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Abstract—A chain-binomial deterministic model for the spread of an infectious disease
of the S-1-S type is formulated that accounts explicitly for the distribution of the number
of contacts made by each susceptible during one time interval. Under certain hy-
potheses, a threshold theorem for endemicity is derived. bounds for the endemic level
are constructed. and the transient behavior of the epidemic process is investigated.

1. INTRODUCTION

In a recent paper, Ingenbleek and Lefevre[l] have investigated a discrete time model for
the interactive diffusion of an information in a social group. In the epidemiological context,
this model can be used to describe the spread of an infectious disease of the S-1-S (sus-
ceptible-infectious-susceptible) type. More specifically, the chain-binomial process con-
sidered is the following Markov chain. A closed and homogeneously mixing population
of N individuals is subdivided in two disjoint classes: the infectives, in number /(¢) at
time ¢, and the susceptibles, in number S(¢t) = N — I(t)attimet.t = 0. 1.2,....The
propagation of the disease is governed by two independent processes. On the one hand.
each of the I(t) infectives has the probability g, 0 < g < |, to recover and return to the
susceptible state at time ¢ + | (recovery process). On the other hand, each of the N —
I(t) susceptibles becomes infectious at time ¢ + | if he has at least one effective contact
with an infective during (¢, ¢+ + 1]; such a contact between two given individuals occurs
with the probability p, 0 < p < 1 (infection process). Consequently, given the state I(1).
I(t + 1) is defined as the following sum of two independent binomial variables:

I(t + 1) ~ Binomial [/(z), | — g] + Binomial [N — I{t), | — (1 — p)!]. (1)
The deterministic model associated with (1) is constructed in a phenomenological way by
identifying the conditional expectation E[{(+ + 1) | I(¢)] to I(t+ + 1). Let us denote this

quantity by i(z + 1). We then obtain that i(+ + 1) obeys the following first-order difference
equation:

i(r + 1) =1 = g)(t) + [N = i(0)}{{1 = (1 = p)"]. (2)
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786 CrLaUDE LeFevRE AND MaRrige-Pierre MavLice

The reader is referred to Ingenbleek and Lefévre{l] for a study and comparisén of the
stochastic and deterministic formulations.

A limitation of this model is that the infection process does not account for the dis-
tribution of the number of contacts made by each susceptible during one time interval.
A similar criticism has been pointed out by Dietz and Schenzle(2] for the classical Reed-
Frost epidemic model, which is a chain-binomial model of the S-I-R (susceptible-infec-
tious-removed) type (see. e.g., Bailey[3]). The purpose of the present work is precisely
to introduce this factor in the above model and to examine its implications for the prop-
agation of the infectious disease. The problem will be discussed here only for the deter-
ministic version of the model, but we hope to be able to treat the stochastic version in
the near future.

The paper is structured as follows. We present in Sec. 2 the new modeling of the
infection process. Under certain hypotheses. we derive in Sec. 3 a threshold theorem
which states the conditions leading to an endemic situation: we then construct in Sec. 4
upper and lower bounds for the endemic level: and we finally investigate in Sec. 3 the
transient behavior of the disease process.

2. MODELING OF THE INFECTION PROCESS

Let us consider the population of size V described in the introduction. Following Dietz
and Schenzle[2], we suppose that during one time interval, each susceptible can make a
random number R of contacts with other individuals of the population. The distribution
of R is assumed independent of the number of infectives present; it can, however, depend
on the population size N. We denote by G(z) = > 7= p;/. 0 < 7 < I, the probability
generating function (PGF) of R, and for the sequel, we make the natural hypothesis 0 <
E(R?) < =,

As announced, the present work is only concerned with the deterministic version of
the model. Let us suppose that at time t. there are i(¢) infectives in the population. For
simplicity, we omit the argument 7 in this section, and we denote by y = y(r) the proportion
of infectives at time ¢, that is, ¥ = /N, The probability for a given susceptible at r who
meets another individual during (7. t + 1] to have an infectious contact depends, of course,
on the proportion y of infectives present at ¢. This probability is denoted by ¢(y), and we
now specify its functional form. It is clear that most often, ¢(v) = ¢v, 0 < ¢ < 1, which
means that each infective can transmit the infectious agent independently and with the
same probability ¢. This is the hypothesis made implicitly by Dietz and Schenzle[2] (with
¢ = 1), and it corresponds to the standard case treated in the literature. This specification
for ¢(y) will receive a particular attention in the next sections. In some situations, how-
ever, ¢(») might have a more complicated nonlinear form, such as (i) ¢(v) = ¢y“. 0 < ¢
sl,a>0,or (i) ¢(y) = ¢by/(b — 1 + ¥).0< @ =1, b > 1. Similar types of interaction
terms have been considered by Severo[4] and Capasso and Serio{5]. respectively. In fact,
a general hypothesis which seems reasonable in practice is that ¢(v) is a continuous
increasing function of v, with ¢(0) = 0 and 0 < ¢(1) = 1. This assumption is therefore
retained for the sequel. In addition. for technical reasons. we will also suppose that the
function ¢(y) is concave—this is verified. for example, if ¢(y) has the above expression
(i) with 0 < a = 1, or (ii). The case where ¢(y) is not concave leads to qualitatively
different results and is not examined here.

Let us denote by C the random variable representing the total number of infectious
contacts made by a given susceptible during one time interval. By adapting the argument

of Dietz and Schlenzle[2}, we then deduce that the PGF of C during (¢, t + 1] is equal
to

E(z]y) = Gll — ¢y + oz, 0=sz<l G

&4
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Finally, let us make the usual assumption that a given susceptible becomes infectious
if he has at least one effective contact with an infective during one time interval. Thus a
given susceptible at ¢ will become infectious at r + | with the probability P,(y) given by

Pi(y) = P[C=1]y¥]
=1 - G[l — ¢ ()

It is interesting to show that this modeling of the infection process generalizes in some
sense the one considered in the introduction.

Particular case. Let us suppose that R ~ Poisson (AN) and ¢{(v) = ¢y. Puttingp = 1
— exp(—Ag¢), we obtain from (4) that

Pi(y) =1~ =p, (3)

with Ny = i, which is precisely the interaction term introduced in (2). Therefore, the
standard hypothesis of a constant probability p for an effective contact between any given
pair of individuals can be viewed as corresponding to a particular case of the above
modeling. This result has been pointed out and commented by Dietz and Schlenzle[2]
(with ¢ = 1).

We close by mentioning that an extension of the model allowed by this approach con-
sists in supposing that a susceptible becomes infectious if the number C of his infectious
contacts is at least equal to & + 1, where k is a nonnegative integer. This situation has
been studied by Lefevre[6] in the case where ¢ = 1 and ¢(y) = v.

3. THRESHOLD THEOREM WHEN ¢(v) IS CONCAVE

Let us incorporate this new infection process in the deterministic epidemic model pre-
sented in the introduction. From (4), the recurrence relation (2) for i{(¢) becomes

it + 1) = (1 — g)i(t) + [N — i()]P,[y(1)]
= (1 ~ Qi) + [N = i)l = Gl ~ ¢(x(N]}. (6)

Dividing (6) by N, we deduce that y(r) = i(t)/N is solution of the first-order difference
equation

yit + ) = fly(nl (7)

where

iyl =1 = gy() + [1 - y(OI{1 = G[I = ¢(y(eNI} (8)

We note that the function f(y) is continuous and maps {0, ] into [0. 1}. with f(0) = 0
and f(l) =1 — g <1,

Since by hypothesis, ¢(y) is concave, it is directly verified that f{y) is concave too.
Consequently, we can now establish the following theorem which generalizes the theorem
2 proved by Leféevre(6]. Let m; = G'(1) = E(R).

Theorem I. If m ¢’ (0) < g, the sequence v(¢) converges to 0 as t — = for any 0 < »v(0)
< 1. If m,¢’(0) > g. the function f(y) has two fixed points, 0 and y*, the last one being
the positive root of the equation

y = (g1 — w{l = Gl - ¢} &4
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The state 0 is unstable, while the state v* is globally stable in the sense that ¥(¢) converges
toy*ast— x forany 0 < y(0) = 1.

Proof. As f(y) is continuous and concave, with f(0) = O and f(1) = | — g < 1, the
state 0 is necessarily a fixed point of f(y). and there exists another fixed point y* > 0 iff
f') > 1, that is, m¢'(0) > g. Clearly, v* is the positive solution of (9) and is locally
stable. By a theorem of Rosenkranz{7], a necessary and sufficient condition for the global
stability of y* is that if f(y) has a maximum in vy, € (0, ¥*), then f(f(y)] > v forall ¥y €
(¥ar, ¥*). From (8), we find that f'(y) > —1 for all y € (0, 1), and it is easily seen that
this inequality implies that the Rosenkranz condition is well satisfied.

Comments. The theorem states that if m,¢’'(0) < g, the disease dies out ultimately,
while if m,¢'(0) > g, the infection becomes endemic: This is the threshold phenomenon.
The condition m,¢'(0) = g is rather intuitive. Indeed, it can be rewritten as m,p(e) S ge
as € — 0 and consists thus in comparing the expected numbers of infectious contacts
[mi¢(e)] and recoveries [ge] during one time interval where the proportion of infectives
is infinitely small [y = e — 0]. An equivalent interpretation of the result is that the expected
number of contacts m, has to be greater than a critical value g/¢’(0) in order that the
infection becoms endemic. We emphasize that this condition depends on the distribution
of R only through its expectation m,. We note, however. that the temporal evolution of
the disease and the endemic level v* are function of the PGF of R. Finally. we remark
that as m, is generally an increasing function of N, the theorem implies also that a suf-
ficiently large population size is needed to maintain endemicity in the population. For
example, in the particular case considered in Sec. 2 where R ~ Poisson(AN) and ¢(y) =
¢y, the critical population size is simply g/\e¢.

It is worth underlining that if ¢(y») is not concave, the threshold theorem 1 is no more
valid. Indeed, in that case, the recurrence relation (7) can admit several positive fixed
points, so that the asymptotic behavior of the disease process becomes more complex.
This problem is actually under study.

4. ON THE ENDEMIC LEVEL WHEN ¢(y) = ¢y

Let us make the standard hypothesis ¢(y) = ¢y, and consider the situation where the
infection becomes endemic, which occurs iff m,¢ > g. The endemic level y* is then the
positive root of Eq. (9), with ¢(y) = oy.

The explicit expression of y* can only be obtained for some particular distributions for
R. This is the case, for example, when the PGF of R is a fractional linear function (FLF).

We recall that a FLF has the form
glzymi, o) =1—=m(l —¢) + m(l = &)zl = c2), 0=s:=s1, (10)

withm, = g'(l; m,c)>0and 0 < c < l;itisa PGF iff m;(1 — ¢) = 1. When the PGF
G(z) is a FLF of the type (10), some simple calculations give

Pi(y) = mi(l = c)exy/(1 — ¢ + coy),
and if mo > g,

y* = (my — gle)[m, + gc/(l = o)]. ()
In particular, for ¢ = 0, then R ~ Bernoulli (m,) and if myp > g,

y* = (m - g/q:)/m[-
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For my = ¢/(1 — ¢), then R ~ Geometric (1 — c¢)and if m¢ > g,

E3

yE = (m — gleym(l + g).
These two cases will be reexamined in Sec. 5.

Generally, however, y* cannot be determined explicitly. It is then useful to construct
simple bounds for v* in terms of some important parameters of the distribution of R.
Another interest of these bounds comes from that quite often, it is difficult to know exactly
the complete distribution of R. The two following theorems give such lower and upper
bounds for y*.

Theorem 2.

e et m = G"(1) = E[R(R - 1)], and suppose that only m, and m, are known. Let

a = the integer part of (m, + m2)/m,,

A= mlla + 1) — my(a = Dl + 1), (12)
B = m; — mia,

C=A+B=2m{a + 1) — mylafa + 1).

Then the best lower bound for y* is the state vy, = (1 — 2;)/@, where z; is the root smaller
than 1 of the equation H,(z) = 0 with

H(2)=¢ +[z- (1 — @Az + B> — (C + g)Vg. | —¢=sz=s1. (13)

e Let pp = G(0) = P(R = 0). and suppose that only m, and p, are known. Let

B
n=m - B(l = Do).

the integer part of n,/(1 — py). (14)

Then the best upper bound for v * is the state v, = (1 — z,)/¢. where z, is the root smaller
than 1 of the equation H,(z) = 0 with

H@=9¢+[z-0=-eMP" + (1 —py— )P

- (1 = po + g)sg, 1l —¢szs1. (13
Proof. The construction of bounds for y* involves bounding of the function G(1 — ¢y)
in (9). We first derive the lower bound y,,. Recently, Narayan[8] has obtained the best
upper bound for a PGF G(z) = >0 p;/, 0 < z < |, with m; > 0 and ma < = fixed.
This bound is a PGF G,(z), 0 < z < I, with G, (1) = m,, G/(1) = m.. and is given by
G(z) = G,(7) = A" + B — C + 1, 0=s:z=<1. (16)

where «,A4,B,C are defined in (12). Inserting (16) in (8), we then find that

flyl = filly()l = (1 — gv@) + [1 = ¥yl — G.[l — ¢ex(D]}

Clearly, the function f,(y) has the same properties as f(y), and the recurrence relation

yio + ) = filltx(0)]
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has a positive fixed point yy iff m¢ > g. We thus deduce that vy, is the best lower bound
for v* when m, and m-, are known. After some calculations, we obtain that 2, = | — ¢yu
is the root smaller than 1 of the equation H,(3) = 0 where H,(2) is given by (13). We note
that the function H,(z7) is convex, with H/(1 — ¢) = ¢, H,(1) = 0, and has a minimum
in the interval (1 — ¢. 1). We now derive the upper bound vy,. In his work, Narayan([8]
has also obtained a lower bound for G(z). 0 < z = 1, in terms of the three first factorial
moments. This bound is rather complicated and is not ajways a PGF. It is the reason why
we have preferred another bound given by Heyde and Schuch[9] which is the best lower
bound for a PGF G(z) = 2% p;/. 0 < z < |, with 0 < m, < = and py fixed. This bound
is a PGF G/(z2), 0 = z < 1, with G/(1) = m,, G/{0) = p,. and is given by

G(2) = Giz) = T]Z.B+l + (1 — py — T])ZB + Do, 0=s:z=<1. (17)
where B, n are defined in (14). Inserting (17) in (8), we find that

iyl = fuly( = — gy + [1 = y(O){1 = Gl = ey}

By the same argument as for yy, we then deduce that yy,, defined above is the best upper
bound for y* when m, and py are known. We note that the graph of H,(Z) is similar to
that of H/(z).
In theorem 3 below, we derive explicit lower and upper bounds for y*. These bounds,
however, are less tight than those obtained in the theorem 2.
Theorem 3 (in the notations of the theorem 2).
¢ Suppose that m, and m> are known. Then a lower bound for v* is the state y, given by
the formula (11) where ¢ takes the following value c¢;:

¢ = [alae — Dmy + malala + )m,. (18)

® Suppose that m, and p, are known. Then an upper bound for v* is the state y, given
by the formula (11) where ¢ takes the following value c¢,:

ch = [ —m+ Bln + m)l/{m + mPB + 1). (19)

Proof. To derive this result, we bound the function G(I — ¢y) in (9) by using FLFs
ww of the form (10). As shown by Lefévre et al.[10], an upper bounding FLF for a PGF
G(z) = Xopi@, 0 <z <1, withm, >0and m, < = fixed is g(z; m,, ¢;) with ¢, given
by (18), and a lower bounding FLF for G(z), 0 < z < 1, when 0 < m, < = and po are
fixed is g(z; my, c.) with ¢, given by (19). Applying the same method as for the theorem
2 and then using the result (11), we finally get the theorem.

Table 1.

Po i Yor y* You Yu ¥i yoi v* You Yu

0.05 0.733 0.749 0.783 0.790 0.840 0.428 0.481 0.511 0.535 0.588
0.15 0.698 0.721 0.753 0.764 0.79% 0.349 0.405 0.424 0.454 0.480
0.25 0.664 0.691 0.716 0.729 0.757 0.270 0.318 0.327 0.354 0.368
0.35 0.611 0.644 0.669 0.679 0.698 0.164 0.202 0.206 0.220 0.224
0.45 0.569 0.590 0.605 0.613 0.626 0.037 0.044 0.044 0.047 0.047
0.55 0.494 0.507 0.514 0.520 0.527 —
0.65 0.362 0.369 0.372 0.376 0.378 —
0.75 0.114 0.116 0.116 0.117 0.118 —
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Table 2.
g = 0.25 g =0.75
Do i Ybi ¥* Ybu Vu Vi Yol »* Ybu Vu
0.05 0.658 0.661 0.789 0.792 0.877 0.384 0.394 0.549 0.359 0.699
0.15 0.638 0.648 0.763 0.773 0.849 0.347 0.380 0.496 0.529 0.630
0.25 0.611 0.631 0.733 0.749 0.815 0.300 0.352 0.429 0.481 0.545
0.35 0.579 0.611 0.692 0.716 0.767 0.240 0.300 0.341 0.397 0.431
0.45 0.535 0.577 0.636 0.666 0.702 0.157 0.207 0.221 0.265 0.276
0.55 0.472 0.518 0.556 0.585 0.610 0.035 0.047 0.048 0.059 0.059
0.65 0.360 0.408 0.429 0.449 0.461 — — — —_ —
0.75 0.182 0.197 0.200 0.209 0.210 — — -— — —

It is very simple to compute these bounds numerically. For illustration, some examples
are presented below. The states y. yor. ¥*. You. ¥, are given for different values of po and
g in the case where ¢ = | and R ~ Poisson(m,) (Table 1) or R ~ Geometric(l — ¢)
(Table 2).

5. THE TRANSIENT BEHAVIOR WHEN ¢(y) IS CONCAVE

The iterated values of v(r) can be computed directly from (7) and (8). In theorem 4
below, we show that when ¢(y) is concave, the sequence y(f) converges either mono-
tonically (to 0 or ¥*) or by oscillating around y*. The important factors of the discussion
are the existence or not of the fixed point v*, the existence or not of an interior maximum
for f(y) in ya € (0, 1), and the relative positions of v* and vy,. The proof of the theorem
is immediate and omitted. We just remark that f(y) has a maximum in vy, € (0. 1) iff
f'(1) <0, that is, G[1 — ¢(1)] < g.

Theorem 4. Three qualitatively different transient behaviors for ¥(z) are possible.

o Case (1): m;¢’(0) = g. Then y(¢) decreases to 0 for any 0 < y(0) = I.

e Case (II): m,¢’(0) > g and either G[1 — ¢(1)] = g, or G[1 — ¢(1)] < g and yy =
y*. Then y(¢) increases to y* if 0 < »(0) < y*. and decreases to y* if v* < y(0) = yo,
where yo is either the value 1 if G[1 — ¢()] = g. or G[l — ¢(l)] < gandy* s 1 -
g. or the largest root of the equation f(y) = y*. v €(0, 1), if G[1 — ¢(D} < g and yu
=y*>1— g Ifyo <y(0) < I, y(1) < y* and (1), r = 2. increases to v*.

e Case (III): m,¢'(0) > g, G[1 — ¢(1)] < gand ys <v*. Then y(t) converges by oscillating
around y* as soon as it takes a value in the interval (yg . ¥¢ 1. where yg is the smallest
root of the equation f(y) = y*, vy € (0, 1), and ¥ is either the value 1 if yg =1 — g,
or the largest root of the equation f(y) = yg . ¥ £ (0, D.ifyg >1-g. If0<y(0) <
yo , y(t) begins by increasing until it enters into the interval (vo . yo ]. If y(¢) = yo
for some ¢, then v(r + 1) = v*. If yg < »(0) = 1. y(1) < yg and y(1). t = 2, evolves
as indicated above.

We now illustrate this theorem for three particular distributions of R and under the
assumption ¢(y) = ¢v. If R ~ Bernoulli(m,), the convergence is always monotone, and
the cases (I) or (II) (with ¥o = 1) occur according as m ¢ < g or my¢ > g. If R ~
Geometric(l — ¢), the cases (I), (11), and (III) are possible: in function of the parameters
1 — cand g, they occur, for a given value of ¢, as shown in Fig. 1, where the functions
h;, i = 1, 2, are defined by

h, ce/(l — ¢y,

ha = (U2){=1 + co/(l —¢) = ([=1 = ce/(l = )7 — 4"}

1l
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1 / 21 1 AN \ /
() (M {1 (1 (I} ()
0475}
0 0 . .
0 R | 2252487 1
Fig. 1. Fig. 2.

If R ~ Poisson(m,), the three cases are possible too: in function of the parameters m,
and g. they occur as shown in Fig. 2. where the functions &;, i = . 2. 3. are defined by

ki = me.
ka = [1 + me(l — vyl exp(—m gyvy),
ks

(1 + mye(l — ¥y2)] exp(—mioya).
vi and v, being the smallest and largest roots, when they exist, of the equation
(1 — wlexp(miey) — mipy] = 1, 0<y<l.

The calculations leading to these results are elementary but tedious, and are not given
here.
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