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$1. INTRODUCTION 

IN THIS paper we shall determine all possible structures on surfaces which are deformations 
of a non-singular surface of degree 6 in P3 defined over C. If a surface S is a deformation of 
a sextic surface, then it has the following numerical characters 

Pe=lO, q=O, and K2=24, 

where pa, q, and K denote the geometric genus, irregularity, and canonical bundle of S, 
respectively. Moreover S has an even intersection form on H’(S, Z). 

As the first main theorem, we determine the structures on the surfaces with these 
properties. Since S is even, the canonical bundle K is divisible by 2 as K = 2L with a line 
bundle L. 

THEOREM 1. The possible structures on S can be classified into the following six types in 
terms of the rational map ar. associated to L: 

(Ia) S is birationally equivalent to a sextic surface in P3 with at most rational double points. 
(Ib) (PL is a generically 2-sheeted map onto a cubic surface in P3. 
(Ic) OL is a generically 3-sheeted map onto a quadratic surface in P3. 
(IIa) oL is a generically 2-sheeted map onto a smooth quadratic surface in P3. 
(IIb) a,, is a generically 2-sheeted map onto a singular quadratic surface in P3. 
(III) (I$ is composed of a pencil of curves of genus 3 of non-hyperelliptic type. 

In the course of the proof, the construction of these surfaces will become clear. 
As the second main theorem, we shall prove the following. 

THEOREM 2. All the surfaces in Theorem 1 are specializations of non-singular sextic 
surfaces. In other words, the moduli space of even surfaces with the above numerical characters 
is irreducible. 

Our proof is very constructive, and we shall give, for each type of the above six, defining 
equation of the desired family. We obtain the following specialization diagram: 

IK :,“bIIa - IIb 
\ 

Since S is automatically minimal, the above list exhausts all possible complex structures on 
the underlying differentiable manifold. 

An outline of the results was stated in [7, $41. 
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52. SURFACES OF TYPE I 

Let S be a minimal non-singular algebraic surface with ps = 10,q = 0 and K2 = 24. We 
further assume that the canonical bundle K is divisible by 2, and let K = 2L, where L is 
a line bundle on S. We use the abbreviated symbol h’(L) to denote dimH’(S, O(L)) etc. 

LEMMA 2.1. We have h’(L) = 4 and h’(L) = 0. 

Proof: We have 10 = h0(2L) 2 2h”(L) - 1, and the Riemann-Roth theorem yields 

2h”(L)-hi(L)=-;L2+11=8. 

It follows that ho(L) = 4 or 5. 
Suppose ho(L) = 5 and consider the rational map ‘I$_ associated to L. We claim that OL 

is composed of a pencil. If this is not so, then the image W = OL(S) is a surface in P4 which is 
contained in 5 linearly independent quadrics. In particular deg W _< 4. Combined with the 
inequality deg @)L * deg W I 6, it follows that deg W = 3. Hence, as is well known, W is 
either the Hirzebruch surface Ci, i.e., the P’-bundle P(0 @ Lo(l)) over Pi, or a cone over 
a cubic rational curve in P3. In either case, W is contained only in 3 quadrics. Now, L can be 
written as (L( = 14Lol + F, with some irreducible pencil Lo and the fixed part F. It easily 
follows that LLo = 1, LF = 2. Then the first equality implies that L$ = 0, LoF = 1. 
Therefore, Lo is a pencil of curves of genus 2 without base points. From the list of six types 
(O)-(V) of the singular fibres (see [S]), we see that any singular fibre other than those of type 
(0) contains a divisor with self-intersection number - 1. Since S is even, only fibres of type 
(0) can occur. But this implies that K2 = 2p, - 4, which is absurd. 

LEMMA 2.2. If) L) has no base point norjxed component, then Q)L is one of the following: 

(Ia) OL induces a birational map of S onto a sextic surface with at most rational double points. 
(Ib) Or, is a generically 2-sheeted map onto a cubic surface. 
(Ic) Q’r. is a generically 3-sheeted map onto a quadratic surface. 

Although the proof is obvious, we state here the existence of surfaces of types Ib and Ic. 
Suppose first that deg@,(S) = 3. Let {x0, x1,x2,xJJ be a basis of H’(S, O(L)). Then, 
by assumption, there is one cubic relation g(xo, xi, x2, x3) = 0. Since h0(3L) = 
h”(K + L) = 20, by the Riemann-Roth theorem and the vanishing theorem, we have a new 
element wcH’(S, O(3L)) which is independent of the cubic monomials in xi. Let C be 
a smooth member of the linear system (L( associated to the line bundle L. Then K + L 
induces the canonical bundle Kc. If C is hyperelliptic then the restriction L(c is of the form 
[4P. + PI + P2], where PO is a Weierstrass point and PI and P2 are fixed points, because it 
is a subsystem of (Kc) with hO(Llc) = 3 (see Lemma 3.2 below). This would imply that I L( 
has base points. Therefore C is not hyperelliptic. Furthermore, comparing the dimensions, 
we see that w and the cubic monomials of the xi generate the space H’(C, B(K,)). It also 
follows that there is no relation of the form 

4x0, x1 2 x2, X~)W +f (xo, ~1, x2, ~3) = 0, hXg. 

This implies that the monomials in w and xi, linear in w, form a basis of H’(S, O(6L)). 
Therefore, there is a relation of the form 

w2 + h(xo,x,,xz, x3)w +f (x0, x1, x29 x3) = 0 9 

where deg h = 3, degf = 6. By linear change, we may assume h = 0. 
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Thus, we have shown that aL is lifted to a map of S into a weighted projective space 
V = P(3, 1, 1, 1, 1) with coordinates (w, x0, x1, x2, x3) of weights (3, 1, 1, 1, 1) whose image 
S’ is defined by 

g=o, w2+f=0. 

Since S’ coincides with the canonical model of S, it has at most rational double points. 
Conversely, if we choose general g andS, then the above equations determine a smooth S’. It 
remains to show that such S’, or its minimal resolution is an even surface with the desired 
numerical characters. This follows from a standard calculation. But here we prove the 
following proposition. 

PROPOSITION 2.1. Surfaces of type Ib and type Ic are deformations of smooth sextic 
surfaces. 

Proof: Actually we shall show that a surface S’ defined above is a deformation of sextic 
surfaces. For this, let t be a parameter varying in a neighborhood of 0 in C, and consider the 
subvarieties of V defined by 

tw-g=O,wZ+f=O. 

If S: is a surface with parameter t, then S; has at most rational double points, because Sb is 
so. For t # 0, Si is nothing but a sextic surface defined by g2 + t’f = 0. Therefore the 
minimal resolution of S: is a deformation of the minimal resolution of SA (see below for 
surfaces of type Ic). q.e.d. 

By a similar argument we can show that a surface of type Ic is defined in the weighted 
projective space P(2, 1, 1, 1, 1) by the equations 

u3 + A2u2 + A4u + As = 0, g = 0, 

where degu = 2 and A2j and g are homogeneous polynomials in the variables 
(x0, x1, x2, x3) of degree 2j and 2, respectively. Surfaces of type Ic can be deformed to sextic 
surfaces by replacing the equation g = 0 by tu - g = 0. 

$3. SURFACES OF TYPE II 

PROPOSITION 3.1. Suppose QL is not holomorphic nor composed of a pencil. Then Q)L 
induces a generically 2-sheeted map onto a quadratic surface in P3, i.e., S is of type IIa or IIb. 
Moreover, ) Lj is written JH1 + F, where jH1 has no base point and HF = 2, F 2 = -2, 
LF=O. 

Let R : ,?-+ S be a composition of blowings up such that (DL 0 R is holomorphic. We write 
(7c*L( = (H( + F, where (H( is the variable and F is the fixed part. Let Z? be the canonical 
bundle on Sand let k = a*K + [El, where E is a sum of the exceptional curves. Since we 
only need to blow up base points, we may assume F 2 E. From 

L2=H2+HF+n*LF,HFr0,n*L.F20, 

we obtain HZ I L2 = 6. If HZ = 6, then (LJ would have no base point. If H2 = 5, then 
S would be birationally equivalent to a quintic surface. Hence we get Hz = 4, because 
H2 I 3 is absurd. This implies that QL is generically 2-sheeted onto a quadratic surface and 
it also follows 

HF+rt*L*F=2. 
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From the inequality HE I HF = 2, we have HE = 0, 1, or 2. Let 1 Lo\ + F. be the 
decomposition of IL.1 into the variable and fixed part (on S). Then 

H2= La-Cm’, 

HE = C mi, 

where the mi are the multiplicities of the base points appearing in z. 
If HE = 1, then II is a single blowing up and Lz = 5. This contradicts that S is even. If 

HF = 0 then F 2 I 0 by Hodge’s index theorem. This contradicts L2 2 H2. Therefore, we 
have 3 possibilities: 

(1) HE = 2, 
(2) HE=0,HF=2,F2= -2, 
(3) HE = 0, HF = 1, F2 = 0. 

LEMMA 3.1. HE = 2 does not happen. 

Proof: If HE = 2, then, by the above consideration, rr is a composite of two blowings up, 
and L2 = Li, which in turn implies that IL1 has no fixed component. In particular, any 
general member C E ) LI is a non-singular curve, which is hyperelliptic. We recall the 
following lemma. 

LEMMA 3.2. Suppose that C is a hyperelliptic curve and let I AI be a complete linear system 
such that I Kc - A I # 8. Then )A I is oftheform I v8) + (fixed points), where 8 is a hyperelliptic 
dioisor (i.e., deg 8 = h’(8) = 2), and v = dim )A I. 

Proof. Let cp: C --) P" be the map associated to the canonical system I&l. By assump- 
tion, the map an is dominated by cp, so that the variable part of l/i I is induced by a line 
bundle on p(C) = P'. q.e.d. 

Returning to the proof of Lemma 3.1, we can write the restriction (Lc( in the form 
1281 + Pi + P2, because h”(Lc) = 3. Since 3L induces the canonical bundle Kc = [98], it 
follows that 3Pi + 3P2 E 1381. If Pi is the point conjugate to PI, i.e., P1 + Pi E (81, then 3P2 
is linearly equivalent to 3P;. Since P2 cannot coincide with Pi, this contradicts Lemma 3.2. 
This proves Lemma 3.1. 

It remains to prove the following lemma. 

LEMMA 3.3. The case (3) does not occur. 

Proof. The equality HE = 0 implies that ) LoI has no base point. So we take rr = id. 
Since Hz = 4, $, defines a generically 2-sheeted holomorphic map onto a quadric Win P3. 
We first suppose that the image is non-singular. Then, since W = P' x P', 1 LI is of the form 
ID + Di ) + F, where 10) and ) II1 ) are linear pencils with DD1 = 2. By interchanging ) 01 

and ) D 1 1, if necessary, we may assume FD = 0, FD 1 = 1. Then F is contained in a fibre of the 

holomorphic map Or,. From F 2 = 0, it follows that F is a rational multiple of a total fibre. 
Combining with 2HF = HD, we get 2F E ID (. This implies that 2L is linearly equivalent to 
30 + 2Di and we get h0(2L) 2 12, which contradicts the equality pe = 10. 

Next suppose that the image O,,(S) is singular. In this case, I L( is of the form 120 + Cl, 
where ID( is a linear pencil possibly with base point and G is effective (see [4, p. 461). Since 
IHI has no base point, we have HG = 0, which in turn implies that HD = 2 and 
2D2 + DC = 2. Since D2 is even, we get D 2 = 0 DC = 2. Therefore D has no base point and 
G # 0. It follows that QD is holomorphic and ;hat & can be lifted to a holomorphic map 
fi S + X2, of S onto the Hirzebruch surface of degree 2. 
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We set DF = k 2 0. If k = 0, then we have 2F E 1 D ) and get a contradiction as above. If 
k > 0, then FG = 1 - 2k and f*F = kAo + I, where A0 is a section of Cz + P’ with 
A; = -2andIisafibre.FromH(D+G-2F)=O,wehave 

0 2 (D + G - 2F)2 = -4(1 - k). 

Hence we conclude that k = 1 and that D + G is numerically equivalent to 2F. 
To see that f *f, F - 2F is effective, we calculate the ramification divisor R off; which 

turns out to be linearly equivalent to 80 + 4G + 2F. Hence the branch locus B is in the 
linear system (lOA + 18IJ on x2. Since f *B - 2R E I2(D + G - 2F)J is effective 
[4, Lemma 31, it follows that f *f, F - 2F is effective. Combining with the preceding fact, we 
conclude that 2F is linearly equivalent to D + G. Therefore, we get a contradiction 
h0(2L) 2 h0(5D + 3G) 2 12, again. This completes the proof of Proposition 3.1. 

Hereafter we assume that (LI = (HI + F, where (HI has no base points with H 2 = 4, 
HF = 2 and F ’ = - 2. A general member C E IH ) is a non-singular hyperelliptic curves of 
genus 9, and the restriction ) L,-1 is of the form 1291 + PI + P2, where 9 is a hyperelliptic 
divisor. Since 2L + H induces the canonical bundle Kc = [SS], it follows that 
2P, + 2P2 E 1291. If Pi is conjugate to PI, then 2P2 is linearly equivalent to 2P;. Since 
PI + P2 is the fixed part of IL,(, P2 cannot coincide with Pi. Hence PI and P2 are the 
Weierstrass points on C, which are distinct. 

Let ceH’(S, O([F])) be a non-zero section and let {zo,z1,z2, z3} be a basis of 
Ho@, U(H)). We assume that C is defined by z3 = 0 on S. There is one quadratic relation 
q(z,, zl, z2, z3) = 0, and the monomials ZiZji2 generate 9-dimensional subspace of 
Ho@, O(2L)). Hence there is an element UE Ho@, O(2L)) which is linearly independent from 
these monomials. 

Since Hlc is of the form [29], we may assume that z. = st, z1 = s2, z2 = t2 on C. 
Moreover we may assume that PI and P2 are the points s = 0 and t = 0, respectively, so that 
c2 Ic is a constant multiple of zo. The restriction ulc is a sextic form in (s, t), and hence can be 
written as a cubic form in the zi. That is 

u = ho(zo, zi, z2) on C. 

Multiplying zoc, we obtain 

zoia = ho(zoi, zii, z2i) on C. 

This holds not only on C, but also on C + F, i.e., the difference is divisible by z3[. 
Introducing Xi = Zic, 0 I i 5 3, we obtain 

xou = ho(xo, xi, x2) mod x3. 

From the exact sequence 

04 O(2L) + O(3L) + flC+F(3LlC+F) + 0, 

it follows that the above relation is lifted to 

/(x0, x3b = eo, Xl, x2, x3), 

where deg I= 1, degh = 3. We may assume I= x0. 

In Ho@, 0(3L)) we have the elements 

In the first group, there are 16 ( = 20 - 4) linearly independent elements, and three more in 
the second group. Since h0(3L) = 20, there is a new element w E Ho@, U(3L)). The restric- 
tion wlc is a section of [89 + PI + P2] = [Kc + PI + P2]. 
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Recall that KF = 0 and F * = - 2. Hence F is a fundamental cycle arizing from 
a resolution of a rational double point. It follows that hO(cO,) = 1 (see Cl]). Therefore, we 
have h’(K + F) = h’( - F) = 0. Hence the restriction map Ho@, O(3L)) + N”(C, 8(3L,)) 
is surjective. Let C + P’ be the double covering associated to ) &.I. Then its ramification 
divisor Rc is linearly equivalent to 109. Therefore, Rc - P, - Pz z 89 + P, + P, - 3Lc, 
where - denotes linear equivalence on C. Combining these facts, we may assume that 
(w/c) = Rc - PI - P2. 

To get the equation for w, we consider the space H”(S, O(6L)) r CE3. Here we find the 
following elements: 

sextics in the Xi modq : 49 elements, 
u *(quartics in the Xi) mod (4, x0) : 9 elements, 
u2 * (quadrics in the Xi) mod (q, x0) : 5 elements, 
u3 : 1 element, 
w - (cubits in the xi) mod q : 16 elements, 
WUXi (i # 0) : 3 elements, 
W2 : 1 element, 

Since these are 84 in total, there is one non-trivial relation. The coefficient of w* in this 
relation is not 0, for otherwise w cannot separate the two sheets on C. Thus we obtain 

w* = Aou3 + A2u2 + A,u + A6, 

where the A2j are forms of degree 2j in the Xi. This implies 

x~(x~w)~ = A0h3 + A2xoh2 + A,x;h + A,x;. (3.1) 

This may be interpreted as follows. Suppose that a quadratic surface IV q = 0 is given in 
P3. Then I= 0 defines a divisor A on W, and h = 0 cuts 9 points Pi, 1 I i I 9 on A (distinct 
provided I and h are chosen to be general). The above equation means that xgw is the square 
root of 

xo(Aoh3 + A2xoh2 + A,x;h + A6x;). 

This determines a double covering S ’ of W which is birationally equivalent to the original S. 
It is easy to see that, if A2j are general, then the minimal resolution s^ of S’ satisfies ps = 10, 
q = 0 and K* = 24. Furthermore, since A is contained in the branch locus, the inverse 
image of A on s^ decomposes as 

2i + (curves contracted to a point on W), 

From this, we infer that the canonical bundle of s’ is induced by 2H” + 2& where H” is the 
pull-back of the hyperplane bundle on P3. This proves that s^ is even. 

We can put the result more formally as follows: 

PROPOSITION 3.2. Let S be a surface of type IIa or IIb. Then its canonical model is in the 
weighted projective space V = P(l, 1, 1, 1,2,3) dejined by 

4 = 0, 
xou = h, 

w2 = u3 + Azu2 + A4u + A6, 

where (x0, x1, x2, x3, u, w) is a system of coordinates on V with deg Xi = 1, deg u = 2, 
deg w = 3 and q, h, A2j are homogeneous forms in the xi of degree 2, 3, 2j, respectively. 
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Remarks. (1) If A0 should be 0, then x0 could be factored out in (3.1), and S would have 
smaller value of ps 

(2) In case of type IIb, Wis a quadratic cone. In this case, the map S + Wean be lifted to 
a holomorphic map S -+ C2 (cf. the proof of Lemma 3.3). 

(3) In both cases of type IIa and IIb, S admits a pencil of hyperelliptic curves of genus 4. 
To make S even, we needed a special component A in the branch locus. Consideration 
similar to (2) shows that any surface of type Ic admits a pencil of curves of genus 4 which is 
of non-hyperelliptic type. (Note that general curves of genus 4 are trigonal.) 

PROPOSITION 3.3. Let S be a surface of type IIa or type IIb, and let t = (tl , t2) be a system 
of parameters ranging in a neighborhood of the origin in C ‘. Then the following system of the 
equations 

i 

q - t1u = 0, 

xou - h - t2w = 0, 

w2 = u3 + A2U2 + A‘@ + A 6 

determines a family {S,} of deformations of S = So such that 

(1) for tl t2 # 0, S, is a sextic surface in P3, 
(2) for t, = 0, t2 # 0, S, is of type Ib, 
(3) for tl # 0, t2 = 0, S, is of type Ic. 

Proof: If both tl and t2 are non-zero, then one can solve the first two equations in u 
and w. So the above system reduces to a single equation of degree 6 in the Xi. In view of the 
description in $2, (2) and (3) are proved analogously. q.e.d. 

From the defining equations it is obvious that the pencil of hyperelliptic curves of 
genus 4 on S is deformed to non-hyperelliptic pencil on surfaces of type Ic. 

54. SURFACES OF TYPE III 

In the remaining sections we shall study the case in which Qr. is composed of a pencil ID 1. 
Since this pencil is necessarily linear, we can write 

IL1 = 13D(+ F, 

where F is the fixed part. From L2 = 6 follows that LD = 1 or 2. In either case, we obtain 
D2 = 0. Therefore, if LD = 1, then 1 D 1 is a pencil of curves of genus 2 on an even surface S. 
This implies that S has only singular fibres of type (0) (see [5]), and S necessarily satisfies 
K* = 2p, - 4. Hence we conclude that IDI is a pencil of curves of genus 3 without base 
point. 

PROPOSITION 4.1. The general members of (01 are not hyperelliptic. 

Proof is postponed to 47. 
We now study the structure of this non-hyperelliptic pencil. In general, for a minimal 

surface S with such pencil, one has K2 2 3p, - 7. Since we have K2 = 3p, - 6 in our case, 
S will have one degeneration into hyperelliptic curve (see [7, $31). In the present case, this is 
some special kind, because S is even. Note that we have 

LD=2, LF=O, and F*=-6. 

Also 

hO(mL) = 3m(m - 2) + 11, for m 2 3. 
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To simplify the notation, for any divisor 2, we write Ho(Z) instead of H’(S, S([Z])). 
Let {uo, ui) be a basis of Ho(D), and let [EH’(F) be non-zero, so that Xi = ubu:-‘~, 
0 < i < 3 form a basis of H’(L). Since h0(6D + 2F) = pe = 10 and 60 + 2F induces 
a canonical divisor on D, it follows h”(5D + 2F) 2 ‘7. Therefore, besides [“u&.u:-~ 
(0 I i I 5), there is a new section ~EH’(SD + 2F), i.e., 4 is linearly independent of the 
preceding sections. We postulate the following lemma, which will be proved at the end of 
this section. 

LEMMA 4.1. h0(5D + 2F) = 7. 

Note that this implies that there is a new section VE H0(6D + 2F) and that c2, 5, 
1 induce a basis of H’(D, 0(K,)). In H0(9D + 3F) = H0(3L) we have 19 sections: 

t&$-i,’ (0 I i I9), ubu:-i[< (0 I i 5 4), u~u:-‘5fj (0 5 i 53). 

Since h”(3L) = 20 we can find a new section tj E H0(9D + 3F). 
In H’(lOD + 4F), we have 22 elements as above plus t2, [uo$, cur$. 

LEMMA 4.2. We have h’(lOD + 4F) = 24. 

Proof: First note that H0(12D + 4F) E C3’ contains all the six quadratic forms 

C2, 15, . ’ ’ f $, it follows that h’(llD + 4F) = 29. Similarly, H’(llD + 4F) contain five of 
these. So h’(lOD + 4F) I 29 - 5 = 24. Since we have h’(lOD + 3F) = 24, this proves the 
lemma. 

By this lemma there is a relation of the form 

U&o, Ul)ll/ =f(uo, 43 c2, r, VI. 

Since L(uo, ul) # 0, by a linear change, we may assume L = uo: 

iuo+ =f(uo, u11 P, 5, II). (4.1) 

Here we introduce a (bi)degree by assigning (k, I) to the elements of H’(kD + 21F). 

Therefore, fis of degree (10,2). 
Next we look at H0(18D + 6F) z Ca3. Here we have the following 83 elements 

~“u~u:“-“ (0 <_ i 5 18), [“<ubn~“-’ (0 5 i 5 13), 

[4tlUbU:2-i (O<iI 12), [‘<‘u~u~-~ 0 I i < 8), 

<2&ub~~-i (0 5 i I 7), C2~2u~u~-i (0 < i I 6), 

<3ubu:-i (0 < i 5 3), yr&l- (0 5 i I 2), 

{q2ubu:-’ (0 < i 5 l), rj3, 

4X3U?, VKCn:, 

4GP:. 

The first 80 elements are obviously linearly independent. Therefore, if these are linearly 
dependent, then we have a relation of the form 

where L’ is non-trivial of degree (9,1). It would follow that uof’ - ,C’f= 0, which is a cubic 
relation among c2, 5 and q. Thus we have seen that the above list gives a basis of 
H0(18D -t 6F). Hence +’ is a linear combination of them, and, by a linear change, we may 



DEFORMATIONS OF SEXTIC SURFACES 765 

assume 

where g is of degree (18,3). 
Eliminating + we obtain 

f z - u;czg = 0. 

These are geometrically interpreted as follows. The basis (uo, u,) determines a holomor- 
phic map S + P’. Let V = P(0 @ 0( - 5) @ (!I,( - 6)) be the Pz-bundle over P’, and let r be 
a fibre of V-* P’. Then we can take homogeneous coordinates (Z,, Zr, Z,) on the fibres 
such that 

where N denotes linear equivalence. The sections ([‘,<, q) determine a rational map 
h: S + V over P’ and its image S’ is defined by the equation 

f~~0,~~,~O~~ll~2~2-~02~O~~~0,~1~~O~~1~~2~=~1 (4.2) 

where degf= (10,2), degg = (18,3) with degui = (1,0) and degZj = (0, l), (5, l), (6,l) 
(j = 0, 1,2). From this equation, it follows that S’ has a double curve along a0 =f= 0, i.e., 
along a conic Q in a fibre over u. = 0. Let p : S” -P S’ be the blowing up of the conic Q, which 
is realized by introducing a new variable w =f/uo (there is no use of uo/f). Therefore, by 
assigning w = ~I,I?, h lifts to h”: S + S”. Since the canonical bundle KV is given by 
[ - 3(Z,) - 13F], the dualizing sheaf ws, is 0( [(Z,) + 7f’]). Let 6 = n- ‘(Q) be the excep- 
tional divisor. Then the dualizing sheaf os,, is given by p*osf - 6. Hence H’(S”, os,,) is the 
space of those (p~H’(s’, O([(Z,) + 7F])) which vanishes on Q. Since such cp must be 
divisible by uo, we obtain the equality h”(osts) = h”((Zo) + 6r) = 10, which in turn implies 
that S” has at most rational double points. 

It remains to show that (4.2) actually gives an even surface with prescribed numerical 
characters. We view the equation (4.2) as a system of surfaces which have double curve 
along the fixed conic Q: u. =f(O, 1, Zo, Zr, Z,) = 0. Note that fis a combination of Z,“, 
Z. Z1 , Z. Z2, Z: and does not involve Zr Z2 nor Z,“. For general choice offand g, S’ has no 
singularity outside Q. Since S” is defined by 

i 

uow-f=O, 

w2 - zag = 0, (4.3) 

we easily see that S” is singular only at u. = w = Z. = Z, = 0, providedfand g are general. 
This singularity is locally given by 

uow - (az: + bW2 + . * -) = 0. 

This yields an ordinary double point Al. Hence, by blowing up this point, we obtain 
a non-singular model, which is minimal. 

To study the canonical bundle of S, we look at the divisor defined by Z. = 0. SinceJis 
not divisible by Z. (otherwise (4.2) yields a cubic equation), (4.2) reads 

z: = Zo(g +. . .). 

This implies that, in S’, Z. = 0 determines a curve A defined by Z. = Z, = 0, that Z1 = 0 is 
a defining equation at its general point, and that Z. vanishes to the fourth order. Let 5 be 
the proper transform of A on S”. Then, (4.3) shows that w vanishes twice on z. Let F. be the 
proper transform of 2 on the non-singular model S, and let F1 be the rational curve 
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obtained by resolving Al-singularity on S”. As is well known, (w) = 2F,, + F1 on S. Hence 
we conclude (2,) = 4F0 + 2F1 and Ks = 2(3D + 2Fo + F,). 

The fact that S satisfies K2 = 24 and ~(8s) = 11 can be proved by standard calculations. 
(Or these facts follow from the existence of deformations to sextic surfaces.) 

Proof of Lemma 4.1. We assume h0(5D + 2F) 2 8 and pursue similar construction, 
which will eventually lead to a contradiction. 

Let (uo, ul} be a basis of Ho(D), and let ~EH’(F) be a non-zero section. Since 
h0(6D + 2F) = 10 and since 

h”((k + l)D + 2F) - h’(kD + 2F) 

is non-decreasig with k, we obtain h0(4D + 2F) 2 6. Hence we find a new section 
5cH0(4D + 2F). By the equality h0(7D + 2F) = 13, we can find another new section 
qeH0(7D + 2F). Then the triple (c2, 5. q) determines a rational map of S into a P2-bundle 
P(0 @ U( - 4) @ 0( - 7)) over P’. From h0(9D + 3F) = 20, we infer that there exists a new 
element t,beH0(9D + 3F). Next we look at H0(9D + 4F). Here we find the following 21 
elements: 

which are linearly independent. On the other hand, starting from the equality 
h0(12D + 4F) = 35, we obtain h’(llD + 4F) < 30, h’(lOD + 4F) 5 25, and 
h0(9D + 4F) < 21 (cf. Lemma 4.2). This implies that there exists a relation 

i* =f (uo, u19 12, 51 rl), (4.4) 

where f is not divisible by c, i.e.,fcontains the term r2. 
Let D be a general member of 1 D) and let (c ID) = PI + P2. Then, we claim that 5 does not 

vanish at PI nor P2. To see this, consider the space H’(lOD + 3F) r C2’, which contains 
the following 24 elements: 

[“l&u:o-i, &Jbu:-‘, i&u:-‘, $uo, I/&. 

If these were linearly dependent, we would get a relation of the form 

(4.5) 

It would follow that i*f’ = LJI This contradicts that D is not hyperelliptic. Therefore 
(4.5) gives a basis of H’(lOD + 3F). It follows that {i’, 15, [t,r, J/} induces a basis of 
H’(D, 0(3F,)). Since 13Fa( has no base point, I++ does not vanish at PI nor P2. 

Since finvolves c2, the right hand side of (4.4) does not vanish at PI nor P2. But this 
contradicts the appearance of [ on the left. q.e.d. 

$5. SURFACES OF TYPE III-SEMI-CANONICAL RING 

Let g = ernrO H’(mL) be the graded ring determined by the line bundle L. By 
comparing the dimensions we see that the following elements generate the ring W: 

H”(L)sxo = CL& xl = [u&, x2 = [uou:, xJ = [u:, 

H0(2L)3yo = 5~0, Y, = Tni, z = II, 

H0(3L)3 w = I,+. 
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The following relations @i = 0, 1 < i < 3 and Yi = 0,l I i 5 3 are obvious. 

a’1 = xi - x0x2, 

02 = x0x3 - x1x2, 

@3 = x: - x1x3, 

Y1= xtyt - xoy2, 

Y2 = -x2y1 + XlY2, 

Y3 = X3Yl - X2Y2. 

Among these we have 8 syzygies Si = 0 (i = 1,2) and rj = 0 (1 I j I 6): 

s1 = X2Ql + Xl@2 + x003, 

s2 = XI@1 + x2% + X1@3, 

Tl = XlYl + xoY2 - y,%, 

G = x2Y1 + x1Y2 - y,%, 

T3 = x3Yi + x2Y2 + yr@3 + y2@2, 

T4 = x1Y2 + xoY3 - y,Q>2 - y,@,, 

Ts = x2Y2 + xiY3 + y,@3, 

Ti = ~3Y2 + ~2Y3 + y2@3. 

In the relation (4.1) we may assume f does not depend on uo. Then f can be written as 

where the aj are constants. From this we obtain 3 relations Ti = 0 (1 5 i _< 3): 

l-1 = xow - y: - x:Q, 

r2=xlw-yly2-x2x3Q~ 

I-3 = x2w - y: - x:Q, 

where Q = a4z + a5y2 + alox:. 
We have 8 more syzygies Vi = 0 (1 5 i 5 6) and 4 = 0 (j = 1,2): 

u1 = xlrl - xor2 + Y,Y, - X~QQ~, 
U2 = x2rl - xlr2 f wQl - y1Y2 + X2QO3, 

u, = x3rl - x2r2 - w@2 + YlY3, 

lJ4 = xlr2 - xor3 - wQl + y2Yl - X3Q@2, 

us = x2r2 - xlr3 - y2Y2 + X~QQ~. 
U, = x3r2 - x2r3 + w(D3 - y2Y3, 

VI =y2& -ylr2 fwY’l -x2QY3, 

v2 = y,r, - y,r, - WY~ - x3QY3. 

(5.1) 
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Finally we have a relation A in H’(6L). 

A=w2+Aw+B, 

A = (qx3 + azy, + c(3z)x3, 

B= WO,XI,XZ,X~, Y,, Y,,z). 

(5.2) 

Here we note that we do not normalize A to be 0 because of the previous normalization. 

PROPOSITION 5.1. The above S1, S2,T1, . . . , T6, U1, . . . , U,, V,, V, generate all syzy- 
gies among the @i, ‘l’i, Ti, A. 

Proof: Let ? be the blowing up of V = P(8 @ 0( - 5) @ 0( - 6)) along u. = f = 0. The 
equations Qi = ‘I’i = Fi = 0,l < i < 3 determine a threefold which is a modification of I? 
Therefore A is independent from other equations. 

LEMMA 5.1. Consider the module of the solutions (A,, Al, A2) of 

Aoxo + A~XI + A2x2 z 0 mod(Qi, ‘Yi), 

AiEC[X0,X1,X2,X3,yl,y2,Zl. 

Then this module is generated by 

CXi+lr -Xi, 019 (07 Xi+lr -Xi), i = 09 1,Z 

(Y2, -Y1,% (0, Y2, -Y1) 

Proof Considering the homogeneous components we may assume that the Ai do not 
depend on z and that they are homogeneous in y, , y2. Using the given relations, we subtract 
appropriate multiples of x1, x2, x3, y2 from Ao. Then A0 is a multiple of x$yf = u;+rr~“<fi. 
Since x1 and x2 are divisible by ur, this proves A0 = 0 We can similarly make 
Al = 0. q.e.d. 

Consider the syzygy of the form 

Borl + B1 I?2 + B2r3 = C CiQi + 1 DjYj. 

If Bi = Aiw” + (lower terms) with some Ai being non-zero, then the left hand side is 

(Aox + Alxl + A2x2)w”+l +. . . . 

Hence, by virtue of Lemma 5.1, subtracting appropriate multiples of U1 , . . . , U6, F1, I’, 
we may assume that the Bi are of degree less than n. By induction, we may assume Bi = 0. 

It remains to show that any syzygy of the form 

C Ci@i = C Dj’I’j 

is generated by S1, S2, T,, . . . , 7” up to trivial syzygies. Considering each homogeneous 
part we may assume that Ci and Dj do not depend on z or w, and that they are homogeneous 
in y, , y,. Subtracting appropriate multiples of Tl , T2, T,, we may assume D1 = c cx$ y{ y$ . 
Then the right hand side contains c cx “0’ * yf y%. But this cannot appear on the left hand 
side. So D 1 = 0. Similarly, using T4, T,, T6, we can make D2 = 0. 

Finally, there is no non-trivial syzygies among Y3, Q,, Q2, (D3 which involve Y3. This 
can be seen by the fact that the equations Q1 = a2 = Q’3 = 0 define a 4-dimensional cone in 
the weighted projective space P(l, 1, 1, 1,2,2,3) over P’ and Y3 = 0 cuts out a 3-dimen- 
sional subset of this cone. q.e.d. 
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$6. SURFACES OF TYPE III-DEFORMATION TO SEXTIC SURFACES 

Let S be a surface of type III as in the preceding two sections. In this section we 
construct a flat family of rings 9, parametrized by a parameter t such that 9&, coincides with 

3 = @ Hoe, UW)), 
mt0 

for t = 0. This is modeled on [3]. 
The ring 9, is generated by the same variables X0, x1, x2, x3, y,, y2, z as W. They are to 

satisfy the relations &, ‘%i, Fi, &, which are given below. To simplify the notation we 
suppress the tildes below. 

O1 = x: - x0x2 + t2Q + ctl”.z, 

02=X3Xg-X1X2-tyl, 

@3 = x: - x1x3 + ty2, 

where Q = aqz + a5y2 + alox: as is defined in (5.1), c is a constant and m is an integer 2 3 
(c may be set 0 if a4 # 0). 

Next we set 

Y1 = xly, - xoy2 - t(Q + ctm-‘2)x2, 

‘I’2 = -x2yy1 - x1y2 + t(Q + ct”-‘z)x3, 

Y3 = x3y1 - x2y2 - tw. 

For simplicity, we set Q” = Q + ctm-2 z. By direct calculation we obtain 

x2q + Xl@2 + xo@3 + tY’, = 0, 

x3@)1+ x202 + x,@3 - tY2 = 0, 

x1Y’l+ xoY2 - y1q - t@D2 = 0, 

x2Y’1 + XlY2 - y,@, + t@D3 = 0, 

x3Y1+ x2Y’2 + y,cp3 + y,C& = 0. 

These extend the syzygies S1, S2 and T,, T,, T3. 

We set 

I-1 = xow - y: - x;Q, 

I-2 = Xi w - YlY2 - X2X36 

I-3 = x2w - yf - x:Q* 

Then 

XlY2 + xoY3 - y,(f)2 - y,@,, + tr, = 0, 

x~Y~+x~Y~+JJ~~~+~~~=o, 

X3Y2 + X2Y3 + y2@3 + tr, = 0. 
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These extend T,, T5, T6. We also have 

x,l-, - &I-, + YIY, - X~~@Z = 0, 

x*l-l- Xll-z + WCD, - y,Y’2 - x,&, + t&3 = 0, 

xJrl - x2r2-~~z+yl~3=o, 

xlr, - xor3 - ~a,, + y,yl - X&D~ - tQ”v3 = 0, 

xzr2-xlr3-y2y2$.~~~~3=o, 

x3r2 - x,r, + WQ, + y,y3 = 0. 

These extend U1, . . . , U6. Also we obtain 

y,r, -ylr2+ WY~ -x2QIy3 =o, 

yzr2 -y,r, - wy2 - x3QIy3 =o, 

which extend V, , V, . 

Finally we set 

A=w’+Aw+B, 

the same equation as (5.2). These relations determine the quotient ring 

CCxo, ~1, ~2% ~3, ~1% ~2, ~3 ~3 tll(@i> yi, l-i, A). 

Since all the syzygies are extended this ring is formally flat over C [t] ([2, Proposition 3.1)). 
For t # 0, we can solve O1 = Oz = Q3 = Y3 = 0 in terms of z, y,, y, and w. Then, by the 
above syzygies Y 1, Y2, rl, Tz, r3 automatically vanish. By substituting y,, y2, z, w in A by 
the polynomials in the Xi, we obtain an equation of degree 6 in the xi. Since S = Proj(W) is 
smooth or with at most rational double points, it follows that S, = Proj($?*) has the same 
property. This completes the proof. 

$7. NON-EXISTENCE OF HYPERELLIPTIC PENCIL OF GENUS 3 

In this section we prove Proposition 4.1. Suppose 1 LI is composed of a pencil IDJ of 
genus 3, whose general member is hyperelliptic. We have 

ILJ=13D\+F, DL=DF=2, D2=0, and FZ= -6. 

We take an irreducible component F0 of F such that DF, > 0. Then, since KF, = 0, F, is 
a rational curve with Fz = - 2. From DF = 2 and 3DFo + FF, = 0, it follows that DF, = 1 
or 2 and FF, = - 3 or - 6. If DF, = 2, we must have F 2 3F, to get FF, = - 6. But this 
implies DF 2 3DF, = 6, which contradicts DF = 2. So we obtain DF, = 1, FF, = - 3. 
From the last equality and DF = 2, we infer that F = 2F, + F’ with F,, $Z F’, F0 F’ = 1. 

From F* = -6 we obtain FF’ = 0 and F’2 = -2. On the other hand, from DF’ = 0, 
it follows that F’ is disjoint from a general D. Therefore the canonical bundle KD is induced 
by 4F,,. 

LEMMA 7.1. The intersection P = F0 n D is a Weierstrass point on D. 
Proof: Let P’ be the conjugate to P. Then 2(P + P’) and 4P are both canonical divisor. 

Hence (2PI = (2P’( has positive dimension. q.e.d. 

Consider the exact sequence 

0 + O(L) ---* O(4D + F) + Uj,(F ID) --) 0. 
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Since h’(L) = 0 by Lemma 2.1, we obtain h0(4D + F) = 6. Therefore, we can find a section 
q which does not vanish along F. Hence the linear system 140 + F) defines a rational map 
@ S + P5, whose image is a cone over a rational quartic in P4. Moreover, @ is generically 

2-sheeted. 
Since [4D + F] = [I, + D] is numerically effective and (40 + F)2 = 10 = 8 + 2, there 

are 3 possibilities (see 43): 

(1) (40 + F( has 2 base points (possibly infinitely near). 
(2) 140 + F ( has only fixed part G with G2 = -2. 
(3) 140 + FJ has only fixed part G with G2 = 0. 

Assume that 140 + FJ has 2 isolated base points. Since (40 + F)F’ = 0, q does not 
vanish anywhere on F’. Combining with (40 + F)Fo = 1, we see that (q) n F. consists of 
one point Q, and q has a simple zero at Q. If we blow up Q, the proper transform (3 
intersects the exceptional curve E, at a point Qr , which remains to be a base point because 
F = 2Fo + F’. Let x: s”--+ S be the composition of the two blowings up, at Q and Qi . Let E2 
be the second exceptional curve and let El, be the proper transform of El. Then 

7c*(4D + F) = M + E”, + 2E2, 

where 1 MJ has no base point, and the canonical bundle K” on f is given by 
rc*(60 + 2F) + ,I?, + 2E2. It also follows that @ lifts to a generically 2-sheeted holomorphic 
map f of 5 onto the Hirzebruch surface z4, such that 

f*(Ao) = 2Fo + F’ + i,, 

f*(A,) = proper transform of(q), 

where A0 denotes the O-section with A$ = -4, A, is another section with A’, = 4 and f. is 
the proper transform of Fo. Letting I- denote a fibre of X4, we see that the branch locus for 
fis linearly equivalent to 8A. + 3Or. In particular, B contains Ao. The ramification divisor 
R is linearly equivalent to r? -f*Kx,, or 12D + SF0 + 4F’ + 7i?, + 6E2. By [4, Lemma 31, 
f *B - 2R is effective. This implies that there exists ZEN D - E”, - 2E2( such that 
326 jf*(B/2) - RI. It follows thatfis ramified along the fibref(E2). Therefore, we can write 
B = Bo + A0 +f(E2). 

If the branch locus B were smooth, then the double covering would have 
p. = ps - q = 18 and K2 = 40. It f o 11 ows that we need to have 

14 Emi/ (lImi/‘21 - 1) = 8. 

So this sum is either 1 x 8, 3 + 1 x 5,3 x 2 + 1 + 1, or 6 + 1 + 1. in each case, K2 decreases 

by 
12([mi/2] - 1)2 = 16, 18, 20, or 22. 

Let s^ be the canonical resolution of the double covering with branch locus B (see 
[4, $21). We claim that s^ does not coincide with ?? On the canonical resolution i, the 
canonical bundle F? is given by 

where the pi denote the divisors corresponding to the blowings up of X4 (cf. [4,92]). On the 
other hand, the canonical bundle K’ of sis written as R +f*Kr4. Therefore 32 coincides 
with x([mi/2] - 1)9i. Although we cannot directly conclude that [mi/2] - 1 must be 0 or 
3, at least we see that, for the first blowing up, we have [ml/21 = 4. But, from the above 
calculation, in order to get Z?’ = 22, we must have { [mi/2] 1 = (3, 1, 1, 1, 1, 1). 

TOP 32:4-G 
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Since the canonical resolution gdoes not coincide with $ the branch locus B must have 

infinitely near 5-ple points or infinitely near triple points. 

Here infinitely near triple points are not allowed. In fact, if E is an exceptional curve on 

s^ which is contracted to a point on 5, it meets a divisor Y on s with Y2 = -2. By 

contracting E, we obtain a divisor yen S such that ?” 2 - 1. Since the arithmetic genus of 

r is 1, we cannot have F2 = 0. Therefore, we have Y2 = - 1, which contradicts that S is 

even. 

Hence we are left with the case where B has an infinitely near 5-ple points. Since this is 

on the fibrej(E,), it is only possible if B0 has a quadruple point which has, after a blowing 

up, a quadruple point on the proper transform off(E,). This implies B,.f(E,) 2 8, which 

contradicts &,l- = 7. 

Next we study the case in which 140 + FI has fixed part G with G2 = -2. In this case, 

we have (40 + F)G = 0. Since the variable part 1 MI satisfies MD = 2, we see that F0 is not 

contained in G. In a manner similar to the preceding case, aM defines a holomorphic map 

S -+ P5, which induces a holomorphic map $ S --) & such that f*A,, = 2F, + (F’ - G). 

This implies that the ramification divisor R for f is linearly equivalent to 

120 + 8F,, + 4F’ - 2G, and that the branch locus B is linearly equivalent to 8A0 + 28r. 

Hence B is a disjoint sum B,, + do. We also see that there is an effective divisor 2 E 1 D - Ct. 
If B were smooth, it would yield a surface with pII = 15, K2 = 32. Therefore, the 

singuIarity of B must contribute -5 to pp. Since this contribution is a sum 

-~$Cmi/21(IlmJ21 - IL it d ecomposes as 5 = 1 + . . . + 1 or 5 = 3 + 1 + 1. The corres- 

ponding contribution to K2 is 2 + ’ ’ . + 2 or 8 + 2 + 2, when K2 is calculated on the 

canonical resolution. It follows that the canonical resolution s^ is not the minimal model. As 

in the previous case, this implies that B has infinitely near 5-ple points. Then we get a divisor 

r on S with r2 2 - 1 with arithmetic genus less than 3. Since S is even, we must have 

r2 = 0. This implies that r is a rational multiple of a whole fibre. But since r is 

a component of Z, this fibre is f - ‘f(E2). This is impossible, because f - ‘f(E2) contains G. 

Finally we suppose (40 + F( = 1 MI + G with MG = 1, G2 = 0. Then QM defines 

a holomorphic map S -+ P5, which lifts to f S -+ C4 with $*A,, = 2F0 + (F’ - G). By 
a standard calculation, the ramification divisor R is linearly equivalent to 4F - 2G + 120. 

Hence, the branch locus on X4 is linearly equivalent to 8A0 + 26r. This implies that 

B contains A,, as a double component, which is impossible. q.e.d. 
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