we assign the order q−1 to the � propagator and to
the Roper propagator. Within the CMS, such a power counting is
respected by the renormalized loop diagrams in the range of en-
ergies close to the Roper mass. In practice, we implement this
scheme by subtracting the loop diagrams at complex “on-mass-
shell” points in the chiral limit.

When calculating an observable, we do not perform an expan-
sion in powers of the mass differences between the Roper and the
nucleon or the Roper and the �. Rather we calculate the chiral
corrections to the magnetic moment of the Roper as a series in
powers of the pion mass which is either divided by large scales,
like 4π F and the heavy masses, or multiplied by coupling con-
stants which contain (inverse powers of) hidden large scales. As
the omitted neighboring resonances, like N(1535), couple weakly
to the Roper resonance, inverse powers of small scales (mass dif-
ferences between the Roper and the omitted resonances) which are
hidden in low-energy coupling constants of our effective theory are
enhanced by inverse powers of small couplings (corresponding to
the weak coupling of the Roper resonance to its neighbors) and
therefore effectively appear as large scales.

The dressed propagator of the Roper can be written as

i S R(p) = i

/p − zχ − ΣR(/p)
, (12)

where −iΣR(/p) denotes the sum of one-particle-irreducible dia-
grams contributing to the Roper two-point function. The pole of
the dressed propagator S R is obtained by solving the equation

z − zχ − ΣR(z) = 0. (13)

We define the pole mass and the width as the real part and (−2)

times the imaginary part of the pole [29], respectively,

z = mR − i
ΓR

2
. (14)

Some of the phenomenological analyses and dynamical models de-
scribe the Roper as a double-pole structure (see, e.g., Refs. [31,32]).
As the self energy in Eq. (13) is a multi-valued function, one might
be tempted to look for several solutions of this equation. Although
the numbering of sheets is a matter of convention, it is our un-
derstanding that in the standard nomenclature only poles on the
second sheet are relevant for the physical amplitude and should
be interpreted as resonances. Within our perturbative approach,
Eq. (13) has a unique solution on the second sheet. This solution is
obtained as a power series in terms of the expansion parameter(s)
of the perturbation theory.
Close to the pole the Roper propagator can be parameterized as

i S R(p) = i Z R

/p − z
+ n.p. (15)

The residue Z R (wave function renormalization constant of the
Roper) is a complex-valued quantity and n.p. stands for the non-
pole part. This is in full agreement with Ref. [30], where we have
shown that physical quantities characterizing unstable particles
have to be extracted at pole positions using complex-valued wave
function renormalization constants. Up to O(q3), Z R is obtained by
calculating the Roper self-energy diagrams shown in Fig. 1. We do
not give its explicit expression here.

4. Magnetic moment

Using Lorentz covariance and the discrete symmetries, the most
general electromagnetic vertex of a spin-1/2 field may be pa-
rameterized in terms of 12 Dirac structures multiplied by form
functions depending on three scalar variables, e.g., p2

i , p2
f , and q2,

where q = p f − pi [33–35]. For charged fields, the Ward–Takahashi
[36,37] identity provides certain constraints among the form func-
tions. For a stable particle such as the nucleon, on-shell kinematics
corresponds to p2

i = p2
f = m2

N , and the form functions reduce to

conventional form factors of q2, say, Dirac and Pauli form factors
F1 and F2, respectively. For unstable particles such as the Roper
resonance, the analogous kinematical point is given by the pole po-
sition, i.e., p2

i = p2
f = z2. In Ref. [30] we described a method how

to extract from the general vertex only those pieces which survive
at the pole. To that end, we introduced “Dirac spinors” w̄i and w j

with complex masses z which essentially correspond to half of the
projection operators Λ+ = ∑

j w j w̄ j used in Refs. [34,35] for the
initial and final lines. In terms of these “Dirac spinors”, the renor-
malized vertex function for p2

f = p2
i = z2 may be written in terms

of two form factors,√
Z R w̄i(p f )Γ

μ(p f , pi)w j(pi)
√

Z R

= w̄i(p f )

[
γ μF1

(
q2) + iσμνqν

2mN
F2

(
q2)]w j(pi), (16)

where mN is the physical mass of the nucleon.3 Both electromag-
netic form factors of the Roper are complex-valued functions even
for q2 < 0 because of the resonance character of the Roper. As in
the case of an on-shell nucleon, the third form function vanishes
at the pole because of current conservation or time-reversal invari-
ance.

To O(q3), the vertex function Γ μ(p f , pi) obtains contributions
from three tree diagrams (see Fig. 2) and fourteen loop diagrams
(see Fig. 3). By multiplying the tree-order contribution with the
wave function renormalization constant, one subtracts all power-
counting-violating contributions of loop diagrams to the F1 form
factor. We obtain F1(0) = (1 + τ3)/2 in agreement with the Ward
identity. This means that, as expected, the electric charge of the

3 Note the different normalization of the magnetic form factor.
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Roper does not receive any strong corrections. On the other hand,
the loop contributions to the magnetic form factor contain power-
counting-violating terms. These parts are analytic in the squared
pion mass and momenta. They are subtracted from the loop di-

Fig. 2. Tree diagrams contributing to the elastic electromagnetic form factors of the
Roper resonance. Double-solid and wiggly lines correspond to the Roper and exter-
nal electromagnetic source, respectively. The numbers in the vertices indicate the
chiral order.
agrams and absorbed in the renormalization of the couplings c∗
6

and c∗
7.

The anomalous magnetic moment in units of the nuclear mag-
neton is defined as

κR = F2(0). (17)

Since both the four-momentum qμ as well as the polarization vec-
tor εμ count as O(q) our calculation yields the magnetic moment
to O(q). The tree-order result for κR is given by

κ tree
R = 2mN

(
c∗

7

2
+ τ3c∗

6

)
. (18)

In order to show that the subtracted loop contributions satisfy
the power counting we divide the diagrams of Fig. 3 into three
Fig. 3. Loop diagrams contributing to the elastic electromagnetic form factors of the Roper resonance. Dashed, wiggly, and solid lines correspond to pion, nucleon, and
external electromagnetic source, respectively; double-solid lines correspond to the Roper and �. The numbers in the vertices indicate the chiral order.
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Fig. 4. One-loop contributions to the anomalous magnetic moment of the Roper as functions of the pion mass. The left figure corresponds to the neutral and the right to the
charged resonances. The solid and dashed lines indicate the real and imaginary parts, respectively.
separate classes. Diagrams potentially violating the power count-
ing are loop diagrams with internal Roper, nucleon, and delta lines
which we refer to as classes A, B , and C , respectively. We denote
the respective contributions to the magnetic moment by κ A,B,C

R .
At first, we consider the contribution of κ A

R . Dividing the ex-
pression by M and taking the limit M → 0 yields

lim
M→0

κ A
R

M
= −g2

R
mN

8π F 2
τ3. (19)

Replacing the low-energy constant gR with g A , this expression co-
incides with the non-analytic contribution to the anomalous mag-
netic moment of the nucleon [4,38]. Next, we analyze the contri-
butions stemming from κ B

R . For a fixed and finite mass difference
zχ − mχ , the limit M → 0 is zero

lim
M→0

κ B
R

M
= 0. (20)

If zχ − mχ scales as αM the limit M → 0 is given by

lim
M→0

κ B
R

M
= g2

N R
mN

4π2 F 2
g(α)τ3, (21)

with

g(α) = iπ
(√

α2 − 1 − α
) + α ln(2α)

−
√

α2 − 1 ln
(
α +

√
α2 − 1

)
. (22)

Taking the limit M → 0 after the limit zχ → mχ results in

lim
M→0

(
lim

mχ →zχ

κ B
R

M

)
= −g2

N R
mN

8π F 2
τ3. (23)

Similar results are obtained for κC
R . For fixed and finite mass dif-

ference zχ − z�χ the limit M → 0 yields

lim
M→0

κC
R

M
= 0. (24)

If zχ − z�χ scales as βM the limit M → 0 is given by

lim
M→0

κC
R

M
= g2

�R
mN

9π2 F 2
g(β)τ3. (25)

Taking the limit M → 0 after zχ → z�χ one finds

lim

(
lim

m →z

κC
R

)
= −g2

�R
mN

2
τ3. (26)
M→0 � χ M 18π F
The above analysis shows that the renormalized loop diagrams
satisfy the power counting regardless of how the various mass dif-
ferences are treated.

To estimate the loop contributions to the anomalous mag-
netic moment of the Roper we substitute [39] F = 0.092 GeV,
M = 0.140 GeV, mχ = 0.940 GeV, z�χ = (1.210 − 0.100i/2) GeV,
zχ = (1.365 − 0.190i/2) GeV, μ = 1 GeV, gR = 1, g�R = 1, gN R =
0.45 [23] and obtain

κR = (0.055 + 0.090i) − (0.223 + 0.156i)τ3. (27)

Fig. 4 shows the loop contribution to the anomalous magnetic mo-
ment of the Roper as a function of the lowest-order pion mass M ,
where M2 = 2Bm̂ [40].

5. Summary

To summarize, we have calculated the magnetic moment of
the Roper resonance up to and including order q3 using effective-
field-theory techniques. To obtain a systematic power counting for
energies around the mass of the Roper, we applied the CMS which
is a generalization of the on-mass-shell renormalization for unsta-
ble particles. Unrenormalized contributions of loop diagrams to the
magnetic moment contain power-counting-violating terms. How-
ever, these terms are analytic in the squared pion mass and the
momenta and can be systematically absorbed in the renormaliza-
tion of the available low-energy coupling constants. The renormal-
ized loop diagrams satisfy the power counting regardless of how
the Roper and nucleon as well as the Roper and delta mass differ-
ences are treated.

At next-to-next-to-leading order, O(q3), only the isovector
anomalous magnetic moment receives a loop contribution. Anal-
ogously to the nucleon, the loop contribution to the isoscalar
anomalous magnetic moment starts with order O(q4).4 Due to
the unstable character of the Roper, the loop contributions to the
anomalous magnetic moment feature an imaginary part which is
of the same order of magnitude as the corresponding real part.

At present, an extraction of the elastic electromagnetic form
factors of the Roper from experimental measurements appears to
be unrealistic. However, our expressions for the anomalous mag-
netic moment may be used in the context of lattice extrapolations.
Moreover, lattice QCD provides for an opportunity to determine the

4 In manifestly Lorentz-invariant baryon chiral perturbation theory, a calculation
at O(qn), in general, not only produces contributions of O(qn) but also a string of
higher-order terms of O(qn+i) with i = 1,2,3, . . . [4]. For the isoscalar magnetic
moment, the leading term at O(q3) vanishes and only small contributions beyond
O(q3) survive [see Eq. (27)].
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five unkown parameters. A fit of our expressions to lattice data at
different values for the pion mass results in a complete theoretical
prediction of the anomalous magnetic moments of the Roper.
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Appendix A

Making use of dimensional regularization with n the number of
space–time dimensions, the loop functions are given as [42]

A0
(
m2) = (2πμ)4−n

iπ2

∫
dnk

k2 − m2 + iε
= −32π2λm2 − 2m2 ln

m

μ
,

B0
(

p2,m2
1,m2

2

) = (2πμ)4−n

iπ2

×
∫

dnk

[k2 − m2
1 + iε][(p + k)2 − m2

2 + iε]
= −32π2λ + 2 ln

μ

m2
− 1 − ω

2
2 F1(1,2;3;ω)

− 1

2

(
1 + m2

2

m2
1(ω − 1)

)

× 2 F1

(
1,2;3;1 + m2

2

m2
1(ω − 1)

)
,

ω =
m2

1 − m2
2 + p2 +

√
(m2

1 − m2
2 + p2)2 − 4m2

1 p2

2m2
1

, (28)

where 2 F1(a,b; c; z) is the standard hypergeometric function, μ is
the scale parameter of the dimensional regularization and

λ = 1

16π2

{
1

n − 4
− 1

2

[
ln(4π) + Γ ′(1) + 1

]}
. (29)

By writing

F2(t) = mN
[

G1(t) + τ3G2(t)
]
, (30)

we obtain the loop contributions as:

G loop
1 (0) = 3g2

R

16F 2zχ (M2 − 4z2
χ )π2

{[
z2
χ − A0

(
z2
χ

)

− (
M2 − 3z2

χ

)
B0

(
z2
χ , M2, z2

χ

)]
M2

+ (
M2 − 2z2

χ

)
A0

(
M2)}

+ 3g2
N R(mχ + zχ )2

64F 2mχ z3
χ [(mχ + zχ )2 − M2]π2

× {
zχ A0

(
m2

χ

)
M2 + mχ

(
mχ (mχ + zχ ) − M2)A0

(
M2)

− mχ

[
M2z2

χ + mχ (mχ − zχ )
(
(mχ + zχ )2 − M2)

× B0
(
z2
χ ,0,m2

χ

) + (−M4 + mχ (2mχ + zχ )M2

− mχ (mχ − zχ )(mχ + zχ )2)B0
(
z2
χ , M2,m2

χ

)]}

+ g2
�R

864F 2z4 z3
χπ2

{−2(z�χ − zχ )
(
9z4

�χ − 14zχ z3
�χ
�χ
+ 8z2
χ z2

�χ + 2z3
χ z�χ + z4

χ

)
× B0

(
z2
χ ,0, z2

�χ

)
(z�χ + zχ )3

+ M2z2
χ

[(
9z2

�χ + 4zχ z�χ − z2
χ

)
M2

+ 4zχ

(−6z3
�χ − 8zχ z2

�χ + z2
χ z�χ + 4z3

χ

)]
+ 2

[(
9z2

�χ + 4zχ z�χ − z2
χ

)
M4

− (z�χ + zχ )
(
18z3

�χ −10zχ z2
�χ +7z2

χ z�χ −3z3
χ

)
M2

+ (z�χ + zχ )2(9z4
�χ − 14zχ z3

�χ + 8z2
χ z2

�χ

+ 2z3
χ z�χ + z4

χ

)]
A0

(
M2)

− 2M2[(9z2
�χ + 4zχ z�χ − z2

χ

)
M2

+ 2
(−9z4

�χ − 4zχ z3
�χ + 6z2

χ z2
�χ + z4

χ

)]
× A0

(
z2
�χ

) − 2
[
M2 − (z�χ + zχ )2]

× [(
9z2

�χ + 4zχ z�χ − z2
χ

)
M4

− 2
[
9z4

�χ − 5zχ z3
�χ − 10z2

χ z2
�χ + z3

χ z�χ − z4
χ

]
M2

+ (
z2
�χ − z2

χ

)(
9z4

�χ − 14zχ z3
�χ + 8z2

χ z2
�χ

+ 2z3
χ z�χ + z4

χ

)]
B0

(
z2
χ , M2, z2

�χ

)}
, (31)

G loop
2 (0) = g2

R

16F 2zχ (M2 − 4z2
χ )π2

{−A0
(
z2
χ

)
M2

+ (
3M2 − 10z2

χ

)
A0

(
M2)

+ z2
χ

[
M2 − 2

(
M2 − 4z2

χ

)
B0

(
z2
χ ,0, z2

χ

)]
− (

3M4 − 13z2
χ M2 + 8z4

χ

)
B0

(
z2
χ , M2, z2

χ

)}

+ g2
N R(mχ + zχ )

64F 2mχ z3
χ [(mχ + zχ )2 − M2]π2

× {
(3mχ − zχ )zχ A0

(
m2

χ

)
M2 + mχ (mχ + zχ )

× (−3M2 + 3m2
χ + 4z2

χ + 3mχ zχ

)
A0

(
M2)

+ mχ

[
M2(zχ − 3mχ )z2

χ + mχ

(
3m2

χ + z2
χ

)
× [

M2 − (mχ + zχ )2]B0
(
z2
χ ,0,m2

χ

)
+ (mχ + zχ )

[
3M4 − (

6m2
χ + 3zχmχ + 4z2

χ

)
M2

+ mχ (mχ + zχ )
(
3m2

χ + z2
χ

)]
B0

(
z2
χ , M2,m2

χ

)]}

+ g2
�R

2592F 2z4
�χ z3

χπ2

× {
z2
χ

[(
27z2

�χ + 20zχ z�χ − 5z2
χ

)
M2

+ 4zχ

(−18z3
�χ − 13zχ z2

�χ + 5z2
χ z�χ + 20z3

χ

)]
M2

− 2
[−54z4

�χ − 40zχ z3
�χ + 60z2

χ z2
�χ + 10z4

χ

+ M2(27z2
�χ + 20zχ z�χ − 5z2

χ

)]
A0

(
z2
�χ

)
M2

+ 2
[
5z6

χ + 20z�χ z5
χ

+ 5
(
3M2 − 5z2

�χ

)
z4
χ − 2z�χ

(
10M2 + 53z2

�χ

)
z3
χ

− (
5M4 − 33z2

�χ M2 + 55z4
�χ

)
z2
χ

+ 20z�χ

(
M2 − z2

�χ

)2
zχ + 27

(
z3
�χ − M2z�χ

)2]
× A0

(
M2) − 2(z�χ + zχ )2(27z6

�χ − 34zχ z5
�χ

− 41z2
χ z4

�χ +98z3
χ z3

�χ −17z4
χ z2

�χ −10z5
χ z�χ − 5z6

χ

)
× B0

(
z2
χ ,0, z2

�χ

) − 2(M − z�χ − zχ )(M + z�χ + zχ )
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× [
27z6

�χ − 34zχ z5
�χ − 41z2

χ z4
�χ + 98z3

χ z3
�χ

− 17z4
χ z2

�χ − 10z5
χ z�χ − 5z6

χ

+ M4(27z2
�χ + 20zχ z�χ − 5z2

χ

)
− 2M2(27z4

�χ − 7zχ z3
�χ − 50z2

χ z2
�χ

+ 5z3
χ z�χ − 5z4

χ

)]
B0

(
z2
χ , M2, z2

�χ

)}
. (32)
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