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Abstract 

Lapin, S.V., Identification of time-varying nonlinear systems using Chebyshev polynomials, Journal of 
Computational and Applied Mathematics 49 (1993) 121-126. 

This paper is devoted to an identification of time-varying nonlinear systems using Chebyshev polynomials of 
the first kind. For systems being linear relatively unknown functional parameters, a method of approximate 
determination of these parameters has been worked out. As the identification problems are ill-posed to solve 
the obtained redefinite system of linear algebraic equations, a regularization method is used. 
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0. Introduction 

The identification of dynamic systems is called finding and specifying of a mathematical 
model of this system by experiments results. We shall consider the identification problems in 
which a structure of the mathematical model is known, and it is needed to find approximately 
some functional parameters from the mathematical description of the system. 

The identification methods for nonlinear systems using expansions into orthogonal polynomi- 
als have been developed in some papers [3-61; however, methods stated in these papers are 
computationally unstable. We have extended an analogous method to a wider class of nonlinear 
systems and have worked out the computationally stable algorithms. 
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1. Statement of the problem 

We shall consider continuous time-varying nonlinear systems, which are linear relatively 
unknown functional parameters: 

‘i(‘) = j$lui,j(t)fi,j(t7 xl(t)7”e7x,(t)> Yl(t)>**‘>Yp(t))7 (1) 

i=l,2 , * * *, n, t E b,, q. 
The functions fi,j(+) are assumed to be the known and smooth enough on [t,, tf]. For 

example, one may demand that the functions fi,j and their partial derivatives of 
Xl,. . *, x,7 Y,, . * * > yP are continuous in the domain [t,, tr] X Rn+p. The unknown functions 
~,,~(t> are assumed to belong to some Holder space H’s”, where r + a > 1, i = 1,. . . , II, j = 

1 P* ,*‘a> 
For approximate finding of the unknown functions, we have carried out a sufficiently large 

number of experiments. In every experiment with the number i, some p-dimensional vector 

Y(‘)(t) = [ y’l” yy’ . . . y$q’ 

is applied to the input of the investigated system, and an n-dimensional vector 

X(i)(t) = [ xQ xf) . . . x;)]T 

is measured on the output in a sufficiently large number of points of [t,, tr]. We assume that 
for every Y(‘)(t), with corresponding initial conditions, system (1) has the only solution X(‘)(t) 
on [t,, tfl. 

It is necessary to determine approximately the unknown coefficients LZ,,~(~>, i = 1,. . . , II, j = 

1 k. >.“, 

2. Approximation of the system 

The unknown functions can be approximately found with the help of some numerical 
parameters. In order to solve efficiently the identification problem, it is very important to select 
such a method of the approximation which allows to approximate functions with a given 
accuracy by as little numerical parameters as possible. If a function is smooth enough, one of 
the more effective methods of approximation is the method of expansion to Fourier series by 
such systems of orthogonal polynomials as, for example, systems of shifted Chebyshev polyno- 
mials of the first kind: 

lyyt) = cos[~arccos[‘i:~~) -lji, i=O, I,%..., 

with the weight 
1 

p(t) = sqrt( (t - to) . (t, - t)) ’ 

When one uses Fourier-Chebyshev expansions to the identification of systems of the form 
(11, it is possible to propose two approaches. The first approach is based on the introduction of 
the functional J(aJ*),.. .,Lz~,~ (a>> which characterizes the quadratic residuals of all experi- 
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ment results. This functional must be regularized, as the problem of its minimization is an 
ill-posed problem [7]. Then the regularized functional is approximated by the Ritz-Gale&in 
method using a basis from the m first Chebyshev polynomials. 

We shall consider the second approach, based on the immediate transition from the 
differential form of the system description to the approximate description with the help of 
Fourier-Chebyshev coefficient sets. 

Let us fix some experiment with the number 1. First of all, from system (1) with some initial 
conditions ~~(t,,) = XI’), i = 1,. . . , n, we pass on the Volterra-Hammerstein integral equations 

xi”(t) = 5 /fai.j(~)&j(~, xl”(s), . . . , x;“(s), y!“(s), . . . , y;)(s)) ds +x;“, 
j=l to 

i=l,2 y1, >‘.., tE [to, tr]. (2) 
From the integral equations (2) let us pass on in its turn to Galerkin approximate equations 

of the kind 

IF:“(t) = i o,$,,~(s)~,,(s, X$“(S), . . . , x;“(s), y’l”(s), . . . , y;‘(s)) ds +xi”, 
j=l j0 

i= 1, 2,. e-7 12, t(E [to, ff], (3) 
where a, is the operator of transition from a function to its Fourier-Chebyshev partial sum of 
the order m, and the symbol N over a function means that it is replaced by the Fourier- 
Chebyshev partial sum of the order m. 

This method of approximation is correct in the following sense. Using [l, Theorem 19.11, one 
can prove that with the imposed conditions on the system (1) there are solutions of the 
approximate system (3) for large m and they converge to the exact solution of the Cauchy 
problem for system (1) as m + 03. 

3. Transition to algebraic problems 

Let us denote the columns of the first m Fourier-Chebyshev coefficients of the functions 
xi’)(t), ~,,~(t) and fi,j(t, x’,‘)(t), . . . , x:‘)(t), yf)(t), . . . , y$)(t)) by Xi”), Ai j and F/f’, respectively 
(i= 1 ,..., It, j=l,..., k). Further we introduce the matrix operator of’integration I$, by 

f \ 
1 1 

(-1)“-2 (-l)m-l 
z 8 2(” - l)(m - 3) 2m(m - 2) 
1 

2 0 . . . 0 0 

0 + . . . 0 0 

-1 
0 0 a-’ 0 

4(” - 2) 

1 
0 0 -*. 

4(m - 1) 
0 

I 
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and the matrix operator of multiplication P,(G) by g(t) = C~=~‘giTi*(t>: 

en(G) = 

go 381 h2 1 . . . 
zgm-2 

g1 go + &2 ;<g, +g,) ‘.. ;(s,-3 +&J-1> 
g2 hl +g3) go + $4 **- kl-4) 

gm-1 hn-2 
1 
T&z,-, **- is1 

1 

zgm-1 

1 

?gl?-2 

1 
s,-3 

go 
We note that these matrices are slightly different from the analogous matrices used, for 

example, in [6]. Using these matrix operators, it is easy to establish the following result: if X is 
an m-dimensional column of Fourier-Chebyshev coefficients of a function x(t), then the 
Fourier-Chebyshev coefficients of functions a, ItfoX ds and a,( g”(t)i(t)) can be noted in the 
form H,X and P,(G)X. 

Let X$ = [A’) 0 0 . . . OIT be the column of length m. Using the imposed matrix operators, 
one can easily’ obtain that system (3) is equivalent to the following system of algebraic 
equations: 

x!‘) = II, 5 Pm(F~;~)A,,j +x,!fo’, i=l ) . . . , n. (4) 
j=l 

Let us introduce the column of the size mkn X 1 from Fourier-Chebyshev coefficients of all 
unknown functions 

2, = [ A:,1 . . . A;,k A;,, . . . A;,k . . . A;,, . . . A;,,lT, 

the matrix W$ of size mn x mnk: 

/ H,,,P,‘f] . . H,,,Pl(fh 0, . . . 0, . . . 0, . . . 0, \ 

w”’ = 
0, ... 0, H,P$f] . . ’ H,,, P$fi 0, .‘. 0, 

m 

\ 0, .“ 0, 0, ‘.. 0, H,,,P,(I “. HmP,‘fb 1 

where 0, is the zero matrix of size m x m, I$ = P<F$), i = 1,. . . , n, j = 1,. . . , k, and the 
column of size mn X 1: 

G$= [(Xl’)-Xl;&)’ (X$“-X;;h)T . . . (X;‘)-X;‘h)T]T. 

Then the approximate equations (4) can be written in the form 

W’[‘z = G(l) m m in* (5) 

Let us join all equations of the form (5) for the fulfilled N experiments to the only system 

W,Z, = G,,,, (6) 
where 

G, = [GzjT GEjT . . . GiNjTIT, 

w, = [ WAI)T w,‘,22’r . . . w;N)r]T. 
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4. Solving the algebraic system 

If N > k, then system (6) is a redefinite system of linear algebraic equations. In many cases, 
system (6) is ill-posed and if it has been solved with the use of the least-squares method 

2, = (W,‘W,)-lw;G,,, 

one should obtain too much errors. 
Let us introduce the regularized functional 

@J&J = (KZ, - G,,J=(W,z, - G,) + aZ:Z,, (7) 

and assume that the stated identification problem has a solution or some solutions. If the 
degree of smoothness of the functions x,(t), i = 1, 2,. . . , ~1, yj(t), j = 1, 2,. . . , p, the maximal 
values of measurement errors, errors of the computation of Fourier-Chebyshev coefficients 
and elements of W, and G,,, agree, it is possible to indicate the rule of selection of the 
regularization parameter a(m) + ,+mO with which the obtained solutions of the minimization 
problem for functional (7) will converge to a column of Fourier-Chebyshev coefficients of the 
exact solution by the functional 

J(Z) = (W,Z - G,,)=(W,Z - G,), 

as the errors tend to zero. The conditions of this theorem are very cumbersome; therefore we 
do not formulate it exactly. For selection of the regularization parameter there are some known 
practical methods [7]. 

We used the next practical method based on the QR transformation [2]. The matrix W,‘W, 
can be decomposed into a product of two orthogonal matrices $j and R and a diagonal matrix 
v: 

If ui,i = 0 for some i, we must either increase the number m or fulfil one more experiment and 
form again system (6). If all diagonal elements of V do not equal zero, we calculate the 
condition number 

max{ui,il 

K = cond(W,T~:,) = min~u. ,) . 
191 

When the value K is not large, the least-squares method can be applied. If K is large, we choose 
in the capacity of the regularization parameter the value (Y = min{uJ. This method gave good 
results in different tests. 

5. Example 

As the sample illustrating the stated method of identification we consider the system 

4(t) =a1,&>x&) +%,2(%(+2(t) +y1(% 

i*(t) = %,1(+,(t) + %,&)X:(t) + %,3(+4+&> + J?(t)7 
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in which it is required to determine approximately five unknown functions. In the tests we 
assumed 

a,,,(t) = t - 1, a,,,(t) = 17 a,,,(t) = -2t, a,,,(t) = t - 1, %,3(t) = 1, 

and selected pairs of input and output vectors as the “experiment results” (for example, 
x,(t) = t, x,(t) = exp( -t>, x,(O) = 0, x,(O) = 1, yl(t) = 1+ t - t exp(-t) - t3, y&t) = (1 - 
t) exp( - 2 t) + 2 t * - (t * + 1) exp( - t), etc.). Then we modelled “errors of measurement device”, 
adding random values from [-E, E] to the components of output vectors. 

We took [0, 21 as the considered segment. Using ten pairs of input and output vectors, we 
received the approximate solutions with different m, E and the accuracy of Fourier-Chebyshev 
coefficient calculation. Further, these solutions were compared to the exact functions in forty 
points of [0, 21. Let us denote by A the maximal error between the obtained solution and the 
exact function in these points. For example, we received the next results. 

With m = 6, E = 0.01, calculating Fourier-Chebyshev coefficients with the help of FFT-al- 
gorithm using L = 128 values of expanding functions, we received A = 0.058 with (Y = 0.0008. 

With m = 8, E = 0.001, L = 256, we received A = 0.017 with (Y = 0.000 12. 

6. Conclusion 

The described method allows us in a number of cases to solve a complicated problem of 
identification of continuous systems with nonlinear elements of sufficiently common structure. 
For adaptive systems working in real time, this method cannot be applied, because of low speed 
of the program work. However, it may find effective application in laboratory investigations of 
the wide class of nonlinear systems. 
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