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ABSTRACT 

polynomial invariants are associated to an endomorphism u of a module M that 
has a finite free resolution. The first invariant x(u, X> (characteristic polynomial of 
u) is a manic polynomial of degree the Euler characteristic of M. Its construction is 
based on the MacRae invariant. When M is a finite free module, x(u, X> is the 
classical characteristic polynomial of U. With additional assumptions there is con- 

structed a finite sequence of manic polynomials {di(u, X>lj ~ (, such that their product 
is x(u, X) and d&u, X) divides dj+ ,(u, X). Wh en R is a field, these polynomials are 
the invariant factors of u. A generalized Cayley-Hamilton theorem is given. The 
generic behavior of the polynomials x(u, X> and {dj(u, X)x, 0 in Spec R is proved. 
Finally it is shown, under certain assumptions that there exists a free submodule F of 
84, invariant with respect to u, such that the restriction of u to F is similar to the 
endomorphism of F defined by the diagonal block matrix where the ith block is the 

companion matrix of &(u, X). 
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INTRODUCTION 

Let R be a commutative ring with unit, and M a finitely generated 
R-module. In this paper we attack the classical problem of classification of 
M-endomorphisms when M has a finite free resolution. We shall assign to 
each endomorphism u of M a finite set of manic polynomials {di(u, X>}, G i ~ t 
such that when R = K is a field and M = V is a finite dimensional vector 
space these polynomials are the classical invariant factors associated to u. 

Let M be an R-module and u : M --f M an R-homomorphism. The 
endomorphism u converts M into an R[ Xl-module by 

X.m = u(m). 

We denote M as R[ Xl-module via u by M, If ii denotes the R[ Xl- 
endomorphism of M[ X] obtained from u by extension of scalars, then one 
has the characteristic exact sequence 

0 + M[X] 3 M[X] -z M,‘ + 0, 

with $ = t, - ii and t, denoting multiplication by X. 
Let’s consider the classical case first, i.e. when R = K is a field and 

M = V is a finite dimensional vector space. It is well known that the invari- 
ant factors {di(u, X)), ~ i ~ t of U, where dj(u, Xl divides di+,(u, X> for 
i = l,..., t - 1, can be obtained as the manic generators of the ideals 

I(~-i(v,):~-i+,(y)>},.i.,-,, where T(V,,) is the i th Fitting invariant of 
V,. Two endomorphisms u and LJ are similar if and only if di(u, X) = d,(u, X) 
for each i, or equivalently, if and only if z(V,> = z(V,> for each i. The 
initial Fitting invariant YO(V,,) is the principal ideal of K[ X] generated by the 
characteristic polynomial x(u, X) of U. 

Let’s consider the free case, i.e. when R is a commutative ring with 
unit and M = R" is a free R-module of rank n. In this situation the ideal 
FO(( R”),,) is principal and g enerated by the characteristic polynomial J&A, X> 
of u, while the ideals T((RnjU) f or i 2 1 are not principal in general. In 
consequence, in this case one can talk about a characteristic polynomial but 
not about invariant factors. 

In the general case, i.e. when R is a commutative ring with unit and M a 
finitely generated R-module, the ideals 9$ M,) are not principal and neither 
is Fo(M,). When M = P is a finitely generated projective R-module, 
0. Goldman [4] constructs a characteristic polynomial of u, defining first the 
determinant of an endomorphism of a finitely generated projective module 
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and then the characteristic polynomial of u as det(t, - U), following the free 
case. G. Almkvist [l] also talks about a characteristic polynomial of u when 
M = P is a finitely generated projective module. He constructs it by defining 
its coefficients as the traces of the exterior powers of u up to a sign, also 
following the free case. The two polynomials, in general, are different. They 
are only equal when P is a finitely generated projective module of constant 
rank. 

This paper is organized in the following way. Let M be an R-module that 
has a finite free resolution. In Section 2 we shall associate to an endomor- 
phism u : M * M a manic polynomial J$U, X) that generates the smal- 
lest principal ideal of R[ X] containing FO(MU). We shall call x(u, Xl the 
characteristic polynomial of u. 

The classical Cayley-Hamilton theorem, i.e. that u annihilates its charac- 
teristic polynomial, does not hold for the polynomial x(u, Xl. In Section 3 
we give a generalized version of the Cayley-Hamilton theorem. Namely, for 
everyA Ed we have A~(u, u) = 0, where IZ is the Euler characteristic 
of M. 

In Section 4, under certain assumptions, we shall associate to u a 
sequence of manic polynomials {d&.4, X)}, d i ~ t verifying: 

61 d,(u, X)d,(u, Xl **a d,(u, X> = x(u, X1. 
(ii) d,(u, X) divides di+,(u, X) for 1 < i < t - 1. 

(iii) (Fl:i; di(u, X)1 is the smallest principal ideal of R[ X] generated by 
a manic polynomial that contains K;(hl,), 1 < r < t - 1. 

(iv) There exists a dense Zariski open set C( M, U> of Spec R such that if 
$J E C( M, u) then the invariant factors of the k(P)-endomorphism of vector 
spaces 

u@l:M@k(p)+M@k(p) 

are the images of {di(u, Xl], d iG t in k(p)[X], where k(p) denotes the 
residue field at p, i.e. k(P) = R,/PRp. 

(v) There exists a free submodule F of M, invariant with respect to u 
and with rank equal to the Euler characteristic of M, such that the restriction 
of u to F is similar to the endomorphism of F defined by the diagonal block 
matrix 
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where Di is the companion matrix of di(u, X). 

When M = R”, the previous polynomial x(u) X ) is the classical characteris- 
tic polynomial of U, and when R = K is a field, the previous sequence of 

polynomials {di(“, X>lr $ i G t is the sequence of the classical invariant factors 
of u. 

We start this paper with a short exposition of the techniques that we shall 
use through this work. 

1. PRELIMINARIES AND NOTATION 

Fitting Ideals 
Let R be a commutative ring with unit, and let M be a finitely presented 

R-module. We denote by K( M) [3] the ith Fitting ideal of M, i.e., if 

is a presentation of M, and A is the matrix of f relative to bases of R’ and 
R”, then 

where Z!_i(A) is the ideal generated by all the (s - i) X (s - i) minors 
of A. 

Fitting ideals satisfy the following properties [8, Chapters 3, 41: 

(i> 2$(M) c~$M) c ... c5$(M) G ... . 
(ii) z(M @ A4’) = C ,+,=ist,(M)Sr,(M’) for i >, 0. 

(iii) Let 2I be an ideal of R. Then 

By properties (ii) and (iii) the Fitting ideals characterize finitely generated 
modules over a principal ideal domain. 

(iv) If M is generated by s elements, then 

(Ann, M)’ ~5$( M) G Ann, M, 
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where Anna M denotes the annihilator ideal of M. 
(v) Suppose that 

fr” fi fo 
0 + F,,, -+ F,,_, + a.. + F, + F,, + M + 0 

is a finite free resolution of M. Let n be the Euler characteristic of M, i.e. 
n = Cy= 0( - l>i rank, F,. Then x(M) is the first Fitting invariant nonzero 
and 

(ogaw) = (0). 

(vi) Change of base. Let f : R + R’ be a homomorphism of commuta- 
tive rings with unit. Then 

T(M& =3$( M)R’ for i > 0, 

where McRS, is the R’-module obtained from 111 by extension of scalars 

MacRae’s Invariant 
We say that an R-module K is elementary if there exists an exact 

sequence of the form 

If K is an elementary R-module, then YO(K) is a principal ideal generated 
by a non-zero-divisor of R. 

Let M be an R-module. An exact sequence 

where each Kj is elementary will be called a finite elementary resolution of 
M of length m. In this situation MacRae [6] proves: 

(i) The function 

G(M) = Fo( K,)T)( K,)-‘T)( KS) *.a 9$( KJpl)“’ = ;R, 

where (Y, R E R are non-zero-divisors, is an invariant associated to M, i.e., it 
is independent of the finite elementary resolution of M chosen. 
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(ii) G(M) is the smallest principal ideal of R containing Y,,(M). It is 
necessarily generated by a non-zero-divisor. 

We shall refer to G(M) as the MacRae invariant of M. 

PROPOSITION 1.1. 

(i) Additivity. Zf 0 + M ’ + M + M” + 0 is an exact sequence of 

R-modules that have finite elementa y resolutions, then 

G(M) = G( M’)G( M”). 

(ii) Change of base. Let f : R --) R’ be a homomorphism of commu- 

tat&e rings with unit. If M is an R-module that has a finite elementary 

resolution and if MCRr, (the module obtained from M by extension of scalars) 
also has a finite elementay resolution over R’, then 

G( McR,,) c G(M) A’. 

Proof. (i): See [6]. 

(ii): As we have just noticed, we know that 5$( M > c G( M ), so 

si;)(~+)) =F”(M)R’ c G(M)R’, 

where the equality is due to the behavior of Fitting invariants under change 
of rings. Hence G(M) R’ is a principal ideal containing 9°C M,,,,), but 
G( M,,,,) is the smallest ideal in this situation. The desired conclusion then 
follows. n 

The R[X]-Module Associated to an Endomolyhism of an R-Module 

Let M be an R-module, and let u : M -+ M be an R-homomorphism. 
The endomoqhism u converts M into an R[ Xl-module by Xm = u(m). We 
denote M as R[ Xl-module via u by M,‘. Let ii denote the R[ Xl-endomor- 
phism of M [ X ] obtained from u by extension of scalars. 

In this context, there is a charucterktic sequence [2, p. 1061 

0 --) M[X] -% M[X] 5 M,, + 0, 

which is an exact sequence of R[ Xl- modules, where cp(Cm,X”) = Cu’(m,) 

and + = t, - C, where t, denotes multiplication by X. In particular, when 
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M = R” the characteristic sequence proves that CR”), is an elementary 
R[ Xl-module and moreover 

(x(u> X)) =Td(R”).) = G((R”),). 

Let N be an R[X]-module. We denote by N the R-module obtained 
from N by restriction of scalars. If tx is the multiplication by X over %, then - - 
(N_)t)2K = N. Conversely, if M and u are as above, then M, = M and so 

CM,& = M,. 

PROPOSITION 1.2. Let f : R + R’ be a ring honwmorphism. 

(i) Zf M is an R-module and u is an endomorphism of M, then the 

R’[ Xl-modules (M~R~j)u(,,j and (Mu)(R,[XIj are isomorphic, where ucR.) is the 

R’-~&morphism of McRP, obtained from u by extension of scalars. Conse- 

quently the R’-modules ( M~A~j)u(,,j and ( Mu)(R,[XIj are isomorphic. 

(ii) Zf N is an R[X]-mod&e, then the R’-modules #cRS, and NcR,[Xlj are 

isomorphic. 

Proof. (i): From the characteristic sequence of u by extension of scalars 
we obtain the exact sequence of R’[X]-modules 

or equivalently, we have the exact sequence of R’[ Xl-modules 

M(R,)[Xl 
*=tX-U(w) 

- M&Xl + (Mu)m~x~) -+ 0. 

By comparison with the characteristic sequence of u(a,) it follows that the 
R’[ Xl-modules ( M~R~j)u(,,l and ( M,)(,,I,l, are isomorphic. 

(ii): Since (ELtx = N, it f$lows that (( ~)tx)(a,Ixlj = N~s,txl)._Now by(i) 

;;vive that (NCR&, E (( N)t,)(x~~xl~. Therefore NcR8[XIj E (NcR,,>t, and 

PROPOSITION 1.3. Let M and M’ be two R-modules, and u and u’ 

endomorphisms of M and M’ respectively. Zf g : M - M’ is an R- 

homomorphism, then the following conditions are equivalent: 
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(i) gu = u’g. 
(ii) g: M, + M,l, is a homomorphism of R[ Xl-modules. 

Furthermore, in this situation the diagram (whose rows are characteristic 
exact sequences) 

o-M[X] --f+M[x]~M,‘-o 

I 2 I 2 
I I g 

o-MM’[X]~M’[X]--*M’ -0 u’ 

is commutative. 

Proof. See [2, p. 1061. W 

The above behavior of the characteristic sequence can be generalized to 
an exact sequence of R-modules. We describe a particular situation that we 
shall use throughout this paper. If we have a diagram of R-modules 

f?,, 
O-F-F - . . . m-1 

c I 
u 7,‘ %L I 

A,, 
O-F-F - . . . 711 m-1 

commutative and exact where Fi is a finitely generated free module, then the 
diagram of R[ Xl-modules 

0 0 

1 1 
0 - F,[Xl L F,ml[X 

0 

I 
0 0 

- 1 - 1 
1 fl F,[X] fo\ M[X I-0 

1 *II 1 * x L 
0 - FJXI = F,_,[Xl - .e. - F,[X] s F&X] s M[X] -0 

Qm Qrn - I 

O-(I;,),“,~(F~_,),,,;~, 1 1 

QI i ‘PO 1Q 

- ... - (F,),, 1 3 (F,),,, 5 M, - 0 

1 1 1 1 I 
0 0 0 0 0 

is commutative with exact rows and columns. So if M has a finite free 
resolution over R, then M, has an elementary resolution of finite length over 
R[ X], because, as we noticed before, ( Fi),z is elementary for 0 < i < m. 
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2. CHARACTERISTIC POLYNOMIAL 

For short, in the sequel, we shall denote by IF, the class of R-modules 
that have a finite free resolution. If M E [F,, we denote by Char, M the 
Euler characteristic of M. 

THEOREM 2.1. Let M E [F,, and let u be an endomorphism of M. Then 

the MacRae invariant G(M,,) of the R[X]-module M, is generated by a 

manic polynomial of degree Char, M. 

Proof. Let 

f." fr fo 
O-,F,,,*F,,_l --j .a. + F, + F, + M + 0 

be a finite free resolution of M. Then for u : M + M we have a commutative 
diagram 

O-F -=F m-l 

Frnf 1 

- **I --;r”g-“h44-o 

U,,rI 

f", 
O-F-F 

fi 
-...-F --_,F 

f" 
Wl m-1 1 0 

-M-O 

with exact rows, where the ui are liftings of u. Therefore .we obtain the 
elementary resolution of the R[ Xl-module M, 

By the definition of MacRae invariant, 

G(M,) = t&6((F,)uL))(-1)’ = f$xh X))‘-“I. 

Since G(M,) is a principal ideal of R[ Xl, it follows that the polynomial 

divides the polynomial 

o<Qmx(ui. x>. . . 
i even 
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The quotient polynomial 

has degree 

C rank F, - c rank F, = Char, M, 
0 ,< i < nL 
1 even 

0 GisdWL 

and it is manic, being a quotient of manic polynomials. n 

DEFINITION 2.2. Let M E 1F,, and let u be an endomorphism of M. We 
define the characteristic polynomial of u, as the only manic generator of 
G(M,), and denote it as x(u, X). 

REMARK 2.3. 

(iI x(u, X> is an invariant associated to u and M, that is, it does not 
depend on the finite free resolution or the morphism ui chosen for its 
construction. 

(ii> If M is a finite free R-module, this definition gives the classic 
characteristic polynomial. 

(iii) If CharH M = 0, then x(u, X) = 1 for every endomorphism u 
of M. 

(iv> 0. Goldman [4] and G. Almkvist [l] gave two different extensions to 
the concept of characteristic polynomial of an endomorphism of a finitely 
generated projective module, as we noticed before. When these two defini- 
tions and the previous one apply (i.e., M is supplementable projective), then 
all of them give the same polynomial. 

PROPOSITION 2.4. Let M E IF, and let u be an endomorphism of M. 

(i) lf M’ and M” are R-modules that have finite free resolutions and 
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is a commutative diagram of R-modules with exact rows, then 

/y(u, X) = x(u”, X)X(U’> X). 

(ii) Zf v is another em&morphism of M, then X(UV, X> = X(VU, XI, and 
if v is an isomorphism then ,~(v-~uv, X> = x(u, XI. 

Proof. (i): It follows from Proposition 1.1. 
(ii): Let 

be a finite free resolution of M, and let (uJO d i Q m and {y}, d i c Ih be families 
of liftings of u and v respectively. Then {ui& G i G m and {viuJO d i G 111 are 
families of liftings of uv and vu respectively. 

Now the result follows from the construction that we have established for 
the characteristic polynomial and to the fact that the property is true for finite 
free R-modules. n 

Let f: R + R’ be a homomorphism of rings with unit. If p(X) = 
a,X’ + *.a +a, E R[X], we denote by f(p(X)) the polynomial of R’[ X] 

given by f(p(X)) = f(a,)X’ + **’ +f(a,). 

PROPOSITION 2.5. Let M E [F,, let u be an en&morphism of M, and let 

f : R 4 R’ be a homomorphism of rings with unit. 

6) IfMcRf, E F,,, then the polynomial f( x(u, X)) divides x(u(,,), X). 

(ii) Char, M = Char,, MCR,, if and only if the two polynomials are equal. 

Proof. (i): Using the isomorphism (see Proposition 1.2) 

and the behavior of MacRae invariant under ring extensions, Proposition 1.1, 
we have the desired result. n 

REMARK 2.6. Let R be an integral domain, K its quotient field, M E [F,, 

and u be an endomorphism of M. Then x(u, X) is the classical characteris- 
tic polynomial of ucKj. 
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In the same situation, if M is a finitely generated R-module but M G IF,, 
the characteristic polynomial of ucKj can have its coefficients in K - R, 
as the next example will show: Let R = C[[Z,Tll/(T" - Z3>, M = (Z,T)/ 
(7" - Z3), and 

Z--T, 

where 2 is the canonical image of Z in M. Then M has no finite free 
resolution over R (because R is not a regular local ring), and 

T 
X(U(,), x) = x + F’ 

We denote by Spec R the set of prime ideals of R with the Zariski 
topology and by Min R the set of minimal prime ideals of R. Under the 
assumptions of Theorem 2.1, the next result will allow us to look at the 
characteristic polynomial x(u, X> as a generic polynomial in Spec R with 
respect to the endomorphisms induced by u passing to the residue fields. 

Let M E [F,, and let u be an endomorphism of M. If P is a prime ideal 
of R, we denote by k(P) the residue field of P, i.e. k(P) = R,/pR,; by 
M(P) the finite dimensional k(P)-vector space Mckcpjj; by u(P) the endo- 
morphism induced by u in M( $11; and by z-P the canonical homomorphism 
from R to k( p ). Finally we denote by C,( M > the set 

C,(M) = (P E Spec Rldimk(p) M(P) = r) , 

where r > 0 is an integer. 
Observe that 

C,(M) = D(K(M)) n V(T-l(M)) for r>O 

and 

C”(M) = wxM))~ 
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where 

D(.E:( M)) = {P E Spec RlZ(M) C P}, 

v(Eml(M)) = {P E SpecRIK-,(M) G P}. 

THEOREM 2.7. Let M E IF, with Char, M = n, and let u be an 

en&morphism of M. 

(i) rD(x(u, X)) divides x(u(P), X) for each prime ideal &I of R, and 

7rPP( x(u, X)) = x(u(P), X) if and only if P E C,(M) = D(Fn(M)). 
(ii) Min R c C,( M ), and in consequence C,(M) is a dense open set of 

Spec R. 

(iii) C,(M) = Spec R if and only if M is supplementable projective. 

Proof. (i): If n > 0, by property (v) of the Fitting ideals we have 
z_ i(M) = 0. Therefore 

C,(M) = o(T(M)) I--I V(S?;[-I(M)) = D@%(M)). 

Since 

C,(M) = (0 E Spec RIChar, M = Charko,, M(P) = dim,(,, M(P)) , 

the result follows from Proposition 2.5. 
(ii): Let P be a minimal prime ideal of R. Suppose that P is not in 

c,,(M), i.e. x(M) c p . Then by property (vi) of the Fitting ideals we have 

Sii,(MD) =x( M)R, 5 PR, =J-(fip)> 

where &R,) is the set of nilpotents of R, 
If 3$,(M) is generated by a,, . . . , a,, then because a,/1 is nilpotent in 

R,, it follows that the polynomial 

g(x)=$!+$x+ . . . + :xt 

is nilpotent in RP[ X I. H owever, since the Euler characteristic of M, is n, by 
property (v) of the Fitting ideals we have 
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or equivalently, that g(X) IS a non-zero-divisor on RD[ Xl. This concludes 
the proof by contradiction. 

(iii): Since z_ i(M) = 0 (see [8, p. 123]), we have z(M) = R if and only 
if M is projective of constant rank. But under the assumption of M having a 
finite free resolution, M is projective if and only if M is supplementable 
projective (see [8, Theorem 14, p. 701). W 

3. CAYLEY-HAMILTON THEOREM 

Our next aim is to give a reasonable extension of the Cayley-Hamilton 
theorem, i.e., x(u, U) = 0, where u : R” + R" is a homomorphism. The 
proof of this result is an immediate consequence of the invariants that we are 
using. Precisely, we have 

so x(u, X) belongs to Ann,txl(R”),, or equivalently, x(u, u) = 0. 
However, in general, even if the module has a finite free resolution, this 

Cayley-Hamilton result does not hold. To notice this, it is enough to consider 
a nonzero module with Euler characteristic zero. Even more, there can be 
found endomorphisms of modules with positive Euler characteristic for which 
the result fails: Let R = Z, M = Z @J Z/(2), and u(n, 55) = (0, ?‘Z). Then, 
considering the commutative diagram 

(0 2) 
0-R-R2-M-O 

lId (o 2) looId 
0-R-R2-M-O 

with exact rows, we have x(u, X> = X, so x(u, u) = u # 0. 

THEOREM 3.1 (Cayley-Hamilton generalized). Let M E F, with 

Char, M = n, and let u be an endomorphism of M. Then for every A E 9$ M > 
we have 

Ax(u, u) = 0. 

Proof. Firstly we shall see the inclusion 

z( M)( x(u> X>) G6(Mu) 
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Let 

be a finite free resolution of M. Following the notation of Section 1, the 
diagram of R[ X ]-modules 

F,[Xl - 6 F&d - cl M[X] - 0 

1 @,I I $0 

F,[X] f, F,[X] 
G, 

1 * 

- M[X] - 0 

1 ‘PI 1 PO I ‘p 

(F,),, -(F,),” - M, - 0 

1 1 I 
0 0 0 

is commutative with exact rows and columns. Then, by a diagram chase, we 
obtain the exact sequence of R[ Xl-modules 

Let 9, and 9’a be bases of F, and F, respectively; we obtain in a 
natural way bases 9 and 9’ of F,[ X ] @ F,,[ X ] and F,[ X] respectively. If 
fi and u,, are represented by the matrices 

la11 al2 ... al, lb 11 b,, .a. b,, ’ 
a21 az2 ... a2s 

A=. . 
b b,, 

. . ’ 
B = . 21 

b 
.*** . 2s 

. 

n \ 7-l a r2 -** i-s a, \bsl is2 ..*. b,, / 

in the bases sl and B0 respectively, then f; + I,!+, is represented by the 
matrix 

A 
c= XI-B i 1 

in the bases 9’ and g’. 
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By definition of Fitting invariants we have that S,( M 1 is the ideal of R 
generated by all the (S - n> X (s - n> minors of A, and F$M,) is the ideal 
of R[ X] generated by all the s X s minors of C. 

Let A E ET,(M) be the (s - n) x (s - n> minor of A defined by 
the rows {ii,. . , i,_n} and the columns {j,, . , j,_,} with 1 < i, < **. < 

is-, < r and I <j, < **. <j,_, < s. If A’ is the (s - n) X s submatrix of 
A defined by the rows {ii, . , is_,,), and B’ the n X s submatrix of XI - B 
whose rows are obtained by striking out {ji, . ,j,s_,} from {I, . , s), then 

is an s x s submatrix of C. and therefore we have 

det C’ EFo( M,) c ( X(U, X)). 

By the construction of C ‘, 

det C ’ = + AX” + terms of less degree in X, 

and since x(u, X) is a manic polynomial of degree n which divides det C’, it 
follows that 

det C’ = kAx(u, X). 

In consequence, we have 

Ax(u> X> E-%(K). 

Because the (s - n) x (s - n) minors of A generate 2$( M ), we obtain the 
desired inclusion 

Z( M)( X(U> X>) G5(Mu). 

Finally, since the first Fitting invariant of a module is always included in 
the annihilator of the module [property (iv) of the Fitting ideals], we have 

ZP)( X(U> 3) cgro(Mu) 

L *%[x] Mu = {p(X) E R[Xlb+) = 0). 

Hence for each A E 5”,(M) we obtain Ax&, X) E AnnsIX M,, or 
equivalently, Ax(u, U) = 0. n 
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COROLLARY 3.2. Zf 

(O&<(M)) = 0, 

then the classical Cayley-Hamilton theorem ho&, i.e. x(u, u) = 0. 

REMARK 3.3. The above situation is what happens when M is a 
supplementable projective module, in particular when M is free, because 
3(M) = R. 

PROPOSITION 3.4. Let M E F,, let u be an endomorphism of M, and let 

$J be a prime ideal of R. Zf x( u, u) = 0, then the principal k( p>[ XI-ideals 

( x(u(P>> X>) and (nPTTp( x(uY X>)) h ave the same radical ideal. Hence, 

the roots of x(u(p), X) and rD( x(u, X)) in the algebraic closure of k(p) are 
the same except for multiplicities. 

Proof. For an ideal ‘21 we denote by JZ the radical ideal of 8. Since 

z-~( x(u, X)) divides x(u(p), X), we have 

\/( X(U(P)> 3) c J(Qg X(U, X))) 

Reciprocally, our assumption x(u, u) = 0 ensures that 

and therefore 

%( X(U> Xl) E A%(&l)[X] M(P)&). 

By property (iv) of the Fitting ideals we know 

and since 

&(M(P)tm) = ( x(u(P>a X>), 
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we obtain 

4. INVARIANT FACTORS 

Let M be an R-module with M E IF,, and u an endomorphism of M. 
Let A rM,L be the rth exterior power of M,, and suppose that A 'M,, E ff, 
for each r > 0. We denote by x,(u, X> the characteristic polynomial of 

t,: A'M,, + A'M,, . 

With this notation x(u, X> becomes xi(u, X>. 
Since 

by property (ii> of M ac R ae’s invariant it follows that ( x,(u, X>> is the smallest 
principal ideal of R[ X 1 containing St-,( A 'M,,). 

REMARK 4.1. Note that for a finite dimensional vector space V and an 
endomorphism u of V the following are equivalent: 

(i) The knowledge of the invariant factors of u. 
(ii) The knowledge of the ideals 2$i;(V,,> for r > 0. 

(iii) The knowledge of the ideals &( A ‘V,) for r > 0. 
(iv) The knowledge of the polynomials x,.(u, X) for r > 0. 

Let us state the relations between the invariant factors Idi(u, X)1, c i G t 
and the invariants { x,(u, Xl}, >/ i: Given the invariant factors {di(u, X)1, G i G t 
with di(u, X) dividing di+,(u, X>, we have 

x&J> x> = 
i 

t-(r- 1) t-i ( 1 
jJ (di(u, X)) r-1 if 0 <r < t, 

1 if r>t 
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Conversely, given the invariants { x,(u, X)}, ~ r, we have: 

(a> The number of proper invariant factors of u is 

t = max{r E NI/I ‘VU # 0) = max{r E Ni(x,(u, X) # 1). 

(b) The first invariant factor of u is 

and 

d,(u, X) = 
xt-(?-1)(u x> t-i ( 1 rlpyd,(u, X)) t-r 

PROPOSITION 4.2. For eve y prime ideal $Y of R, T,,,( x,(u, X>> divides 

x,(u(P), XL Furth ermore there exists a dense open set C,( M, u) of Spec R 

such that ‘rr,( x,(u, X>> = ,Y,(u(P), X) fir P E C,(M, u>. 

Proof. Let n be a prime ideal of R. Since x,.,(u, X) is the characteristic 
polynomial of 

t, : A rMU + A ‘M,, , 

by Theorem 2.7 it follows that rrD( x,(u, X) divides the characteristic polyno- 
mial of 

tx(P>:(R'Mu)(P) + (A'%,)(P). 

By (ii) of Proposition 1.2 we have 

( A ‘Jf, )(P> = (A ‘Mu)(kwm ’ 

and using the good behavior of the exterior product with the tensor product 
combined with (i) of Proposition 1.2, we obtain 

( * r~u)(~w~~~) = A r((M,)(,~,,~x~,) = A 'M(P)o). 
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Hence the k(P)-vector spaces (A ‘M,XP) and A ‘M( P),,cD, are isomorphic, 
and the homomorphisms 

h<P>:( A%,)(P) + (f-L)(P)> 

tx : A ‘M(P),(,) + A rM(P)u(p) 

are equivalent. Consequently the characteristic polynomial 

X,(U(P>> X). 

of t,(P) is 

Let n, be the Euler characteristic of the R-module A rM,. By Theorem 

2.7, rrDP( ,&, X)) = x,(u(P>, X) if and only if P E C,JA ‘Mu), where 

Cn,( A ‘MU) = {P E Spec Rl~mkc,,( A rM,)(P) = n,) 

Taking C,( M, u) = Cn,< A ‘M,) the last statement in the proposition follows 
at once. n 

We denote by C( M, u> the set 

C(M,u) = 0 C,(M,u) = A C,(M,u), 
?->I r=l 

which is a dense open set of Spec R; here s is the number of elements that 
generates M. 

The following result gives the construction of the invariant factors associ- 
ated to an endomorphism of a module that has a finite free resolution. 

THEOREM 4.3. Let R be a reduced ring (without nonzero nilpotent 

elements), M E IF, with a nonzero Euler characteristic, and u be an endo- 

morphism of M. Suppose that for each positive integer r the R-module A ‘M, 

has a finite free resolution. Then there exist a positive integer t and t manic 

polynomials d,(u, X), d,(u, X), , d,(u, X> of positive degree which are 

unique verifying: 

(i) x(u, X> = d,(u, X)d,(u, X) ... d,(u, XI. 
(ii> dj(u, X> divides di+,(u, X) for 1 < i < t - 1. 

(iii) Zf p E C( M, u), then the invariant factors of the k( p )-endomovhism 

u(P) are the images of (di(u, X)jIGi., in k(p)[Xl. 

Proof. Let t = max{r E N 1 x,.(u, X) # l}. Since for a prime ideal P of 
R the number of proper invariant factors of u(P) is 

max{r E N\A ‘M(P),o,, f O} = milx{r E Nl,y,(u(P), X) f I}, 
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by the above proposition it follows that for every P E C(M, U> the number 
of invariant factors of u(P) is t. We denote by d,(u(P 1, X), &(u(P), 
XI,... , d,(u(p), X>, with d,(u(P), X) dividing d,+,(~(p), XI, the invariant 
factors of u(P) for P E C(M,u). 

Since d,(u(P), X> = x,(&P>, X>, we define d&u, X) as the manic poly- 
nomial of R[ X] 

with positive degree. By construction the image of d,(u, X) in k(P)] XI is 

d,(u(P), XI for P E C(M, u). 
t-1 

In order to define dz(u, X), note that d,(u(P ), X) 
( 1 t-2 

divides 
xt_ ,(u(p), X) for p E C( M, u). We shall see that in R[X] one has that 

t- 1 

( 1 t-2 
d,(u, X) divides xt_ ,(u, X>. 

Since the two polynomials are manic, there exist polynomials c(X) and 
r(X) in R[ X ] such that 

t-1 ( 1 x~-~(u, x) = c(x)d,(u> X) t-2 + r(X)> 

t-1 ( 1 t-2 

where the degree of r(X) is smaller than the degree of &(u, X) 
Considering the above equality in k(P >[ X I for P E C( M, ~1, we have 

t- 1 ( 1 mp( xt-l(u, x)) = q,(G))+(,. X> t-2 ) + ~&-(X)L 

or equivalently, by Theorem 2.7, 

t-1 
( 1 

xt-du(P), X) = ~&(x))d,(u(p), x) t-2 + T&-(X)). 

Therefore rr(r(X>) = 0 for every P E C( M, u). Since R is a reduced ring 
and C(A4, U> contains Min R, it follows that r(X) = 0. We define d,(u, X) 
as the monk polynomial of positive degree 

d,(u, X) = 
xt- l(U) X) 

t-1 ( 1 d,(u, X) t-2 
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By construction the image of cI,(u, X) in k(p)[Xl is &(u(P), X) for 

p E C(M, U). 
In the same way we can define d,(u, X>, , d,(u, X k namely, if we 

have defined rl,(u, X>, ct,(u, X>, , cl,- ,(f~, Xl, then 

As we have noticed, at each step ~~(d,(u, X>>, rP(d,(u, X>>, . . , 
rD(dt(u, X)) are the invariant factors of u(p) for p in C(M, u>. Conditions 
(i) and (ii) and the uniqueness in the theorem can be proved by the same 
techniques used above. n 

DEFINITION 4.4. Let the assumptions and notation be as in Theorem 
4.3. We define the invariant factors of ZL as the polynomials Idi(u, XNr Q i G t. 

REMARK 4.5. Let R be an integral domain, K its quotient field, M E E,, 
and u be an endomorphism of M. Then {di(u, X)1,, iG t are the classical 
invariant factors of uCKj. 

The explicit obtaining of the invariant factors, following the construction 
that we have made, is difficult because it needs the knowledge of finite free 
resolutions of the R-modules A rM,,. The next result allows us to compute 
the invariant factors in an easier way. 

THEOREM 4.6. Let R be a reduced ring, M E 1F, with a nonzerv Euler 

characteristic, and u be an endomorphism of M. Suppose that for each 

positive integer r the R-module A ‘M,, has a finite free resolution. lf 

d,(u, X), d,(u, X), . , d,(u, X) with dt(u, X> dimding di+,(u, X> are the 

inrjariant factors of u, then: 

(i) For each integer r with 0 < r < t - 1 the ideal (nil; di(u, X)) is 
the smallest principal ideal of R[ X] g enerated by a monk polynomial that 

contains 9$( M,,). 
(ii) For each integer r with r 2 t the smallest principal ideal of R[ X] 

generated by a manic polynomial that contains 9$ M,,) is R[ Xl. 

Proof. Firstly we prove 
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for 0 < r < t - 1. 
If p is a minimal prime ideal of R, then 

by Theorem 2.7 we have 

i 

t-r 

IIdi(u(P)~ ‘)) = ( sdiCu, x))k(P)Lxl~ 
i=l 

and by the property of a change of base of Fitting ideals and Proposition 1.2 
we obtain 

Z;(WPh) =zw,,)~(P)[Xl~ 

Hence 

e(wJqP)[Xl = I-Id4 X> WHXI (:I: ’ uJ ) 

for each minimal prime ideal n of R. Now if p(X) E S$(M,) with 0 Q r < 
t - 1, then ll:l; ~~(d,(u, X)) divides ~~(p(x)) for each minimal prime 
ideal P of R. In consequence the desired inclusion holds, since R is a 
reduced ring. 

Let suppose that there exists another principal ideal (qr( X)) that contains 

S7,(M,) with q,(X) manic. For $I E Min R we have that 

p4P)Dl if rat 

is contained in (q,.(X))k(p)[ X]. Equivalently, ~~(q,(x)) divides rD(llil; 
di(u, X)) if 0 < r < t - 1 and (9(4,.(X))) = k(p)[ X] if r > t. Again 
because R is a reduced ring and qr(X) monk, it follows that ql-(X> divides 
ll:I; d,(u, X) if 0 Q r Q t - 1 and(q,(X)) = R if r 2 t. n 

We next apply th e study of the invariant factors of u to obtaining 
submodules of M invariants by u. 
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For a polynomial 9(X) = X’ + ur_rXr-i + .** +a, E R[X] we shall 
define the companion matrix of 9(X > as the matrix 

D= 

0 0 0 **. 0 -a, 

1 0 0 .a* 0 -a, 

0 1 0 .** 0 -a2 
. . 

. . . . . 

b 6 0 ..: ; la,_, 

If we denote by w the endomorphism of R’ given by D in the canonical 
base, then the R[ Xl-module CR’), is cyclic and consequently we have 

*nna,xl(RF)W =6(W),) = (9(X)) 

THEOREM 4.7. Let R be an integral domain, and let M and u be us in 

Theorem 4.3 with M a torsion free R-module. Let {di(u, Xl}, Gig t be the 
invariant factors of u, and mi the degree of di(u, X). Then there exist 

submodules M,, M,, . , M, of M verifying: 

(i> M, is a free R-module of rank m, inouriant with respect to u, i.e. 
u(Mi) c Mi, for 1 f i < t. 

(ii) M, is a cyclic R-module for u, i.e., ( MijUIM is a cyclic R[ Xl-module, 

where u(M, is the restriction of u to M,. Hence ’ 

(iii) Mi n MJ = (0) for i # j, and the quotient R-module M/ CB ,?= 1 Mi 

has a finite free resolution and Euler characteristic zero. 

Proof. Consider the endomorphism w of R” given, with respect to the 
canonical base, by the matrix 

D= 

where n = Char, M and Di is the companion matrix of di(u, X) for 
1 < i < t. If we denote by K the quotient field of R, then since 
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Hom,(K”, McK)) g (Hom,(R”, M))(K,, it follows that there exist s E R 
with s # 0 and f E Hom,(R”, M) such that the diagram 

is commutative and f/s is an isomorphism. 
Since M is a torsion free R-module, the diagram 

R"fM 

is commutative. Because f/s is injective, it follows that f is injective. Hence 
we have that the diagram 

f 
O-R"-M- Cokerf ) 0 

is commutative. By [S, pp. 73, 951, Cokerf h as a finite free resolution and 

Char, Cokerf = Chars M - Char, R" = 0. 

Now if Sj is the free R”-submodule of rank m, associated to the matrix 
Dj, we consider the submodule of M defined by Mi = _f(S,> for 1 < i < t. 
Consideration of the submodules Si and the injectivity of f, which ensures 
that the R-modules Si and Mi are isomorphic, shows the statements of the 
theorem. n 

REMARK 4.8. If A is a reduced ring with a finite number of minimal 

prime ideals {Pjll<j, P, then the total quotient ring is isomorphic to a 
product of fields 

T(R) = R,, x ... x RPP. 
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Now if M and u are as in Theorem 4.3, we have 

di("(Pj), ') = TpPl(di(U> '>) 

for 1 < i ,< t and 1 <j ,< p. Following the notation of the previous theorem, 
the canonical form of the homomorphism u(pj) is 

D, \ 

DE ‘.. 

1 D, 1 

for 1 <j < p. Hence there exists an isomorphism f/s that makes the 
diagram 

T(R)” AM C?‘(R)) 

I 
'L‘( I c II,) 

I 
%(R)) 

T(R) 
n f/,r ) M 

U”(R)) 

commutative. Applying the same techniques as in the previous theorem, we 
obtain a similar result. 
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