DEFORMATIONS OF SEXTIC SURFACES

Eiji Horikawa

(Received 23 October 1992)

§1. INTRODUCTION

In this paper we shall determine all possible structures on surfaces which are deformations of a non-singular surface of degree 6 in \mathbf{P}^{3} defined over C. If a surface S is a deformation of a sextic surface, then it has the following numerical characters

$$
p_{g}=10, \quad q=0, \quad \text { and } \quad K^{2}=24
$$

where p_{g}, q, and K denote the geometric genus, irregularity, and canonical bundle of S, respectively. Moreover S has an even intersection form on $H^{2}(S, Z)$.

As the first main theorem, we determine the structures on the surfaces with these properties. Since S is even, the canonical bundle K is divisible by 2 as $K=2 L$ with a line bundle L.

Theorem 1. The possible structures on S can be classified into the following six types in terms of the rational map Φ_{L} associated to L :
(Ia) S is birationally equivalent to a sextic surface in \mathbf{P}^{3} with at most rational double points.
(Ib) Φ_{L} is a generically 2-sheeted map onto a cubic surface in \mathbf{P}^{3}.
(Ic) Φ_{L} is a generically 3-sheeted map onto a quadratic surface in \mathbf{P}^{3}.
(IIa) Φ_{L} is a generically 2 -sheeted map onto a smooth quadratic surface in \mathbf{P}^{3}.
(IIb) Φ_{L} is a generically 2-sheeted map onto a singular quadratic surface in \mathbf{P}^{3}.
(III) Φ_{L} is composed of a pencil of curves of genus 3 of non-hyperelliptic type.

In the course of the proof, the construction of these surfaces will become clear.
As the second main theorem, we shall prove the following.
Theorem 2. All the surfaces in Theorem 1 are specializations of non-singular sextic surfaces. In other words, the moduli space of even surfaces with the above numerical characters is irreducible.

Our proof is very constructive, and we shall give, for each type of the above six, defining equation of the desired family. We obtain the following specialization diagram:

Since S is automatically minimal, the above list exhausts all possible complex structures on the underlying differentiable manifold.

An outline of the results was stated in [7, §4].

§2. SURFACES OF TYPE I

Let S be a minimal non-singular algebraic surface with $p_{g}=10, q=0$ and $K^{2}=24$. We further assume that the canonical bundle K is divisible by 2 , and let $K=2 L$, where L is a line bundle on S. We use the abbreviated symbol $h^{i}(L)$ to denote $\operatorname{dim} H^{i}(S, \mathcal{O}(L))$ etc.

Lemma 2.1. We have $h^{0}(L)=4$ and $h^{1}(L)=0$.
Proof. We have $10=h^{0}(2 L) \geq 2 h^{0}(L)-1$, and the Riemann-Roch theorem yields

$$
2 h^{0}(L)-h^{1}(L)=-\frac{1}{2} L^{2}+11=8
$$

It follows that $h^{0}(L)=4$ or 5 .
Suppose $h^{0}(L)=5$ and consider the rational map Φ_{L} associated to L. We claim that Φ_{L} is composed of a pencil. If this is not so, then the image $W=\Phi_{L}(S)$ is a surface in \mathbf{P}^{4} which is contained in 5 linearly independent quadrics. In particular $\operatorname{deg} W \leq 4$. Combined with the inequality $\operatorname{deg} \Phi_{L} \cdot \operatorname{deg} W \leq 6$, it follows that $\operatorname{deg} W=3$. Hence, as is well known, W is either the Hirzebruch surface Σ_{1}, i.e., the \mathbf{P}^{1}-bundle $\mathbf{P}(\mathcal{O} \oplus \mathcal{O}(1))$ over \mathbf{P}^{1}, or a cone over a cubic rational curve in \mathbf{P}^{3}. In either case, W is contained only in 3 quadrics. Now, L can be written as $|L|=\left|4 L_{0}\right|+F$, with some irreducible pencil L_{0} and the fixed part F. It easily follows that $L L_{0}=1, L F=2$. Then the first equality implies that $L_{0}^{2}=0, L_{0} F=1$. Therefore, L_{0} is a pencil of curves of genus 2 without base points. From the list of six types $(0)-(V)$ of the singular fibres (see [5]), we see that any singular fibre other than those of type (0) contains a divisor with self-intersection number -1 . Since S is even, only fibres of type (0) can occur. But this implies that $K^{2}=2 p_{g}-4$, which is absurd.

Lemma 2.2. If $\backslash L \mid$ has no base point nor fixed component, then Φ_{L} is one of the following:
(Ia) Φ_{L} induces a birational map of S onto a sextic surface with at most rational double points.
(Ib) Φ_{L} is a generically 2 -sheeted map onto a cubic surface.
(Ic) Φ_{L} is a generically 3-sheeted map onto a quadratic surface.
Although the proof is obvious, we state here the existence of surfaces of types Ib and Ic . Suppose first that $\operatorname{deg} \Phi_{L}(S)=3$. Let $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ be a basis of $H^{\circ}(S, \mathcal{O}(L))$. Then, by assumption, there is one cubic relation $g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$. Since $h^{0}(3 L)=$ $h^{0}(K+L)=20$, by the Riemann-Roch theorem and the vanishing theorem, we have a new element $w \in H^{0}(S, \mathcal{O}(3 L))$ which is independent of the cubic monomials in x_{i}. Let C be a smooth member of the linear system $\{L\}$ associated to the line bundle L. Then $K+L$ induces the canonical bundle K_{C}. If C is hyperelliptic then the restriction $\left.L\right|_{C}$ is of the form [$\left.4 P_{0}+P_{1}+P_{2}\right]$, where P_{0} is a Weierstrass point and P_{1} and P_{2} are fixed points, because it is a subsystem of $\left|K_{C}\right|$ with $h^{0}\left(\left.L\right|_{c}\right)=3$ (see Lemma 3.2 below). This would imply that $|L|$ has base points. Therefore C is not hyperelliptic. Furthermore, comparing the dimensions, we see that w and the cubic monomials of the x_{i} generate the space $H^{0}\left(C, \mathcal{O}\left(K_{C}\right)\right)$. It also follows that there is no relation of the form

$$
h\left(x_{0}, x_{1}, x_{2}, x_{3}\right) w+f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0, h \mid g
$$

This implies that the monomials in w and x_{i}, linear in w, form a basis of $H^{0}(S, \mathcal{O}(6 L))$. Therefore, there is a relation of the form

$$
w^{2}+h\left(x_{0}, x_{1}, x_{2}, x_{3}\right) w+f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0
$$

where $\operatorname{deg} h=3, \operatorname{deg} f=6$. By linear change, we may assume $h=0$.

Thus, we have shown that Φ_{L} is lifted to a map of S into a weighted projective space $V=\mathbf{P}(3,1,1,1,1)$ with coordinates ($w, x_{0}, x_{1}, x_{2}, x_{3}$) of weights ($3,1,1,1,1$) whose image S^{\prime} is defined by

$$
g=0, \quad w^{2}+f=0 .
$$

Since S^{\prime} coincides with the canonical model of S, it has at most rational double points. Conversely, if we choose general g and f, then the above equations determine a smooth S^{\prime}. It remains to show that such S^{\prime}, or its minimal resolution is an even surface with the desired numerical characters. This follows from a standard calculation. But here we prove the following proposition.

Proposition 2.1. Surfaces of type Ib and type Ic are deformations of smooth sextic surfaces.

Proof. Actually we shall show that a surface S^{\prime} defined above is a deformation of sextic surfaces. For this, let t be a parameter varying in a neighborhood of 0 in \mathbf{C}, and consider the subvarieties of V defined by

$$
t w-g=0, w^{2}+f=0 .
$$

If S_{t}^{\prime} is a surface with parameter t, then S_{t}^{\prime} has at most rational double points, because S_{0}^{\prime} is so. For $t \neq 0, S_{t}^{\prime}$ is nothing but a sextic surface defined by $g^{2}+t^{2} f=0$. Therefore the minimal resolution of S_{t}^{\prime} is a deformation of the minimal resolution of S_{o}^{\prime} (see below for surfaces of type Ic). q.e.d.

By a similar argument we can show that a surface of type Ic is defined in the weighted projective space $\mathbf{P}(2,1,1,1,1)$ by the equations

$$
u^{3}+A_{2} u^{2}+A_{4} u+A_{6}=0, g=0,
$$

where $\operatorname{deg} u=2$ and $A_{2 j}$ and g are homogeneous polynomials in the variables ($x_{0}, x_{1}, x_{2}, x_{3}$) of degree $2 j$ and 2 , respectively. Surfaces of type Ic can be deformed to sextic surfaces by replacing the equation $g=0$ by $t u-g=0$.

§3. SURFACES OF TYPE II

Proposition 3.1. Suppose Φ_{L} is not holomorphic nor composed of a pencil. Then Φ_{L} induces a generically 2-sheeted map onto a quadratic surface in \mathbf{P}^{3}, i.e., S is of type IIa or IIb. Moreover, $|L|$ is written $|H|+F$, where $|H|$ has no base point and $H F=2, F^{2}=-2$, $L F=0$.

Let $\pi: \tilde{S} \rightarrow S$ be a composition of blowings up such that $\Phi_{L}{ }^{\circ} \pi$ is holomorphic. We write $\left|\pi^{*} L\right|=|H|+F$, where $|H|$ is the variable and F is the fixed part. Let \tilde{K} be the canonical bundle on \tilde{S} and let $\tilde{K}=\pi^{*} K+[E]$, where E is a sum of the exceptional curves. Since we only need to blow up base points, we may assume $F \geq E$. From

$$
L^{2}=H^{2}+H F+\pi^{*} L \cdot F, H F \geq 0, \pi^{*} L \cdot F \geq 0,
$$

we obtain $H^{2} \leq L^{2}=6$. If $H^{2}=6$, then $|L|$ would have no base point. If $H^{2}=5$, then S would be birationally equivalent to a quintic surface. Hence we get $H^{2}=4$, because $H^{2} \leq 3$ is absurd. This implies that Φ_{L} is generically 2 -sheeted onto a quadratic surface and it also follows

$$
H F+\pi^{*} L \cdot F=2 .
$$

From the inequality $H E \leq H F=2$, we have $H E=0,1$, or 2 . Let $\left|L_{0}\right|+F_{0}$ be the decomposition of $|L|$ into the variable and fixed part (on S). Then

$$
\begin{gathered}
L_{0}^{2} \leq L^{2}=6, \\
H^{2}=L_{0}^{2}-\sum m_{i}^{2}, \\
H E=\sum m_{i},
\end{gathered}
$$

where the m_{i} are the multiplicities of the base points appearing in π.
If $H E=1$, then π is a single blowing up and $L_{0}^{2}=5$. This contradicts that S is even. If $H F=0$ then $F^{2} \leq 0$ by Hodge's index theorem. This contradicts $L^{2} \geq H^{2}$. Therefore, we have 3 possibilities:
(1) $H E=2$,
(2) $H E=0, H F=2, F^{2}=-2$,
(3) $H E=0, H F=1, F^{2}=0$.

Lemma 3.1. $H E=2$ does not happen.
Proof. If $H E=2$, then, by the above consideration, π is a composite of two blowings up, and $L^{2}=L_{0}^{2}$, which in turn implies that $|L|$ has no fixed component. In particular, any general member $C \in|L|$ is a non-singular curve, which is hyperelliptic. We recall the following lemma.

Lemma 3.2. Suppose that C is a hyperelliptic curve and let $|\Lambda|$ be a complete linear system such that $\left|K_{C}-\Lambda\right| \neq \emptyset$. Then $|\Lambda|$ is of the form $|v \vartheta|+$ (fixed points), where ϑ is a hyperelliptic divisor (i.e., $\operatorname{deg} \vartheta=h^{0}(\vartheta)=2$), and $v=\operatorname{dim}|\Lambda|$.

Proof. Let $\varphi: C \rightarrow \mathbf{P}^{n}$ be the map associated to the canonical system $\left|K_{C}\right|$. By assumption, the map Φ_{Λ} is dominated by φ, so that the variable part of $|\Lambda|$ is induced by a line bundle on $\varphi(C)=\mathbf{P}^{1}$. q.e.d.

Returning to the proof of Lemma 3.1, we can write the restriction $\left|L_{C}\right|$ in the form $|29|+P_{1}+P_{2}$, because $h^{0}\left(L_{c}\right)=3$. Since $3 L$ induces the canonical bundle $K_{C}=[99]$, it follows that $3 P_{1}+3 P_{2} \in|3 \vartheta|$. If P_{1}^{\prime} is the point conjugate to P_{1}, i.e., $P_{1}+P_{1}^{\prime} \in|\vartheta|$, then $3 P_{2}$ is linearly equivalent to $3 P_{1}^{\prime}$. Since P_{2} cannot coincide with P_{1}^{\prime}, this contradicts Lemma 3.2. This proves Lemma 3.1.

It remains to prove the following lemma.
Lemma 3.3. The case (3) does not occur.
Proof. The equality $H E=0$ implies that $\left|L_{0}\right|$ has no base point. So we take $\pi=$ id. Since $H^{2}=4, \Phi_{H}$ defines a generically 2 -sheeted holomorphic map onto a quadric W in \mathbf{P}^{3}. We first suppose that the image is non-singular. Then, since $W=\mathbf{P}^{1} \times \mathbf{P}^{\mathbf{1}},|L|$ is of the form $\left|D+D_{1}\right|+F$, where $|D|$ and $\left|D_{1}\right|$ are linear pencils with $D D_{1}=2$. By interchanging $|D|$ and $\left|D_{1}\right|$, if necessary, we may assume $F D=0, F D_{1}=1$. Then F is contained in a fibre of the holomorphic map Φ_{D}. From $F^{2}=0$, it follows that F is a rational multiple of a total fibre. Combining with $2 H F=H D$, we get $2 F \in|D|$. This implies that $2 L$ is linearly equivalent to $3 D+2 D_{1}$ and we get $h^{0}(2 L) \geq 12$, which contradicts the equality $p_{g}=10$.

Next suppose that the image $\Phi_{L}(S)$ is singular. In this case, $|L|$ is of the form $|2 D+G|$, where $|D|$ is a linear pencil possibly with base point and G is effective (see [4, p. 46]). Since $|H|$ has no base point, we have $H G=0$, which in turn implies that $H D=2$ and $2 D^{2}+D G=2$. Since D^{2} is even, we get $D^{2}=0, D G=2$. Therefore D has no base point and $G \neq 0$. It follows that Φ_{D} is holomorphic and that Φ_{H} can be lifted to a holomorphic map $f: S \rightarrow \boldsymbol{\Sigma}_{\mathbf{2}}$, of S onto the Hirzebruch surface of degree 2.

We set $D F=k \geq 0$. If $k=0$, then we have $2 F \in|D|$ and get a contradiction as above. If $k>0$, then $F G=1-2 k$ and $f_{*} F=k \Delta_{0}+\Gamma$, where Δ_{0} is a section of $\Sigma_{2} \rightarrow \mathbf{P}^{1}$ with $\Delta_{0}^{2}=-2$ and Γ is a fibre. From $H(D+G-2 F)=0$, we have

$$
0 \geq(D+G-2 F)^{2}=-4(1-k)
$$

Hence we conclude that $k=1$ and that $D+G$ is numerically equivalent to $2 F$.
To see that $f^{*} f_{*} F-2 F$ is effective, we calculate the ramification divisor R of f, which turns out to be linearly equivalent to $8 D+4 G+2 F$. Hence the branch locus B is in the linear system $\left|10 \Delta_{0}+18 \Gamma\right|$ on Σ_{2}. Since $f^{*} B-2 R \epsilon|2(D+G-2 F)|$ is effective [4, Lemma 3], it follows that $f^{*} f_{*} F-2 F$ is effective. Combining with the preceding fact, we conclude that $2 F$ is linearly equivalent to $D+G$. Therefore, we get a contradiction $h^{0}(2 L) \geq h^{0}(5 D+3 G) \geq 12$, again. This completes the proof of Proposition 3.1.

Hereafter we assume that $|L|=|H|+F$, where $|H|$ has no base points with $H^{2}=4$, $H F=2$ and $F^{2}=-2$. A general member $C \in|H|$ is a non-singular hyperelliptic curves of genus 9 , and the restriction $\left|L_{C}\right|$ is of the form $|2 \vartheta|+P_{1}+P_{2}$, where ϑ is a hyperelliptic divisor. Since $2 L+H$ induces the canonical bundle $K_{C}=[89]$, it follows that $2 P_{1}+2 P_{2} \in|2 \vartheta|$. If P_{1}^{\prime} is conjugate to P_{1}, then $2 P_{2}$ is linearly equivalent to $2 P_{1}^{\prime}$. Since $P_{1}+P_{2}$ is the fixed part of $\left|L_{C}\right|, P_{2}$ cannot coincide with P_{1}^{\prime}. Hence P_{1} and P_{2} are the Weierstrass points on C, which are distinct.

Let $\zeta \in H^{0}(S, \mathcal{O}([F]))$ be a non-zero section and let $\left\{z_{0}, z_{1}, z_{2}, z_{3}\right\}$ be a basis of $H^{0}(S, \mathcal{O}(H))$. We assume that C is defined by $z_{3}=0$ on S. There is one quadratic relation $q\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0$, and the monomials $z_{i} z_{j} \zeta^{2}$ generate 9 -dimensional subspace of $H^{0}(S, \mathcal{O}(2 L))$. Hence there is an element $u \in H^{0}(S, \mathcal{O}(2 L))$ which is linearly independent from these monomials.

Since $\left.H\right|_{\mathrm{C}}$ is of the form $[2 \vartheta]$, we may assume that $z_{0}=s t, z_{1}=s^{2}, z_{2}=t^{2}$ on C. Moreover we may assume that P_{1} and P_{2} are the points $s=0$ and $t=0$, respectively, so that $\left.\zeta^{2}\right|_{c}$ is a constant multiple of z_{0}. The restriction $\left.u\right|_{C}$ is a sextic form in (s, t), and hence can be written as a cubic form in the z_{i}. That is

$$
u=h_{0}\left(z_{0}, z_{1}, z_{2}\right) \quad \text { on } C .
$$

Multiplying $z_{0} \zeta$, we obtain

$$
z_{0} \zeta u=h_{0}\left(z_{0} \zeta, z_{1} \zeta, z_{2} \zeta\right) \quad \text { on } C
$$

This holds not only on C, but also on $C+F$, i.e., the difference is divisible by $z_{3} \zeta$. Introducing $x_{i}=z_{i} \zeta, 0 \leq i \leq 3$, we obtain

$$
x_{0} u \equiv h_{0}\left(x_{0}, x_{1}, x_{2}\right) \quad \bmod x_{3}
$$

From the exact sequence

$$
0 \rightarrow \mathcal{O}(2 L) \rightarrow \mathcal{O}(3 L) \rightarrow \mathcal{O}_{C+F}\left(\left.3 L\right|_{C+F}\right) \rightarrow 0
$$

it follows that the above relation is lifted to

$$
l\left(x_{0}, x_{3}\right) u=h\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
$$

where $\operatorname{deg} l=1, \operatorname{deg} h=3$. We may assume $l=x_{0}$.
In $H^{0}(S, \mathcal{O}(3 L))$ we have the elements

$$
x_{i} x_{j} x_{k}, x_{i} u
$$

In the first group, there are $16(=20-4)$ linearly independent elements, and three more in the second group. Since $h^{0}(3 L)=20$, there is a new element $w \in H^{\circ}(S, \mathcal{O}(3 L))$. The restriction $\left.w\right|_{c}$ is a section of $\left[8 \vartheta+P_{1}+P_{2}\right]=\left[K_{C}+P_{1}+P_{2}\right]$.

Recall that $K F=0$ and $F^{2}=-2$. Hence F is a fundamental cycle arizing from a resolution of a rational double point. It follows that $h^{0}\left(\mathcal{O}_{F}\right)=1$ (see [1]). Therefore, we have $h^{1}(K+F)=h^{1}(-F)=0$. Hence the restriction map $H^{0}(S, \mathcal{O}(3 L)) \rightarrow H^{0}\left(C, \mathcal{O}\left(3 L_{C}\right)\right)$ is surjective. Let $C \rightarrow \mathbf{P}^{1}$ be the double covering associated to $\left|K_{C}\right|$. Then its ramification divisor R_{C} is linearly equivalent to 10ϑ. Therefore, $R_{C}-P_{1}-P_{2} \sim 8 \vartheta+P_{1}+P_{2} \sim 3 L_{C}$, where \sim denotes linear equivalence on C. Combining these facts, we may assume that $\left(\left.w\right|_{\mathrm{C}}\right)=R_{\mathrm{C}}-P_{1}-P_{2}$.

To get the equation for w, we consider the space $H^{0}(S, \mathcal{O}(6 L)) \cong \mathbf{C}^{83}$. Here we find the following elements:

sextics in the $x_{i} \bmod q$	$: 49$ elements,
$u \cdot\left(\right.$ quartics in the $\left.x_{i}\right) \bmod \left(q, x_{0}\right)$	$: 9$ elements,
$u^{2} \cdot\left(\right.$ quadrics in the $\left.x_{i}\right) \bmod \left(q, x_{0}\right): 5$ elements,	
u^{3}	$: 1$ element,
$w \cdot\left(\right.$ cubics in the $\left.x_{i}\right) \bmod q$	$: 16$ elements,
$w u x_{i}(i \neq 0)$	$: 3$ elements,
w^{2}	$: 1$ element,

Since these are 84 in total, there is one non-trivial relation. The coefficient of w^{2} in this relation is not 0 , for otherwise w cannot separate the two sheets on C. Thus we obtain

$$
w^{2}=A_{0} u^{3}+A_{2} u^{2}+A_{4} u+A_{6}
$$

where the $A_{2 j}$ are forms of degree $2 j$ in the x_{i}. This implies

$$
\begin{equation*}
x_{0}\left(x_{0} w\right)^{2}=A_{0} h^{3}+A_{2} x_{0} h^{2}+A_{4} x_{0}^{2} h+A_{6} x_{0}^{3} \tag{3.1}
\end{equation*}
$$

This may be interpreted as follows. Suppose that a quadratic surface $W: q=0$ is given in \mathbf{P}^{3}. Then $l=0$ defines a divisor Δ on W, and $h=0$ cuts 9 points $P_{i}, 1 \leq i \leq 9$ on Δ (distinct provided l and h are chosen to be general). The above equation means that $x_{0}^{2} w$ is the square root of

$$
x_{0}\left(A_{0} h^{3}+A_{2} x_{0} h^{2}+A_{4} x_{0}^{2} h+A_{6} x_{0}^{3}\right)
$$

This determines a double covering S^{\prime} of W which is birationally equivalent to the original S. It is easy to see that, if $A_{2 j}$ are general, then the minimal resolution \hat{S} of S^{\prime} satisfies $p_{g}=10$, $q=0$ and $K^{2}=24$. Furthermore, since Δ is contained in the branch locus, the inverse image of Δ on \hat{S} decomposes as

$$
2 \tilde{\Delta}+(\text { curves contracted to a point on } W)
$$

From this, we infer that the canonical bundle of \hat{S} is induced by $2 \tilde{H}+2 \tilde{\Delta}$, where \tilde{H} is the pull-back of the hyperplane bundle on \mathbf{P}^{3}. This proves that \hat{S} is even.

We can put the result more formally as follows:
Proposition 3.2. Let S be a surface of type IIa or Ilb. Then its canonical model is in the weighted projective space $V=\mathbf{P}(1,1,1,1,2,3)$ defined by

$$
\left\{\begin{array}{l}
q=0 \\
x_{0} u=h \\
w^{2}=u^{3}+A_{2} u^{2}+A_{4} u+A_{6}
\end{array}\right.
$$

where $\left(x_{0}, x_{1}, x_{2}, x_{3}, u, w\right)$ is a system of coordinates on V with $\operatorname{deg} x_{i}=1, \operatorname{deg} u=2$, $\operatorname{deg} w=3$ and $q, h, A_{2 j}$ are homogeneous forms in the x_{i} of degree $2,3,2 j$, respectively.

Remarks. (1) If A_{0} should be 0 , then x_{0} could be factored out in (3.1), and S would have smaller value of p_{g}.
(2) In case of type IIb, W is a quadratic cone. In this case, the map $S \rightarrow W$ can be lifted to a holomorphic map $S \rightarrow \Sigma_{2}$ (cf. the proof of Lemma 3.3).
(3) In both cases of type IIa and Ilb, S admits a pencil of hyperelliptic curves of genus 4. To make S even, we needed a special component Δ in the branch locus. Consideration similar to (2) shows that any surface of type Ic admits a pencil of curves of genus 4 which is of non-hyperelliptic type. (Note that general curves of genus 4 are trigonal.)

Proposition 3.3. Let S be a surface of type IIa or type Ilb , and let $t=\left(t_{1}, t_{2}\right)$ be a system of parameters ranging in a neighborhood of the origin in \mathbf{C}^{2}. Then the following system of the equations

$$
\left\{\begin{array}{l}
q-t_{1} u=0 \\
x_{0} u-h-t_{2} w=0, \\
w^{2}=u^{3}+A_{2} u^{2}+A_{4} u+A_{6}
\end{array}\right.
$$

determines a family $\left\{S_{t}\right\}$ of deformations of $S=S_{0}$ such that
(1) for $t_{1} t_{2} \neq 0, S_{t}$ is a sextic surface in \mathbf{P}^{3},
(2) for $t_{1}=0, t_{2} \neq 0, S_{t}$ is of type Ib,
(3) for $t_{1} \neq 0, t_{2}=0, S_{1}$ is of type Ic.

Proof. If both t_{1} and t_{2} are non-zero, then one can solve the first two equations in u and w. So the above system reduces to a single equation of degree 6 in the x_{i}. In view of the description in $\S 2$, (2) and (3) are proved analogously. q.e.d.

From the defining equations it is obvious that the pencil of hyperelliptic curves of genus 4 on S is deformed to non-hyperelliptic pencil on surfaces of type Ic.

§4. SURFACES OF TYPE III

In the remaining sections we shall study the case in which Φ_{L} is composed of a pencil $|D|$. Since this pencil is necessarily linear, we can write

$$
|L|=|3 D|+F,
$$

where F is the fixed part. From $L^{2}=6$ follows that $L D=1$ or 2 . In either case, we obtain $D^{2}=0$. Therefore, if $L D=1$, then $|D|$ is a pencil of curves of genus 2 on an even surface S. This implies that S has only singular fibres of type (0) (see [5]), and S necessarily satisfies $K^{2}=2 p_{g}-4$. Hence we conclude that $|D|$ is a pencil of curves of genus 3 without base point.

Proposition 4.1. The general members of $|D|$ are not hyperelliptic.
Proof is postponed to $\S 7$.
We now study the structure of this non-hyperelliptic pencil. In general, for a minimal surface S with such pencil, one has $K^{2} \geq 3 p_{g}-7$. Since we have $K^{2}=3 p_{g}-6$ in our case, S will have one degeneration into hyperelliptic curve (see [7, §3]). In the present case, this is some special kind, because S is even. Note that we have

$$
L D=2, \quad L F=0, \quad \text { and } \quad F^{2}=-6 .
$$

Also

$$
h^{0}(m L)=3 m(m-2)+11, \text { for } m \geq 3 .
$$

To simplify the notation, for any divisor Z, we write $H^{0}(Z)$ instead of $H^{0}(S, \mathcal{O}([Z]))$. Let $\left\{u_{0}, u_{1}\right\}$ be a basis of $H^{0}(D)$, and let $\zeta \in H^{0}(F)$ be non-zero, so that $x_{i}=u_{0}^{i} u_{1}^{3-i} \zeta$, $0 \leq i \leq 3$ form a basis of $H^{0}(L)$. Since $h^{0}(6 D+2 F)=p_{g}=10$ and $6 D+2 F$ induces a canonical divisor on D, it follows $h^{0}(5 D+2 F) \geq 7$. Therefore, besides $\zeta^{2} u_{0}^{i} \cdot u_{1}^{5-i}$ $(0 \leq i \leq 5)$, there is a new section $\xi \in H^{\circ}(5 D+2 F)$, i.e., ξ is linearly independent of the preceding sections. We postulate the following lemma, which will be proved at the end of this section.

Lemma 4.1. $h^{0}(5 D+2 F)=7$.
Note that this implies that there is a new section $\eta \in H^{0}(6 D+2 F)$ and that ζ^{2}, ξ, η induce a basis of $H^{0}\left(D, \mathcal{O}\left(K_{D}\right)\right)$. In $H^{0}(9 D+3 F)=H^{0}(3 L)$ we have 19 sections:

$$
u_{0}^{i} u_{1}^{9-i} \zeta^{3} \quad(0 \leq i \leq 9), \quad u_{0}^{i} u_{1}^{4-i} \zeta \xi \quad(0 \leq i \leq 4), \quad u_{0}^{i} u_{1}^{3-i} \zeta \eta \quad(0 \leq i \leq 3)
$$

Since $h^{0}(3 L)=20$ we can find a new section $\psi \in H^{0}(9 D+3 F)$.
In $H^{0}(10 D+4 F)$, we have 22 elements as above plus $\xi^{2}, \zeta u_{0} \psi, \zeta u_{1} \psi$.
Lemma 4.2. We have $h^{0}(10 D+4 F)=24$.
Proof. First note that $H^{0}(12 D+4 F) \cong C^{35}$ contains all the six quadratic forms $\zeta^{2}, \zeta \xi, \ldots, \eta^{2}$, it follows that $h^{0}(11 D+4 F)=29$. Similarly, $H^{0}(11 D+4 F)$ contain five of these. So $h^{0}(10 D+4 F) \leq 29-5=24$. Since we have $h^{0}(10 D+3 F)=24$, this proves the lemma.

By this lemma there is a relation of the form

$$
\zeta L\left(u_{0}, u_{1}\right) \psi=f\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right)
$$

Since $L\left(u_{0}, u_{1}\right) \neq 0$, by a linear change, we may assume $L=u_{0}$:

$$
\begin{equation*}
\zeta u_{0} \psi=f\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right) \tag{4.1}
\end{equation*}
$$

Here we introduce a (bi)degree by assigning (k, l) to the elements of $H^{0}(k D+2 l F)$. Therefore, f is of degree $(10,2)$.

Next we look at $H^{0}(18 D+6 F) \cong C^{83}$. Here we have the following 83 elements

$$
\begin{array}{llll}
\zeta^{6} u_{0}^{i} u_{1}^{18-i} & (0 \leq i \leq 18), & \zeta^{4} \xi u_{0}^{i} u_{1}^{13-i} & (0 \leq i \leq 13) \\
\zeta^{4} \eta u_{0}^{i} u_{1}^{12-i} & (0 \leq i \leq 12), & \zeta^{2} \xi^{2} u_{0}^{i} u_{1}^{8-i} & 0 \leq i \leq 8) \\
\zeta^{2} \xi \eta u_{0}^{i} u_{1}^{7-i} & (0 \leq i \leq 7), & \zeta^{2} \eta^{2} u_{0}^{i} u_{1}^{6-i} & (0 \leq i \leq 6) \\
\xi^{3} u_{0}^{i} u_{1}^{3-i} & (0 \leq i \leq 3), & \xi^{2} \eta u_{0}^{i} u_{1}^{2-i} & (0 \leq i \leq 2), \\
\xi \eta^{2} u_{0}^{i} u_{1}^{1-i} & (0 \leq i \leq 1), & \eta^{3}, & \\
\psi \zeta^{3} u_{1}^{9} & & \psi \zeta \xi u_{1}^{4}, & \\
\psi \zeta \eta u_{1}^{3} & & &
\end{array}
$$

The first 80 elements are obviously linearly independent. Therefore, if these are linearly dependent, then we have a relation of the form

$$
\zeta L^{\prime}\left(u_{1}, \zeta^{2}, \xi, \eta\right) \psi=f^{\prime}\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right)
$$

where L^{\prime} is non-trivial of degree $(9,1)$. It would follow that $u_{0} f^{\prime}-L^{\prime} f=0$, which is a cubic relation among ζ^{2}, ξ and η. Thus we have seen that the above list gives a basis of $H^{0}(18 D+6 F)$. Hence ψ^{2} is a linear combination of them, and, by a linear change, we may
assume

$$
\psi^{2}=g\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right)
$$

where g is of degree $(18,3)$.
Eliminating ψ we obtain

$$
f^{2}-u_{0}^{2} \zeta^{2} g=0
$$

These are geometrically interpreted as follows. The basis $\left(u_{0}, u_{1}\right)$ determines a holomorphic map $S \rightarrow \mathbf{P}^{1}$. Let $V=\mathbf{P}\left(\mathcal{O} \oplus \mathcal{O}(-5) \oplus \mathcal{O}(-6)\right.$) be the \mathbf{P}^{2}-bundle over \mathbf{P}^{1}, and let Γ be a fibre of $V \rightarrow \mathbf{P}^{\mathbf{1}}$. Then we can take homogeneous coordinates $\left(Z_{0}, Z_{1}, Z_{2}\right)$ on the fibres such that

$$
\left(Z_{0}\right) \sim\left(Z_{1}\right)-5 \Gamma \sim\left(Z_{2}\right)-6 \Gamma
$$

where \sim denotes linear equivalence. The sections $\left(\zeta^{2}, \xi, \eta\right)$ determine a rational map $h: S \rightarrow V$ over P^{1} and its image S^{\prime} is defined by the equation

$$
\begin{equation*}
f\left(u_{0}, u_{1}, Z_{0}, Z_{1}, Z_{2}\right)^{2}-u_{0}^{2} Z_{0} g\left(u_{0}, u_{1}, Z_{0}, Z_{1}, Z_{2}\right)=0 \tag{4.2}
\end{equation*}
$$

where $\operatorname{deg} f=(10,2), \operatorname{deg} g=(18,3)$ with $\operatorname{deg} u_{i}=(1,0)$ and $\operatorname{deg} Z_{j}=(0,1),(5,1),(6,1)$ ($j=0,1,2$). From this equation, it follows that S^{\prime} has a double curve along $u_{0}=f=0$, i.e., along a conic Q in a fibre over $u_{0}=0$. Let $p: S^{\prime \prime} \rightarrow S^{\prime}$ be the blowing up of the conic Q, which is realized by introducing a new variable $w=f / u_{0}$ (there is no use of u_{0} / f). Therefore, by assigning $w=\zeta \psi, h$ lifts to $h^{\prime \prime}: S \rightarrow S^{\prime \prime}$. Since the canonical bundle K_{V} is given by $\left[-3\left(Z_{0}\right)-13 \Gamma\right]$, the dualizing sheaf $\omega_{S^{\prime}}$ is $\mathcal{O}\left(\left[\left(Z_{0}\right)+7 \Gamma\right]\right)$. Let $\mathscr{E}=\pi^{-1}(Q)$ be the exceptional divisor. Then the dualizing sheaf $\omega_{S^{\prime \prime}}$ is given by $p^{*} \omega_{S^{\prime}}-\mathscr{E}$. Hence $H^{0}\left(S^{\prime \prime}, \omega_{S^{\prime \prime}}\right)$ is the space of those $\varphi \in H^{0}\left(S^{\prime}, \mathcal{O}\left(\left[\left(Z_{0}\right)+7 \Gamma\right]\right)\right)$ which vanishes on Q. Since such φ must be divisible by u_{0}, we obtain the equality $h^{0}\left(\omega_{S^{\prime \prime}}\right)=h^{0}\left(\left(Z_{0}\right)+6 \Gamma\right)=10$, which in turn implies that $S^{\prime \prime}$ has at most rational double points.

It remains to show that (4.2) actually gives an even surface with prescribed numerical characters. We view the equation (4.2) as a system of surfaces which have double curve along the fixed conic $Q: u_{0}=f\left(0,1, Z_{0}, Z_{1}, Z_{2}\right)=0$. Note that f is a combination of Z_{0}^{2}, $Z_{0} Z_{1}, Z_{0} Z_{2}, Z_{1}^{2}$ and does not involve $Z_{1} Z_{2}$ nor Z_{2}^{2}. For general choice of f and g, S^{\prime} has no singularity outside Q. Since $S^{\prime \prime}$ is defined by

$$
\left\{\begin{array}{l}
u_{0} w-f=0 \tag{4.3}\\
w^{2}-Z_{0} g=0
\end{array}\right.
$$

we easily see that $S^{\prime \prime}$ is singular only at $u_{0}=w=Z_{0}=Z_{1}=0$, provided f and g are general. This singularity is locally given by

$$
u_{0} w-\left(a Z_{1}^{2}+b w^{2}+\cdots\right)=0
$$

This yields an ordinary double point A_{1}. Hence, by blowing up this point, we obtain a non-singular model, which is minimal.

To study the canonical bundle of S, we look at the divisor defined by $Z_{0}=0$. Since f is not divisible by Z_{0} (otherwise (4.2) yields a cubic equation), (4.2) reads

$$
Z_{1}^{4}=Z_{0}(g+\cdots)
$$

This implies that, in $S^{\prime}, Z_{0}=0$ determines a curve Δ defined by $Z_{0}=Z_{1}=0$, that $Z_{1}=0$ is a defining equation at its general point, and that Z_{0} vanishes to the fourth order. Let $\tilde{\Delta}$ be the proper transform of Δ on $S^{\prime \prime}$. Then, (4.3) shows that w vanishes twice on $\tilde{\Delta}$. Let F_{0} be the proper transform of $\tilde{\Delta}$ on the non-singular model S, and let F_{1} be the rational curve
obtained by resolving A_{1}-singularity on $S^{\prime \prime}$. As is well known, $(w)=2 F_{0}+F_{1}$ on S. Hence we conclude $\left(Z_{0}\right)=4 F_{0}+2 F_{1}$ and $K_{S}=2\left(3 D+2 F_{0}+F_{1}\right)$.

The fact that S satisfies $K^{2}=24$ and $\chi\left(\mathcal{O}_{S}\right)=11$ can be proved by standard calculations. (Or these facts follow from the existence of deformations to sextic surfaces.)

Proof of Lemma 4.1. We assume $h^{0}(5 D+2 F) \geq 8$ and pursue similar construction, which will eventually lead to a contradiction.

Let $\left\{u_{0}, u_{1}\right\}$ be a basis of $H^{0}(D)$, and let $\zeta \in H^{0}(F)$ be a non-zero section. Since $h^{0}(6 D+2 F)=10$ and since

$$
h^{0}((k+1) D+2 F)-h^{0}(k D+2 F)
$$

is non-decreasig with k, we obtain $h^{0}(4 D+2 F) \geq 6$. Hence we find a new section $\xi \in H^{0}(4 D+2 F)$. By the equality $h^{0}(7 D+2 F)=13$, we can find another new section $\eta \in H^{0}(7 D+2 F)$. Then the triple $\left(\zeta^{2}, \zeta, \eta\right)$ determines a rational map of S into a \mathbf{P}^{2}-bundle $\mathbf{P}(\mathcal{O} \oplus \mathcal{O}(-4) \oplus \mathcal{O}(-7))$ over \mathbf{P}^{1}. From $h^{0}(9 D+3 F)=20$, we infer that there exists a new element $\psi \in H^{0}(9 D+3 F)$. Next we look at $H^{0}(9 D+4 F)$. Here we find the following 21 elements:

$$
\begin{array}{lc}
\zeta^{4} u_{0}^{i} u_{1}^{9-i}, & \xi \zeta^{2} u_{0}^{i} u_{1}^{5-i} \\
\eta \zeta^{2} u_{0}^{i} u_{1}^{2-i}, & \xi^{2} u_{0}^{i} u_{1}^{1-i}
\end{array}
$$

which are linearly independent. On the other hand, starting from the equality $h^{0}(12 D+4 F)=35$, we obtain $\quad h^{0}(11 D+4 F) \leq 30, \quad h^{\circ}(10 D+4 F) \leq 25$, and $h^{0}(9 D+4 F) \leq 21$ (cf. Lemma 4.2). This implies that there exists a relation

$$
\begin{equation*}
\zeta \psi=f\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right) \tag{4.4}
\end{equation*}
$$

where f is not divisible by ζ, i.e., f contains the term ξ^{2}.
Let D be a general member of $|D|$ and let $\left(\left.\zeta\right|_{D}\right)=P_{1}+P_{2}$. Then, we claim that ξ does not vanish at P_{1} nor P_{2}. To see this, consider the space $H^{0}(10 D+3 F) \cong \mathbf{C}^{24}$, which contains the following 24 elements:

$$
\begin{equation*}
\zeta^{3} u_{0}^{i} u_{1}^{10-i}, \quad \zeta \zeta u_{0}^{i} u_{1}^{6-i}, \quad \zeta \eta u_{0}^{i} u_{1}^{3-i}, \quad \psi u_{0}, \quad \psi u_{1} \tag{4.5}
\end{equation*}
$$

If these were linearly dependent, we would get a relation of the form

$$
L\left(u_{0}, u_{1}\right) \psi=\zeta f^{\prime}\left(u_{0}, u_{1}, \zeta^{2}, \xi, \eta\right)
$$

It would follow that $\zeta^{2} f^{\prime}=L f$. This contradicts that D is not hyperelliptic. Therefore (4.5) gives a basis of $H^{0}(10 D+3 F)$. It follows that $\left\{\zeta^{3}, \zeta \xi, \zeta \eta, \psi\right\}$ induces a basis of $H^{0}\left(D, \mathcal{O}\left(3 F_{D}\right)\right)$. Since $\left|3 F_{D}\right|$ has no base point, ψ does not vanish at P_{1} nor P_{2}.

Since f involves ξ^{2}, the right hand side of (4.4) does not vanish at P_{1} nor P_{2}. But this contradicts the appearance of ζ on the left. q.e.d.

§5. SURFACES OF TYPE III-SEMI-CANONICAL RING

Let $\mathscr{R}=\oplus_{m \geq 0} H^{0}(m L)$ be the graded ring determined by the line bundle L. By comparing the dimensions we see that the following elements generate the ring \mathscr{R} :

$$
\begin{aligned}
H^{0}(L) \ni x_{0} & =\zeta u_{0}^{3}, & x_{1}=\zeta u_{0}^{2} u_{1}, & x_{2}=\zeta u_{0} u_{1}^{2}, \quad x_{3}=\zeta u_{1}^{3} \\
H^{0}(2 L) \ni y_{0} & =\xi u_{0}, & y_{1}=\zeta u_{1}, & z=\eta, \\
H^{0}(3 L) \ni w & =\psi . & &
\end{aligned}
$$

The following relations $\Phi_{i}=0,1 \leq i \leq 3$ and $\Psi_{i}=0,1 \leq i \leq 3$ are obvious.

$$
\begin{aligned}
& \Phi_{1}=x_{1}^{2}-x_{0} x_{2}, \\
& \Phi_{2}=x_{0} x_{3}-x_{1} x_{2}, \\
& \Phi_{3}=x_{2}^{2}-x_{1} x_{3}, \\
& \Psi_{1}=x_{1} y_{1}-x_{0} y_{2}, \\
& \Psi_{2}=-x_{2} y_{1}+x_{1} y_{2}, \\
& \Psi_{3}=x_{3} y_{1}-x_{2} y_{2} .
\end{aligned}
$$

Among these we have 8 syzygies $S_{i}=0(i=1,2)$ and $T_{j}=0(1 \leq j \leq 6)$:

$$
\begin{aligned}
& S_{1}=x_{2} \Phi_{1}+x_{1} \Phi_{2}+x_{0} \Phi_{3}, \\
& S_{2}=x_{3} \Phi_{1}+x_{2} \Phi_{2}+x_{1} \Phi_{3}, \\
& T_{1}=x_{1} \Psi_{1}+x_{0} \Psi_{2}-y_{1} \Phi_{1}, \\
& T_{2}=x_{2} \Psi_{1}+x_{1} \Psi_{2}-y_{2} \Phi_{1}, \\
& T_{3}=x_{3} \Psi_{1}+x_{2} \Psi_{2}+y_{1} \Phi_{3}+y_{2} \Phi_{2}, \\
& T_{4}=x_{1} \Psi_{2}+x_{0} \Psi_{3}-y_{1} \Phi_{2}-y_{2} \Phi_{1}, \\
& T_{5}=x_{2} \Psi_{2}+x_{1} \Psi_{3}+y_{1} \Phi_{3}, \\
& T_{6}=x_{3} \Psi_{2}+x_{2} \Psi_{3}+y_{2} \Phi_{3} .
\end{aligned}
$$

In the relation (4.1) we may assume f does not depend on u_{0}. Then f can be written as

$$
f=\xi^{2}+a_{4} u_{1}^{4} \zeta \eta+a_{5} u_{1}^{5} \zeta \zeta+a_{10} u_{1}^{10} \zeta^{3},
$$

where the a_{j} are constants. From this we obtain 3 relations $\Gamma_{i}=0(1 \leq i \leq 3)$:

$$
\begin{align*}
& \Gamma_{1}=x_{0} w-y_{1}^{2}-x_{2}^{2} Q, \\
& \Gamma_{2}=x_{1} w-y_{1} y_{2}-x_{2} x_{3} Q, \\
& \Gamma_{3}=x_{2} w-y_{2}^{2}-x_{3}^{2} Q, \tag{5.1}
\end{align*}
$$

where $Q=a_{4} z+a_{5} y_{2}+a_{10} x_{3}^{2}$.
We have 8 more syzygies $U_{i}=0(1 \leq i \leq 6)$ and $V_{j}=0(j=1,2)$:

$$
\begin{aligned}
& U_{1}=x_{1} \Gamma_{1}-x_{0} \Gamma_{2}+y_{1} \Psi_{1}-x_{2} Q \Phi_{2}, \\
& U_{2}=x_{2} \Gamma_{1}-x_{3} \Gamma_{2}+w \Phi_{1}-y_{1} \Psi_{2}+x_{2} Q \Phi_{3}, \\
& U_{3}=x_{3} \Gamma_{1}-x_{2} \Gamma_{2}-w \Phi_{2}+y_{1} \Psi_{3}, \\
& U_{4}=x_{1} \Gamma_{2}-x_{0} \Gamma_{3}-w \Phi_{1}+y_{2} \Psi_{1}-x_{3} Q \Phi_{2}, \\
& U_{5}=x_{2} \Gamma_{2}-x_{1} \Gamma_{3}-y_{2} \Psi_{2}+x_{3} Q \Phi_{3}, \\
& U_{6}=x_{3} \Gamma_{2}-x_{2} \Gamma_{3}+w \Phi_{3}-y_{2} \Psi_{3}, \\
& V_{1}=y_{2} \Gamma_{1}-y_{1} \Gamma_{2}+w \Psi_{1}-x_{2} Q \Psi_{3}, \\
& V_{2}=y_{2} \Gamma_{2}-y_{1} \Gamma_{3}-w \Psi_{2}-x_{3} Q \Psi_{3} .
\end{aligned}
$$

Finally we have a relation Δ in $H^{0}(6 L)$.

$$
\begin{align*}
& \Delta=w^{2}+A w+B, \\
& A=\left(\alpha_{1} x^{3}+\alpha_{2} y_{2}+\alpha_{3} z\right) x_{3}, \tag{5.2}\\
& B=B\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z\right) .
\end{align*}
$$

Here we note that we do not normalize A to be 0 because of the previous normalization.
Proposition 5.1. The above $S_{1}, S_{2}, T_{1}, \ldots, T_{6}, U_{1}, \ldots, U_{6}, V_{1}, V_{2}$ generate all syzygies among the $\Phi_{i}, \Psi_{i}, \Gamma_{i}, \Delta$.

Proof. Let \tilde{V} be the blowing up of $V=\mathbf{P}(\mathcal{O} \oplus \mathcal{O}(-5) \oplus \mathscr{O}(-6))$ along $u_{0}=f=0$. The equations $\Phi_{i}=\Psi_{i}=\Gamma_{i}=0,1 \leq i \leq 3$ determine a threefold which is a modification of \tilde{V}. Therefore Δ is independent from other equations.

Lemma 5.1. Consider the module of the solutions $\left(A_{0}, A_{1}, A_{2}\right)$ of

$$
\begin{gathered}
A_{0} x_{0}+A_{1} x_{1}+A_{2} x_{2} \equiv 0 \quad \bmod \left(\Phi_{i}, \Psi_{i}\right), \\
A_{i} \in \mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z\right] .
\end{gathered}
$$

Then this module is generated by

$$
\begin{aligned}
& \left(x_{i+1},-x_{i}, 0\right),\left(0, x_{i+1},-x_{i}\right), i=0,1,2, \\
& \left(y_{2},-y_{1}, 0\right),\left(0, y_{2},-y_{1}\right)
\end{aligned}
$$

Proof. Considering the homogeneous components we may assume that the A_{i} do not depend on z and that they are homogeneous in y_{1}, y_{2}. Using the given relations, we subtract appropriate multiples of $x_{1}, x_{2}, x_{3}, y_{2}$ from A_{0}. Then A_{0} is a multiple of $x_{0}^{\alpha} y_{1}^{\beta}=u_{0}^{\alpha+\beta} \zeta^{\alpha} \xi^{\beta}$. Since x_{1} and x_{2} are divisible by u_{1}, this proves $A_{0}=0$ We can similarly make $A_{1}=0$. q.e.d.

Consider the syzygy of the form

$$
B_{0} \Gamma_{1}+B_{1} \Gamma_{2}+B_{2} \Gamma_{3}=\sum C_{i} \Phi_{i}+\sum D_{j} \Psi_{j}
$$

If $B_{i}=A_{i} w^{n}+$ (lower terms) with some A_{i} being non-zero, then the left hand side is

$$
\left(A_{0} x_{0}+A_{1} x_{1}+A_{2} x_{2}\right) w^{n+1}+\cdots
$$

Hence, by virtue of Lemma 5.1, subtracting appropriate multiples of $U_{1}, \ldots, U_{6}, V_{1}, V_{2}$ we may assume that the B_{i} are of degree less than n. By induction, we may assume $B_{i}=0$.

It remains to show that any syzygy of the form

$$
\sum C_{i} \Phi_{i}=\sum D_{j} \Psi_{j}
$$

is generated by $S_{1}, S_{2}, T_{1}, \ldots, T_{6}$ up to trivial syzygies. Considering each homogeneous part we may assume that C_{i} and D_{j} do not depend on z or w, and that they are homogeneous in y_{1}, y_{2}. Subtracting appropriate multiples of T_{1}, T_{2}, T_{3}, we may assume $D_{1}=\sum c x_{0}^{\alpha} y_{1}^{\beta} y_{2}^{z}$. Then the right hand side contains $\sum c c_{0}^{\alpha+1} y_{1}^{\beta} y_{2}^{\prime}$. But this cannot appear on the left hand side. So $D_{1}=0$. Similarly, using T_{4}, T_{5}, T_{6}, we can make $D_{2}=0$.

Finally, there is no non-trivial syzygies among $\Psi_{3}, \Phi_{1}, \Phi_{2}, \Phi_{3}$ which involve Ψ_{3}. This can be seen by the fact that the equations $\Phi_{1}=\Phi_{2}=\Phi_{3}=0$ define a 4-dimensional cone in the weighted projective space $\mathbf{P}(1,1,1,1,2,2,3)$ over \mathbf{P}^{1} and $\Psi_{3}=0$ cuts out a 3-dimensional subset of this cone. q.e.d.

§6. SURFACES OF TYPE III-DEFORMATION TO SEXTIC SURFACES

Let S be a surface of type III as in the preceding two sections. In this section we construct a flat family of rings \mathscr{R}_{t} parametrized by a parameter t such that \mathscr{R}_{0} coincides with

$$
\mathscr{R}=\bigoplus_{m \geq 0} H^{0}(S, \mathcal{O}(m L))
$$

for $t=0$. This is modeled on [3].
The ring \mathscr{R}_{t} is generated by the same variables $x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z$ as \mathscr{R}. They are to satisfy the relations $\tilde{\Phi}_{i}, \tilde{\Psi}_{i}, \tilde{\Gamma}_{i}, \tilde{\Delta}$, which are given below. To simplify the notation we suppress the tildes below.

$$
\begin{aligned}
& \Phi_{1}=x_{1}^{2}-x_{0} x_{2}+t^{2} Q+c t^{m} z \\
& \Phi_{2}=x_{3} x_{0}-x_{1} x_{2}-t y_{1} \\
& \Phi_{3}=x_{2}^{2}-x_{1} x_{3}+t y_{2}
\end{aligned}
$$

where $Q=a_{4} z+a_{5} y_{2}+a_{10} x_{3}^{2}$ as is defined in (5.1), c is a constant and m is an integer ≥ 3 (c may be set 0 if $a_{4} \neq 0$).

Next we set

$$
\begin{aligned}
& \Psi_{1}=x_{1} y_{1}-x_{0} y_{2}-t\left(Q+c t^{m-2} z\right) x_{2} \\
& \Psi_{2}=-x_{2} y_{1}-x_{1} y_{2}+t\left(Q+c t^{m-2} z\right) x_{3} \\
& \Psi_{3}=x_{3} y_{1}-x_{2} y_{2}-t w
\end{aligned}
$$

For simplicity, we set $\tilde{Q}=Q+c t^{m-2} z$. By direct calculation we obtain

$$
\begin{aligned}
& x_{2} \Phi_{1}+x_{1} \Phi_{2}+x_{0} \Phi_{3}+t \Psi_{1}=0 \\
& x_{3} \Phi_{1}+x_{2} \Phi_{2}+x_{1} \Phi_{3}-t \Psi_{2}=0 \\
& x_{1} \Psi_{1}+x_{0} \Psi_{2}-y_{1} \Phi_{1}-t \tilde{Q} \Phi_{2}=0 \\
& x_{2} \Psi_{1}+x_{1} \Psi_{2}-y_{2} \Phi_{1}+t \tilde{Q} \Phi_{3}=0 \\
& x_{3} \Psi_{1}+x_{2} \Psi_{2}+y_{1} \Phi_{3}+y_{2} \Phi_{2}=0
\end{aligned}
$$

These extend the syzygies S_{1}, S_{2} and T_{1}, T_{2}, T_{3}.
We set

$$
\begin{aligned}
& \Gamma_{1}=x_{0} w-y_{1}^{2}-x_{2}^{2} \tilde{Q} \\
& \Gamma_{2}=x_{1} w-y_{1} y_{2}-x_{2} x_{3} \tilde{Q} \\
& \Gamma_{3}=x_{2} w-y_{2}^{2}-x_{3}^{2} \tilde{Q}
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{1} \Psi_{2}+x_{0} \Psi_{3}-y_{1} \Phi_{2}-y_{2} \Phi_{1}+t \Gamma_{1}=0 \\
& x_{2} \Psi_{2}+x_{1} \Psi_{3}+y_{1} \Phi_{3}+t \Gamma_{2}=0 \\
& x_{3} \Psi_{2}+x_{2} \Psi_{3}+y_{2} \Phi_{3}+t \Gamma_{3}=0
\end{aligned}
$$

These extend T_{4}, T_{5}, T_{6}. We also have

$$
\begin{aligned}
& x_{1} \Gamma_{1}-x_{0} \Gamma_{2}+y_{1} \Psi_{1}-x_{2} \tilde{Q} \Phi_{2}=0 \\
& x_{2} \Gamma_{1}-x_{1} \Gamma_{2}+w \Phi_{1}-y_{1} \Psi_{2}-x_{2} \tilde{Q} \Phi_{3}+t \tilde{Q} \Psi_{3}=0 \\
& x_{3} \Gamma_{1}-x_{2} \Gamma_{2}-w \Phi_{2}+y_{1} \Psi_{3}=0 \\
& x_{1} \Gamma_{2}-x_{0} \Gamma_{3}-w \Phi_{1}+y_{2} \Psi_{1}-x_{3} \tilde{Q} \Phi_{2}-t \tilde{Q} \Psi_{3}=0 \\
& x_{2} \Gamma_{2}-x_{1} \Gamma_{3}-y_{2} \Psi_{2}+x_{3} \tilde{Q} \Phi_{3}=0 \\
& x_{3} \Gamma_{2}-x_{2} \Gamma_{3}+w \Phi_{3}+y_{2} \Psi_{3}=0
\end{aligned}
$$

These extend U_{1}, \ldots, U_{6}. Also we obtain

$$
\begin{aligned}
& y_{2} \Gamma_{1}-y_{1} \Gamma_{2}+w \Psi_{1}-x_{2} \tilde{Q} \Psi_{3}=0 \\
& y_{2} \Gamma_{2}-y_{1} \Gamma_{3}-w \Psi_{2}-x_{3} \tilde{Q} \Psi_{3}=0
\end{aligned}
$$

which extend V_{1}, V_{2}.
Finally we set

$$
\Delta=w^{2}+A w+B
$$

the same equation as (5.2). These relations determine the quotient ring

$$
\mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z, w, t\right] /\left(\Phi_{i}, \Psi_{i}, \Gamma_{i}, \Delta\right)
$$

Since all the syzygies are extended this ring is formally flat over $\mathbf{C}[t]([2$, Proposition 3.1]). For $t \neq 0$, we can solve $\Phi_{1}=\Phi_{2}=\Phi_{3}=\Psi_{3}=0$ in terms of z, y_{1}, y_{2} and w. Then, by the above syzygies $\Psi_{1}, \Psi_{2}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ automatically vanish. By substituting y_{1}, y_{2}, z, w in Δ by the polynomials in the x_{i}, we obtain an equation of degree 6 in the x_{i}. Since $S=\operatorname{Proj}(\mathscr{R})$ is smooth or with at most rational double points, it follows that $S_{t}=\operatorname{Proj}\left(\mathscr{R}_{t}\right)$ has the same property. This completes the proof.

§7. NON-EXISTENCE OF HYPERELLIPTIC PENCIL OF GENIIS 3

In this section we prove Proposition 4.1. Suppose $|L|$ is composed of a pencil $|D|$ of genus 3 , whose general member is hyperelliptic. We have

$$
|L|=|3 D|+F, \quad D L=D F=2, \quad D^{2}=0, \quad \text { and } \quad F^{2}=-6
$$

We take an irreducible component F_{0} of F such that $D F_{0}>0$. Then, since $K F_{0}=0, F_{0}$ is a rational curve with $F_{0}^{2}=-2$. From $D F=2$ and $3 D F_{0}+F F_{0}=0$, it follows that $D F_{0}=1$ or 2 and $F F_{0}=-3$ or -6 . If $D F_{0}=2$, we must have $F \geq 3 F_{0}$ to get $F F_{0}=-6$. But this implies $D F \geq 3 D F_{0}=6$, which contradicts $D F=2$. So we obtain $D F_{0}=1, F F_{0}=-3$. From the last equality and $D F=2$, we infer that $F=2 F_{0}+F^{\prime}$ with $F_{0} \nsubseteq F^{\prime}, F_{0} F^{\prime}=1$. From $F^{2}=-6$ we obtain $F F^{\prime}=0$ and $F^{\prime 2}=-2$. On the other hand, from $D F^{\prime}=0$, it follows that F^{\prime} is disjoint from a general D. Therefore the canonical bundle K_{D} is induced by $4 F_{0}$.

Lemma 7.1. The intersection $P=F_{0} \cap D$ is a Weierstrass point on D.
Proof. Let P^{\prime} be the conjugate to P. Then $2\left(P+P^{\prime}\right)$ and $4 P$ are both canonical divisor. Hence $|2 P|=\left|2 P^{\prime}\right|$ has positive dimension. q.e.d.

Consider the exact sequence

$$
0 \rightarrow \mathcal{O}(L) \rightarrow \mathcal{O}(4 D+F) \rightarrow \mathcal{O}_{D}\left(\left.F\right|_{D}\right) \rightarrow 0 .
$$

Since $h^{1}(L)=0$ by Lemma 2.1, we obtain $h^{0}(4 D+F)=6$. Therefore, we can find a section η which docs not vanish along F. Hence the linear system $|4 D+F|$ defines a rational map $\Phi: S \rightarrow \mathbf{P}^{5}$, whose image is a cone over a rational quartic in \mathbf{P}^{4}. Moreover, Φ is generically 2-sheeted.

Since $[4 D+F]=[L+D]$ is numerically effective and $(4 D+F)^{2}=10=8+2$, there are 3 possibilities (see $\S 3$):
(1) $|4 D+F|$ has 2 base points (possibly infinitely near).
(2) $|4 D+F|$ has only fixed part G with $G^{2}=-2$.
(3) $|4 D+F|$ has only fixed part G with $G^{2}=0$.

Assume that $|4 D+F|$ has 2 isolated base points. Since $(4 D+F) F^{\prime}=0, \eta$ dues not vanish anywhere on F^{\prime}. Combining with $(4 D+F) F_{0}=1$, we see that $(\eta) \cap F_{0}$ consists of one point Q, and η has a simple zero at Q. If we blow up Q, the proper transform ($\tilde{\eta}$) intersects the exceptional curve E_{1} at a point Q_{1}, which remains to be a base point because $F=2 F_{0}+F^{\prime}$. Let $\pi: \tilde{S} \rightarrow S$ be the composition of the two blowings up, at Q and Q_{1}. Let E_{2} be the second exceptional curve and let \tilde{E}_{1} be the proper transform of E_{1}. Then

$$
\pi^{*}(4 D+F)=M+\tilde{E}_{1}+2 E_{2},
$$

where $|M|$ has no base point, and the canonical bundle \tilde{K} on \tilde{S} is given by $\pi^{*}(6 D+2 F)+\tilde{E}_{1}+2 E_{2}$. It also follows that Φ lifts to a generically 2 -sheeted holomorphic map f of \tilde{S} onto the Hirzebruch surface Σ_{4}, such that

$$
\begin{aligned}
f^{*}\left(\Delta_{0}\right) & =2 \tilde{F}_{0}+F^{\prime}+\tilde{E}_{1} \\
f^{*}\left(\Delta_{\infty}\right) & =\text { proper transform of }(\eta)
\end{aligned}
$$

where Δ_{0} denotes the 0 -section with $\Delta_{0}^{2}=-4, \Delta_{\infty}$ is another section with $\Delta_{\infty}^{2}=4$ and \tilde{F}_{0} is the proper transform of F_{0}. Letting Γ denote a fibre of Σ_{4}, we see that the branch locus for f is linearly equivalent to $8 \Delta_{0}+30 \Gamma$. In particular, B contains Δ_{0}. The ramification divisor R is linearly cquivalent to $\tilde{K}-f^{*} K_{\Sigma_{4}}$, or $12 D+8 \tilde{F}_{0}+4 F^{\prime}+7 \tilde{E}_{1}+6 E_{2}$. By [4, Lemma 3], $f^{*} B-2 R$ is effective. This implies that there exists $Z \in\left|D-\widetilde{E}_{1}-2 E_{2}\right|$ such that $3 Z \in\left|f^{*}(B / 2)-R\right|$. It follows that f is ramified along the fibre $f\left(E_{2}\right)$. Therefore, we can write $B=B_{0}+\Delta_{0}+f\left(E_{2}\right)$.

If the branch locus B were smooth, then the double covering would have $p_{a}=p_{g}-q=18$ and $K^{2}=40$. It follows that we need to have

$$
\sum \frac{1}{2}\left[m_{i} / 2\right]\left(\left[m_{i} / 2\right]-1\right)=8 .
$$

So this sum is either $1 \times 8,3+1 \times 5,3 \times 2+1+1$, or $6+1+1$. in each case, K^{2} decreases by

$$
\sum 2\left(\left[m_{i} / 2\right]-1\right)^{2}=16,18,20, \text { or } 22
$$

Let \hat{S} be the canonical resolution of the double covering with branch locus B (see [4, §2]). We claim that \hat{S} does not coincide with \hat{S}. On the canonical resolution \hat{S}, the canonical bundle \hat{K} is given by

$$
f^{*}(B / 2)+f^{*} K_{\Sigma_{4}}-\sum\left(\left[m_{i} / 2\right]-1\right) \mathscr{D}_{i},
$$

where the \mathscr{D}_{i} denote the divisors corresponding to the blowings up of Σ_{4} (cf. [4, $\left.\$ 2\right]$). On the other band, the canonical bundle \tilde{K} of \tilde{S} is written as $R+f{ }^{*} K_{\Sigma_{4}}$. Therefore $3 Z$ coincides with $\sum\left(\left[m_{i} / 2\right]-1\right) \mathscr{D}_{i}$. Although we cannot directly conclude that $\left[m_{i} / 2\right]-1$ must be 0 or 3 , at least we see that, for the first blowing up, we have $\left[m_{1} / 2\right]=4$. But, from the above calculation, in order to get $\hat{K}^{2}=22$, we must have $\left\{\left[m_{i} / 2\right]\right\}=\{3,1,1,1,1,1\}$.

Since the canonical resolution \hat{S} does not coincide with \tilde{S}, the branch locus B must have infinitely near 5 -ple points or infinitely near triple points.

Here infinitely near triple points are not allowed. In fact, if E is an exceptional curve on \hat{S} which is contracted to a point on \tilde{S}, it meets a divisor Y on \hat{S} with $Y^{2}=-2$. By contracting E, we obtain a divisor \bar{Y} on S such that $Y^{2} \geq-1$. Since the arithmetic genus of \bar{Y} is 1 , we cannot have $\bar{Y}^{2}=0$. Therefore, we have $\bar{Y}^{2}=-1$, which contradicts that S is even.

Hence we are left with the case where B has an infinitely near 5-ple points. Since this is on the fibre $f\left(E_{2}\right)$, it is only possible if B_{0} has a quadruple point which has, after a blowing up, a quadruple point on the proper transform of $f\left(E_{2}\right)$. This implies $B_{0} \cdot f\left(E_{2}\right) \geq 8$, which contradicts $B_{0} \Gamma=7$.

Next we study the case in which $|4 D+F|$ has fixed part G with $G^{2}=-2$. In this case, we have $(4 D+F) G=0$. Since the variable part $|M|$ satisfies $M D=2$, we see that F_{0} is not contained in G. In a manner similar to the preceding case, Φ_{M} defines a holomorphic map $S \rightarrow \mathbf{P}^{5}$, which induces a holomorphic map $f: S \rightarrow \Sigma_{4}$ such that $f^{*} \Delta_{0}=2 F_{0}+\left(F^{\prime}-G\right)$. This implies that the ramification divisor R for f is linearly equivalent to $12 D+8 F_{0}+4 F^{\prime}-2 G$, and that the branch locus B is linearly equivalent to $8 \Delta_{0}+28 \Gamma$. Hence B is a disjoint sum $B_{0}+\Delta_{0}$. We also see that there is an effective divisor $Z \in|D-G|$.

If B were smooth, it would yield a surface with $p_{a}=15, K^{2}=32$. Therefore, the singularity of B must contribute -5 to p_{a}. Since this contribution is a sum $-\sum \frac{1}{2}\left[m_{i} / 2\right]\left(\left[m_{i} / 2\right]-1\right)$, it decomposes as $5=1+\cdots+1$ or $5=3+1+1$. The corresponding contribution to K^{2} is $2+\cdots+2$ or $8+2+2$, when K^{2} is calculated on the canonical resolution. It follows that the canonical resolution \hat{S} is not the minimal model. As in the previous case, this implies that B has infinitely near 5 -ple points. Then we get a divisor \bar{Y} on S with $\bar{Y}^{2} \geq-1$ with arithmetic genus less than 3 . Since S is even, we must have $\bar{Y}^{2}=0$. This implies that \bar{Y} is a rational multiple of a whole fibre. But since \bar{Y} is a component of Z, this fibre is $f^{-1} f\left(E_{2}\right)$. This is impossible, because $f^{-1} f\left(E_{2}\right)$ contains G.

Finally we suppose $|4 D+F|=|M|+G$ with $M G=1, G^{2}=0$. Then Φ_{M} defines a holomorphic map $S \rightarrow \mathbf{P}^{5}$, which lifts to $f: S \rightarrow \Sigma_{4}$ with $f^{*} \Delta_{0}=2 F_{0}+\left(F^{\prime}-G\right)$. By a standard calculation, the ramification divisor R is linearly equivalent to $4 F-2 G+12 D$. Hence, the branch locus on Σ_{4} is linearly equivalent to $8 \Delta_{0}+26 \Gamma$. This implies that B contains Δ_{0} as a double component, which is impossible. q.e.d.

REFERENCES

1. M. Artin: Some numerical criteria for contractability of curves on algenraic surfaces, Amer. J. Math. 84 (1962), 485-496.
2. M. Artin: Lectures on deformations of singularities, Tata Inst. Fund. Res., (1976).
3. F. Griffin: Families of quintic surfaces and curves, Compositio Math. 55 (1985), 33-62.
4. E. Horikawa: On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85.
5. E. Horikawa: On algebraic surfaces with pencils of curves of genus 2, in Complex Analysis and Algebraic Geometry, a volume dedicated to K. Kodaira (W. Baily and T. Shioda eds.), Iwanami Shoten, Publishers and Cambridge, Univ. Press, Tokyo and Cambridge, (1977) pp. 79-90.
6. E. Horikawa: Algebraic surfaces of general type with small c_{1}^{2}. V, J. Fac. Sci. Univ. Tokyo Sec. IA 28 (1982), 745-755.
7. E. Horikawa, Notes on canonical surfaces, Tôhoku Math. J. 43 (1991), 141-148.

Department of Mathematical Sciences

University of Tokyo
Komaba, Meguro
Tokyo 153,
Japan

