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Abstract

In this work we study limit theorems for the Hopf–Cole solution of the Burgers equation
when the initial value is a functional of some Gaussian processes. We use the Gaussian chaos
decomposition, and we get “Gaussian scenario” with new normalization factors. c© 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The one-dimensional Burgers equation without force has the form

@tu+ u@xu=
�
2
@2xxu; x ∈ R; t ¿ 0: (1)

Here �¿ 0 is the viscosity and the initial value u(x; 0) = −d�(x)=dx is given, and
satis�es �(x) = o(x2) as |x| → +∞. If we introduce a potential function  de�ned
as u = −@x , then the Hopf–Cole substitution  = � 1n � shows that � satis�es the
heat equation @t� = (�=2)@2xx�. Using this fact one can write down for the solution
u= u(x; t; �) the explicit expression

u(x; t; �) =
I(x; t; �)
J (x; t; �)

; (2)

where

I(x; t; �) =
∫ ∞

−∞

x − y
t

g
(
x − y√

t�

)
exp

{
�(y)
�

}
dy; (3)

∗ Corresponding author. USTL, D�epartement de Math�ematiques, 59655 Villeneuve d’Ascq Cedex, France.
E-mail address: Azzouz.Dermoune@univ-lille1.fr (A. Dermoune)

0304-4149/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S0304 -4149(99)00002 -2



218 A. Dermoune et al. / Stochastic Processes and their Applications 81 (1999) 217–230

and

J (x; t; �) =
∫ ∞

−∞
g
(
x − y√

t�

)
exp

{
�(y)
�

}
dy: (4)

The function g is the density of the standard Gaussian random variable N(0; 1).
Many authors have investigated the solution u(x; t; �) on di�erent types of initial

conditions which are stationary Gaussian processes. It is well-known (Albeverio et al.,
1994; Bulinskii and Molchanov, 1991) that, if �=1 and �(x) is a stationary zero-mean
Gaussian process, with covariance function B(x) = E[�(x)�(0)] is assumed to satisfy∫

R
|B(x)| dx¡∞; (5)

then the solution u(x; t; 1) obeys the “Gaussian scenario”, that is, as L → ∞,
L3=2u(Lx; L2t; 1)⇒ X (x; t); (6)

where X is a Gaussian process, and ⇒ stands for the weak convergence of the
�nite-dimensional distributions. In the case where

B(x) = 1− �2
2
x2 +

�4
4!

x4 + o(x4) as x → 0 and B(x) = o(1=1n x)

as x → ∞; (7)

Molchanov et al. (1995) have proved that, as L → +∞,

L
√
2 1n Lu(Lx; L2

√
2 1n Lt; 1=L2

√
2 1n L) ⇒ x − yj(x; t)

t
;

where yj(x; t) is de�ned via a Poisson process (yj; uj)j∈Z on R2 with the intensity
e−u dy du, by maximizing the di�erence

max
j

[
uj − (x − yj)2

2t

]
= uj(x; t) − (x − yj(x; t))2

2t
: (8)

On the other hand, Surgailis (1996) has proved that if B(0) := �0¿ 1,

B(x) = �0 − �2
2
x2 + o(x2) as x → 0 and B(x) = o(1=1n x) as x → ∞; (9)

then

L
√
2 1n Lu(Lx; L2

√
2 1n Lt; 1=

√
2 1n L)⇒ v(x; t);

where

v(x; t) =
∑
i∈Z

t−1(x − yi)exp
{√

�0ui − (x − yi)2

2t

}

×
{∑

i∈Z
exp

{√
�0ui − (x − yi)2

2t

}}−1
:

See also Hu and Woyczynski (1995) for other cases. In our work we unify these
results and we broaden this list. This is the aim of Section 2 Theorem 2.1. In Section
3 we study the case when �(x) =

∫
R f(x; y) dW (y)− 1

2

∫
R f2(x; y) dy, where W is the

Gaussian white noise, and we obtain the “Gaussian scenario”.
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2. General scaling limit behavior

We set, for L¿ 0, for positive function T (L), and for functions A(L), b(L),

V (Ly; �) = exp{�−1(�(Ly)− b(L))} − A(L):

The parameter L may depend on �. We suppose that for all (x; t) ∈ R × R+; t 6= 0,
there exists scaling �(x; t; L)¿ 0, such that for any � ∈ {0; 1}, as L → ∞,

�(x; t; L)
∫
R
V (Ly; �)g

(
L(y − x)√

T (L)t�

)
((x − y)=t)� dy ⇒ (Zx; t ; ((x − y)=t)�)

:=
∫
R
((x − y)=t)�Zx; t(dy); (10)

where Zx; t is a generalized process.
The following theorem gives a convergence of �nite-dimensional distributions of the

rescaled solutions of (1).

Theorem 2.1. (i) Suppose that �= 1; and T (L) = L2. If the scaling �(x; t; L) := �(L)
does not depend on (x; t); then Zx; t(dy)=g((y−x)=

√
t)Z(dy); where Z is a generalized

process. Moreover; if for all ’ belonging to the Schwartz space S(R);

lim
L→∞

∫
R
’(y)exp{�(Ly)− b(L)} dy = a

∫
R
’(y) dy; (11)

then; as L → ∞; the �nite-dimensional distributions of the two parameter random
�elds;

L�(L)u(Lx; L2t; 1); x ∈ R and t ¿ 0;

converge to the corresponding �nite-dimensional distributions of the random �eld

a−1
∫
R

x − y
t

g
(
x − y√

t

)
Z(dy); x ∈ R and t ¿ 0:

(ii) If A(L)=0; then the �nite-dimensional distributions of the two parameter random
�eld;

T (L)L−1u(Lx; T (L)t; �); x ∈ R and t ¿ 0;

converge to the corresponding �nite-dimensional distributions of the random �eld∫
R(x − y)=(t)Zx; t(dy)∫

R Zx; t(dy)
; x ∈ R and t ¿ 0:

Proof. The proof of (i) is similar to the proof of Theorem 2.1 in Funaki et al. (1995),
and it is based on the well-known following lemma.

Lemma 2.1. If {Xt; t ¿ 0} and {Yt; t ¿ 0} are families of random variables such that
Xt → X in law and Yt → c in probability where c is a real constant; then Xt + Yt →
X + c; XtYt → cX; Xt=Yt → X=c (if c 6= 0 ); in law as t → +∞.
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Now we come back to the proof of (ii). In this case V (Ly; �) = exp{�−1(�(Ly) −
b(L))}, and from (2), (3) and (4) we have

I(Lx; T (L)t; �) =
L2

T (L)

∫
R

x − y
t

V (Ly; �)g

(
L(y − x)√

T (L)t�

)
dy exp(�−1b(L));

and

J (Lx; T (L)t; �) = L
∫
R
V (Ly; �)g

(
L(y − x)√

T (L)t�

)
dy exp(�−1b(L)):

We have for all �i; i; xi ∈ R; ti ¿ 0; 16i6n,[
n∑

i=1

�i�(xi; ti; L)T (L)L−2I(Lxi; T (L)ti; �)

+
n∑

i=1

iL−1�(xi; ti; L)J (Lxi; T (L)ti; �)

]
exp(−�−1b(L))

=
∫
R

{
n∑

i=1

(
�i

xi − y
ti

+ i

)
�(xi; ti; L)V (Ly; �)g

(
L(y − xi)√

T (L)ti�

)}
dy:

From (10) the member of the left-hand side converges weakly, as L → ∞, to∫
R

{
n∑

i=1

(
�i

xi − y
ti

+ i

)
Zxi; ti(dy)

}

=
n∑

i=1

�i

∫
R

xi − y
ti

Zxi ; ti(dy) +
n∑

i=1

i

∫
R
Zxi; ti( dy):

It follows that

T (L)L−1 I(Lx; T (L)t; �)
J (Lx; T (L)t; �)

= T (L)L−1u(Lx; T (L)t; �)⇒
∫
R(x − y)=(t)Zx; t(dy)∫

R Zx; t(dy)
;

whence the claimed result.

Remark 2.1. If A(L) = A, and �(L) → ∞, as L → ∞, then (11) is satis�ed, with
a= A.

Corollary 2.1. Let �(x) be a stationary zero-mean Gaussian process.
(1) If �(x) satis�es (5); then part (i) of Theorem 2:1 is satis�ed with

b(L) = 0; A(L) = 0; �(L) =
√
L; a= exp{E[�(0)2]=2};

and Z(dy)=cW (dy); where W is the Gaussian white noise on R and c=a(
∫
R(e

B(z)−
1) dz)1=2.
(2) If �(x) satis�es (9); then part (ii) of Theorem 2:1. is satis�ed with

�= 1=
√
2 ln L; T (L) = L2

√
2 ln L;

b(L) =
√

�0(
√
2 ln L+ ln[(�2=�0)1=2=2�]=

√
2 ln L)



A. Dermoune et al. / Stochastic Processes and their Applications 81 (1999) 217–230 221

and

�(x; t; L) = (�2=2��0)1=2L
√
2 ln L;

Zx; t(dy) = g
(
x − y√

t

)∑
i∈Z
�−1=2 exp(

√
�0ui)�(y − yi):

Here
∑

i �(yi; ui) is a random Poisson measure on R2 with intensity e−u du dy.
(3) If �(x) satis�es (7) then part (ii) of Theorem 2:1 is satis�ed with

�=
1

L2
√
2 1n L

; T (L) = L2
√
2 1n L; b(L) =

√
2 1n L+ 1n[(�2)1=2=2�]=

√
2 1n L

and the normalization �(x; t; L) is given by

1=�(x; t; L) =
∫
�j(x; t)(L)

exp(�−1{�(Ly)− b(L)})g
(
L(x − y)√

t

)
dy;

where �j(x; t)(L)={y ∈ R : |y−yj(x; t)|6 1
L
√
2 1n L

}; and Zx; t(dy)=�(y−yj(x; t)). Here
yj(x; t) is given by (8).

The proofs of (1); (2); and (3) are due, respectively, to Albeverio et al. (1994),
Surgailis (1996) and Molchanov et al. (1995).

3. The Gaussian scenario

In the sequel � = 1, and T (L) = L2. The initial value is a functional of the one-
dimensional Gaussian white noise W with intensity the Lebesgue measure. More pre-
cisely, we consider the setting where �(x) is such that the random variables exp{�(x)}
belong to L2(P), the Hilbert space of square integrable functions with respect to P,
the measure of the underlying probability space supporting W .
We are interested in the asymptotic behavior of the ratio u(Lx; L2t; 1) := u(Lx; L2t)

as L → +∞. In view to obtain the normalization �(L), the centering constants b(L),
and A(L), we employ the Gaussian chaos decomposition Itô (1951). The nonlinear
stochastic functional exp{�(x)} has the chaos decomposition

exp{�(x)}=
∞∑
k=0

1
k!

Ik(fk(x)); (12)

where for k¿1, Ik(fk(x))=
∫ · · · ∫Rk fk(x; y1; : : : ; yk) dW (y1) : : : dW (yk) is the stochas-

tic multiple Wiener integral, and for all x ∈ R, fk(x) : y = (y1; : : : ; yk) → fk(x; y)
is a symmetric function belonging to L2(Rk ; dx⊗k). The latter space is endowed with
the natural scalar product denoted 〈·; ·〉, and with the norm || · ||= 〈·; ·〉1=2. If �(x) is a
Gaussian process then (12) is reduced to the Hermite expansion. The Gaussian chaos
decomposition has a long history of application to the Burgers, and Navier-Stokes tur-
bulence, both in the mathematical, and in the uid dynamic communities, for references
see e.g. Funaki et al. (1995).
We set for k¿0, and ’ belonging to the Schwartz space S(R),

�k(’; L) =
1
k!

∫
R
’(y)Ik(fk(Ly)) dy:
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From (12) we get

�(’; L) :=
∫
R
’(y)exp{�(Ly)} dy =

∞∑
k=0

�k(’; L):

From the well-known formula Itô (1951),

E
[
Ik(fk(x1))Ij(fj(x2))

]
= k!�j

k 〈fk(x1); fk(x2)〉;
we have

E [�(’; L)] = �0(’; L); and Var(�(’; L)) =
+∞∑
k=1

Var(�k(’; L)):

For k¿1, we set Bk(x1; x2) = 〈fk(x1); fk(x2)〉, and we get

Var(�k(’; L)) =
1
k!

∫ ∫
R2

’(y1)’(y2)Bk(Ly1; Ly2) dy1 dy2:

Theorem 3.1. Suppose that E[exp{�(x)}] := A; a constant which does not depend on
x; and there exist a positive measurable function �(L)→ ∞; as L → ∞; a measure �
belonging to the space of tempered distributions S′(R2) such that: for all G belonging
to the Schwartz space S(R2); as L → ∞;

[H1] :
∫ ∫

R2
�(L)2B1(Lx; Ly)G(x; y) dx dy →

∫ ∫
R2

G(x; y)�( dx; dy);

[H2] : �(L)2 sup
k¿2

∫ ∫
R2

|Bk (Lx; Ly)G(x; y)| dx dy → 0:

(1) Then we have for all ’ ∈ S(R); as L → ∞;

�(L)
∫
R
[exp{�(Ly)} − A]’(y) dy = �(L)(�(’; L)− �0(’; L))→

∫
R
’(y)Z(dy);

where Z is a Gaussian �eld whose covariance function is

cov((Z; ’1); (Z; ’2)) =
∫ ∫

R2
’1(y1)’2(y2)�(dy1; dy2):

(2) It follows that

L�(L)u(Lx; L2t; 1)⇒ A−1
∫
R

x − y
t

g
(
x − y√

t

)
Z(dy):

Proof. The proof of part (1) is a consequence of Lemma 2.1. Indeed, thanks to the hy-
potheses [H1] and [H2], we have, as L → ∞, the convergence in law of �(L)�1(’; L) to
the Gaussian process

∫
R ’(y)Z(dy), and the convergence of �(L)(�(’; L)− �0(’; L)−

�1(’; L)) to 0 in L2(P). Hence according to Lemma 2.1 �(L)(�(’; L)− �0(’; L)) con-
verges in law to

∫
R ’(y)Z(dy).

The proof of part (2) is a consequence of part (i) of Theorem 2.1, and from
Remark 2.1.

Corollary 3.1. Suppose that

�(x) =
∫
R
f(x; y) dW (y)− ||f(x; ·)||2

2
;
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where f is such that B1(x; x) = ||f(x; ·)||261 for all x. If the hypotheses [C1] and
[C2] below are satis�ed:
[C1] there exist a positive measurable function �(L) → ∞; as L → ∞; and two

positive measures �1; �2 ∈ S′(R2) such that for any G ∈ S(R2);∫
R2

�(L)2B+1 (Lx; Ly)G(x; y) dx dy →
∫
R2

G(x; y) d�1(x; y)

and ∫
R2

�(L)2B−
1 (Lx; Ly)G(x; y) dx dy →

∫
R2

G(x; y) d�2(x; y);

where B+1 ; B
−
1 are; respectively; the positive and negative parts of B1.

[C2] For all �¿ 0; and for all compact set K; subset of R2; as L → ∞;

�(L)2�({(x; y) ∈ K; |B1(Lx; Ly)|¿�})→ 0;

where � is the Lebesgue measure.
Then; for all ’ ∈ S(R);

�(L)
∫
R
[exp(�(Ly))− 1]’(y) dy

converges in distribution to the random variable∫
R
’(y)Z(dy) := (Z; ’);

where Z(dy) is a Gaussian �eld whose covariance function is

cov((Z; ’1); (Z; ’2)) =
∫ ∫

R2
’1(y1)’2(y2) d�(y1; y2);

where � = �1 − �2.

Proof. For any x ∈ R, exp(�(x)) =∑∞
k=0(1=k!)Ik(f(x; ·)⊗k), hence the constant A of

Theorem 3.1 is equal to 1. The condition [C1] implies the condition [H1] of Theorem
3.1. For k¿2; |Bk(x; y)| = |B1(x; y)|k6B2(x; y) dx dy − a:s: So, to get the condition
[H2] of Theorem 3.1 we have to prove that for all G ∈ S(R2), as L → ∞,∫ ∫

R2
�(L)2(B1(Lx; Ly))2G(x; y) dx dy → 0:

We have for �¿ 0,
∫ ∫

R2 �(L)
2(B1(Lx; Ly))2G(x; y) dx dy = I + J , where

I =
∫ ∫

{|B1(Lx; Ly)|¡�}
�(L)2(B1(Lx; Ly))2G(x; y) dx dy;

and

J =
∫ ∫

{|B1(Lx; Ly)|¿�}
�(L)2(B1(Lx; Ly))2G(x; y) dx dy:

It follows that there exist two constants c1 and c2 such that |I |6�c1 (for L large
enough), and

|J |6c2

∫ ∫
{|B1(Lx; Ly)|¿�}

�(L)2|B1(Lx; Ly)G(x; y)| dx dy:
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For L su�ciently large there exist M ¿ 0 such that∫ ∫
{x2+y2¿M 2}

�(L)2|B1(Lx; Ly)G(x; y)| dx dy6�

and for K = {(x; y) ∈ R2; x2 + y26M},∫ ∫
{|B1(Lx; Ly)|¿�}

�(L)2|B1(Lx; Ly)G(x; y)| dx dy

6�+
∫ ∫

K∩[|B(Lx; Ly)|¿�]
�(L)2|B1(Lx; Ly)G(x; y)| dx dy

6�+ c�(L)2�({(x; y) ∈ K; |B1(Lx; Ly)|¿�});
where c¿ 0 is some constant. From that we have for L large enough,

I + J6�c1 + c2[�+ c�(L)2�({(x; y) ∈ K; |B1(Lx; Ly)|¿�})]:
Now taking account of [C2] we get the desired result.

Remark 3.1. The case where the initial value u(x; 0), is the Brownian motion, is out
of the scope of Theorem 3.1, and Corollary 3.1.

In this part we study some situations when Corollary 3.1 is satis�ed. A measur-
able function L : (0;+∞) → (0;+∞) is slowly varying at +∞ if, for each t ¿ 0,
as x → +∞, L(tx)=L(x) = 1. It is well known (see for example Appendix III in
Galambos, 1978; ch. 0 in Bertoin, 1996) that L has the form

L(x) = exp
{
u(x) +

∫ x

1

e(z)
z
dz
}

; (13)

where u; e : (0;+∞)→ R are bounded measurable functions with u(x)→ u∗ ∈ R, and
e(x)→ 0, as x → +∞.

Corollary 3.2. Let f ∈ L2(R; dx); and �(x) =
∫
R f(x − y) dW (y) − ||f||2=2. The

process �(x) is a stationary Gaussian process with covariance function B1(x; y) =∫
R f(x − z)f(y − z) dz :=B(x − y). Suppose that B(x − y) = (�(|x − y|)=|x − y|�);
where 0¡�¡ 1; and � is a slowly varying function such that 0¡�(|x|)6|x|� for
all x. Then; for all ’ ∈ S(R);

L�=2√
�(L)

∫
R
[exp(�(Ly))− 1]’(y) dy

converges in distribution to
∫
R ’(y)Z(dy) := (Z; ’); where Z is a Gaussian �eld whose

covariance function is

cov((Z; ’1); (Z; ’2)) =
∫ ∫

R2
’1(y1)’2(y2)

dy1 dy2
|y1 − y2|� :

Proof. This result is well known, it has been considered by Albeverio et al. (1994), and
Leonenko and Orsingher (1995). Corollary 3.1 gives a simpli�ed proof. Indeed, in this
case Bk(x; y)= ((�(|x− y|)=|x− y|�))k , and it is easy to see that |Bk(x; y)|6|B2(x; y)|
for all k¿2. Let us prove the condition [C1] with �(L)= L�=2√

�(L)
and �=(dx dy=|x−y|�).
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We have for all A¿ 0,
∫ ∫

R2 �(L)
2B(L|x − y|)G(x; y) dx dy = I + J , where

I =
∫ ∫

[L|x−y|¿A]
�2(L)B(L|x − y|)G(x; y) dx dy

and

J =
∫ ∫

[L|x−y|¡A]
�2(L)B(L|x − y|)G(x; y) dx dy:

Let us prove that I → ∫ ∫
R2 |x − y|−�G(x; y) dx dy as L → ∞. First we have

�2(L)B(L|x − y|) = �(L|x − y|)�(L)−1:
Using (13), we have for all �¿ 0, and for L large enough,

|�(L|x − y|)�(L)−1| = exp
{
u(L|x − y|)− u(L) +

∫ L|x−y|

L

e(z)
z
dz

}

6 c{|x − y|� + |x − y|−�};
where c is some constant which does not depend on L. From the dominated convergence
theorem we get

I →
∫ ∫

R2
|x − y|−�G(x; y) dx dy as L → ∞:

Now let us prove that J → 0, as L → ∞. Since for any x ∈ R; |B(x)|61, and

J =
L�

�(L)

∫ ∫
[L|x−y|¡A]

B(L|x − y|)G(x; y) dx dy;

we have the estimate

|J |6 L�

�(L)

∫ ∫
[L|x−y|¡A]

|G(x; y)| dx dy

6�−1(L)
∫ ∫

[L|x−y|¡A]
A�|x − y|−�|G(x; y)| dx dy:

We have for �¿ 0,

�−1(L)
∫ ∫

[L|x−y|¡A]
A�|x − y|−�|G(x; y)| dx dy

6L−��−1(L)
∫ ∫

[L|x−y|¡A]
A�+�|x − y|−(�+�)|G(x; y)| dx dy:

But L−��−1(L) → 0, as L → ∞, and for � + �¡ 1, the integral
∫ ∫

R2 A
�+�|x −

y|−�−�|G(x; y)| dx dy is bounded. It follows that J → 0, as L → ∞, whence the
condition [C1] is satis�ed.
Now we prove the condition [C2]. Since (�(|L|)=L�) → 0, as L → ∞, then for L

large enough, and for some constant A, which does not depend on L, we have

[B(L|x − y|)¿�]⊂ [|x − y|6AL−1]:
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It follows that for any compact set K and for some constant c,

�(L)2�({(x; y) ∈ K; B1(Lx; Ly)¿�})6 �(L)2�({(x; y) ∈ K; |x − y|6AL−1})
6 c�(L)2L−1 → 0

as L → ∞, whence the desired result.

Remarks.
(1) Theorem 3.1 can be rephrased as a statement that the stochastic process

{exp(�(y)); y ∈ R} has a large-scale Gaussian limit in the sense of Dobrushin (1980,
p. 169) with normalization A; �(L). It is well known (Dobrushin, 1979; Dobrushin and
Major, 1979) that necessarily, �(L) = L�=

√
�(L), for some constant � ∈ R. The func-

tion �(L) is slowly varying, as L → ∞, and locally bounded. From that we conclude
that if B(x; y)→ 0, as x; y go to in�nity, and satis�es condition [C1] of Corollary 3.1
with the normalization �(L) = L�=

√
�(L) with 0¡�¡ 1

2 , then condition [C2] holds.
(2) If instead of B(x) = (�(|x|)=|x|�), � ∈ ]0; 1[, we suppose only that B(x) ∼

(�(|x|)=|x|�), as x → ∞, and B(x)61 for any x ∈ R, we can show, essentially in the
same way, that the conditions [C1] and [C2] still hold. Such a situation happens if the
function f which de�nes the covariance function B satis�es the following conditions:
(A1)

∫
R f2(x) dx¡∞.

(A2) |f(x)|6C xH0−3=2�(x) for almost all x¿ 0, and 1− 1=2m¡H0¡ 1 for some
integer m¿1. Here � is a slowly varying function at +∞.
(A3) f(x) ∼ xH0−3=2�(x) as x → ∞.
(A4) There exists a constant  satisfying 0¡¡min{H0 − (1 − 1=2m); 1 − H0},

such that∫ 0

−∞
|f(u)f(xy + u)| du= o(x2H0−2�(x))y2H0−2−2;

as x → ∞, uniformly in y ∈ (0; t], for a given t ¿ 0. See Taqqu (1979, p. 57,
Section 2) for more details.

Corollary 3.3. Let �(x) =
∫
R f(x; y) dW (y)− ||f(x; ·)||2=2.

(A) If f(x; y)=�(|x|)|x|−�h(y); � is slowly varying at ∞; 0¡�¡ 1
2 ; and ||h||=1;

then; for all ’ ∈ S(R); as L → ∞;

L�

�(L)

∫
R
[exp(�(Ly))− 1]’(y) dy

converges in distribution to
∫
R ’(y)Z(dy) := (Z; ’); where Z is a Gaussian �eld whose

covariance function is

cov((Z; ’1); (Z; ’2)) =
∫ ∫

R2
’1(y1)’2(y2)

dy1 dy2
|y1|�|y2|� :

(B) Suppose that f(x; ·) =f(|x|; ·)¿0; ∀x ∈ R; non-increasing with respect to x; and
for all x 6= 0(∫

R
f2(L; z) dz

)−1=2
f(Lx; ·)
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converges in L2(R) to some function g(x; ·). We suppose also that the covariance
function B1(x; y) := 〈f(|x|; ·); f(|y|; ·)〉 is slowly varying at in�nity; namely; for all
x 6= 0; y 6= 0;

lim
L→∞

B1(Lx; Ly)
B1(L; L)

=
∫
R
g(x; z)g(y; z) dz :=m(x; y)

and that m(Lx; Ly) = L−�m(x; y); for some 0¡�¡ 1.
Then B1(L; L)−1=2

∫
R ’(y)[exp(�(Ly)) − 1] dy converges; as L → ∞; to (Z; ’);

where Z is a Gaussian �eld with covariance function cov((Z; ’1); (Z; ’2)) =∫ ∫
R2 ’1(x)’2(y)m(x; y) dx dy.

Proof. We use Corollary 3.1 for the proof. In the assertion (A), we have Bk(x; y) =
(�(x)k�k(y))=(|x|k�|y|k�), and it is easy to see, for all k¿2, that |Bk(x; y)|6|B2(x; y)|.
Let us prove the condition [C1] of Corollary 3.1, with �(L) = (L�=�(L)), and � =

(dx dy=|x|�|y|�). We split ∫ ∫R2 �(L)2B1(Lx; Ly)G(x; y) dx dy = I + J , where

I =
∫ ∫

[L(|x|+|y|)¿A]
�2(L)B1(Lx; Ly)G(x; y) dx dy;

and J =
∫ ∫

[L(|x|+|y|)6A] �
2(L)B1(Lx; Ly)G(x; y) dx dy. Let us prove that I →∫ ∫

R2 |x|−�|y|−�G(x; y) dx dy, as L → ∞. From (13), we have for all �¿ 0, and for L
large enough,

|�(L|x|)�(L)−1|= exp
{
u(L|x|)− u(L) +

∫ L|x|

L

e(z)
z
dz

}
6c{|x|� + |x|−�};

where c is constant which does not depend on L. From the dominated convergence
theorem we get

I →
∫ ∫

R2
|x|−�|y|−�G(x; y) dx dy as L → ∞:

Now let us prove that J → 0 as L → ∞. Since for any (x; y) ∈ R2; |B1(x; y)|61, and

J =
L2�

�2(L)

∫ ∫
[L(|x|+|y|)¡A]

B1(Lx; Ly)G(x; y) dx dy;

we have the estimate

|J |6 L2�

�2(L)

∫ ∫
[L(|x|+|y|)¡A]

|G(x; y)| dx dy

6�−2(L)
∫ ∫

[L(|x|+|y|)¡A]
A2�(|x|+ |y|)−2�|G(x; y)| dx dy:

We have for �¿ 0,

�−2(L)
∫ ∫

[L(|x|+|y|)¡A]
A2�(|x|+ |y|)−2�|G(x; y)| dx dy

6L−��−2(L)
∫ ∫

[L(|x|+|y|)¡A]
A2�+�(|x|+ |y|)−(2�+�)|G(x; y)| dx dy:

If 2� + �¡ 1, then the integral
∫ ∫

R2 A
�+�(|x| + |y|)−(2�+�)|G(x; y)| dx dy is bounded.

From that, and from the fact that L−��−2(L) → 0, as L → ∞, we have J → 0 as
L → ∞, whence the condition [C1] is satis�ed.
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Now, we prove the condition [C2]. Since B1(x; y) → 0, as |x| + |y| → ∞, then for
L large enough, and for some constant A, which does not depend on L, we have

[B1(Lx; Ly)¿�]⊂ [|x|+ |y|6AL−1]:

It follows that for any compact set K , and for some constant c,

�(L)2�({(x; y) ∈ K; B1(Lx; Ly)¿�})6 �(L)2�({(x; y) ∈ K; |x|+ |y|6AL−1})
6 c�(L)2L−2 → 0;

as L → ∞, which yields the desired result.

Now we prove the assertion (B). To prove [C1] it is su�cient to take G¿ 0. Let
a¿ 0; b¿ 0. We split B1(L; L)−1

∫ ∫
R2 B1(Lx; Ly)G(x; y) dx dy = I + J , where

I =
∫ ∫

[|x|¿a;|y|¿b]
B1(L; L)−1B1(Lx; Ly)G(x; y) dx dy

and

J =
∫ ∫

[|x|6a]∪[|y|6b]
B1(L; L)−1B1(Lx; Ly)G(x; y) dx dy:

From the monotonicity of B, and the dominated convergence theorem we have

I →
∫ ∫

[|x|¿a;|y|¿b]
G(x; y)m(x; y) dx dy as L → ∞:

Now,
G(x; y)B1(L; L)−1B1(Lx; Ly)1[0¡|x|¡|y|]6G(x; y)B1(L; L)−1B1(Lx; Lx)1[0¡|x|¡|y|]

and each of these functions converges as L → ∞. Using the same proof as in Corol-
lary 3.2 we show that the integral of the latter function converges. Combining the fact
that

∫ ∫
[0;1]2 m(x; y) dx dy¡∞, see Haan and Resnick (1979), with the following vari-

ant of Fatou’s lemma: if 06hn6gn are real-valued functions on some measure space,
and hn → h; gn → g, then

∫
hn →

∫
h provided

∫
g¡∞, we can show that

J →
∫ ∫

[|x|6a]∪[|y|6b]
G(x; y)m(x; y) dx dy;

which yields [C1]. [C2] follows from the fact that B1(x; y)→ 0 as x; y → ∞ and from
B1(L; L) ∼ L−�, as L → ∞.
We �nish this work by considering the case where 〈f(y1; ·); f(y2; ·)〉=0 for |y1|+

|y2|¿1. This example is out of the scope of Theorem 3.1. The covariance function B1
is positive and vanishing outside the ball |x| + |y|61, then the condition [C1] holds
with �(L) = L but [C2] does not hold. We want to prove the following theorem.

Theorem 3.2. Under the latter hypothesis we have for all ’ ∈ S(R)

L
∫
R
’(y)

[
exp

{∫
f(Ly; u) dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy → N(0; ’2(0)c);

where c =
∫ ∫

R2 (exp{B1(x; y)} − 1) dx dy; and

L2u(Lx; L2t)→ c
xZ
t
;

where Z is a normal random variable.



A. Dermoune et al. / Stochastic Processes and their Applications 81 (1999) 217–230 229

Proof. We will use the technique of Theorem 1:1 in Hu and Woyczynski (1995). Let
us prove that

L
∫ ∞

−∞
’(y)

[
exp

{∫
f(Ly; u) dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy

converges in distribution to N(0; ’(0)2c). Let

H (L) = L
∫ −L

−∞
’(y)

[
exp

{∫
f(Ly; u) dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy:

Then

E[|H (L)|2]6kL2
(∫ −L

−∞
’(y) dy

)2
:

Using Chebyshev’s inequality and since ’ ∈ S(R) we get H (L) → 0 in probability
as L → ∞. Similarly, we can get as L → ∞ the convergence in probability to 0 of

L
∫ ∞

L
’(y)

[
exp

{∫
f(Ly; u)dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy:

The remainder term is

L
∫ L

−L
’(y)

[
exp

{∫
f(Ly; u) dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy

= I +
∑

−L26k6L2

�k(L);

where

�k(L) = L
∫ (k+1)=L

k=L
’(y)

[
exp

{∫
f(Ly; u) dW (u)− B1(Ly; Ly)

2

}
− 1
]
dy

and I converges in probability to 0. Since B(Ly1; Ly2) =
∫
R f(Ly1; u)f(Ly2; u) du =

0 for y1 ∈ [k=L; (k + 1)=L]; y2 ∈ [j=L; (j + 1)=L] with |k − j|¿ 2, then the se-
quence �k(L);−L26k6L2 is 2-dependent sequence. It is useful to recall the following
Bulinskii (1987) result: let Xj(t); j ∈ U (t) be an m(t)-dependent �eld on a �nite set
U (t)⊂Z, and let, for some s ∈ (2; 3] and all t ¿ 0,

sup
j∈U (t)

(E[|Xj(t)|s])1=s = Cs(t)¡∞:

Then

sup
x∈R

∣∣∣∣∣∣P

�−1(t)

∑
j∈U (t)

(Xj(t)− E[Xj(t)])6x


− F(x)

∣∣∣∣∣∣
6k0|U (t)|Ms

s (t)m
s−1(t) +Ms(t)m(t) + |U (t)|1=2M 2

s (t)m
2=s(t);

where �2(t) = Var
∑

j∈U (t) Xj(t), k0 is some constant, |U (t)| is a number of points in
U (t), Ms(t) = �−1(t)Cs(t), and F(x) is the distribution function of N(0; 1).
Now we return to our proof. For (�k(L);−L26k6L2) we get |U (L)|=2L2;C3(L)6

k1L−1; 0¡k26�(L)6k3; M3(L)6k4L−1, and then we have

k0|U (L)|M 3
3 (L)2

2 +M3(L)2 + |U (L)|1=2M 2
3 (L)2

2=36kL−1;
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so that

L
∫ ∞

−∞
’(y)

[
exp

{∫
f(Ly; u)dW (u)− ||f(Ly)||2

2

}
− 1
]
dy → N(0; ’(0)2c):

Now part (i) of Theorem 2.1 combined with Remark 2.1 achieve the proof.
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