Limit theorem for the statistical solution of Burgers equation

A. Dermoune ${ }^{\text {a, },}$, S. Hamadène ${ }^{\text {b }}$, Y. Ouknine ${ }^{\text {c }}$
${ }^{\text {a }}$ USTL, Département de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France
${ }^{\text {b }}$ Université Du Maine, Equipe de Statistique et Processus, 72085 Le Mans Cedex 9, France
${ }^{\text {c }}$ Université Cadi Ayyad, Département de Mathématiques, Marrakech, Maroc France

Received 13 May 1998; received in revised form 31 July 1998; accepted 8 January 1999

Abstract

In this work we study limit theorems for the Hopf-Cole solution of the Burgers equation when the initial value is a functional of some Gaussian processes. We use the Gaussian chaos decomposition, and we get "Gaussian scenario" with new normalization factors. © 1999 Elsevier Science B.V. All rights reserved.

MSC: 60F05; 60G10; 60G15
Keywords: Hopf-Cole solution; Burgers equation; Chaos decomposition; Gaussian process

1. Introduction

The one-dimensional Burgers equation without force has the form

$$
\begin{equation*}
\partial_{t} u+u \partial_{x} u=\frac{v}{2} \partial_{x x}^{2} u, \quad x \in \mathbb{R}, t>0 . \tag{1}
\end{equation*}
$$

Here $v>0$ is the viscosity and the initial value $u(x, 0)=-\mathrm{d} \xi(x) / \mathrm{d} x$ is given, and satisfies $\xi(x)=\mathrm{o}\left(x^{2}\right)$ as $|x| \rightarrow+\infty$. If we introduce a potential function ψ defined as $u=-\partial_{x} \psi$, then the Hopf-Cole substitution $\psi=v \ln \theta$ shows that θ satisfies the heat equation $\partial_{t} \theta=(v / 2) \partial_{x x}^{2} \theta$. Using this fact one can write down for the solution $u=u(x, t, v)$ the explicit expression

$$
\begin{equation*}
u(x, t, v)=\frac{I(x, t, v)}{J(x, t, v)}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I(x, t, v)=\int_{-\infty}^{\infty} \frac{x-y}{t} g\left(\frac{x-y}{\sqrt{t v}}\right) \exp \left\{\frac{\xi(y)}{v}\right\} \mathrm{d} y \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
J(x, t, v)=\int_{-\infty}^{\infty} g\left(\frac{x-y}{\sqrt{t v}}\right) \exp \left\{\frac{\xi(y)}{v}\right\} \mathrm{d} y \tag{4}
\end{equation*}
$$

\]

The function g is the density of the standard Gaussian random variable $\mathscr{N}(0,1)$.
Many authors have investigated the solution $u(x, t, v)$ on different types of initial conditions which are stationary Gaussian processes. It is well-known (Albeverio et al., 1994; Bulinskii and Molchanov, 1991) that, if $v=1$ and $\xi(x)$ is a stationary zero-mean Gaussian process, with covariance function $B(x)=\mathbb{E}[\xi(x) \xi(0)]$ is assumed to satisfy

$$
\begin{equation*}
\int_{\mathbb{R}}|B(x)| \mathrm{d} x<\infty \tag{5}
\end{equation*}
$$

then the solution $u(x, t, 1)$ obeys the "Gaussian scenario", that is, as $L \rightarrow \infty$,

$$
\begin{equation*}
L^{3 / 2} u\left(L x, L^{2} t, 1\right) \Rightarrow X(x, t) \tag{6}
\end{equation*}
$$

where X is a Gaussian process, and \Rightarrow stands for the weak convergence of the finite-dimensional distributions. In the case where

$$
\begin{align*}
& B(x)=1-\frac{\lambda_{2}}{2} x^{2}+\frac{\lambda_{4}}{4!} x^{4}+\mathrm{o}\left(x^{4}\right) \quad \text { as } \quad x \rightarrow 0 \quad \text { and } \quad B(x)=\mathrm{o}(1 / \ln x) \\
& \quad \text { as } \quad x \rightarrow \infty \tag{7}
\end{align*}
$$

Molchanov et al. (1995) have proved that, as $L \rightarrow+\infty$,

$$
L \sqrt{2 \ln L} u\left(L x, L^{2} \sqrt{2 \ln L} t, 1 / L^{2} \sqrt{2 \ln L}\right) \Rightarrow \frac{x-y_{j(x, t)}}{t}
$$

where $y_{j(x, t)}$ is defined via a Poisson process $\left(y_{j}, u_{j}\right)_{j \in \mathbb{Z}}$ on \mathbb{R}^{2} with the intensity $\mathrm{e}^{-u} \mathrm{~d} y \mathrm{~d} u$, by maximizing the difference

$$
\begin{equation*}
\max _{j}\left[u_{j}-\frac{\left(x-y_{j}\right)^{2}}{2 t}\right]=u_{j(x, t)}-\frac{\left(x-y_{j(x, t)}\right)^{2}}{2 t} \tag{8}
\end{equation*}
$$

On the other hand, Surgailis (1996) has proved that if $B(0):=\lambda_{0}>1$,

$$
\begin{equation*}
B(x)=\lambda_{0}-\frac{\lambda_{2}}{2} x^{2}+\mathrm{o}\left(x^{2}\right) \text { as } x \rightarrow 0 \text { and } B(x)=\mathrm{o}(1 / \ln x) \text { as } x \rightarrow \infty \tag{9}
\end{equation*}
$$

then

$$
L \sqrt{2 \ln L} u\left(L x, L^{2} \sqrt{2 \ln L} t, 1 / \sqrt{2 \ln L}\right) \Rightarrow v(x, t)
$$

where

$$
\begin{aligned}
v(x, t)= & \sum_{i \in \mathbb{Z}} t^{-1}\left(x-y_{i}\right) \exp \left\{\sqrt{\lambda_{0}} u_{i}-\frac{\left(x-y_{i}\right)^{2}}{2 t}\right\} \\
& \times\left\{\sum_{i \in \mathbb{Z}} \exp \left\{\sqrt{\lambda_{0}} u_{i}-\frac{\left(x-y_{i}\right)^{2}}{2 t}\right\}\right\}^{-1}
\end{aligned}
$$

See also Hu and Woyczynski (1995) for other cases. In our work we unify these results and we broaden this list. This is the aim of Section 2 Theorem 2.1. In Section 3 we study the case when $\xi(x)=\int_{\mathbb{R}} f(x, y) \mathrm{d} W(y)-\frac{1}{2} \int_{\mathbb{R}} f^{2}(x, y) \mathrm{d} y$, where W is the Gaussian white noise, and we obtain the "Gaussian scenario".

2. General scaling limit behavior

We set, for $L>0$, for positive function $T(L)$, and for functions $A(L), b(L)$,

$$
V(L y, v)=\exp \left\{v^{-1}(\xi(L y)-b(L))\right\}-A(L)
$$

The parameter L may depend on v. We suppose that for all $(x, t) \in \mathbb{R} \times \mathbb{R}_{+}, t \neq 0$, there exists scaling $\beta(x, t, L)>0$, such that for any $\varepsilon \in\{0,1\}$, as $L \rightarrow \infty$,

$$
\begin{align*}
& \beta(x, t, L) \int_{\mathbb{R}} V(L y, v) g\left(\frac{L(y-x)}{\sqrt{T(L) t v}}\right)((x-y) / t)^{\varepsilon} \mathrm{d} y \Rightarrow\left(Z^{x, t},((x-y) / t)^{\varepsilon}\right) \\
& \quad:=\int_{\mathbb{R}}((x-y) / t)^{\varepsilon} Z^{x, t}(\mathrm{~d} y) \tag{10}
\end{align*}
$$

where $Z^{x, t}$ is a generalized process.
The following theorem gives a convergence of finite-dimensional distributions of the rescaled solutions of (1).

Theorem 2.1. (i) Suppose that $v=1$, and $T(L)=L^{2}$. If the scaling $\beta(x, t, L):=\beta(L)$ does not depend on (x, t), then $Z^{x, t}(\mathrm{~d} y)=g((y-x) / \sqrt{t}) Z(\mathrm{~d} y)$, where Z is a generalized process. Moreover, if for all φ belonging to the Schwartz space $\mathscr{S}(\mathbb{R})$,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \int_{\mathbb{R}} \varphi(y) \exp \{\xi(L y)-b(L)\} \mathrm{d} y=a \int_{\mathbb{R}} \varphi(y) \mathrm{d} y, \tag{11}
\end{equation*}
$$

then, as $L \rightarrow \infty$, the finite-dimensional distributions of the two parameter random fields,

$$
L \beta(L) u\left(L x, L^{2} t, 1\right), \quad x \in \mathbb{R} \text { and } t>0,
$$

converge to the corresponding finite-dimensional distributions of the random field

$$
a^{-1} \int_{\mathbb{R}} \frac{x-y}{t} g\left(\frac{x-y}{\sqrt{t}}\right) Z(\mathrm{~d} y), \quad x \in \mathbb{R} \text { and } t>0
$$

(ii) If $A(L)=0$, then the finite-dimensional distributions of the two parameter random field,

$$
T(L) L^{-1} u(L x, T(L) t, v), \quad x \in \mathbb{R} \text { and } t>0
$$

converge to the corresponding finite-dimensional distributions of the random field

$$
\frac{\int_{\mathbb{R}}(x-y) /(t) Z^{x, t}(\mathrm{~d} y)}{\int_{\mathbb{R}} Z^{x, t}(\mathrm{~d} y)}, \quad x \in \mathbb{R} \text { and } t>0
$$

Proof. The proof of (i) is similar to the proof of Theorem 2.1 in Funaki et al. (1995), and it is based on the well-known following lemma.

Lemma 2.1. If $\left\{X_{t}, t>0\right\}$ and $\left\{Y_{t}, t>0\right\}$ are families of random variables such that $X_{t} \rightarrow X$ in law and $Y_{t} \rightarrow c$ in probability where c is a real constant, then $X_{t}+Y_{t} \rightarrow$ $X+c, X_{t} Y_{t} \rightarrow c X, X_{t} / Y_{t} \rightarrow X / c($ if $c \neq 0)$, in law as $t \rightarrow+\infty$.

Now we come back to the proof of (ii). In this case $V(L y, v)=\exp \left\{v^{-1}(\xi(L y)-\right.$ $b(L))\}$, and from (2), (3) and (4) we have

$$
I(L x, T(L) t, v)=\frac{L^{2}}{T(L)} \int_{\mathbb{R}} \frac{x-y}{t} V(L y, v) g\left(\frac{L(y-x)}{\sqrt{T(L) t v}}\right) \mathrm{d} y \exp \left(v^{-1} b(L)\right),
$$

and

$$
J(L x, T(L) t, v)=L \int_{\mathbb{R}} V(L y, v) g\left(\frac{L(y-x)}{\sqrt{T(L) t v}}\right) \mathrm{d} y \exp \left(v^{-1} b(L)\right) .
$$

We have for all $\alpha_{i}, \gamma_{i}, x_{i} \in \mathbb{R}, t_{i}>0 ; 1 \leqslant i \leqslant n$,

$$
\begin{aligned}
& {\left[\sum_{i=1}^{n} \alpha_{i} \beta\left(x_{i}, t_{i}, L\right) T(L) L^{-2} I\left(L x_{i}, T(L) t_{i}, v\right)\right.} \\
& \left.\quad+\quad \sum_{i=1}^{n} \gamma_{i} L^{-1} \beta\left(x_{i}, t_{i}, L\right) J\left(L x_{i}, T(L) t_{i}, v\right)\right] \exp \left(-v^{-1} b(L)\right) \\
& =\int_{\mathbb{R}}\left\{\sum_{i=1}^{n}\left(\alpha_{i} \frac{x_{i}-y}{t_{i}}+\gamma_{i}\right) \beta\left(x_{i}, t_{i}, L\right) V(L y, v) g\left(\frac{L\left(y-x_{i}\right)}{\sqrt{T(L) t_{i} v}}\right)\right\} \mathrm{d} y .
\end{aligned}
$$

From (10) the member of the left-hand side converges weakly, as $L \rightarrow \infty$, to

$$
\begin{aligned}
& \int_{\mathbb{R}}\left\{\sum_{i=1}^{n}\left(\alpha_{i} \frac{x_{i}-y}{t_{i}}+\gamma_{i}\right) Z^{x_{i}, t_{i}}(\mathrm{~d} y)\right\} \\
& \quad=\sum_{i=1}^{n} \alpha_{i} \int_{\mathbb{R}} \frac{x_{i}-y}{t_{i}} Z^{x_{i}, t_{i}}(\mathrm{~d} y)+\sum_{i=1}^{n} \gamma_{i} \int_{\mathbb{R}} Z^{x_{i}, t_{i}}(\mathrm{~d} y) .
\end{aligned}
$$

It follows that

$$
T(L) L^{-1} \frac{I(L x, T(L) t, v)}{J(L x, T(L) t, v)}=T(L) L^{-1} u(L x, T(L) t, v) \Rightarrow \frac{\int_{\mathbb{R}}(x-y) /(t) Z^{x, t}(\mathrm{~d} y)}{\int_{\mathbb{R}} Z^{x, t}(\mathrm{~d} y)}
$$

whence the claimed result.
Remark 2.1. If $A(L)=A$, and $\beta(L) \rightarrow \infty$, as $L \rightarrow \infty$, then (11) is satisfied, with $a=A$.

Corollary 2.1. Let $\xi(x)$ be a stationary zero-mean Gaussian process.
(1) If $\xi(x)$ satisfies (5), then part (i) of Theorem 2.1 is satisfied with

$$
b(L)=0, \quad A(L)=0, \quad \beta(L)=\sqrt{L}, \quad a=\exp \left\{\mathbb{E}\left[\xi(0)^{2}\right] / 2\right\},
$$

and $Z(\mathrm{~d} y)=c W(\mathrm{~d} y)$; where W is the Gaussian white noise on \mathbb{R} and $c=a\left(\int_{\mathbb{R}}\left(\mathrm{e}^{B(z)}-\right.\right.$ 1) $\mathrm{d} z)^{1 / 2}$.
(2) If $\xi(x)$ satisfies (9), then part (ii) of Theorem 2.1. is satisfied with
$v=1 / \sqrt{2 \ln L}, \quad T(L)=L^{2} \sqrt{2 \ln L}$,
$b(L)=\sqrt{\lambda_{0}}\left(\sqrt{2 \ln L}+\ln \left[\left(\lambda_{2} / \lambda_{0}\right)^{1 / 2} / 2 \pi\right] / \sqrt{2 \ln L}\right)$
and

$$
\begin{aligned}
& \beta(x, t, L)=\left(\lambda_{2} / 2 \pi \lambda_{0}\right)^{1 / 2} L \sqrt{2 \ln L} \\
& Z^{x, t}(\mathrm{~d} y)=g\left(\frac{x-y}{\sqrt{t}}\right) \sum_{i \in \mathbb{Z}} \pi^{-1 / 2} \exp \left(\sqrt{\lambda_{0}} u_{i}\right) \delta\left(y-y_{i}\right)
\end{aligned}
$$

Here $\sum_{i} \delta_{\left(y_{i}, u_{i}\right)}$ is a random Poisson measure on \mathbb{R}^{2} with intensity $\mathrm{e}^{-u} \mathrm{~d} u \mathrm{~d} y$.
(3) If $\xi(x)$ satisfies (7) then part (ii) of Theorem 2.1 is satisfied with

$$
v=\frac{1}{L^{2} \sqrt{2 \ln L}}, \quad T(L)=L^{2} \sqrt{2 \ln L}, \quad b(L)=\sqrt{2 \ln L}+\ln \left[\left(\lambda_{2}\right)^{1 / 2} / 2 \pi\right] / \sqrt{2 \ln L}
$$

and the normalization $\beta(x, t, L)$ is given by

$$
1 / \beta(x, t, L)=\int_{\Delta_{j(x, t)}(L)} \exp \left(v^{-1}\{\xi(L y)-b(L)\}\right) g\left(\frac{L(x-y)}{\sqrt{t}}\right) \mathrm{d} y
$$

where $\Delta_{j(x, t)}(L)=\left\{y \in \mathbb{R}:\left|y-y_{j(x, t)}\right| \leqslant \frac{1}{L \sqrt{2 \ln L}}\right\}$, and $Z^{x, t}(\mathrm{~d} y)=\delta\left(y-y_{j(x, t)}\right)$. Here $y_{j(x, t)}$ is given by (8).

The proofs of (1), (2), and (3) are due, respectively, to Albeverio et al. (1994), Surgailis (1996) and Molchanov et al. (1995).

3. The Gaussian scenario

In the sequel $v=1$, and $T(L)=L^{2}$. The initial value is a functional of the onedimensional Gaussian white noise W with intensity the Lebesgue measure. More precisely, we consider the setting where $\xi(x)$ is such that the random variables $\exp \{\xi(x)\}$ belong to $L^{2}(\mathbb{P})$, the Hilbert space of square integrable functions with respect to \mathbb{P}, the measure of the underlying probability space supporting W.

We are interested in the asymptotic behavior of the ratio $u\left(L x, L^{2} t, 1\right):=u\left(L x, L^{2} t\right)$ as $L \rightarrow+\infty$. In view to obtain the normalization $\beta(L)$, the centering constants $b(L)$, and $A(L)$, we employ the Gaussian chaos decomposition Itô (1951). The nonlinear stochastic functional $\exp \{\xi(x)\}$ has the chaos decomposition

$$
\begin{equation*}
\exp \{\xi(x)\}=\sum_{k=0}^{\infty} \frac{1}{k!} I_{k}\left(f_{k}(x)\right) \tag{12}
\end{equation*}
$$

where for $k \geqslant 1, I_{k}\left(f_{k}(x)\right)=\int \cdots \int_{\mathbb{R}^{k}} f_{k}\left(x, y_{1}, \ldots, y_{k}\right) \mathrm{d} W\left(y_{1}\right) \ldots \mathrm{d} W\left(y_{k}\right)$ is the stochastic multiple Wiener integral, and for all $x \in \mathbb{R}, f_{k}(x): y=\left(y_{1}, \ldots, y_{k}\right) \rightarrow f_{k}(x, y)$ is a symmetric function belonging to $L^{2}\left(\mathbb{R}^{k}, \mathrm{~d} x^{\otimes k}\right)$. The latter space is endowed with the natural scalar product denoted $\langle\cdot, \cdot\rangle$, and with the norm $\|\cdot\|=\langle\cdot, \cdot\rangle^{1 / 2}$. If $\xi(x)$ is a Gaussian process then (12) is reduced to the Hermite expansion. The Gaussian chaos decomposition has a long history of application to the Burgers, and Navier-Stokes turbulence, both in the mathematical, and in the fluid dynamic communities, for references see e.g. Funaki et al. (1995).

We set for $k \geqslant 0$, and φ belonging to the Schwartz space $\mathscr{S}(\mathbb{R})$,

$$
v_{k}(\varphi, L)=\frac{1}{k!} \int_{\mathbb{R}} \varphi(y) I_{k}\left(f_{k}(L y)\right) \mathrm{d} y .
$$

From (12) we get

$$
v(\varphi, L):=\int_{\mathbb{R}} \varphi(y) \exp \{\xi(L y)\} \mathrm{d} y=\sum_{k=0}^{\infty} v_{k}(\varphi, L)
$$

From the well-known formula Itô (1951),

$$
\mathbb{E}\left[I_{k}\left(f_{k}\left(x_{1}\right)\right) I_{j}\left(f_{j}\left(x_{2}\right)\right)\right]=k!\delta_{k}^{j}\left\langle f_{k}\left(x_{1}\right), f_{k}\left(x_{2}\right)\right\rangle,
$$

we have

$$
\mathbb{E}[v(\varphi, L)]=v_{0}(\varphi, L), \quad \text { and } \quad \operatorname{Var}(v(\varphi, L))=\sum_{k=1}^{+\infty} \operatorname{Var}\left(v_{k}(\varphi, L)\right) .
$$

For $k \geqslant 1$, we set $B_{k}\left(x_{1}, x_{2}\right)=\left\langle f_{k}\left(x_{1}\right), f_{k}\left(x_{2}\right)\right\rangle$, and we get

$$
\operatorname{Var}\left(v_{k}(\varphi, L)\right)=\frac{1}{k!} \iint_{\mathbb{R}^{2}} \varphi\left(y_{1}\right) \varphi\left(y_{2}\right) B_{k}\left(L y_{1}, L y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} .
$$

Theorem 3.1. Suppose that $\mathbb{E}[\exp \{\xi(x)\}]:=A$, a constant which does not depend on x, and there exist a positive measurable function $\beta(L) \rightarrow \infty$, as $L \rightarrow \infty$, a measure μ belonging to the space of tempered distributions $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ such that: for all G belonging to the Schwartz space $\mathscr{S}\left(\mathbb{R}^{2}\right)$, as $L \rightarrow \infty$,

$$
\begin{array}{ll}
{\left[\mathrm{H}_{1}\right]:} & \iint_{\mathbb{R}^{2}} \beta(L)^{2} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y \rightarrow \iint_{\mathbb{R}^{2}} G(x, y) \mu(\mathrm{d} x, \mathrm{~d} y), \\
{\left[\mathrm{H}_{2}\right]:} & \beta(L)^{2} \sup _{k \geqslant 2} \iint_{\mathbb{R}^{2}}\left|B_{k}(L x, L y) G(x, y)\right| \mathrm{d} x \mathrm{~d} y \rightarrow 0 .
\end{array}
$$

(1) Then we have for all $\varphi \in \mathscr{S}(\mathbb{R})$, as $L \rightarrow \infty$,

$$
\beta(L) \int_{\mathbb{R}}[\exp \{\xi(L y)\}-A] \varphi(y) \mathrm{d} y=\beta(L)\left(v(\varphi, L)-v_{0}(\varphi, L)\right) \rightarrow \int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y)
$$

where Z is a Gaussian field whose covariance function is

$$
\operatorname{cov}\left(\left(Z, \varphi_{1}\right),\left(Z, \varphi_{2}\right)\right)=\iint_{\mathbb{R}^{2}} \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right) \mu\left(\mathrm{d} y_{1}, \mathrm{~d} y_{2}\right)
$$

(2) It follows that

$$
L \beta(L) u\left(L x, L^{2} t, 1\right) \Rightarrow A^{-1} \int_{\mathbb{R}} \frac{x-y}{t} g\left(\frac{x-y}{\sqrt{t}}\right) Z(\mathrm{~d} y) .
$$

Proof. The proof of part (1) is a consequence of Lemma 2.1. Indeed, thanks to the hypotheses $\left[\mathrm{H}_{1}\right]$ and $\left[\mathrm{H}_{2}\right]$, we have, as $L \rightarrow \infty$, the convergence in law of $\beta(L) v_{1}(\varphi, L)$ to the Gaussian process $\int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y)$, and the convergence of $\beta(L)\left(v(\varphi, L)-v_{0}(\varphi, L)-\right.$ $\left.v_{1}(\varphi, L)\right)$ to 0 in $L^{2}(\mathbb{P})$. Hence according to Lemma $2.1 \beta(L)\left(v(\varphi, L)-v_{0}(\varphi, L)\right)$ converges in law to $\int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y)$.

The proof of part (2) is a consequence of part (i) of Theorem 2.1, and from Remark 2.1.

Corollary 3.1. Suppose that

$$
\xi(x)=\int_{\mathbb{R}} f(x, y) \mathrm{d} W(y)-\frac{\|f(x, \cdot)\|^{2}}{2}
$$

where f is such that $B_{1}(x, x)=\|f(x, \cdot)\|^{2} \leqslant 1$ for all x. If the hypotheses $\left[\mathrm{C}_{1}\right]$ and $\left[\mathrm{C}_{2}\right]$ below are satisfied:
[C_{1}] there exist a positive measurable function $\beta(L) \rightarrow \infty$, as $L \rightarrow \infty$, and two positive measures $\mu_{1}, \mu_{2} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ such that for any $G \in \mathscr{S}\left(\mathbb{R}^{2}\right)$,

$$
\int_{\mathbb{R}^{2}} \beta(L)^{2} B_{1}^{+}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y \rightarrow \int_{\mathbb{R}^{2}} G(x, y) \mathrm{d} \mu_{1}(x, y)
$$

and

$$
\int_{\mathbb{R}^{2}} \beta(L)^{2} B_{1}^{-}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y \rightarrow \int_{\mathbb{R}^{2}} G(x, y) \mathrm{d} \mu_{2}(x, y),
$$

where B_{1}^{+}, B_{1}^{-}are, respectively, the positive and negative parts of B_{1}.
$\left[\mathrm{C}_{2}\right]$ For all $\varepsilon>0$, and for all compact set K, subset of \mathbb{R}^{2}, as $L \rightarrow \infty$,

$$
\beta(L)^{2} \lambda\left(\left\{(x, y) \in K,\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}\right) \rightarrow 0,
$$

where λ is the Lebesgue measure.
Then, for all $\varphi \in \mathscr{S}(\mathbb{R})$,

$$
\beta(L) \int_{\mathbb{R}}[\exp (\xi(L y))-1] \varphi(y) \mathrm{d} y
$$

converges in distribution to the random variable

$$
\int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y):=(Z, \varphi),
$$

where $Z(\mathrm{~d} y)$ is a Gaussian field whose covariance function is

$$
\operatorname{cov}\left(\left(Z, \varphi_{1}\right),\left(Z, \varphi_{2}\right)\right)=\iint_{\mathbb{R}^{2}} \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right) \mathrm{d} \mu\left(y_{1}, y_{2}\right),
$$

where $\mu=\mu_{1}-\mu_{2}$.
Proof. For any $x \in \mathbb{R}, \exp (\xi(x))=\sum_{k=0}^{\infty}(1 / k!) I_{k}\left(f(x, \cdot)^{\otimes k}\right)$, hence the constant A of Theorem 3.1 is equal to 1 . The condition [C_{1}] implies the condition $\left[\mathrm{H}_{1}\right]$ of Theorem 3.1. For $k \geqslant 2,\left|B_{k}(x, y)\right|=\left|B_{1}(x, y)\right|^{k} \leqslant B_{2}(x, y) \mathrm{d} x \mathrm{~d} y-a . s$. So, to get the condition $\left[\mathrm{H}_{2}\right]$ of Theorem 3.1 we have to prove that for all $G \in \mathscr{S}\left(\mathbb{R}^{2}\right)$, as $L \rightarrow \infty$,

$$
\iint_{\mathbb{R}^{2}} \beta(L)^{2}\left(B_{1}(L x, L y)\right)^{2} G(x, y) \mathrm{d} x \mathrm{~d} y \rightarrow 0
$$

We have for $\varepsilon>0, \iint_{\mathbb{R}^{2}} \beta(L)^{2}\left(B_{1}(L x, L y)\right)^{2} G(x, y) \mathrm{d} x \mathrm{~d} y=I+J$, where

$$
I=\iint_{\left\{\left|B_{1}(L x, L y)\right|<\varepsilon\right\}} \beta(L)^{2}\left(B_{1}(L x, L y)\right)^{2} G(x, y) \mathrm{d} x \mathrm{~d} y,
$$

and

$$
J=\iint_{\left\{\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}} \beta(L)^{2}\left(B_{1}(L x, L y)\right)^{2} G(x, y) \mathrm{d} x \mathrm{~d} y .
$$

It follows that there exist two constants c_{1} and c_{2} such that $|I| \leqslant \varepsilon c_{1}$ (for L large enough), and

$$
|J| \leqslant c_{2} \iint_{\left\{\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}} \beta(L)^{2}\left|B_{1}(L x, L y) G(x, y)\right| \mathrm{d} x \mathrm{~d} y .
$$

For L sufficiently large there exist $M>0$ such that

$$
\iint_{\left\{x^{2}+y^{2} \geqslant M^{2}\right\}} \beta(L)^{2}\left|B_{1}(L x, L y) G(x, y)\right| \mathrm{d} x \mathrm{~d} y \leqslant \varepsilon
$$

and for $K=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leqslant M\right\}$,

$$
\begin{aligned}
& \iint_{\left\{\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}} \beta(L)^{2}\left|B_{1}(L x, L y) G(x, y)\right| \mathrm{d} x \mathrm{~d} y \\
& \quad \leqslant \varepsilon+\iint_{K \cap[|B(L x, L y)| \geqslant \varepsilon]} \beta(L)^{2}\left|B_{1}(L x, L y) G(x, y)\right| \mathrm{d} x \mathrm{~d} y \\
& \quad \leqslant \varepsilon+c \beta(L)^{2} \lambda\left(\left\{(x, y) \in K,\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}\right),
\end{aligned}
$$

where $c>0$ is some constant. From that we have for L large enough,

$$
I+J \leqslant \varepsilon c_{1}+c_{2}\left[\varepsilon+c \beta(L)^{2} \lambda\left(\left\{(x, y) \in K,\left|B_{1}(L x, L y)\right| \geqslant \varepsilon\right\}\right)\right] .
$$

Now taking account of [C_{2}] we get the desired result.
Remark 3.1. The case where the initial value $u(x, 0)$, is the Brownian motion, is out of the scope of Theorem 3.1, and Corollary 3.1.

In this part we study some situations when Corollary 3.1 is satisfied. A measurable function $L:(0,+\infty) \rightarrow(0,+\infty)$ is slowly varying at $+\infty$ if, for each $t>0$, as $x \rightarrow+\infty, L(t x) / L(x)=1$. It is well known (see for example Appendix III in Galambos, 1978; ch. 0 in Bertoin, 1996) that L has the form

$$
\begin{equation*}
L(x)=\exp \left\{u(x)+\int_{1}^{x} \frac{e(z)}{z} \mathrm{~d} z\right\} \tag{13}
\end{equation*}
$$

where $u, e:(0,+\infty) \rightarrow \mathbb{R}$ are bounded measurable functions with $u(x) \rightarrow u^{*} \in \mathbb{R}$, and $e(x) \rightarrow 0$, as $x \rightarrow+\infty$.

Corollary 3.2. Let $f \in L^{2}(\mathbb{R}, \mathrm{~d} x)$, and $\xi(x)=\int_{\mathbb{R}} f(x-y) \mathrm{d} W(y)-\|f\|^{2} / 2$. The process $\xi(x)$ is a stationary Gaussian process with covariance function $B_{1}(x, y)=$ $\int_{\mathbb{R}} f(x-z) f(y-z) \mathrm{d} z:=B(x-y)$. Suppose that $B(x-y)=\left(\Phi(|x-y|) /|x-y|^{\alpha}\right)$, where $0<\alpha<1$, and Φ is a slowly varying function such that $0<\Phi(|x|) \leqslant|x|^{\alpha}$ for all x. Then, for all $\varphi \in \mathscr{S}(\mathbb{R})$,

$$
\frac{L^{\alpha / 2}}{\sqrt{\Phi(L)}} \int_{\mathbb{R}}[\exp (\xi(L y))-1] \varphi(y) \mathrm{d} y
$$

converges in distribution to $\int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y):=(Z, \varphi)$, where Z is a Gaussian field whose covariance function is

$$
\operatorname{cov}\left(\left(Z, \varphi_{1}\right),\left(Z, \varphi_{2}\right)\right)=\iint_{\mathbb{R}^{2}} \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right) \frac{\mathrm{d} y_{1} \mathrm{~d} y_{2}}{\left|y_{1}-y_{2}\right|^{\alpha}}
$$

Proof. This result is well known, it has been considered by Albeverio et al. (1994), and Leonenko and Orsingher (1995). Corollary 3.1 gives a simplified proof. Indeed, in this case $B_{k}(x, y)=\left(\left(\Phi(|x-y|) /|x-y|^{\alpha}\right)\right)^{k}$, and it is easy to see that $\left|B_{k}(x, y)\right| \leqslant\left|B_{2}(x, y)\right|$ for all $k \geqslant 2$. Let us prove the condition $\left[\mathrm{C}_{1}\right]$ with $\beta(L)=\frac{L^{\alpha / 2}}{\sqrt{\Phi(L)}}$ and $\mu=\left(\mathrm{d} x \mathrm{~d} y /|x-y|^{\alpha}\right)$.

We have for all $A>0, \iint_{\mathbb{R}^{2}} \beta(L)^{2} B(L|x-y|) G(x, y) \mathrm{d} x \mathrm{~d} y=I+J$, where

$$
I=\iint_{[L|x-y|>A]} \beta^{2}(L) B(L|x-y|) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

and

$$
J=\iint_{[L|x-y|<A]} \beta^{2}(L) B(L|x-y|) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

Let us prove that $I \rightarrow \iint_{\mathbb{R}^{2}}|x-y|^{-\alpha} G(x, y) \mathrm{d} x \mathrm{~d} y$ as $L \rightarrow \infty$. First we have

$$
\beta^{2}(L) B(L|x-y|)=\Phi(L|x-y|) \Phi(L)^{-1}
$$

Using (13), we have for all $\varepsilon>0$, and for L large enough,

$$
\begin{aligned}
\left|\Phi(L|x-y|) \Phi(L)^{-1}\right| & =\exp \left\{u(L|x-y|)-u(L)+\int_{L}^{L|x-y|} \frac{\mathrm{e}(z)}{z} \mathrm{~d} z\right\} \\
& \leqslant c\left\{|x-y|^{\varepsilon}+|x-y|^{-\varepsilon}\right\}
\end{aligned}
$$

where c is some constant which does not depend on L. From the dominated convergence theorem we get

$$
I \rightarrow \iint_{\mathbb{R}^{2}}|x-y|^{-\alpha} G(x, y) \mathrm{d} x \mathrm{~d} y \text { as } L \rightarrow \infty
$$

Now let us prove that $J \rightarrow 0$, as $L \rightarrow \infty$. Since for any $x \in \mathbb{R},|B(x)| \leqslant 1$, and

$$
J=\frac{L^{\alpha}}{\Phi(L)} \iint_{[L|x-y|<A]} B(L|x-y|) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

we have the estimate

$$
\begin{aligned}
|J| & \leqslant \frac{L^{\alpha}}{\Phi(L)} \iint_{[L|x-y|<A]}|G(x, y)| \mathrm{d} x \mathrm{~d} y \\
& \leqslant \Phi^{-1}(L) \iint_{[L|x-y|<A]} A^{\alpha}|x-y|^{-\alpha}|G(x, y)| \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

We have for $\varepsilon>0$,

$$
\begin{aligned}
& \Phi^{-1}(L) \iint_{[L|x-y|<A]} A^{\alpha}|x-y|^{-\alpha}|G(x, y)| \mathrm{d} x \mathrm{~d} y \\
& \quad \leqslant L^{-\varepsilon} \Phi^{-1}(L) \iint_{[L|x-y|<A]} A^{\alpha+\varepsilon}|x-y|^{-(\alpha+\varepsilon)}|G(x, y)| \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

But $L^{-\varepsilon} \Phi^{-1}(L) \rightarrow 0$, as $L \rightarrow \infty$, and for $\alpha+\varepsilon<1$, the integral $\iint_{\mathbb{R}^{2}} A^{\alpha+\varepsilon} \mid x-$ $\left.y\right|^{-\alpha-\varepsilon}|G(x, y)| \mathrm{d} x \mathrm{~d} y$ is bounded. It follows that $J \rightarrow 0$, as $L \rightarrow \infty$, whence the condition [C_{1}] is satisfied.

Now we prove the condition $\left[\mathrm{C}_{2}\right]$. Since $\left(\Phi(|L|) / L^{\alpha}\right) \rightarrow 0$, as $L \rightarrow \infty$, then for L large enough, and for some constant A, which does not depend on L, we have

$$
[B(L|x-y|) \geqslant \varepsilon] \subset\left[|x-y| \leqslant A L^{-1}\right] .
$$

It follows that for any compact set K and for some constant c,

$$
\begin{aligned}
\beta(L)^{2} \lambda\left(\left\{(x, y) \in K, B_{1}(L x, L y) \geqslant \varepsilon\right\}\right) & \leqslant \beta(L)^{2} \lambda\left(\left\{(x, y) \in K,|x-y| \leqslant A L^{-1}\right\}\right) \\
& \leqslant c \beta(L)^{2} L^{-1} \rightarrow 0
\end{aligned}
$$

as $L \rightarrow \infty$, whence the desired result.

Remarks.

(1) Theorem 3.1 can be rephrased as a statement that the stochastic process $\{\exp (\xi(y)), y \in \mathbb{R}\}$ has a large-scale Gaussian limit in the sense of Dobrushin (1980, p. 169) with normalization $A, \beta(L)$. It is well known (Dobrushin, 1979; Dobrushin and Major, 1979) that necessarily, $\beta(L)=L^{\kappa} / \sqrt{\Phi(L)}$, for some constant $\kappa \in \mathbb{R}$. The function $\Phi(L)$ is slowly varying, as $L \rightarrow \infty$, and locally bounded. From that we conclude that if $B(x, y) \rightarrow 0$, as x, y go to infinity, and satisfies condition [$\left.\mathrm{C}_{1}\right]$ of Corollary 3.1 with the normalization $\beta(L)=L^{\kappa} / \sqrt{\Phi(L)}$ with $0<\kappa<\frac{1}{2}$, then condition [C_{2}] holds.
(2) If instead of $\left.B(x)=\left(\Phi(|x|) /|x|^{\alpha}\right), \alpha \in\right] 0,1[$, we suppose only that $B(x) \sim$ $\left(\Phi(|x|) /|x|^{\alpha}\right)$, as $x \rightarrow \infty$, and $B(x) \leqslant 1$ for any $x \in \mathbb{R}$, we can show, essentially in the same way, that the conditions $\left[\mathrm{C}_{1}\right]$ and $\left[\mathrm{C}_{2}\right]$ still hold. Such a situation happens if the function f which defines the covariance function B satisfies the following conditions:
(A1) $\int_{\mathbb{R}} f^{2}(x) \mathrm{d} x<\infty$.
(A2) $|f(x)| \leqslant C x^{H_{0}-3 / 2} \Phi(x)$ for almost all $x>0$, and $1-1 / 2 m<H_{0}<1$ for some integer $m \geqslant 1$. Here Φ is a slowly varying function at $+\infty$.
(A3) $f(x) \sim x^{H_{0}-3 / 2} \Phi(x)$ as $x \rightarrow \infty$.
(A4) There exists a constant γ satisfying $0<\gamma<\min \left\{H_{0}-(1-1 / 2 m), 1-H_{0}\right\}$, such that

$$
\int_{-\infty}^{0}|f(u) f(x y+u)| \mathrm{d} u=\mathrm{o}\left(x^{2 H_{0}-2} \Phi(x)\right) y^{2 H_{0}-2-2 \gamma}
$$

as $x \rightarrow \infty$, uniformly in $y \in(0, t]$, for a given $t>0$. See Taqqu (1979, p. 57, Section 2) for more details.

Corollary 3.3. Let $\xi(x)=\int_{\mathbb{R}} f(x, y) \mathrm{d} W(y)-\|f(x, \cdot)\|^{2} / 2$.
(A) If $f(x, y)=\Phi(|x|)|x|^{-\alpha} h(y), \Phi$ is slowly varying at $\infty ; 0<\alpha<\frac{1}{2}$, and $\|h\|=1$, then, for all $\varphi \in \mathscr{S}(\mathbb{R})$, as $L \rightarrow \infty$,

$$
\frac{L^{\alpha}}{\Phi(L)} \int_{\mathbb{R}}[\exp (\xi(L y))-1] \varphi(y) \mathrm{d} y
$$

converges in distribution to $\int_{\mathbb{R}} \varphi(y) Z(\mathrm{~d} y):=(Z, \varphi)$, where Z is a Gaussian field whose covariance function is

$$
\operatorname{cov}\left(\left(Z, \varphi_{1}\right),\left(Z, \varphi_{2}\right)\right)=\iint_{\mathbb{R}^{2}} \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right) \frac{\mathrm{d} y_{1} \mathrm{~d} y_{2}}{\left|y_{1}\right|^{\alpha}\left|y_{2}\right|^{\alpha}} .
$$

(B) Suppose that $f(x, \cdot)=f(|x|, \cdot) \geqslant 0, \forall x \in \mathbb{R}$, non-increasing with respect to x, and for all $x \neq 0$

$$
\left(\int_{\mathbb{R}} f^{2}(L, z) \mathrm{d} z\right)^{-1 / 2} f(L x, \cdot)
$$

converges in $L^{2}(\mathbb{R})$ to some function $g(x, \cdot)$. We suppose also that the covariance function $B_{1}(x, y):=\langle f(|x|, \cdot), f(|y|, \cdot)\rangle$ is slowly varying at infinity, namely, for all $x \neq 0, y \neq 0$,

$$
\lim _{L \rightarrow \infty} \frac{B_{1}(L x, L y)}{B_{1}(L, L)}=\int_{\mathbb{R}} g(x, z) g(y, z) \mathrm{d} z:=m(x, y)
$$

and that $m(L x, L y)=L^{-\alpha} m(x, y)$, for some $0<\alpha<1$.
Then $B_{1}(L, L)^{-1 / 2} \int_{\mathbb{R}} \varphi(y)[\exp (\xi(L y))-1] \mathrm{d} y$ converges, as $L \rightarrow \infty$, to (Z, φ), where Z is a Gaussian field with covariance function $\operatorname{cov}\left(\left(Z, \varphi_{1}\right),\left(Z, \varphi_{2}\right)\right)=$ $\iint_{\mathbb{R}^{2}} \varphi_{1}(x) \varphi_{2}(y) m(x, y) \mathrm{d} x \mathrm{~d} y$.

Proof. We use Corollary 3.1 for the proof. In the assertion (A), we have $B_{k}(x, y)=$ $\left(\Phi(x)^{k} \Phi^{k}(y)\right) /\left(|x|^{k \alpha}|y|^{k \alpha}\right)$, and it is easy to see, for all $k \geqslant 2$, that $\left|B_{k}(x, y)\right| \leqslant\left|B_{2}(x, y)\right|$.

Let us prove the condition [C C_{1}] of Corollary 3.1, with $\beta(L)=\left(L^{\alpha} / \Phi(L)\right)$, and $\mu=$ $\left(\mathrm{d} x \mathrm{~d} y /|x|^{\alpha}|y|^{\alpha}\right)$. We split $\iint_{\mathbb{R}^{2}} \beta(L)^{2} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y=I+J$, where

$$
I=\iint_{[L(|x|+|y|)>A]} \beta^{2}(L) B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

and $J=\iint_{[L(|x|+|y|) \leqslant A]} \beta^{2}(L) B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y$. Let us prove that $I \rightarrow$ $\iint_{\mathbb{R}^{2}}|x|^{-\alpha}|y|^{-\alpha} G(x, y) \mathrm{d} x \mathrm{~d} y$, as $L \rightarrow \infty$. From (13), we have for all $\varepsilon>0$, and for L large enough,

$$
\left|\Phi(L|x|) \Phi(L)^{-1}\right|=\exp \left\{u(L|x|)-u(L)+\int_{L}^{L|x|} \frac{\mathrm{e}(z)}{z} \mathrm{~d} z\right\} \leqslant c\left\{|x|^{\varepsilon}+|x|^{-\varepsilon}\right\}
$$

where c is constant which does not depend on L. From the dominated convergence theorem we get

$$
I \rightarrow \iint_{\mathbb{R}^{2}}|x|^{-\alpha}|y|^{-\alpha} G(x, y) \mathrm{d} x \mathrm{~d} y \quad \text { as } L \rightarrow \infty
$$

Now let us prove that $J \rightarrow 0$ as $L \rightarrow \infty$. Since for any $(x, y) \in \mathbb{R}^{2},\left|B_{1}(x, y)\right| \leqslant 1$, and

$$
J=\frac{L^{2 \alpha}}{\Phi^{2}(L)} \iint_{[L(|x|+|y|)<A]} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

we have the estimate

$$
\begin{aligned}
|J| & \leqslant \frac{L^{2 \alpha}}{\Phi^{2}(L)} \iint_{[L(|x|+|y|)<A]}|G(x, y)| \mathrm{d} x \mathrm{~d} y \\
& \leqslant \Phi^{-2}(L) \iint_{[L(|x|+|y|)<A]} A^{2 \alpha}(|x|+|y|)^{-2 \alpha}|G(x, y)| \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

We have for $\varepsilon>0$,

$$
\begin{aligned}
& \Phi^{-2}(L) \iint_{[L(|x|+|y|)<A]} A^{2 \alpha}(|x|+|y|)^{-2 \alpha}|G(x, y)| \mathrm{d} x \mathrm{~d} y \\
& \quad \leqslant L^{-\varepsilon} \Phi^{-2}(L) \iint_{[L(|x|+|y|)<A]} A^{2 \alpha+\varepsilon}(|x|+|y|)^{-(2 \alpha+\varepsilon)}|G(x, y)| \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

If $2 \alpha+\varepsilon<1$, then the integral $\iint_{\mathbb{R}^{2}} A^{\alpha+\varepsilon}(|x|+|y|)^{-(2 \alpha+\varepsilon)}|G(x, y)| \mathrm{d} x \mathrm{~d} y$ is bounded. From that, and from the fact that $L^{-\varepsilon} \Phi^{-2}(L) \rightarrow 0$, as $L \rightarrow \infty$, we have $J \rightarrow 0$ as $L \rightarrow \infty$, whence the condition $\left[\mathrm{C}_{1}\right]$ is satisfied.

Now, we prove the condition [C_{2}]. Since $B_{1}(x, y) \rightarrow 0$, as $|x|+|y| \rightarrow \infty$, then for L large enough, and for some constant A, which does not depend on L, we have

$$
\left[B_{1}(L x, L y) \geqslant \varepsilon\right] \subset\left[|x|+|y| \leqslant A L^{-1}\right]
$$

It follows that for any compact set K, and for some constant c,

$$
\begin{aligned}
\beta(L)^{2} \lambda\left(\left\{(x, y) \in K, B_{1}(L x, L y) \geqslant \varepsilon\right\}\right) & \leqslant \beta(L)^{2} \lambda\left(\left\{(x, y) \in K,|x|+|y| \leqslant A L^{-1}\right\}\right) \\
& \leqslant c \beta(L)^{2} L^{-2} \rightarrow 0,
\end{aligned}
$$

as $L \rightarrow \infty$, which yields the desired result.
Now we prove the assertion (B). To prove [C C_{1}] it is sufficient to take $G>0$. Let $a>0, b>0$. We split $B_{1}(L, L)^{-1} \iint_{\mathbb{R}^{2}} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y=I+J$, where

$$
I=\iint_{[|x|>a,|y|>b]} B_{1}(L, L)^{-1} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y
$$

and

$$
J=\iint_{[|x| \leqslant a] \cup[|y| \leqslant b]} B_{1}(L, L)^{-1} B_{1}(L x, L y) G(x, y) \mathrm{d} x \mathrm{~d} y .
$$

From the monotonicity of B, and the dominated convergence theorem we have

$$
I \rightarrow \iint_{[|x|>a,|y|>b]} G(x, y) m(x, y) \mathrm{d} x \mathrm{~d} y \quad \text { as } L \rightarrow \infty
$$

Now,

$$
G(x, y) B_{1}(L, L)^{-1} B_{1}(L x, L y) 1_{[0<|x|<|y|]} \leqslant G(x, y) B_{1}(L, L)^{-1} B_{1}(L x, L x) 1_{[0<|x|<|y|]}
$$

and each of these functions converges as $L \rightarrow \infty$. Using the same proof as in Corollary 3.2 we show that the integral of the latter function converges. Combining the fact that $\iint_{[0,1]^{2}} m(x, y) \mathrm{d} x \mathrm{~d} y<\infty$, see Haan and Resnick (1979), with the following variant of Fatou's lemma: if $0 \leqslant h_{n} \leqslant g_{n}$ are real-valued functions on some measure space, and $h_{n} \rightarrow h, g_{n} \rightarrow g$, then $\int h_{n} \rightarrow \int h$ provided $\int g<\infty$, we can show that

$$
J \rightarrow \iint_{[|x| \leqslant a] \cup[|y| \leqslant b]} G(x, y) m(x, y) \mathrm{d} x \mathrm{~d} y
$$

which yields $\left[\mathrm{C}_{1}\right]$. [$\left.\mathrm{C}_{2}\right]$ follows from the fact that $B_{1}(x, y) \rightarrow 0$ as $x, y \rightarrow \infty$ and from $B_{1}(L, L) \sim L^{-\alpha}$, as $L \rightarrow \infty$.

We finish this work by considering the case where $\left\langle f\left(y_{1}, \cdot\right), f\left(y_{2}, \cdot\right)\right\rangle=0$ for $\left|y_{1}\right|+$ $\left|y_{2}\right| \geqslant 1$. This example is out of the scope of Theorem 3.1. The covariance function B_{1} is positive and vanishing outside the ball $|x|+|y| \leqslant 1$, then the condition [C_{1}] holds with $\beta(L)=L$ but [C_{2}] does not hold. We want to prove the following theorem.

Theorem 3.2. Under the latter hypothesis we have for all $\varphi \in \mathscr{S}(\mathbb{R})$

$$
L \int_{\mathbb{R}} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y \rightarrow \mathscr{N}\left(0, \varphi^{2}(0) c\right)
$$

where $c=\iint_{\mathbb{R}^{2}}\left(\exp \left\{B_{1}(x, y)\right\}-1\right) \mathrm{d} x \mathrm{~d} y$, and

$$
L^{2} u\left(L x, L^{2} t\right) \rightarrow c \frac{x Z}{t}
$$

where Z is a normal random variable.

Proof. We will use the technique of Theorem 1.1 in Hu and Woyczynski (1995). Let us prove that

$$
L \int_{-\infty}^{\infty} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y
$$

converges in distribution to $\mathscr{N}\left(0, \varphi(0)^{2} c\right)$. Let

$$
H(L)=L \int_{-\infty}^{-L} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y .
$$

Then

$$
\mathbb{E}\left[|H(L)|^{2}\right] \leqslant k L^{2}\left(\int_{-\infty}^{-L} \varphi(y) \mathrm{d} y\right)^{2} .
$$

Using Chebyshev's inequality and since $\varphi \in \mathscr{S}(\mathbb{R})$ we get $H(L) \rightarrow 0$ in probability as $L \rightarrow \infty$. Similarly, we can get as $L \rightarrow \infty$ the convergence in probability to 0 of

$$
L \int_{L}^{\infty} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y .
$$

The remainder term is

$$
\begin{aligned}
& L \int_{-L}^{L} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y \\
& \quad=I+\sum_{-L^{2} \leqslant k \leqslant L^{2}} \eta_{k}(L),
\end{aligned}
$$

where

$$
\eta_{k}(L)=L \int_{k / L}^{(k+1) / L} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{B_{1}(L y, L y)}{2}\right\}-1\right] \mathrm{d} y
$$

and I converges in probability to 0 . Since $B\left(L y_{1}, L y_{2}\right)=\int_{\mathbb{R}} f\left(L y_{1}, u\right) f\left(L y_{2}, u\right) \mathrm{d} u=$ 0 for $y_{1} \in[k / L,(k+1) / L], y_{2} \in[j / L,(j+1) / L]$ with $|k-j|>2$, then the sequence $\eta_{k}(L),-L^{2} \leqslant k \leqslant L^{2}$ is 2-dependent sequence. It is useful to recall the following Bulinskii (1987) result: let $X_{j}(t), j \in U(t)$ be an $m(t)$-dependent field on a finite set $U(t) \subset \mathbb{Z}$, and let, for some $s \in(2,3]$ and all $t>0$,

$$
\sup _{j \in U(t)}\left(\mathbb{E}\left[\left|X_{j}(t)\right|^{s}\right]\right)^{1 / s}=\mathrm{C}_{s}(t)<\infty .
$$

Then

$$
\begin{aligned}
\sup _{x \in \mathbb{R}} \mid & \mathbb{P}\left(\delta^{-1}(t) \sum_{j \in U(t)}\left(X_{j}(t)-\mathbb{E}\left[X_{j}(t)\right]\right) \leqslant x\right)-F(x) \mid \\
& \leqslant k_{0}|U(t)| M_{s}^{s}(t) m^{s-1}(t)+M_{s}(t) m(t)+|U(t)|^{1 / 2} M_{s}^{2}(t) m^{2 / s}(t),
\end{aligned}
$$

where $\delta^{2}(t)=\operatorname{Var} \sum_{j \in U(t)} X_{j}(t), k_{0}$ is some constant, $|U(t)|$ is a number of points in $U(t), M_{s}(t)=\delta^{-1}(t) \mathrm{C}_{s}(t)$, and $F(x)$ is the distribution function of $\mathrm{N}(0,1)$.

Now we return to our proof. For $\left(\eta_{k}(L),-L^{2} \leqslant k \leqslant L^{2}\right)$ we get $|U(L)|=2 L^{2}, \mathrm{C}_{3}(L) \leqslant$ $k_{1} L^{-1}, 0<k_{2} \leqslant \delta(L) \leqslant k_{3}, \quad M_{3}(L) \leqslant k_{4} L^{-1}$, and then we have

$$
k_{0}|U(L)| M_{3}^{3}(L) 2^{2}+M_{3}(L) 2+|U(L)|^{1 / 2} M_{3}^{2}(L) 2^{2 / 3} \leqslant k L^{-1},
$$

so that

$$
L \int_{-\infty}^{\infty} \varphi(y)\left[\exp \left\{\int f(L y, u) \mathrm{d} W(u)-\frac{\|f(L y)\|^{2}}{2}\right\}-1\right] \mathrm{d} y \rightarrow \mathscr{N}\left(0, \varphi(0)^{2} c\right)
$$

Now part (i) of Theorem 2.1 combined with Remark 2.1 achieve the proof.

Acknowledgements

We are grateful to the referees for a careful reading of the manuscript resulting in many constructive comments.

References

Albeverio, S., Molchanov, S.A., Surgailis, D., 1994. Stratified structure of the universe and Burgers equation - a probabilistic approach. Probab. Theory. Related Fields 100, 457-484.

Bertoin, J., 1996. Lévy Processes. Cambridge University Press, Cambridge.
Bulinskii, A.V., 1987. Limit theorems under weak dependence conditions. In: Probability Theory and Mathematical Statistics, Proceedings of the 4th Vilnius Conference, vol. 1, VNP, Utrecht, pp. 307-327.
Bulinskii, A.V., Molchanov, S.A., 1991. Asymptotical normality of a solution of Burgers equation with random initial data. Theory Probab. Appl. 36 (2), 217-236.
Dobrushin, R.L., 1979. Gaussian and their subordinated self-similar random generalized field. Ann. Probab. 7, 1-28.
Dobrushin, R.L., 1980. Automodel generalized random fields and their renormgroup. In: Dobrushin, R.L., Sinai, Ya.G. (Eds.), Multicomponent Random Systems. Dekker, New York, pp. 153-198.
Dobrushin, R.L., Major, P., 1979. Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrch. Verw. Geb. 49, 275-291.

Funaki, T., Surgailis, D., Woyczynski, W.A., 1995. Gibbs-Cox random fields and Burgers turbulence. Ann. Appl. Probab. 5 (2), 461-492.
Galambos, J., 1978. The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.
Haan, L., Resnick, S.I., 1979. Derivatives of regularly varying functions in \mathbb{R}^{d} and domains of attraction of stable distributions. Stochastic Process. Appl. 8, 349-355.
$\mathrm{Hu}, \mathrm{Y} .$, Woyczynski, W.A., 1995. A maximum principle for Burgers equation with unimodal moving average data. Probab. Math. Statist. 15, 365-383.
Itô, K., 1951. Multiple Wiener integral. J. Math. Soc. Japan 3 (1), 157-169.
Leonenko, N., Orsingher, E., 1995. Limit theorems for solutions of the Burgers equation with Gaussian and non-Gaussian initial conditions. Theory Probab. Appl. 40 (2), 294-309.
Molchanov, S.A., Surgailis, D., Woyczynski, W.A., 1995. Hyperbolic asymptotics in Burgers turbulence and extremal processes. Commun. Math. Phys. 168 (1), 209-226.
Surgailis, D., 1996. Intermediate asymptotics of statistical solutions of Burgers equation. In: Funaki, T., Woyczynski (Eds.), Nonlinear Stochastic PDE's: Hydrodynamic limit and Burgers turbulence, Lecture Notes in mathematics, IMA vol. 77. Springer, New York, pp. 137-146.
Taqqu, M.S., 1979. Convergence of integrated processes of arbitrary Hermite rank. Z. Wah. verw. Geb. 50, 53-83.

[^0]: * Corresponding author. USTL, Département de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France. E-mail address: Azzouz.Dermoune@univ-lille1.fr (A. Dermoune)

