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We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D)
and Alzheimer's disease (AD)mice. Isolated brainmitochondria and homogenates from cerebral cortex and hip-
pocampus ofwild-type (WT), triple transgenic AD (3xTg-AD) and T2Dmicewere used to evaluatemitochondrial
functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers,
respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was ob-
served in T2D and 3xTg-ADmice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7)
and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of
T2D and 3xTg-ADmice.Moreover, both brain regions of 3xTg-ADmice present lower levels of nuclear respiratory
factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in
mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed
in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the
levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus
of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the
hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support
the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and
T2D.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Type 2 diabetes (T2D) is a metabolic disorder well recognized by its
widespread deleterious effects throughout the body with the brain
representing one of its major targets. It is widely accepted that persons
suffering from T2D are at increased risk for cognitive decline and the
development of Alzheimer's disease (AD) [1], often described as type
3 diabetes [2].

Neurons are metabolic active cells with high energy demands and
depend almost exclusively on mitochondria to obtain energy. The
maintenance of a healthy mitochondrial pool depends on a delicate
equilibriumbetween several processes includingmitochondrial biogen-
esis and autophagy.
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Mitochondrial biogenesis, a cellular process under tight regulation of
the nuclear genome, is of extreme significance in keeping a healthy
cellular homeostasis [3]. Indeed, in the initial steps of several patholog-
ical conditions, alterations of mitochondrial biogenesis and expression
of nuclear genes encoding mitochondrial proteins are interpreted as
adaptive responses to mitochondrial dysfunction or high energy
demands [4,5]. However, there is a lack of information about the possi-
ble alterations arising in this process in neurodegenerative diseases, and
their role in neuronal injury, although some studies already started to
dwell on this subject (for further review please see [6,7]). Evidence
from the literature shows a reduction in peroxisome proliferator-
activated receptor-gamma coactivator-1 alpha (PGC-1α) levels and in
mitochondrial number in the hippocampus of AD patients [8,9] and in
M17 cells overexpressing mutant APP [10] suggesting impaired mito-
chondrial biogenesis in AD. Additionally, alterations in mitochondrial
biogenesis are also involved in diabetes. It was previously reported
that high fat feeding leads to a decline in sirtuin (SIRT) 1 gene expres-
sion in the hippocampus ofmice suggesting a decrease inmitochondrial
biogenesis [11], given that SIRT1 activation is described as being respon-
sible for the deacetylation and activation of PGC-1α, which in turn
stimulates mitochondrial biogenesis [12]. By the contrary, a recent
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study from our group showed that in 6-month-old non-obese T2D rats
there are no significant alterations in brain mitochondrial biogenesis
[13].

Autophagy is a cellular recycling process, accountable for the degra-
dation of intracellular components including proteins and organelles,
through lysosomal degradation. Thus, the autophagic process engages
a fundamental role as cellular homeostatic and “housekeeping”mecha-
nism [14]. Evidence from the literature shows that autophagy plays a
key role in neuronal function being responsible for the removal of
damaged proteins and organelles [15]. Although the role of autophagy
in central nervous system is still unclear, it is already known that this
process is deeply involved in stress responses and cell death pathways
[14]. It was previously shown that autophagy is involved in AD-related
protein aggregation through an increased accumulation of autophagic
vesicles in the cerebral cortex [2,16] and, consequently, an accumula-
tion of amyloid β (Aβ) peptide, since autophagosomes were already
demonstrated to be an active compartment for Aβ generation [17],
and responsible for the accumulation of dysfunctional mitochondria in
neurons due to the inefficient degradation of damaged mitochondria
[18,19]. Additionally, the existence of abnormalities in the autophagic
process was also described in diabetic patients and cellular and animal
models of the disease [20–23]. Despite those studies, the role of autoph-
agy in diabetes remains uncertain.

We have previously shown that T2D and AD mice present a similar
profile of brain vascular, mitochondrial and oxidative abnormalities
[24,25]. In this line, the current study aimed to demonstrate that brain
mitochondrial function, biogenesis and autophagy are impaired in T2D
andADmice, contributing to the loss of synaptic integrity and, probably,
synapse loss. Herewe evaluatedmitochondrial functional parameters in
isolated brain mitochondria while brain cortical and hippocampal
homogenates were used to evaluate the protein levels of markers of
autophagy [mTOR, phosphoinositide 3-kinase (PI3K) p110, beclin,
PI3K class III, p62, parkin, B-cell lymphoma 2 (BCl2) and LAMP1], mito-
chondrial biogenesis [nuclear respiratory factors 1 and 2 (NRF 1 and
NRF 2) and mitochondrial transcription factor A (mTFA), NADH dehy-
drogenase subunit 1 (ND1), a mitochondrial-encoded complex I
subunit, and 70 KDa complex II subunit, a nuclear encoded protein]
and synaptic integrity [postsynaptic density protein 95 (PSD95),
synaptosomal-associated protein 25 (SNAP 25) and synaptophysin].

2. Material and methods

2.1. Animals

4-Month-old male wild type (WT) mice and triple transgenic mice
for AD (3xTg-AD) were housed in our animal colony (Animal Facility,
Faculty of Medicine/Center for Neuroscience and Cell Biology, Universi-
ty of Coimbra). WT mice were randomly divided into two groups:
1) control group and 2) sucrose-treated WT mice with free access to
20% sucrose solution during 7 months to induce a diabetic phenotype.
Mice were maintained under controlled light (12 h day/night cycle)
and humidity with free access (except in the fasting period) to water
(WT and 3xTg-AD mice at basal conditions) or 20% sucrose solution
(T2D) and powdered rodent chow (URF1; Charles River). Adhering to
procedures approved by the Federation of Laboratory Animal Science
Associations (FELASA), mice (11-month-old)were sacrificed by cervical
dislocation and decapitation at the end of treatment period.

2.2. Determination of biochemical parameters

Blood glucose levels were determined by a glucose oxidase reaction,
using a commercial glucometer (Glucometer-Elite Bayer, Portugal) and
compatible reactive tests (Ascencia Elite Bayer, Portugal). Blood insulin
levels were determined using a commercial mouse insulin kit
(Mercodia, Arium Barbosa Portugal). Blood glycated hemoglobin A1C
(HbA1C) levels were determined using a commercial DCA Vantage™
analyzer (Siemens HealthCare Diagnostics, Portugal) and compatible
HbA1C reactive tests (Siemens HealthCare Diagnostics, Portugal).

2.3. Mitochondrial fraction isolation

Brain mitochondria were isolated from mice by the method
described by Carvalho and co-workers [24], adding 0.02% digitonin to
free mitochondria from the synaptosomal fraction. In brief, the mouse
was decapitated, and thewhole brainminus the cerebellumwas rapidly
removed, washed, minced, and homogenized at 4 °C in 10 ml of isola-
tion medium (225 mM mannitol, 75 mM sucrose, 5 mM HEPES, 1 mM
EGTA, 1 mg/ml BSA, pH 7.4) containing 1.5 mg of bacterial protease
type VIII. Single brain homogenates were brought to 20 ml and then
centrifuged at 2500 rpm(Sorvall RC-5B Refrigerated Superspeed Centri-
fuge) for 5 min. The pellet, including the fluffy synaptosomal layer, was
resuspended in 10 ml of the isolation medium containing 0.02% digito-
nin and centrifuged at 10,000 rpm for 10min. The brownmitochondrial
pellet without the synaptosomal layer was then resuspended again in
10 ml of medium and centrifuged at 10,000 rpm for 5 min. The pellet
was resuspended in 10 ml of washing medium (225 mM mannitol,
75 mM sucrose, 5 mM HEPES, pH 7.4) and centrifuged at 10,000 rpm
for 5 min. The final mitochondrial pellet was resuspended in 100 μl of
the washing medium. Mitochondrial protein was determined by the
biuret method calibrated with bovine serum albumin (BSA) [26].

2.4. Mitochondrial respiration measurements

Oxygen consumption of brain mitochondria was registered polaro-
graphically with a Clark oxygen electrode [27] connected to a suitable
recorder in a thermostated water-jacketed closed chamber with
magnetic stirring. The reactions were carried out at 30 °C in 1 ml of
the standard medium (100 mM sucrose, 100 mM KCl, 2 mM KH2PO4,
5mMHepes and 10 μMEGTA, pH 7.4)with 0.5mg of protein. The respi-
ratory state 2 of mitochondrial respiration was initiated with 5 mM
succinate (mitochondrial energization through complex II) in the pres-
ence of 2 μM rotenone. The respiratory control ratio (RCR) is the ratio
between respiratory states 3 (consumption of oxygen in the presence
of succinate and 155 nmol ADP/mg protein) and 4 (consumption of
oxygen after ADP has been consumed).

2.5. Mitochondrial membrane potential (ΔΨm) measurements

ΔΨmwasmonitored by evaluating the transmembrane distribution
of the lipophilic cation tetraphenylphosphonium (TPP+) with a
TPP+-selective electrode prepared according to Kamo et al. [28] using
an Ag/AgCl-saturated electrode (Tacussel, model MI 402) as reference.
TPP+ uptake has been measured from the decreased TPP+ concentra-
tion in the medium sensed by the electrode. The potential difference
between the selective electrode and the reference electrode was mea-
sured with an electrometer and recorded continuously in a Kipps and
Zonen recorder. The voltage response of the TPP+ electrode to log
[TPP+] was linear with a slope of 59 ± 1, in a good agreement with
theNernst equation. Reactionswere carried out in a chamberwithmag-
netic stirring in 1 ml of the standard medium containing 3 μM TPP+.
This TPP+ concentrationwas chosen in order to achieve high sensitivity
in measurements and to avoid possible toxic effects on mitochondria
[29]. The ΔΨm was estimated by the equation: ΔΨm (mV) = 59
log(v/V) − 59 log(10ΔE/59 − 1) as indicated by Kamo et al. [28] and
Muratsugu et al. [30]. v, V, and ΔE stand for mitochondrial volume,
volume of the incubation medium and deflection of the electrode
potential from the baseline, respectively. This equation was derived
assuming that TPP+ distribution between the mitochondria and the
medium follows the Nernst equation, and that the law of mass
conservation is applicable. Amatrix volume of 1.1 μl/mg proteinwas as-
sumed. No correction was made for the “passive” binding contribution
of TPP+ to the mitochondrial membranes, because the purpose of the
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experiments was to show relative changes in potentials rather than
absolute values. As a consequence, we can anticipate a slight overesti-
mation on ΔΨmvalues. However, the overestimation is only significant
at ΔΨm values below 90 mV, therefore, far from our measurements.
Mitochondria (0.5 mg/ml) were energized with 5 mM succinate in the
presence of 2 μM rotenone. After a steady-state distribution of TPP+

had been reached (ca. 1 min of recording), ΔΨm fluctuations were
recorded.

2.6. Determination of adenine nucleotide levels

At the end of each ΔΨm measurement, 250 μl of each sample was
promptly centrifuged at 14,000 rpm (Eppendorf centrifuge 5415C) for
2 min with 250 μl of 0.3 M perchloric acid (HClO4). The supernatants
were neutralized with 10 M KOH in 5 M Tris and again centrifuged at
14,000 rpm for 2 min. The resulting supernatants were assayed for ade-
nine nucleotide by separation in a reverse-phase high performance
liquid chromatography (HPLC). The HPLC apparatus was a Beckman-
System Gold, consisting of a 126 Binary Pump Model and 166 Variable
UV detector controlled by a computer. The detection wavelength was
254 nm, and the column was a Lichrospher 100 RP-18 (5 μm) from
Merck. An isocratic elution with 100 mM phosphate buffer (KH2PO4;
pH 6.5) and 1.2% methanol was performed with a flow rate of
1 ml/min. The required time for each analysis was 5 min. Adenine
nucleotides were identified by their chromatographic behavior (reten-
tion time, absorption spectra and correlation with standards).

2.7. Protein extraction for Western blot

Cerebral cortices and hippocampi were homogenized in buffer
containing 50 mM trizma hydrochloride (Tris–HCl), 150 mM sodium
chloride (NaCl), 1% NP-40, 1% sodium deoxycholate (DOC) and 0.1%
sodiumdodecyl sulfate (SDS) (pH 7.4), protease inhibitors (commercial
protease inhibitor cocktail from Roche), phosphatase inhibitors
(commercial phosphatase inhibitor cocktail from Roche), 0.1 M
phenylmethanesulfonyl fluoride (PMSF) (Sigma), 0.2 M dithiothreitol
(DTT) (Sigma), frozen three times in liquid nitrogen and centrifuged
at 14,000 rpm (Eppendorf Centrifuge 5415C) for 10 min. The
Table 1
List of primary antibodies used in Western blot analyses.

Protein Reference Dilution

ATG7 Cell Signaling catalog #2631 1:1000
β-Actin Sigma Aldrich catalog #A5441 1:5000
Bcl-2 (50E3) Cell Signaling catalog #2870 1:1000
Beclin BD Bioscience catalog #612113 1:1000
LAMP 1 (C54H11) Cell Signaling catalog #3243 1:1000
LC3B Sigma Aldrich catalog # L7543 1:1000
Phospho-mTOR
(Ser2448)

Cell Signaling catalog #2971 1:1000

mtTFA (A-17) Santa Cruz Biotechnology catalog #
sc-23588

1:1000

mTOR (L27D4) Cell Signaling catalog #4517 1:1000
ND1 (C-18) Santa Cruz Biotechnology catalog #

sc-20493
1:500

NRF-1 (H-300) Santa Cruz Biotechnology catalog #
sc-33771

1:1000

Nrf2 Abcam catalog # ab31163 1:1000
Anti-p62/SQSTM1 Sigma Aldrich catalog #p0067 1:1000
Anti-Parkin [PRK8] Abcam catalog #ab77924 1:1000
PI3 Kinase Class III
(D9A5)

Cell Signaling catalog #4263 1:1000

PI3 Kinase p110α
(C73F8)

Cell Signaling catalog #4249 1:1000

PSD95 (D27E11) Cell Signaling catalog #3450 1:1000
mtTFA (A-17) Santa Cruz Biotechnology catalog #

sc-23588
1:1000

SNAP 25 (SP12) Sigma Aldrich catalog #S5187 1:1000
Synaptophysin Sigma Aldrich catalog #S5768 1:1000
supernatants represent the cytosolic fractions and the resulting pellets
the membrane fractions. The amount of protein content in the samples
was measured using the bicinchoninic acid (BCA) protein assay kit
(Pierce).

2.8. Western blot

The samples were resolved by electrophoresis in 10% SDS-polyacryl-
amide gels and transferred to polyvinylidene difluoride (PVDF)
membranes. Non-specific binding was blocked by gently agitating the
membranes in 5% BSA and 0.1% Tween in Tris-buffered saline (TBS)
for 1 h at room temperature. The blots were subsequently incubated
with specific primary antibodies (Table 1), overnight at 4 °C,with gentle
agitation. Blots were washed three times (3 × 10 min), with TBS
containing 0.1% Tween (TBS-T) and then incubated with secondary an-
tibodies for 2 h at room temperature with gentle agitation. After three
washes with TBS-T specific bands of immunoreactive proteins were vi-
sualized after membrane incubation with enhanced chemifluorescence
(ECF) for 5 min in a VersaDoc Imaging System (Bio-Rad), and the
density of protein bandswas calculated using theQuantity One Program
(Bio-Rad).

2.9. Statistical analysis

Results are presented as mean ± SEM of the indicated number of
experiments. Statistical significance was determined using the one-
way ANOVA followed by the post-hoc Tukey's test.

3. Results

3.1. Mice characterization

Sucrose-treated mice presented a significant increase in body
weight, and a decrease in brain weight when compared with WT
mice. Moreover, sucrose intake promoted an increase in blood glucose,
HbA1C and insulin levels (Table 2), when compared with the respective
WT control mice. The alterations induced by sucrose intake are pheno-
typic characteristics of T2D. 3xTg-AD mice presented a significant
decrease in body and brain weight (Table 2). Interestingly, 3xTg-AD
mice also showed increased HbA1C and postprandial glucose levels
when compared with WT control mice (Table 2).

3.2. T2D and 3xTg-AD mice showed impaired mitochondrial function

Mitochondria from 3xTg-AD and T2D mice presented a similar
decrease in RCR, ΔΨm and ATP/ADP ratio when compared with mito-
chondria isolated from WT control mice (Table 3).

3.3. Insulin-dependent regulation of autophagy is not significantly altered
in T2D and 3xTg-AD mice

Themammalian target of rapamycin (mTOR) complex has a key role
in insulin-dependent regulation of autophagy. No significant alterations
in the levels of phosphorylatedmTOR (p-mTOR)were observed (Fig. 1B
Table 2
Animal characterization.
Data shown represent mean ± SEM from 6–8 animals. Statistical significance: *p b 0.05;
**p b 0.01; ***p b 0.001 when compared with wt control animals. HbA1C — Blood glycated
hemoglobin A1C.

WT control WT sucrose 3xTg-AD

Body weight (g) 34.72 ± 1.08 43.41 ± 1.24*** 30.74 ± 0.70**
Brain weight (g) 1.06 ± 0.07 0.75 ± 0.08* 0.65 ± 0.07**
Occasional glycemia (mg/dl) 122.40 ± 7.90 144.00 ± 5.58* 119.70 ± 7.62
Insulin levels (μg/l) 1.22 ± 0.19 4.73 ± 0.88*** 0.97 ± 0.18
HbA1C % 3.42 ± 0.09 3.81 ± 0.07* 3.93 ± 0.10*



Table 3
Effects of T2D and AD onmitochondrial respiratory control ratio (RCR), membrane poten-
tial (ΔΨm) and energy levels.

WT T2D 3xTg-AD

RCR 3.36 ± 0.20 2.82 ± 0.08* 2.80 ± 0.12*
ΔΨm (-mV) 223.10 ± 3.98 201.50 ± 2.86*** 198.20 ± 1.56***
ATP/ADP 9.19 ± 0.96 4.03 ± 1.20* 4.39 ± 1.38**

These mitochondrial parameters were evaluated in freshly isolated brain mitochondrial
fractions (0.5 mg) in 1 ml of the reaction medium supplemented with 3 μM TPP+ and
energized with 5 mM succinate in the presence of 2 μM rotenone. Adenine nucleotide
levels (ATP and ADP) were determined by HPLC, as described in Materials and methods
section. Data shown represent mean ± SEM from 6–8 independent experiments. Statisti-
cal significance: *p b 0.05; **p b 0.01; ***p b 0.001 when compared with WT control ani-
mals; $p b 0.05; $$p b 0.01 when compared with 3xTg-AD animals.
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and C). Accordingly, the levels of phosphatidylinositol-4,5-bispho-
sphate 3-kinase (PI3K) (p110), a kinase responsible for the phosphory-
lation of mTOR, is not significantly changed in both cerebral cortex and
hippocampus of T2D and 3xTg-AD mice (Fig. 1D and E).

3.4. The nucleation phase of autophagy is altered in T2D and 3xTg-ADmice

Autophagy is a highly regulated process that can also be activated by
an insulin-independent pathway. The autophagy nucleation process
occurs through the beclin/parkin/PI3K class III complex. A slight in-
crease in beclin levels, a protein involved in the nucleation phase of
autophagy (Fig. 2B and C) in both cerebral cortex and hippocampus
was observed in T2D and 3xTg-ADmice. A slight decrease in B-cell lym-
phoma 2 (BCL2) levels (Fig. 2F and G), a beclin repressor, in the hippo-
campus of T2D and 3xTg-AD mice was also observed. Furthermore, an
increase in PI3K class III kinase, an activator of beclin-induced nucle-
ation, was observed in the cerebral cortex and hippocampus of both
groups of mice although only statistically significant in the cerebral
cortex of 3xTg-AD (Fig. 2D and E). Also, the cerebral cortex and hippo-
campus of 3xTg-AD mice presented a significant increase in parkin
levels (Fig. 2H and I).

3.5. The elongation phase of autophagy is disturbed in T2D and 3xTg-AD
mice

Autophagy-related genes (ATG) are involved in the control of
autophagosome formation, cargo gathering and trafficking to the
Fig. 1. T2D and AD effects in PI3K (p110)/mTOR-dependent autophagy inhibition. Western bl
(D) and hippocampus (E) PI3K (p110) protein levels. Data shown represent mean ± SEM from
lysosomal compartment [31]. Therefore, alterations in proteins involved
in these mechanisms can compromise the clearance of damage organ-
elles and aggregated proteins. A significant decrease in ATG7 levels in
the cerebral cortex and hippocampus of T2D and 3xTg-AD mice
(Fig. 3D and E) was observed, suggesting a disruption in the elongation
phase of the autophagosome formation. A slight decrease in LC3-II
protein levels was also observed in the cerebral cortex of T2D and
3xTg-AD mice (Fig. 3B). No significant alterations were observed on
p62 levels (Fig. 3F and G).
3.6. Decreased lysosomal membrane stabilization occurs in T2D and AD
mice

The lysosomal-associated membrane protein 1 (LAMP1) is a marker
of lysosome mass [32]. No significant alterations were observed in the
levels of LAMP1 (Fig. 4F and G). However, a decrease in the levels of
glycosylated LAMP1was observed in the cerebral cortex and hippocam-
pus of T2D and 3xTg-AD mice although only statistically significant in
the last group of animals (Fig. 4B and C). Lower LAMP1 glycosylation
suggest decreased lysosomal membrane stabilization.
3.7. A decrease in mitochondrial biogenesis is observed in both T2D and
3xTg-AD mice

Since the balance betweenmitochondrial biogenesis and turnover is
essential to maintain a healthy mitochondrial pool, we also evaluated
the levels of three key proteins involved in mitochondrial biogenesis,
NRF1, NRF2 and mTFA. A decrease in the levels of NRF1 was observed
in the cerebral cortex and hippocampus of T2D and 3xTg-AD mice,
although only statistically significant in the cerebral cortex of 3xTg-AD
mice (Fig. 5D and E). Also, a decrease in NRF2 levels was observed in
T2D and 3xTg-AD mice, this decrease being statistically significant in
the hippocampus (Fig. 5F and G). An increase in mTFA levels was also
observed although only statistically significant in the cerebral cor-
tex of T2D mice (Fig. 5A and B), suggesting a compensatory re-
sponse to mitochondrial damage. The levels of the mitochondrial
encoded ND1 subunit were found to be decreased (Fig. 6B and C),
particularly in the cerebral cortex of T2D mice while no alterations
were observed in the nuclear-encoded complex II subunit (Fig. 6D
and E).
ot representative images (A), cortex (B) and hippocampus (C) pmTOR/mTOR and cortex
5–7 animals.
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3.8. A loss of synaptic integrity occurs in T2D and AD mice

Since brain cells, particularly neurons, are highly reliant on mito-
chondria, alterations inmitochondrial homeostasiswill have a profound
impact on cells' integrity and function. In order to evaluate synaptic
integrity, we measured the levels of the presynaptic proteins, SNAP 25
and synaptophysin, and the post-synaptic protein PSD95. A decrease
in SNAP 25 was observed in both cerebral cortex and hippocampus of
T2D and 3xTg-AD mice reaching statistical significance only in the
hippocampus (Fig. 7F and G). Concerning synaptophysin a slight
decrease was observed particularly in the hippocampus of T2D and
3xTg-AD mice (Fig. 7D and E). Additionally, we also observed a signifi-
cant decrease in PSD95 levels in the cerebral cortex and hippocampus
of 3xTg-AD mice and hippocampus of T2D mice (Fig. 7B and C).

4. Discussion

This study shows altered autophagy markers in the cerebral cortex
and hippocampus of T2D and 3xTg-AD mice, particularly a decrease in
ATG7 and glycosylated LAMP1 protein levels, which suggest a defective
elongation phase of the autophagosome formation and a destabilization
of the lysosomal membranes, respectively. Also, a decrease in NRF1 and
NRF2 levels occur in T2D and 3xTg-AD brain cortex and hippocampus,
respectively, suggesting a decrease in mitochondrial biogenesis, which
Fig. 2. T2D and AD effects in autophagy nucleation phase. Western blot representative images (
cortex (F) and hippocampus (G) BCL2 and cortex (H) and hippocampus (I) parkin protein leve
may underlie the decrease in ND1 levels, a mitochondrial DNA encoded
protein. The imbalance observed in mitochondrial biogenesis and
autophagy could contribute to the impairment of mitochondrial func-
tion in both T2D and 3xTg-AD mice. Because neuronal cells are highly
dependent on a healthy pool of mitochondria, alterations in these
organelles will affect neurons structure and function. In fact, a signifi-
cant decrease in SNAP25 and PSD95 protein levels was observed in
the cerebral cortex andhippocampus of T2Dand 3xTg-ADmice suggest-
ing a loss of synaptic integrity.

Sucrose intake promoted a significant increase in occasional blood
glucose, HbA1C, and insulin levels and body weight (Table 2), which
are phenotypic characteristics of T2D [24,25]. Furthermore, 3xTg-AD
animals presented a decrease in body and brain weight (Table 2)
features also observed in AD patients [33–35].

Mitochondria isolated from the brains of T2D and 3xTg-AD animals
presented an impairment of the respiratory chain and oxidative
phosphorylation system (Table 3). Together those alterations can be re-
sponsible for the lower levels of ATP observed in this study (Table 3).
These results are in agreementwith previous studies from our laborato-
ry showing that T2D and 3xTg-AD mice present significantly decreased
activities of the mitochondrial respiratory enzyme complexes in brain
vessels and synaptosomes as well as brain mitochondrial oxidative
and ultrastructural alterations [24,25] supporting the idea that mito-
chondrial dysfunction is a common denominator between T2D and AD.
A), cortex (B) and hippocampus (C) beclin, cortex (D) and hippocampus (E) PI3K class III,
ls. Data shown represent mean ± SEM from 5–7 animals.



Fig. 3. T2D and AD effects in autophagy elongation phase.Western blot representative images (A), cortex (B) and hippocampus (C) LC3-II, cortex (D) and hippocampus (E) ATG7 and cor-
tex (F) and hippocampus (G) p62 protein levels. Data shown represent mean ± SEM from 5–7 animals.
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Insulin and insulin-like growth factors regulate mTOR through the
class I PI3K [36]. No significant alterations in PI3K (p110) (Fig. 1D and
E) and phosphorylated (activated) mTOR (p-mTOR) (Fig. 1B and
C) levels were observed. The role of mTOR in several disorders appears
to be conflicting. Indeed, down-regulation of mTOR signaling was
reported in the brains of APP/PS1mutant transgenicmice [37] although
in 7PA2 cells overexpressing mutant APP and in brains of PDAPP mice
[also known as hAPP(J20)], another AD transgenicmouse, mTOR signal-
ing was shown to be up-regulated [38,39]. A previous study from our
laboratory showed that 6-month-old Goto-Kakizaki rats, a model of
non-obese T2D, presented an increase in the levels of p-mTOR in the
cerebral cortex [13] however, STZ-induced type 1 diabetic rats did not
present any alterations in p-mTOR, suggesting that different types
and/or duration of diabetes may be characterized by different patterns
of mTOR activation. Additionally, studies in lean and obese Zucker rats
skeletal muscle also showed that the levels of p-mTOR are not altered
[40] while in db/db mice hearts p-mTOR seems to be increased [41]
revealing the existence of tissue specificities. Also, it is known that
mTOR activation can occur through the phosphorylation of one of
three residues and only S2448 (the most common analyzed residue)
was evaluated in our study.

Concerning the nucleation phase of autophagy, only a slight increase
in the levels of beclin and PI3K class III and a decrease in BCL2 was
observed, particularly in cerebral cortex (Fig. 2B, D and F), although
previous studies have shown that the levels of beclin, PI3K class III and
BCL2 are decreased in AD and T2D brains [42–45]. Under physiological
conditions BCL2 inhibits autophagy by sequestering beclin and avoiding
its interaction with PI3K class III, which is required for the initiation of
autophagy nucleation [44]. However, we must be aware that different
models of disease may contribute to distinct observations. Moreover,
parkin seems to be implicated in a different pathway involved in the
stimulation of autophagic clearance of cellular waste [46]. A statistical
significant increase in parkin protein levels in both cerebral cortex and
hippocampus of 3xTg-AD mice (Fig. 2H and I) was observed, which is
in agreement with the study of Lonskaya and coworkers [47] showing
a significant increase in total parkin levels (130%, p b 0.05) in human
postmortem AD brains. The same authors suggested that an increase
in parkin insolubility occur in AD brains that may be related with a
decrease in parkin phosphorylation affecting the interaction of parkin
with beclin-1 [47].

After nucleation, the autophagosome suffers an elongation phase, a
process that involves several proteins such as LC3-II, p62 and ATG7.
Although no significant alterations were observed in p62 levels
(Fig. 3F and G), the levels of ATG7, an activating enzyme, are significant-
ly decreased in the cerebral cortex and hippocampus of 3xTg-AD and
T2Dmice (Fig. 3D and E). Furthermore, a slight decrease in LC3-II levels
in the cerebral cortex of T2D and 3xTg-AD mice occurred (Fig. 3B). Our
results are in agreementwith studies performedby Yang and coworkers
[48] where both genetic (ob/ob mice) or dietary (through high fat diet)
models of T2D presented decreased levels of hepatic ATG7. Indeed, it
has been described that a decrease in ATG7 levels leads to a defective
evolution of the autophagic process [48] and autophagy can be restored
by increasing the expression of ATG7 alone [49]. Furthermore, animals
lacking ATG7 protein exhibit motor and behavioral deficits and disrup-
tion in intracellular transport and secretion of Aβ, playing a key role in
Aβ plaque formation, which emphasizes the importance of a constitu-
tive level of autophagosome formation for neuronal survival even in
the absence of any disease factor that could elicit an autophagic
response [50–53]. Accordingly, we previously showed that 11-month-
old T2D and 3xTg-AD mice present pronounced behavioral deficits
[54], alterations that may also be related with ATG7 protein deficits.

Also, a significant decrease in glycosylated LAMP1 levels occurred in
the cerebral cortex and hippocampus of T2D and 3xTg-ADmice (Fig. 4B
and C), a modification necessary for LAMP1 stabilization in lysosome



Fig. 4. T2D and AD effects in autophagy maturation phase. Western blot representative images (A), cortex (B) and hippocampus (C) glycosylated LAMP-1, cortex (D) and hippocampus
(E) non-glycosylated LAMP-1 and cortex (F) and hippocampus (G) total LAMP-1 protein levels. Data shown represent mean ± SEM from 5–7 animals.

Fig. 5. T2D and AD effects in mitochondrial biogenesis regulation factors. Western blot representative images (A), cortex (B) and hippocampus (C) mTFA, cortex (D) and hippocampus
(E) NRF1 and cortex (F) and hippocampus (G) NRF2 protein levels. Data shown represent mean ± SEM from 5–7 animals.

1671C. Carvalho et al. / Biochimica et Biophysica Acta 1852 (2015) 1665–1675



1672 C. Carvalho et al. / Biochimica et Biophysica Acta 1852 (2015) 1665–1675
membranes, presumably protecting them against proteolytic degrada-
tion [55]. The use of LAMP1 as a marker of lysosome mass is often
reported [32] and an increase in LAMP1 levels in AD brains was already
showed [56] however, to our knowledge, there are no studies reporting
the levels of lysosomal stabilization. This alteration may contribute to
the accumulation of autophagosomes, a situation already described in
AD patients and animal models [57,58].

The impairment of autophagy is expected to cause the accumulation
of toxic proteins such as Aβ and damaged organelles, particularly mito-
chondria. In fact, a previous study from our laboratory demonstrated
that T2D mice brains present an accumulation of Aβ similar to that
observed in 3xTg-AD [24,25]. Son and coworkers also showed that the
increase in Aβ production in insulin-resistance conditions resulted
from an accumulation of autophagosomes due to alterations in autoph-
agic flux resulting from the inhibition of mTOR [2,22].

Besides the alterations observed in the autophagic process, an
impairment of mitochondrial biogenesis in both T2D and 3xTg-AD
mice (Fig. 5) also seems to occur. It is known that a delicate balance
between mitochondrial biogenesis and turnover is essential for the
normal function of cells [59]. Since cells are not able to produce mito-
chondria “de novo”, they rely on a transcriptional system of mitochon-
drial biogenesis that is highly regulated by nuclear regulatory proteins,
mainly NRF1, NRF2 and mTFA [60]. NRF1 is a transcriptional activator
of nuclear genes that encode a number of mitochondrial respiratory
enzymes, including subunits of the five respiratory chain complexes
[61]. Likewise, NRF1 is also necessary for the activation of mTFA [62]
rendering it essential for mitochondrial biogenesis [61], once it is
required for mtDNA transcription and replication [63]. A decrease in
NRF1 levels was observed in both T2D and AD, although only statistical-
ly significant in 3xTg-AD mice cerebral cortex (Fig. 5D and E). Previous
studies showed significant alterations of NRF1 levels in skeletal muscle
of GK rats [64] or testis of a high-energy-diet induced pre-diabetic rat
model [65]. Also, in retina from streptozotocin-induced type 1 diabetic
rats, maintained in poor or good glycemic control, no alterations were
observed in NRF1 levels [66] revealing consistent results in this protein
levels in diabetic conditions. Pedrós and coworkers observed significant
reductions in NRF1 transcripts in APP/PS1 animals, when compared to
control animals [67]. NRF2 is also highly involved in mitochondrial
biogenesis and antioxidant defense factors expression. In the present
studywe observed a significant decrease in NRF2 levels in hippocampus
Fig. 6. T2D and AD effects in ND1 and 70KDa complex II subunits of mitochondrial respiratory
(C) ND1 and cortex (D) and hippocampus (E) complex II protein levels. Data shown represent
of both T2D and 3xTg-ADmice (Fig. 5G). These results are in accordance
with the decrease in antioxidant defenses in the brains of T2D and 3xTg-
ADmice, as previously reported [24]. It was also observed a decrease in
NRF2 transcripts in hippocampi of 3-month-old APP/PS1 animals [67]
and presenilin 1/2 knockout cells [68] as well as in the hearts of STZ-
induced type 1 diabetic mice and diabetic patients [69]. Furthermore,
NRF2 is associated with the transcriptional activity of all ten subunits
of cytochrome c oxidase [70], which is in accordance with a previous
study demonstrating a decreased activity of cytochrome c oxidase in
synaptosomes from T2D and 3xTg-AD mice [25]. Besides NRF1, also
NFR2 is involved in the activation of mTFA [62,63]. Surprisingly, we ob-
served an increase in mTFA levels (Fig. 5B and C), particularly in the ce-
rebral cortex of T2D mice. Santos and Kowluru [71] reported that
although diabetic rats present an increase in mTFA levels, there is a de-
fective membrane transport of mTFA into the mitochondria, and
consequently a decrease inmTFA–mtDNAbinding,which results in sub-
normal mitochondria transcription [71]. We believe that a similar
mechanism may occur in the brains of T2D and 3xTg-AD mice since
we observed a decrease in ND1 protein levels, particularly in the cere-
bral cortex of T2D mice (Fig. 6B and C), supporting the idea that under
our experimental conditions mTFA could not be activated. ND1 is a
mitochondrial encoded protein of mitochondrial respiratory chain and
its decreased levels affectmitochondrial function (Table 2), as previous-
ly reported [24,25]. Although the decrease in ND1 levels is not so
pronounced compared with mitochondrial dysfunction, we must be
aware that ND1 protein function may be altered under diseased
conditions.

Because mitochondria are essential organelles for neuronal cells, we
evaluated synaptic integrity in the cerebral cortex and hippocampus of
T2D and 3xTg-AD mice. A decrease in synaptic integrity was described
to occur in rodent diabetic brains [72,73]. Oddo and colleagues also
reported the existence of synaptic dysfunction in the 3xTg-AD mice in-
cluding synaptic transmission and long-term potentiation (LTP) deficits
[74]. Although the mechanism of synapse loss in AD remains uncertain,
several studies reported a loss of synaptic integrity in AD terminals of
human brains [75]. We observed a decrease in PSD-95 levels in cerebral
cortex and hippocampus of T2D and 3xTg-AD mice, although only
statistically significant in the hippocampus (Fig. 7B and C). PSD-95
supports synapse maturation wielding a major influence on synaptic
strength and plasticity [76]. On the other hand, only a non-significant
chain complexes. Western blot representative images (A), cortex (B) and hippocampus
mean ± SEM from 5–7 animals.



Fig. 7. T2D and AD effects in synaptic integrity.Western blot representative images (A), cortex (B) and hippocampus (C) PSD-95, cortex (D) and hippocampus (E) synaptophysin and cor-
tex (D) and hippocampus (E) SNAP 25 protein levels. Data shown represent mean ± SEM from 5–7 animals.
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decrease in the levels of synaptophysin was observed (Fig. 7D and E).
Accordingly, Gylys and coworkers reported that the decrease in PSD95
levels (19%) was greater than that of synaptophysin in APPsw
(Tg2576) transgenic mice and in AD patients' temporal cortex [75].
Synaptophysin, whose function remains unclear, seems to be necessary
for kinetically efficient endocytosis of synaptic vesicles in neurons [77].
Similar to our observations (Fig. 7F and G), other studies demonstrate a
decrease in SNAP25 levels in the brain of AD patients [78]. SNAP25 par-
ticipates in docking and/or fusion of synaptic vesicles with the
plasmalemma, a process essential for synaptic vesicle exocytosis [78].
It was previously reported that high levels of glucose decrease SNAP25
levels in hippocampal neurons while no alterations were observed in
synaptophysin levels [79]. The alterations in synaptic integrity
are associated with deficits in learning and memory, as previously
shown [25].

Altogether our results show that the cerebral cortex and hippocam-
pus of T2D and 3xTg-AD mice are characterized by mitochondrial func-
tion and biogenesis and autophagy impairments contributing to the loss
of synaptic integrity. These observations reinforce the idea that T2D in-
creases the risk of developing cognitive deficits and AD and suggest that
mitochondrial biogenesis and autophagy may represent important tar-
gets for therapeutic intervention.
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