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llected from across the Indo-Pacific region during 1997–2004 were screened for
the presence of yellow head-related viruses. Phylogenetic analyses of amplified ORF1b gene segments
identified at least six distinct genetic lineages (genotypes). Genotype 1 (YHV) was detected only in shrimp
with yellow head disease. Genotype 2 (GAV) was detected in diseased shrimp with the less severe condition
described as mid-crop mortality syndrome and in healthy shrimp from Australia, Thailand and Vietnam.
Other genotypes occurred commonly in healthy shrimp. Sequence comparisons of structural protein genes
(ORF2 and ORF3), intergenic regions (IGRs) and the long 3′-UTR supported the delineation of genotypes and
identified both conserved and variant structural features. In putative transcription regulating sequences
(TRSs) encompassing the sub-genomic mRNA 5′-termini, a core motif (5′-GUCAAUUACAAC-3′) is absolutely
conserved. A small (83 nt) open reading frame (ORF4) in the 3′-UTR of GAV is variously truncated in all other
genotypes and a TRS-like element preceding ORF4 is invariably corrupted by a ANG/U substitution in the
central core motif (5′-UU(G/U)CAAC-3′). The data support previous evidence that ORF4 is a non-functional
gene under construction or deconstruction. The 3′-UTRs also contain predicted 3′-terminal hairpin-loop
structures that are preserved in all genotypes by compensatory nucleotide substitutions, suggesting a role in
polymerase recognition for minus-strand RNA synthesis.

Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
Introduction
Yellow head disease (YHD) emerged in 1990 in farmed black tiger
shrimp (Penaeus monodon) in Thailand (Limsuwan, 1991). It is a
devastating disease that can cause total crop losses within a few days
following the appearance of gross signs (Chantanachookin et al.,
1993). The causative agent, yellow head virus (YHV), is a bacilliform,
enveloped, (+) ssRNA virus classified in the genus Okavirus, family
Roniviridae within the order Nidovirales (Walker et al., 2005). A
related nidovirus, gill-associated virus (GAV), occurs commonly as a
chronic infection in healthy wild and farmed P. monodon in eastern
Australia (Spann et al., 1995; Cowley et al., 2000a; Walker et al., 2001).
GAV has been associated with a disease described as mid-crop
mortality syndrome (MCMS) in which mortalities progressively
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accumulate from the mid-late juvenile stage onwards (Spann et al.,
1997; Walker et al., 2001). A variant YHV genotype has also been
detected in healthy P. monodon broodstock from Thailand (Soowan-
nayan et al., 2003) and YHV or related viruses have been reported in P.
monodon and Penaeus japonicus farmed in Taiwan (Wang et al., 1996;
Wang and Chang, 2000). However, these viruses were not associated
with typical YHD and their relationships to YHV or GAV remain
unconfirmed. There are also reports of YHD or YHV in P. monodon in
several other countries in the Asian region including the Philippines,
India, Indonesia, Sri Lanka, Malaysia, Vietnam and China (Walker et al.,
2001) but these have rarely been confirmed by laboratory analysis.

Like other nidoviruses, the polyadenylated, (+) RNA genomes of
YHV (26,662 nt) and GAV (26,235 nt) are expressed from a nested set
of genomic and subgenomic mRNAs (Cowley and Walker, 2002;
Cowley et al., 2002a; Sittidilokratna et al., 2008). The genomes are
organized similarly (5′-ORF1a/ORF1b-ORF2-ORF3-(ORF4)-polyA-3′).
ORF1a encodes a long polyprotein (pp1a) containing 3C-like and
papain-like proteases required for auto-processing, and overlaps
ORF1b which encodes a ‘SDD’ RNA-dependent RNA polymerase,
helicase, metal-ion-binding, exonuclease, uridylate-specific endori-
bonuclease and ribose-2′-O-methyl transferase domains (Cowley et
al., 2000b; Ziebuhr et al., 2003; Sittidilokratna et al., 2002, 2008). A -1
hts reserved.
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ribosomal frame-shift element at the ORF1a/ORF1b overlap facilitates
translation of the complete pp1ab polyprotein (Cowley et al., 2002a).
ORF2 encodes the nucleoprotein (p20) and ORF3 encodes a poly-
protein that is processed to generate two envelope glycoproteins
(gp116 and gp64) and a small N-terminal triple-membrane-spanning
(TMS) fragment of unknown function (Cowley and Walker, 2002;
Jitrapakdee et al., 2003; Cowley et al., 2004a; Sittidilokratna et al.,
2006). ORF4 is a short open reading frame that, although possibly
expressed in GAV (Cowley and Walker, 2008), is severely truncated in
YHV and unlikely to encode a functional protein (Sittidilokratna et al.,
2008). Intergenic regions (IGRs) upstream of ORF2 and ORF3 contain
conserved transcription regulatory sequences (TRSs) that facilitate
transcription of two sub-genomic mRNAs (sgmRNAs) which, together
with the genome-length mRNA, form a 3′-coterminal nested set
characteristic of nidoviruses (Cowley et al., 2002a; Sittidilokratna et
al., 2008). The genome sequences of YHV and GAV are ∼79% identical,
with amino acid sequence identity ranging from ∼73% in gp116 to
∼84% in pp1ab (Sittidilokratna et al., 2008). Based on levels of
sequence divergence, YHV and GAV have been regarded as closely
related variants that are likely to represent geographic topotypes in a
larger complex (Cowley et al., 1999; Walker et al., 2001). Currently,
they are each classified as the species Gill-associated virus (Walker
et al., 2005).

This paper reports the analysis of tissue samples from healthy and
diseased P. monodon collected from several countries in the Indo-
Pacific region. Analysis of partial ORF1b sequences identified at least
six distinct genetic lineages (genotypes) of yellow head-related
viruses of which only YHV (genotype 1) was detected in shrimp
fromYHD-outbreak ponds. Sequencing of the structural gene region of
representatives of genotypes 3, 4 and 5 identified significant diversity,
particularly in IGRs and the N-terminal gp116 region, but preservation
of TRS-like elements and a 3′-terminal hairpin structure likely to be
involved in negative-strand RNA synthesis.

Results

A new genotype (genotype 3) detected in healthy P. monodon
broodstock and postlarvae

In an initial study, a semi-nested RT-PCR targeting a 279 nt ORF1b
sequence located just downstreamof helicase domainmotif VIwas used
to detect YHV-related viruses in 38 apparently healthy P. monodon
broodstock sampled from commercial hatcheries in Central Thailand in
March 2000. PCR products were amplified from 25 (66%) of the
broodstock (Fig. 1A). Nucleotide sequences were determined for six of
these in addition to PCR products amplified from juvenile shrimp from
YHD outbreaks in Thailand and Taiwan and healthy broodstock and
postlarvae from hatcheries in Australia, Vietnam and Sarawak in
Malaysia (Table 1). Using 25 sequences, ClustalX was used to align the
231 nt segment bounded by the nested PCR primers (equivalent to the
sequence A17492 to A17722 in the GAV reference strain; GenBank
AF227196). An unrooted neighbour-joining phylogenetic tree generated
from this alignment segregated the sequences into three clusters
(Fig. 1B). One cluster (genotype 1) included the YHV reference strain
(GenBank AY052786) and all eight viruses from juvenile shrimp from
YHD outbreaks. Whilst slight nucleotide variation occurred between
some of these viruses, the sequences of one Thai (THA-00-D11) and
three of the four Taiwanese viruses (TWN-00-D1, TWN-00-D2, TWN-
00-D3)were identical. The secondcluster (genotype2) included theGAV
reference strain, the two other Australian viruses from either healthy or
MCMS-affected shrimp, and one of the five Vietnamese viruses from
healthy postlarvae (VNM-01-H65). The third phylogenetic cluster
(genotype 3), which has not been described previously, comprised all
viruses from healthy broodstock from Thailand and Sarawak and the
other four Vietnamese viruses detected in healthy postlarvae. The
Vietnamese viruses appeared to form a sub-group within genotype 3.
Other genotypes detected in P. monodon from various
Indo-Pacific regions

A more extensive study was conducted using a larger set of P.
monodon sampled over a wider geographic range. A new RT-nested
PCR designed to amplify a 722 nt ORF1b gene segment encompassing
the semi-nested RT-PCR sequence was used in initial analyses. This
test was further modified to utilize degenerate primer pairs YH30-F2/
R2 and YHV31-F2/R2 to better accommodate sequence variations
among the known genotypes and was applied to ∼200 P. monodon
sampled between 1997 and 2004 from Indonesia, the Philippines,
Taiwan, Vietnam, Thailand, Malaysia, India, Sri Lanka, Mozambique
and Australia (Table 1). Samples included whole postlarvae as well as
gill, lymphoid organ, hepatopancreas or whole head tissues of juvenile
farmed shrimp or adult broodstock from hatcheries. Most samples
were from healthy shrimp but some originated from shrimp either
displaying typical signs of YHD or that were moribund and collected
from MCMS-affected ponds in Australia.

In total, 57 of the ∼200 samples generated nested PCR amplicon
yields suitable for sequencing. Sequences of these 57 viruses, together
with YHV and GAV reference strain sequences, were aligned using
ClustalX. An unrooted neighbour-joining tree generated from the
alignment of the 688–671 nt segment (equivalent to the GAV
reference strain sequence G17259 to A17929) segregated the viruses
into six major clusters well supported by bootstrap values (N70%)
(Fig. 2). The clustering of viruses in genotypes 1, 2 and 3 substantiated
initial findings with the 231 nt sequence in that all 13 viruses
clustering with YHV (genotype 1) originated from juvenile YHD-
affected shrimp and all seven viruses from healthy and diseased
Australian shrimp clustered with GAV (genotype 2). Ten Thai and
Vietnamese viruses from healthy shrimp also clustered with GAV. The
17 genotype 3 viruses displayed the widest geographic distribution,
being identified in healthy broodstock and postlarvae from hatcheries
in Thailand, Vietnam, Taiwan, Indonesia, Malaysia and Mozambique.
The three viruses from Malaysian shrimp also appeared to form a
subcluster in genotype 3.

In addition to these genotypes, the tree delineated three new
clusters. One lineage (genotype 4) was clearly separated from all other
genotypes and comprised viruses detected in three healthy postlarvae
batches sampled from hatcheries in Nellore, India. Another lineage
(genotype 6) was most closely related to genotype 2 (GAV) and
comprised viruses detected in five of the six broodstock from
Mozambique. The other Mozambique virus clustered in genotype 3.
However, as Mozambique shrimp were supplied from a commercial
breeding facility in Malaysia, it is possible this sample was mislabeled.
Another lineage (genotype 5) comprised viruses derived from a
healthy sub-adult from Malaysia (MYS-03-H4), a sub-adult from
Thailand displaying slower than normal growth (THA-03-SG21), and a
batch of healthy postlarvae sampled from the Philippines (PHL-03-
H8). The relationships among the three genotype 5 viruses were more
disparate than viruses clustering within the other lineages. Pair-wise
alignments indicated that THA-03-SG21 and MYS-03-H4 share 97.3%
sequence identity and that the levels of identity of these two viruses to
PHL-03-H8 (92.8% and 93.4%) was less than that distinguishing viruses
clustered in genotypes 2 and 6 (∼96.5%) and comparable to that
distinguishing viruses clustered in genotypes 2 and 3 (∼93.3%). PHL-
03-H8 was the only YH-related virus detected among 18 P. monodon
sampled from the Philippines and it is likely that genotype 5 will
resolve into a two separate lineages once more viruses are analyzed.
Phylogenetic analysis using the maximum parsimony method
clustered the viruses similarly into six genotypes (data not shown).

Translation of the 57 amplified ORF1b gene fragments revealed 35
unique 223 aa sequences that extended from the start of the pp1ab
helicase domain motif V to a locus 173 aa downstream of motif VI
(Cowley et al., 2000b; Sittidilokratna et al., 2002). An unrooted
phylogenetic tree was generated from a ClustalX alignment of the



Fig. 1. (A) 1% agarose-TAE gels illustrating RT-nested PCR products amplified from 16 of 19 healthy P. monodon broodstock (lanes 1–19) that were collected from central Thailand in
March 2002. A semi-nested one-step RT-PCR and primers 2s12, 2a12 and 2a43 were used to amplify products of 280 and 575 bp. A DNA ladder (lane M) and positive control (YHV)
reaction (lane +) are indicated. (B) Unrooted, neighbour-joining phylogenetic tree constructed from a ClustalX multiple alignment of a 231 nt sequence in the ORF1b replicase gene
obtained for 25 viruses including the reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref). The samples were collected from Thailand, Taiwan, Australia, Vietnam and
Malaysia in 2000 and 2001. The sources of viruses and their codes are described in Table 1. Bootstrap values shown at key branch nodes were determined for 1000 replicates.
Horizontal branch lengths indicate phylogenetic distance calculated as the number of nucleotide substitutions per total nucleotide residues. The clustering of viruses into three
discrete genetic lineages (genotypes 1 to 3) is indicated.
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sequences using the neighbour-joining distance matrix. The viruses
clustered into the same phylogenetic lineages as defined by the
nucleotide sequences, except that the three genotype 6 viruses
merged with viruses clustering in genotype 2 (data not shown).

Partial genome sequence analysis of genotype 3, 4 and 5 viruses

Partial genomic sequences of representatives of genotypes 3
(VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21) were compiled
from three to five fragments amplified by RT-nested PCR, RT-semi-
nested PCR and 3′-polyA-anchored RT-PCR. For genotypes 3 and 4, the
∼6.15 kb sequence extended from IGR1 to the 3′-polyA tail and thus
encompassed ORF2 (N protein) and ORF3 (glycoproteins) and the
genome 3′-UTR. Due to the poor quality of tissue available to extract
RNA, no sequencewas obtained for the central ORF3 region or the near
3′-terminal region of genotype 5. Comparisons with genomic
sequences of the reference strains of YHV (genotype 1) and GAV
(genotype 2) identified high levels of overall nucleotide sequence



Table 1
Samples of shrimp (Penaeus monodon) collected from sites in the Indo-Pacific region

Sample codea Collection date Sample origin Life stage Tissues type Health status Genotype

AUS-97-MCMS1 1997 Queensland, Australia Sub-adult LO MCMS 2 (GAV)
AUS-97-MCMS2 24-04-1997 Queensland, Australia Adult gill MCMS 2 (GAV)
AUS-97-MCMS3 1997 Queensland, Australia Sub-adult LO MCMS 2 (GAV)
AUS-00-H1 2000 Queensland, Australia Sub-adult LO Healthy 2 (GAV)
AUS-00-H2 2000 Queensland, Australia Sub-adult LO Healthy 2 (GAV)
AUS-00-HL4 16-04-2000 Queensland, Australia Adult LO Healthy 2 (GAV)
AUS-00-HL5 2000 Queensland, Australia Sub-adult LO Healthy 2 (GAV)
AUS-00-HL11 2000 Queensland, Australia Sub-adult LO Healthy 2 (GAV)
IDN-04-H4 23-01-2004 Indonesia Sub-adult Muscle Healthy 3
IDN-04-H7 23-01-2004 Indonesia Sub-adult Muscle Healthy 3
IDN-04-H10 23-02-2004 Indonesia Sub-adult Muscle Healthy 3
IDN-04-H11 10-02-2004 Indonesia Sub-adult Muscle + pleopod Healthy 3
IND-02-H5 15-06-2002 Nellore, India Pl14 Whole Healthy 4
IND-02-H7 15-06-2002 Nellore, India Pl11 Whole Healthy 4
IND-02-H9 15-06-2002 Nellore, India Pl15 Whole Healthy 4
MOZ-04-H1 13-01-2004 Mozambique Brooder Gill Healthy 3
MOZ-04-H6 13-01-2004 Mozambique Brooder Gill Healthy 6
MOZ-04-H8 13-01-2004 Mozambique Brooder Gill Healthy 6
MOZ-04-H9 13-01-2004 Mozambique Brooder Gill Healthy 6
MOZ-04-H11 13-01-2004 Mozambique Brooder Gill Healthy 6
MOZ-04-H12 13-01-2004 Mozambique Brooder Gill Healthy 6
MYS-01-H1 2001 Sarawak, Malaysia Brooder LO + pleopod Healthy 3
MYS-03-H1 06-06-2003 Malaysia Sub-adult Pleopod Healthy 3
MYS-03-H2 06-06-2003 Malaysia Sub-adult Pleopod Healthy 3
MYS-03-H3 06-06-2003 Malaysia Sub-adult Pleopod Healthy 3
MYS-03-H4 06-06-2003 Malaysia Sub-adult Pleopod Healthy 5
PHL-03-H8 02-10-2003 Iloilo, Philippines Pl12 Whole Healthy 5
THA-00-H3 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H7 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H8 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H10 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H11 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H12 2000 Thailand Brooder Pleopod Healthy 3
THA-00-H19 2000 Thailand Brooder Pleopod Healthy 3
THA-00-D1 2000 Thailand Sub-adult Pleopod Diseased 1 (YHV)
THA-00-D9 2000 Thailand Sub-adult Pleopod Diseased 1 (YHV)
THA-00-D11 2000 Thailand Sub-adult Pleopod Diseased 1 (YHV)
THA-00-D12 2000 Thailand Sub-adult Pleopod Diseased 1 (YHV)
THA-00-DRH 2000 Thailand Sub-adult Half head Diseased 1 (YHV)
THA-03-D1 2003 Nankorn, Thailand Juvenile Gill Diseased 1 (YHV)
THA-03-D2 2003 Nankorn, Thailand Juvenile Gill Diseased 1 (YHV)
THA-03-D3 2003 Nankorn, Thailand Juvenile Gill Diseased 1 (YHV)
THA-01-D4 2001 Nakorn Pathom, Thailand Juvenile Gill Diseased 1 (YHV)
THA-01-D8 2001 Nakorn Pathom, Thailand Juvenile Gill Diseased 1 (YHV)
THA-01-D9 2001 Nakorn Pathom, Thailand Juvenile Gill Diseased 1 (YHV)
THA-01-D10 2001 Nakorn Pathom, Thailand Juvenile Gill Diseased 1 (YHV)
THA-03-D29 2003 Chachoengsao, Thailand Juvenile Gill Diseased 1 (YHV)
THA-03-D30 2003 Chachoengsao, Thailand Juvenile Gill Diseased 1 (YHV)
THA-03-D33 2003 Rachaburi, Thailand Juvenile Gill Diseased 1 (YHV)
THA-02-D34 2002 Thailand Juvenile Gill Diseased 1 (YHV)
THA-04-H20 28-03-2004 Supanburi, Thailand Pl20 Whole Healthy 2 (GAV)
THA-03-HA 2003 Thailand Adult Gill Healthy 2 (GAV)
THA-03-HB 2003 Thailand Adult Gill Healthy 2 (GAV)
THA-03-HG 2003 Thailand Adult Gill Healthy 2 (GAV)
THA-04-HK 16-04-2004 Prathum Thani, Thailand Adult Gill Healthy 2 (GAV)
THA-03-DB1 27-10-2003 Thailand Brooder Gill + pleopod Diseased 1 (YHV)
THA-03-HB3 30-09-2003 Thailand Brooder Gill + pleopod Healthy 2 (GAV)
THA-03-SG21 2003 Thailand Sub-adult Gill Slow growth 5
TWN-00-D1 2000 Taiwan Sub-adult Gill Diseased 1 (YHV)
TWN-00-D2 2000 Taiwan Sub-adult Gill Diseased 1 (YHV)
TWN-00-D3 2000 Taiwan Sub-adult Gill Diseased 1 (YHV)
TWN-00-D4 2000 Taiwan Sub-adult Gill Diseased 1 (YHV)
TWN-03-H9 05-07-2003 Taiwan Juvenile Pleopod Healthy 3
TWN-03-H11 05-07-2003 Taiwan Juvenile Pleopod Healthy 3
VNM-01-H41 2001 Vietnam Pl Whole Healthy 3
VNM-01-H42 2001 Vietnam Pl Whole Healthy 3
VNM-01-H2 2001 Vietnam Pl Whole Healthy 3
VNM-01-H82 2001 Vietnam Pl Whole Healthy 3
VNM-01-H65 2001 Vietnam Pl Whole Healthy 2 (GAV)
VNM-02-H81 02-02-2002 Vietnam Pl Whole Healthy 3
VNM-02-H258 01-02-2002 Nha Trang, Vietnam Pl12 Whole Healthy 3
VNM-02-H278 06-03-2002 Hon Chong, Vietnam Pl12 Whole Healthy 3
VNM-02-H264 03-03-2002 Ca Na, Vietnam Pl12 Whole Healthy 3
VNM-01-H77 31-12-2001 Phan Thiet, Vietnam Pl Whole Healthy 2 (GAV)
VNM-02-H64 18-01-2002 Nha Trang, Vietnam Pl13 Whole Healthy 2 (GAV)
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Table 1 (continued)

Sample codea Collection date Sample origin Life stage Tissues type Health status Genotype

VNM-02-H93 04-01-2002 Hon Khoai, Vietnam Pl10 Whole Healthy 3
VNM-02-H6 04-01-2002 Ngoc Hien, Vietnam Pl12 Whole Healthy 2 (GAV)
VNM-02-H5 01-04-2002 Vietnam Sub-adult Muscle Healthy 3
VNM-02-H70 04-01-2002 Hon Khoai, Vietnam Pl10 Whole Healthy 3

a Shrimp sample code assignment: country of origin-year of collection-health status-identification number/code. Abbreviations: healthy (H), diseased (D), mid-crop mortality
syndrome (MCMS), slow growth (SG), lymphoid organ (LO), postlarvae (PL).
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identity between the genotypes and a similar genome organization
(5′…IGR1-ORF2-IGR2-ORF3-IGR3-ORF4-UTR-polyA-3′).

Nucleoprotein gene
ORF2 gene amino acid sequence lengths (144 aa) were identical for

GAV and the genotype 3, 4 and 5 viruses and slightly longer for YHV
(146 aa). Sequence identity varied between 84.0% (GAV and YHV) and
94.4% (GAV and genotype 3), with most variability, including the two
amino acid insertions in YHV, occurring in N- and C-terminal regions
(Fig. 3A). Phylogenetic analysis using the N gene sequences (Fig. 3B)
confirmed the relationships determined using the ORF1b sequence,
with genotypes 2 and 3 and genotypes 4 and 5 clustering on separate
branches and genotype 1 (YHV) being more distantly related.

Glycoprotein gene
In YHV and GAV, ORF3 encodes a polyprotein (pp3) that is cleaved

to generate envelope glycoproteins gp116 and gp64, and an
N-terminal TMS fragment that has yet to be identified in virions or
infected cells (Jitrapakdee et al., 2003; Cowley andWalker, 2002). The
pp3 sequences of the genotype 3 (1642 aa) and genotype 4 viruses
(1638 aa) were similar in length to GAV (1640 aa) and somewhat
shorter than YHV (1666 aa). A ClustalX alignment of the pp3
sequences indicated overall identity to vary between 75.4% (geno-
types 1 and 4) and 86.7% (genotypes 2 and 4). Identity was lower in
gp116 (71.3%–83.4%) than gp64 (81.8%–92.4%). Of the four genotypes,
YHV was most distantly related in all three polypeptides generated by
pp3 processing. All 50 cysteine residues located in the predicted
ectodomains were perfectly conserved and, of the 25 likely disulphide
bridges, two occurred in the TMS fragment, 12 in gp116, and 11 in
gp64. Predicted N-linked glycosylation sites are less well conserved
amongst the genotypes. Both sites in the GAV TMS ectodomain also
exist in genotypes 3 and 4 but only one is present in YHV. In the gp116
ectodomain, GAV contains eight potential sites. YHV contains seven of
which six are present in GAV (Cowley andWalker, 2002; Jitrapakdee et
al., 2003). All seven potential sites in genotype 3 are shared with GAV
as are six of the seven sites in genotype 4, the other being unique. Five
of the potential sites in gp116 are conserved across all four genotypes.
In the gp64 ectodomain, all four potential N-linked glycosylation sites
are conserved across the genotypes.

TMHMM hydropathy profiles of the pp3 sequences of genotypes 3
and 4 predicted six transmembrane (TM) helices with ectodomains
between helices (TM1–TM2, TM3–TM4, and TM5–TM6) and a
membrane topology identical to that predicted previously for YHV
and GAV (Fig. 4). SignalP3.0 analysis of each pp3 predicted two signal
peptidase type I-like cleavage sites immediately downstream of TM3
and TM5. The TM3 cleavage sites of genotypes 3 (AFA228↓ST), genotype
4 (SFA228↓KE) and genotype 5 (AFS228↓QE) correspond to those used in
YHV (AFA228↓TI) and GAV (TFA228↓KE) to generate the gp116 N-
terminus (Cowley andWalker, 2002; Jitrapakdee et al., 2003). The TM5
cleavage site generates the gp116 C-terminus and the gp64 N-
terminus. Although this site is highly conserved in YHV and GAV
(ASA1127↓LA), substitutions were observed upstream of the point of
cleavage in genotype 3 (ATA1104↓LA) and genotype 4 (VSS1099↓LA). As
indicated, there is marked variability in the amino acid sequence
immediately downstream of the TM3 cleavage site (Fig. 4). Although
all seven cysteine residues are preserved, there are differences in the
number and location of N-linked glycosylation sites and, in YHV, there
is a large sequence deletion at the gp116 N-terminus.

Intergenic regions, ORF4 and 3′-UTR
The IGRs upstream of ORF2 (IGR1) and ORF3 (IGR2) and the ∼650 nt

3′-terminal region downstreamofORF3were alignedusingClustalX and
compared. As observed previously (Cowley et al., 2002a; Sittidilokratna
et al., 2002), IGR1 is significantly longer in YHV (352 nt) than in GAV
(93 nt) but each contains a highly conservedmotif predicted to function
as a TRS. In GAV, the 5′-terminus of sub-genomic (sg) mRNA1 is located
within the TRS and the terminal seven nucleotides (5′-AACACCU-) are
preserved in YHV (Cowley et al., 2002a; Sittidilokratna et al., 2008). As
shown in Figure 5A, IGR1 lengths in thegenotype 3 (91nt), 4 (112nt) and
5 (104 nt) viruses are similar to GAV and contain a highly conserved
block of 25 nt including a 13 nt motif (5′-GGUCAAUUACAAC-3′)
encompassing the sgmRNA1 5′-terminus that is conserved across all
five genotypes. IGR2 sequences (54–57 nt) are highly conserved across
all genotypes. In the most conserved block of 24 nt (5′-AUU(G/U)
GUCAAUUACAACC(U/A)AAAUUUU-3′), substitutions occur at only two
positions, one in genotype 4 (G/U) and another in genotypes 3 and 4 (U/
A) (Fig. 6A).WebLogo presentation of ClustalX alignments indicated that
the sequence 5′-GUCAAUUACAACxxAxxUU-3′, encompassing the 5′-
termini of sgmRNA1 and 2 of GAV, is invariant in all five genotypes
(Fig. 5B).

In GAV, the 3′-terminal region downstream of ORF3 contains a
TRS-like element followed by a short ORF4 predicted to encode an
unidentified 83 aa (9.2 kDa) polypeptide (Cowley and Walker, 2002).
In YHV, the TRS-like sequence is highly conserved but ORF4 is severely
truncated (20 aa) (Sittidilokratna et al., 2008). As shown in Figure 5A,
the 3′-terminal regions of genotype 3, 4 and 5 viruses also contain
TRS-like elements immediately upstream of truncated ORF4
sequences. This region is highly conserved across all five genotypes,
with a conserved block of 22 nt sequence encompassing the TRS-like
element (5′-UAGCUA(U/)UU(G/U)CAACCUUAUUCU-A-3′) containing
only a U insertion in genotype 3 and a G/U substitution in YHV. This
sequence includes 9 of 15 nt that were invariant and two others highly
dominant in the WebLogo analysis of IGR1 and IGR2 (Fig. 5B).
However, in the putative IGR3 of all genotypes, the conserved the 5′-A
nucleotide of the sgmRNA terminal sequence motif (5′-ACAAC) is
corrupted by a (G/U) substitution (Fig. 6A).

Due to multiple insertions and deletions, ORF4 in YHV (20 aa)
(Sittidilokratna et al., 2008) and genotypes 3 (36 aa), 4 (36 aa) and 5
(37 aa) is severely truncated relative to GAV (83 aa). Nevertheless, a
ClustalX alignment of the ORF4 sequences indicated that 16 of 20 aa in
the N-terminal region upstream of the insertion/deletions were
conserved across all five genotypes (Fig. 5C).

A ClustalX alignment of available sequences for YHV, GAV and
genotypes 3 and 4 indicated that the 128–131 nt 3′-UTR extending from
theGAVORF4 termination codon to thepolyA tail is extremelyconserved
(data not shown).MFOLDanalysis showed the sequences formed similar
RNA hairpin structures stabilized by four helices (ΔG=−32.4 to
−41.3 kcal/mol) (Fig. 6). Significantly, compared to YHV, the integrity
of helix 2 in GAV and genotypes 3 and 4was preserved by compensatory
nucleotide changes in either one or both strands (C:GNU:A, G:CNA:U
and U:GNC:G). Both strands of YHV helix 4 possessed compensatory C:
GNU:A changes and the leading strand possessed a CCNAU change



Fig. 2. Unrooted, neighbour-joining phylogenetic tree constructed from a ClustalX multiple alignment of a 668–671 nt sequence in the ORF1b replicase gene obtained for 57 viruses
including the reference strains of YHV (THA-98-Ref) andGAV (AUS-96-Ref). The samples were collected from throughout the Indo-Pacific region from 1997–2004. The sources of viruses
and their codes are described in Table 1. Bootstrap values shown at key branch nodes were determined for 1000 replicates. Horizontal branch lengths indicate phylogenetic distance
calculated as the number of nucleotide substitutions per total nucleotide residues. The clustering of viruses into the six discrete genetic lineages (genotypes 1 to 6) is indicated.
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Fig. 3. (A) ClustalX multiple alignment of the deduced amino acid sequences of the nucleocapsid proteins encoded in ORF2 of the reference genotype 1 (THA-98-Ref) and genotype 2
(AUS-96-Ref) isolates and representatives of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21). The more variable sequences in the N- and C-terminal regions are
shaded. (B) Neighbour-joining tree constructed from a Clustal X multiple alignment of the nucleotide sequence of the nucleocapsid protein genes. Bootstrap values were calculated
for 1000 replicate analyses and horizontal branch lengths are proportional to phylogenetic distances.
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allowing the formation of additional A:U and U:A base pairs that
extended the helix. Moreover, a two nucleotide (UA) insertion main-
tained a hairpin loop size (6 nt) in YHV comparable to the loops of GAV
(7 nt) and genotypes 3 (7 nt) and 4 (6 nt). The conformity of these low
energy RNA secondary structures suggests that they may be important
for the viral polymerase binding and initiation of anti-genomic RNA
synthesis.

Discussion

Yellow head virus is amajor pathogen of farmed P. monodon shrimp
and is listed by theWorld Organisation for Animal Health as causing a
notifiable disease (OIE, 2007). This paper provides evidence for the
existence of at least six distinct genetic lineages of YHV distributed
across most of the natural geographic range of P. monodon from Africa,
through South and Southeast Asia, to eastern Australia. Viruses
assigned to genotypes other that genotype 1 (YHV) or 2 (GAV) were
detected exclusively as low level infections in apparently healthy
shrimp. All viruses clustering with the 1998 Chachoengsao (Thailand)
reference YHV isolate (genotype 1) occurred in shrimp displaying
typical signs of YHD sampled from pond outbreaks in Thailand and
Taiwan between 2000 and 2003. Some genotype 2 (GAV) viruses were
detected inmoribundAustralian shrimp sampled fromMCMS-affected
ponds. However, whilst similar in histopathology to YHD, MCMS is far
less severe, developing less rapidly and rarely causingmassmortalities
(Owens, 1997; Spann et al., 1997). GAV is also far less virulent (∼106-
fold by LD50) than YHV in experimental bioassays (Sittidilokratna and
Walker, unpublished) and occurs at a high prevalence in healthy wild
and farmed P. monodon along eastern Australia (Spann et al., 1995;
Cowley et al 2000a,Walker et al., 2001) due to its likelymaintenance in
a natural cycle by vertical transmission (Cowley et al., 2002b, Cowley
and Walker, 2008). Although one virus (THA-03-SG21) assigned to
genotype 5 was detected in a shrimp affected by a condition of
unknown aetiology described as monodon slow growth syndrome
(MSGS) (Chayaburakul et al., 2004), there is no evidence to suggest its
causal associationwith this condition forwhich at least one other virus
(Laem Singh virus) has been implicated (Sritunyalucksana et al., 2006).

The nucleotide sequence comparisons of an ORF1b gene region
overlapping the highly conserved helicase domain delineated at least
six genotypes, although the genotype 6 viruses were not distinguish-
able from genotype 2 (GAV) viruses when deduced amino acid
sequences were compared. Extensive surveys have failed to provide
evidence of genotypes other than genotype 2 in eastern Australian P.
monodon. It appears, therefore, that GAV is an endemic natural
infection of this tiger shrimp population and that other genotypes
have not been introduced to Australia because of a prohibition on the
importation of live crustaceans (Doyle et al., 1996). Many genotype 2
viruses found at lower prevalence in healthy P. monodon sampled
from hatcheries in Thailand and Vietnam showed no clear segregation
from Australian viruses, suggesting their possible recent introduction
through the export of eastern Australian broodstock. The exclusive
clustering of Indian viruses in genotype 4 and Mozambique viruses
(with one exception) in genotype 6 may also reflect their isolation
from the active trade in P. monodon broodstock and seed that occurs
throughout East and South-East Asia. It has been hypothesized that,
prior to the advent of aquaculture, efficient vertical transmission
allowed individual genotypes to co-evolve with penaeid shrimp host
populations in geographic isolation (Cowley et al., 2002b; Cowley and
Walker, 2008). The similarity of Australian genotype 2 and Mozambi-
que genotype 6 viruses is intriguing andmirrors the close relationship
between Australian and African strains of infectious hypodermal and
haematopoietic necrosis virus (IHHNV) infecting P. monodon (Cowley
et al., 2004b). Although there has been no recorded traffic in shrimp to
between Australia and Africa for aquaculture purposes, the transloca-
tion of viruses via shipping routes cannot be excluded.

The 3′-terminal genome regions of YHV, GAV and representative
genotype 3, 4 and 5 viruses were examined to establish the extent to
which the structural protein genes have diverged, the relevance of the



Fig. 4. A ClustalXmultiple alignment of amino acid sequences spanning the N-terminal gp116 region of the ORF3 gene of the reference genotype 1 (THA-98-Ref) and genotype 2 (AUS-
96-Ref) isolates, and representatives of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21). The site of proteolytic cleavage of the YHV pp3 polyprotein is indicated.
Absolutely conserved (⁎) and similar (: or .) amino acids are indicated according to the similarity groups defined in ClustalX. Conserved cysteine and residues are indicated (+).
Potential N-linked glycosylation sites are indicated in bold face and underlined in the alignment and denoted ( ) on the illustration. Six predicted transmembrane-spanning domains
(TM1–TM6) are numbered.
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putative ORF4 gene, the conservation of TRS elements in the IGRs and
whether RNA secondary structures potentially important for poly-
merase recognition might exist in the 3′-UTR. Sequence relationships
in the structural protein genes were largely consistent with genotype
assignments based on the phylogeny of the ORF1b gene sequence and
supported the view that YHV is more distant from each of the other
genotypes. The YHV nucleoprotein encoded by ORF2 is 2 aa longer and
sequence variations, which occur primarily near the N- and C-termini,
include substitutions in the binding site of monoclonal antibody
(MAb) Y20 which has been used for differential detection of YHV and
GAV (Sithigorngul et al., 2000, 2002, 2007; Soowannayan et al., 2003;
Sittidilokratna et al., 2006). MAb Y20 should also detect genotypes 3, 4
and 5 as their sequences are identical to GAV in this region. In contrast,
the binding site for MAbs Y19 and YII4 (IVPDPSL) is preserved across
all five genotypes and appears to be a useful group-specific epitope
(Sittidilokratna et al., 2006).

In ORF3, YHV is also most divergent in terms of the length of the
expressed polyprotein (pp3) and sequence identity of each of the three
glycoproteins (gp116, gp64 and the TMS protein) that are released by
proteolytic processing (Jitrapakdee et al., 2003). Sequence divergence is
most significant in gp116due to insertionsof several aminoacid blocks at
its N-terminus, the longest of which occurs immediately downstream of
the TM3 domain signal peptidase type I cleavage site. It is not yet clear
how these insertions might affect the structure of gp116 but it is con-
ceivable they may be responsible for the high virulence of YHV. The
efficiency of proteolytic cleavage of virion surface proteins influences
virulence and pathogenicity in several diverse groups of RNA viruses
(Nagai et al.,1976; Nagai andKlenk,1977; Rubin and Fields,1980; Toyoda
et al., 1987; Gorman et al.,1988; Scolaro et al., 1990; Gotto and Kawaoka,
1998). Persistent YHV infection in somepalemonid shrimp species in the
absence of disease has been associated with suppressed gp116 expres-
sion relative to the p20 nucleoprotein (Longyant et al., 2005), and it is
possible this is also due to aberrant pp3 processing. Variations in se-
quence at the critical cleavage site at the N-terminus of gp116 may
modulate the availability and turnover ofmature envelope glycoproteins
with consequences for virionmaturation, release from infected cells, and
progression to chronic persistent infectionor acute infection anddisease.

Sequences of the putative TRS elements within IGR1 and IGR2 were
highly conserved across all genotypes, emphasizing the critical
importance of a core 12 nt sequence encompassing the 5′-termini of
GAV sgmRNAs (Cowley et al., 2002a). It has been postulated that the
ronivirus TRS elements direct the attenuation of polymerase extension
duringminus-strand RNA synthesis and that the anti-TRS component of
minus-strand templatesmightdirectly promote subsequent polymerase
recognition and transcription of the corresponding sgmRNAs (Pasternak
et al., 2006). Significantly, neither this core 12nt blocknor the absolutely
conserved adenosine residue at sgmRNA1 and sgmRNA2 5′-termini are
preserved in the TRS-like element in the untranslated sequence
immediately upstream of ORF4. The absence of these features appears
to preclude both efficient attenuation ofminus-strand synthesis and the
initiation of sgmRNA transcription, and this consistent with the absence
of abundant sgmRNA initiating at this site in GAV or YHV (Cowley et al.,
2002a; Sittidilokratna et al., 2008). Although there is some evidence of
low-level expression of ORF4protein in GAV (Cowley andWalker, 2008),
this is thought to occur either by internal initiation from sgmRNA2 or
from variable-length RNAs transcribed in low abundance from sites in
the upstream region of the 3′-UTR (J.A. Cowley et al., unpublished data).
Nevertheless, the severe truncation of ORF4 in YHV and genotypes 2, 3,
and 5 suggests it is unlikely to generate a functional product. It is not
clear whether the ORF4 gene is under construction or deconstruction
but the existence of the conserved TRS-like sequences upstreamof ORF4
and the high level of sequence homology within ORF4 and downstream
of the point of truncation indicate that the 3′-region of the ronivirus
genome is a genetic resource in active evolutionary transition.

MFOLD analysis of the 3′-UTR sequences of YHV, GAV and genotypes
3 and 4 identified a highly conserved, thermodynamically stable RNA
hairpin with four helices, the first of which (helix 1) included the first
adenosine residue of the poly-A tail. Helix 1 was absolutely conserved
and the importance of helices 2 and 4 in maintaining the structure was
supported by the occurrence of compensatory nucleotide changes to
maintain base-pairing in different genotypes. Only one nucleotide
change, which slightly relaxed the stability of long helix 3, occurred in
three of the four genotypes. The 3′-UTR of other positive-strand RNA
viruses, including coronaviruses and arteriviruses, contains sequence
and/or structural elements critical topolymerase recognition andminus-
strand genomic RNA synthesis (Buck, 1996; Dreher, 1999). In the coro-
navirus, mouse hepatitis virus (MHV), a 55 nt 3′-terminal sequence
including the poly-A tail is the minimal signal needed to initiate minus-
strand RNA synthesis (Lin et al., 1994). In MHV and other subgroup II
coronaviruses, this region forms an RNA pseudoknot, and an upstream
bulged RNAhairpin structure and sequence elements that bind four host
proteins also appear to be involved in minus-strand RNA synthesis
(Williams et al. 1995, 1999; Hsue and Masters 1997, 1998; Nanda et al.,
2004). Stem–loop structures in the 3′-terminal region of arteriviruses
also act as signals for the viral polymerase and host protein recognition
and are needed to initiate minus-strand synthesis (Verheije et al., 2002;



Fig. 5. (A) Conserved sequences in the intergenic regions upstream of ORF2, ORF3 and ORF4 in the reference genotype 1 (THA-98-Ref) and genotype 2 (AUS-96-Ref) isolates and
representatives of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21). The initiation and termination codons of flanking ORFs are indicated in bold face and
underlined. The position in each sequence corresponding to the 5′-terminal adenosine of GAV sgmRNA1 and sgmRNA2 is shaded. The highly conserved 14 nt sequence
surrounding the terminal adenosine is underlined, as is the region upstream of ORF4 in which the sequence is partially conserved. Nucleotide substitutions (uridine) in the
conserved regions are shaded in black. Identical nucleotides in all aligned sequences are indicated (⁎). (B) WebLogo presentation of nucleotides conserved and less conserved
between genotypes 1, 2, 3, 4 and 5 in the TRS elements in IGR1 and in IGR2 as well as between the TRS elements of both IGRs. The cDNA rather than RNA sequence was
analysed. (C) Multiple alignment of the putative genotype 2 (GAV) ORF4 gene amino acid sequence with the comparable truncated sequences of genotypes 1, 3, 4 and 5. Amino
acids shared in all 5 genotypes are indicated (⁎).
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Maines et al., 2005; Beerens and Snijder, 2006). The highly conserved
nature of the ronivirus 3′-UTR RNA structure suggests itmay also act as a
polymerase recognition signal for minus-strand RNA synthesis.

Materials and methods

Shrimp samples

Between 1997 and 2004, postlarvae and tissues of juvenile and
adult P. monodon were sampled from hatcheries and farms in India,
Taiwan, Malaysia, Vietnam, Indonesia, Thailand and the Philippines.
Tissue from Mozambique shrimp was provided via a commercial
breeding facility in Malaysia. Pools of postlarvae as well as gill tissue,
pleopods or whole heads were collected into alcohol preservative
(80% ethanol, 20% glycerol) and stored at ambient temperature until
processed. Fresh tissue collected from Australian P. monodonwas snap
frozen on dry ice and stored at −80 °C. Details of the origin and nature
of the P. monodon samples are listed in Table 1.

RNA isolation

Total RNA was isolated from preserved shrimp tissues as soon as
possible after receipt. Pools of 10–15 postlarvae or 10–50 mg tissue
were processed using TRIzol reagent (Invitrogen). RNA was re-
suspended in 20–40 μl RNase-free sterile distilled water, quantified
by spectrophotometry (A260 nm) and stored at −80 °C.



Fig. 6. Conserved RNA secondary structures predicted using MFOLD to form in the 3′-UTR sequence of genotypes 1, 2, 3 and 4 downstream of the putative ORF4 gene to the genome
3′-polyA tail. Helices 1 to 4 are indicated and the positions of all nucleotide differences that occurred amongst the four genotypes, including compensatory changes that preserved
base-pairing in helix 2 and that maintained helix 4 in genotype 1, are indicated (a).
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RT-PCR amplification of ORF1b gene fragments for phylogenetic analysis

Several RT-PCR methods were used to amplify ORF1b gene
segments. All PCR primer sequences are described in Table 2. In initial
analyses, a semi-nested one-step RT-PCR employing sense primer
2s12 and antisense primers 2a12 and 2a43 was used to amplify 575 bp
and 279 bp products, the larger product being amplified only when
viral RNA levels were sufficiently high. An RT-nested PCR used
subsequently to amplify longer (1346 bp and 719 bp) products
employed primers 2s38M and 2a43M for PCR and primers 2s113 and
2a114 for nested PCR. After new variants were identified, 8-fold
degenerate consensus primers were designed to broaden PCR
specificity. The target sites of the reverse PCR primer (YH30-R2) and
both nested PCR primers (YH31-F2 and YH31-R2) were not changed
but the forward PCR primer (YH30-F2) was moved to a more
conserved genome region, reducing the amplicon length to 1004 bp.

Semi-nested RT-PCRs (15 μl) contained 0.2 x MMLV-RT Buffer
(Epicentre Biotechnologies), 0.5× Elongase Buffer A and 0.5× Elongase
Buffer B (Invitrogen), 0.8 mM dithiothreitol, 5% DMSO, 0.8 mM each
dNTP, 20 U RNasin ribonuclease inhibitor (Promega), 2.5 U MMLV RT



Table 2
PCR primer sequences

PCR Primera 5′-3VSequence

ORF1b gene fragments for phylogenetic comparisons
2s12 CGCTTCCAATGTATCTGCATGCACC
2a12 GTGTGAACACCTTCTTGGCTTCCT
2a43 GAGATGATTTGATTCTTGAATTTCTG
2s38M CATTGCCGTCCTTGCTAGCTC
2a43M AGATGATTTGATCTTGAATTTCT
2s113 AGATCCATGCAATTTGGGAATCATC
2a114 TTTGGTACGGATGTTGGTGAGGA
YH30-F2 CTACCAYTCAAACATCATCAAYAAYCA
YH30-R2 GAGATGATYTGRTKCTTGAATTTCTG
YH31-F2 CARATCCATGCMATYTGGGAATCATC
YH31-R2 TTTGGTACGGATGTTGGTGAGGA

ORF3 gene 5′- and 3′-termini of genotypes 3 and 4
GAV217F CGTAACAMRGCARGCYTAGCTATGCA
GAV219F GGTGACTTCTGCAATAACAACGCATGGATG
GAV224R TAKAGAATRTATTTGAGRATRTAATCCCA
GAV225R GCCACCGAGTGARAAAGARGTGAAGGTDCC
GAV228R TGATCAACAGTGACRTTWACCATKTTHT

Central ORF3 gene region of genotypes 3 and 4
GAV237F CGCCATAGTATCGGAAAACAAATTCTT
GAV238R GCGAATAGCCTGTTGGATTGTTGCA
GAV239F GACTGGAGCATACAAGTTCAAGAGC
GAV240R GGCCTGCTGAATGGTTGCAAAGTTT
GAV246R GCTCCTAATGGGTCGTAACTTCTTACG
GAV247R GGAGTCACCRTCRTGRTAYTCYTC
GAV251F ATGAGACAATTCCAACGCCCAGTG
GAV252R ACGGCTTGTGATGGTAGAGATGAT

Genomic 3′-termini of genotypes 3, 4 and 5
Uni-P GCCGGAGCTCTGCAGAATTC
GAV196R GGTGGCTGKAGCAGATATGATGCAA
GAV197F CGTGGGGCCGAGTCATCTGCCTT
GAV198F TCCGACACCATTGTKGGYGCTGCAGG
GAV199F ACTGATTCTCTYAAYACTTTCGGCGC

ORF2 plus IGR1 and IGR2 of genotypes 3 and 4
ORF2-4F ATTGACAAYCCACAYAARTTYAARATG
ORF2-5R ACAAGAGGAAGATCAGAAATATACC
ORF2-4F ATTGACAAYCCACAYAARTTYAARATG
ORF2-6R TAGCAAATTGTAGTGCTTTGCCATG

DNA spanning ORF2, IGR1 and IGR2 of genotype 5
Geno5-F1-P ACAGGCAAGAGTCATCTCGTCGAA
Geno5-R2-N TGTCACTCCCCACGTTCTCTGGA

Mixednucleotide abbreviations: R=A/G, Y=C/T,M=A/C, K=G/T,W=A/T, D=A/G/T, H=A/C/T.
a Primer codes: forward (F), reverse (R), sense (s), antisense (a).
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(Epicentre Biotechnologies), 0.45 U Elongase (Invitrogen), 0.2 U
DyNAzyme II (Finnzymes), 0.5 μmol each primer (2s12, 2a12 and
2a43) and 100 ng RNA. Reactions were incubated at 48 °C/45 min,
94 °C/60 s followed by 45 cycles of 94 °C/20 s, 55 °C/30 s, 62 °C/20 s
and 70 °C/120 s and then at 70 °C/5 min and 25 °C/60 s.

In the RT-nested PCR, cDNA was synthesized in a 20 μl reaction
containing 1–3 μg total RNA, 50 ng randomhexamer primers (Promega),
1 mM each dNTP and either 100 U Superscript II or III reverse tran-
scriptase (Invitrogen) as described by the manufacturer. In the PCR, 1 μl
cDNA (equivalent to 50–150 ng RNA) was amplified in a 25 μl reaction
containing 1 x Taq DNA polymerase buffer (10 mM Tris–HCl pH 9.0,
50mMKCl, 0.1% Triton X-100),1.5 mMMgCl2,17.5 pmol each of primers
2s38M and 2a43M, 200 μM each dNTP and 1.25 U Taq DNA polymerase
(Promega). The reaction was incubated at 94 °C/1 min followed by 35
cycles of 94 °C/30 s, 56 °C/30 s, 72 °C/90 s and then at 72 °C/7 min. A 2 μl
aliquot of PCR was added nested PCR (25 μl final) prepared as above but
containing primers 2s113 and 2a114. PCR cycling conditions were the
same except that the extension time was reduced to 45 s.

The consensus RT-nested PCR used 1 μl random-primed cDNA and
primers YH30-F2 and YH30-R2 in the PCR, with primers YH31-F2 and
YH31-R2 used in the nested PCR. The reaction conditions were as
described except for the use of a 58°C annealing temperature and a 60
s extension time in the PCR. An iCycler (BioRad) thermal cycler was
used in all PCRs.

3′-polyA-anchored PCR to amplify 3′-terminal genome sequences

Based on sequences available for the reference YHV (GenBank
AF540644) and GAV (GenBank AF039647) isolates, degenerate PCR
primers were designed to target a C-terminal region of ORF3
(GAV199F) and regions downstream in the ORF3-ORF4 IGR
(GAV198F and GAV197F). A degenerate reverse primer (GAV196R)
was targeted to a sequence just upstream of the 3′-polyA tail. In the
3′-polyA-anchored PCR method (Cowley and Walker, 2002), cDNA
synthesized using the Uni-dT16-A/C/G primer was amplified by PCR
using primers GAV199F and Uni-P. This PCR amplified low amounts of
a 1044 bp DNA product for the genotype 3 (VNM-02-H93) and 4
(IND-02-H9) viruses but none was detected for the genotype 5
(THA-03-SG21) virus. Using these PCR products as templates, semi-
nested (primers GAV197F and Uni-P) and nested PCRs (primers
GAV198F and GAV196R) were used to amplify 507 bp and 744 bp
products, respectively, which overlapped and included the 3′-polyA
tail. As these PCRs did not amplify products for genotype 5, a region
from ORF3 to a position downstream of ORF4 in GAV was amplified by
semi-nested PCR using random-primed cDNA and primers GAV198F
and GAV196R for PCR (∼0.7 kb product) and primers GAV197F and
GAV196R for semi-nested PCR (∼0.4 kb bp product). Primer sequences
are described in Table 2.

RT-PCR amplification of ORF3

For genotypes 3 and 4, 5′- and 3′-terminal fragments of the ∼4.9 kb
ORF3 gene were amplified by RT-PCR using random-primed cDNA and
the PCR primer pairs GAV217F/GAV228R (∼1.3 kb product) and
GAV219F/GAV224R (∼0.7 bp product), respectively. A semi-nested
PCR employing the primer pair GAV219F/GAV225R (∼0.7 bp product)
was used to obtain better yields of the 3′-terminal fragment. Reverse
primers GAV224R and GAV225R targeted sequences of the 3′-polyA-
anchored PCR products that were relatively conserved amongst
genotypes 1, 2, 3 and 4. These and subsequent PCRs to generate long
fragments of the ORF3 gene employed the Expand Long Template PCR
system (Roche) with Buffer 3 adjusted to contain 3.0 mM MgCl2
according to the manufacturer's instructions.

Amplification of the central ORF3 region of genotypes 3 and 4 was
attempted by RT-PCR using random-primed cDNA and the primer
pairs GAV239F/GAV240R (∼3.5 kb product) and GAV237F/GAV238R
(∼3.1 kb product), respectively, designed to sequences determined for
the 5′- and 3′-terminal fragments. As no product was amplified for
genotype 3, the PCR was repeated using primer GAV239F in
combination with degenerate reverse primer GAV247R designed to a
sequence relatively conserved in genotypes 1 and 2. This PCR used
similar reaction and cycling conditions and amplified the expected
∼1.1 kb DNA product. Using the sequence of this fragment, primer
GAV251F was designed and a semi-nested PCR employing this primer
and primers GAV252R and GAV246R was used to amplify a ∼2.6 kb
product spanning the remaining ORF3 gene sequence. Primer
sequences are described in Table 2.

RT-PCR amplification of ORF2 and flanking IGR1 and IGR2 sequences

The ORF2 gene and flanking IGR1 and IGR2 sequences of genotypes
3 and 4 were amplified by RT-semi-nested PCR using random-primed
cDNA and degenerate sense primers targeting a ORF1b gene (ORF2-
4F) sequence relatively conserved between genotypes 1 and 2 and
primers targeting ORF3 gene sequences (ORF2-5R and ORF2-6R) more
highly conserved amongst genotypes 1, 2, 3, and 4. PCR using the
Expand Long Template PCR system (Roche) generated poor ∼0.8 kb
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amplicon yields. Semi-nested PCR amplified good yields of the
expected ∼0.75 kb products, in addition to others, and these were
gel purified prior to sequence analysis. The ORF2 gene and IGR1 and
IGR2 sequences of genotype 5 (THA-03-SG21) were derived from a
cloned ∼3.2 kb DNA product amplified using primers targeting
sequences within the ORF1b (Geno5-F1-P) and ORF3 genes (Geno5-
R2-N) and the Superscript II One-Step RT-PCR system (Invitrogen).
Primer sequences are described in Table 2.

Nucleotide sequence analysis

Prior to being sequenced in both orientations, DNA products
amplified by PCRwere either purified directly using QIAquick columns
(QIAGEN), with or without prior resolution in 0.8% agarose-TAE gels.
Sequencing employed PCR primers listed in Table 2 and additional
sequence-specific primers for long PCR products. Sequencing reac-
tions used 3.3 μM primer and ABI Prism BigDye Terminator V3.0 or
V3.1 reagent and were analyzed at the Australian Genome Research
Facility. Sequence chromatogramswere edited using SeqEd 1.0.3 (ABI).
Deduced amino acid sequences were generated using MacVector 7.0
software. All nucleotide sequences have been deposited in Genbank
under accession numbers EU784957-EU785043.

Phylogenetic analysis

Multiple sequence alignments were generated using ClustalX
Version 1.82 software (Thompson et al., 1997). Unrooted neighbour-
joining trees, constructed using the distancematrix described by Saitou
andNei (1987), were generated using the PHYLIP output of ClustalX. The
robustness of neighbour-joining trees was evaluated by bootstrap
analysis of a 1000 replicates. Trees were presented graphically using
NJ-plot and drawn using TreeView Version 1.6.6 (Page, 1996).
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