

Topology and its Applications 126 (2002) 359-360

www.elsevier.com/locate/topol

Separating subsets and stable values

Alejandro Illanes

Instituto de Matemáticas, Circuito Exterior, Cd. Universitaria, D.F. 04510, México, Mexico Received 30 May 2001; received in revised form 10 July 2001

Abstract

Let X be a metric continuum. In this paper we prove that if there exist pariwise disjoint terminal subcontinua A_1, \ldots, A_n of X such that $X - (A_1 \cup \cdots \cup A_n)$ is disconnected, then each onto map $f: Y \to X$ has a stable value.

© 2002 Elsevier Science B.V. All rights reserved.

MSC: 54F15; 54E40

Keywords: Class(S); Continuum; Stable value; Terminal subcontinua

A *continuum* is a compact connected metric space with more than one point. A *map* is a continuous function. A *stable value of* a map between continua $f: Y \to X$ is a point $p \in X$ for which there exists $\varepsilon > 0$ such that p is in the image of all maps within ε of f in the supremum metric. A subcontinuum A of X is said to be *terminal* provided that any subcontinuum of X that intersects both A and X - A contains A. A *regular curve* is a continuum such that each point has arbitrarily small neighborhoods whose boundaries are finite [1, Definition 10.14, p. 171]. A continuum is said to be in Class(S) ($X \in$ Class(S)) provided that every map of any continuum onto X has a stable value.

The concept of Class(S) was recently introduced by Nadler, Jr. in [2] where, among other results, he proved that if a Peano continuum X is separated by some finite set, then every map of any Peano continuum onto X has a stable value [2, Corollary 4.2]. In this paper we generalize Nadler's result by proving the following theorem.

Theorem 1. Let X be a continuum. Suppose that there exist pairwise disjoint, terminal subcontinua A_1, \ldots, A_n of X such that $X - (A_1 \cup \cdots \cup A_n)$ is disconnected. Then $X \in \text{Class}(S)$.

E-mail address: illanes@gauss.matem.unam.mx (A. Illanes).

^{0166-8641/02/\$ –} see front matter $\, \odot$ 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(02)00067-6

Proof. Let $f: Y \to X$ be an onto map. Suppose that $X - (A_1 \cup \cdots \cup A_n) = U \cup V$, where U and V are nonempty open disjoint subsets of X.

Let W_1, \ldots, W_n be open subsets of X such that $A_i \subset W_i$ for each $i = 1, \ldots, n$, $cl_X(W_1) \cup \cdots \cup cl_X(W_n)$ neither contains U nor V and $cl_X(W_1), \ldots, cl_X(W_n)$ are pairwise disjoint. Let $H = f^{-1}(U \cap (bd_X(W_1) \cup \cdots \cup bd_X(W_n)))$, $K = f^{-1}(V \cap (bd_X(W_1) \cup \cdots \cup bd_X(W_n)))$ and $L = f^{-1}(cl_X(W_1) \cup \cdots \cup cl_X(W_n))$. Since $H = f^{-1}((X - V) \cap (bd_X(W_1) \cup \cdots \cup bd_X(W_n)))$, we obtain that H is closed in Y. Similarly, K is closed in Y. Next, we prove the following claim:

Claim. There exists a subcontinuum A of Y such that $A \subset L$, $A \cap H \neq \emptyset$ and $A \cap K \neq \emptyset$.

In order to prove this claim, suppose to the contrary, that no connected subset A of L intersects both H and K. Applying the Cut Wire Theorem [1, Theorem 5.2] to the space L and the closed subsets H and K of L, we obtain that there exist disjoint compact subsets M and N of L such that $H \subset M$, $K \subset N$ and $L = M \cup N$.

Let $R = f^{-1}(X - (V \cup W_1 \cup \cdots \cup W_n)) \cup M$ and $S = f^{-1}(X - (U \cup W_1 \cup \cdots \cup W_n)) \cup N$. Clearly, R and S are nonempty closed subsets of Y and $Y = R \cup S$. Suppose that there exists a point $y \in f^{-1}(X - (V \cup W_1 \cup \cdots \cup W_n)) \cap N$. Then $f(y) \in U \cap (cl_X(W_1) \cup \cdots \cup cl_X(W_n)) - (W_1 \cup \cdots \cup W_n)$. Thus $y \in H \cap N$, a contradiction. Therefore, $f^{-1}(X - (V \cup W_1 \cup \cdots \cup W_n)) \cap N = \emptyset$. Similarly, $f^{-1}(X - (U \cup W_1 \cup \cdots \cup W_n)) \cap M = \emptyset$. This implies that R and S are disjoint. We have obtained a separation of Y. This is absurd, so the claim holds.

Since f(A) is a connected subset of $cl_X(W_1) \cup \cdots \cup cl_X(W_n)$, we may assume that $f(A) \subset cl_X(W_1)$. We claim that the points in A_1 are stable points of f. Fix points $p \in A \cap H$ and $q \in A \cap K$. Choose $\varepsilon > 0$ with the following properties. The ε -neighborhood around f(p) (respectively, f(q)) is contained in U (respectively, V), and the ε -neighborhood around cl_X(W_1) does not intersect $cl_X(W_2) \cup \cdots \cup cl_X(W_n)$. Choose $\delta > 0$ satisfying the definition of uniform continuity of f for the number ε .

Let $g: Y \to X$ be a map such that g is δ -close of f. By the choice of ε and δ , $g(p) \in U$, $g(q) \in V$ and $g(A) \cap (\operatorname{cl}_X(W_2) \cup \cdots \cup \operatorname{cl}_X(W_n)) = \emptyset$. Then g(A) is a subcontinuum of X which intersects U and V and does not intersect $A_2 \cup \cdots \cup A_n$. This implies that g(A) intersects A_1 and g(A) is not contained in A_1 . Thus $A_1 \subset g(A)$.

Therefore, the points in A_1 are stable values of f. This completes the proof of the theorem. \Box

Corollary 2. If a continuum X is separated by some finite set, then $X \in Class(S)$.

Corollary 3 (Compare with [2, Corollary 4.3]). Every regular curve X is in Class(S).

References

- S.B. Nadler Jr, Continuum Theory, An Introduction, in: Monographs Textbooks Pure Appl. Math., Vol. 158, Marcel Dekker, New York, 1992.
- [2] S.B. Nadler Jr, Maps between continua with stable values, Topology Appl. 126 (2002) 429-444 (this volume).