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Abs t rac t IA  chain-binomial deterministic model for the spread of an infectious disease 
of the S-I-S type is formulated that accounts explicitly for the distribution of the number 
of contacts made by each susceptible during one time interval. Under certain hy- 
potheses, a threshold theorem for endemicity is derived, bounds for the endemic level 
are constructed, and the transient behavior of the epidemic process is investigated. 

I. I N T R O D U C T I O N  

In a recent  paper ,  Ingenbleek and Lefevre[ l ]  have investigated a discrete time model for 
the interactive diffusion of an information in a social group. In the epidemiological context ,  
this model can be used to describe the spread of an infectious disease of  the S-I-S (sus- 
cept ible- infect ious-susceptible)  type.  More specifically, the chain-binomial process  con- 
sidered is the following Markov  chain. A closed and homogeneous ly  mixing population 
of N individuals is subdivided in two disjoint classes: the infectives, in number  l ( t )  at 
time t, and the susceptibles ,  in number  S ( t )  = N - l ( t )  at time t. t = 0, I. 2 . . . . .  The 
propagat ion of the disease is governed  by two independent  processes .  On the one hand. 
each of the l ( t )  infectives has the probabil i ty g, 0 < g ~< 1, to recover  and return to the 
susceptible state at time t + 1 ( recovery  process).  On the other  hand, each of  the N - 
I ( t )  susceptibles becomes  infectious at time t + 1 if he has at least one effective contact  
with an infective during (t, t + 1]; such a contact  be tween two given individuals occurs  
with the probabil i ty p, 0 < p < I (infection process).  Consequent ly ,  given the state l ( t ) ,  
l ( t  + 1) is defined as the following sum of two independent binomial variables: 

l ( t  + I) - Binomial [ l ( t ) ,  1 - g] + Binomial [N - l ( t ) ,  I - (1 - p )m, ] .  (1) 

The determinist ic  model associated with (1) is constructed in a phenomenological  way by 
identifying the conditional expecta t ion  E [ l ( t  + 1) I l( t)]  to l ( t  + I). Let us denote  this 
quanti ty by i ( t  + 1). We then obtain that i ( t  + 1) obeys  the following first-order difference 
equation: 

i ( t  + 1) = (1 - g ) i ( t )  + [ N  - i(t)][l  - (1 - p)i,,,]. (2) 
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The reader is referred to Ingenbleek and Lefevre[l ]  for a study and comparison of the 
stochastic and deterministic formulations. 

A limitation of this model is that the infection process does not account for the dis- 
tribution of  the number  of contacts made by each susceptible during one time interval. 
A similar criticism has been pointed out by Dietz and Schenzle[2] for the classical R e e d -  
Frost epidemic model,  which is a chain-binomial model of the S-I-R (susceptible-infec- 
t ious-removed) type (see, e.g.,  Bailey[3]). The purpose of the present work is precisely 
to introduce this factor in the above model and to examine its implications for the prop- 
agation of the infectious disease. The problem will be discussed here only for the deter- 
ministic version of the model,  but we hope to be able to treat the stochastic version in 
the near future. 

The paper is structured as follows. We present in Sec. 2 the new modeling of  the 
infection process.  Under  certain hypotheses ,  we derive in Sec. 3 a threshold theorem 
which states the conditions leading to an endemic situation; we then construct  in Sec. 4 
upper and lower bounds for the endemic level; and we finally investigate in Sec. 5 the 
transient behavior  of the disease process.  

2. M O D E L I N G  OF T H E  I N F E C T I O N  PROCESS 

Let  us consider the population of size N described in the introduction. Following Dietz 
and Schenzle[2], we suppose that during one time interval, each susceptible can make a 
random number R of contacts  with other  individuals of the population. The distribution 
of R is assumed independent  of the number of infectives present;  it can, however ,  depend 
on the population size N. We denote by G(z,) = ~)%o pjz  s, 0 <~ z, <~ 1, the probability 
generating function (PGF) of  R.  and for the sequel, we make the natural hypothesis  0 < 
E(R'-)  < z¢. 

As announced,  the present  work is only concerned with the deterministic version of  
the model. Let  us suppose that at time t. there are i( t)  infectives in the population. For  
simplicity, we omit the argument t in this section, and we denote b y y  = y ( t )  the proport ion 
of infectives at time t, that is, v --- i /N .  The probability for a given susceptible at t who 
meets another  individual during (t, t + 1] to have an infectious contact  depends,  of  course,  
on the proport ion y of infectives present at t. This probability is denoted by ~(y), and we 
now specify its functional form. It is clear that most often, ~(y) = ~v, 0 < ~: ~< 1, which 
means that each infective can transmit the infectious agent independently and with the 
same probability q:. This is the hypothesis  made implicitly by Dietz and Schenzle[2] (with 
q: = I), and it corresponds to the standard case treated in the literature. This specification 
for ~(y) will receive a particular attention in the next sections, in some situations, how- 
ever,  ~(y) might have a more complicated nonlinear form, such as (i) qz(y) = qzy", 0 < 
~< 1, a > 0, or (ii) ~(y) = q:by/(b - I + y), 0 < ~ ~< 1, b > 1. Similar types of interaction 
terms have been considered by Severo[4] and Capasso and Serio[5], respectively.  In fact, 
a general hypothesis  which seems reasonable in practice is that ~(y) is a con t inuous  
increas ing  f u n c t i o n  o f  y,  with ~(0) = 0 and  0 < ~(1) <~ 1. This assumption is therefore  
retained for the sequel. In addition, for technical reasons, we will also suppose that the 
function ~(y) is c oncave - - t h i s  is verified, for example,  if ~(y) has the above expression 
(i) with 0 < a ~< 1, or (ii). The case where ~(y) is not concave leads to qualitatively 
different results and is not examined here. 

Let  us denote by C the random variable representing the total number  of infectious 
contacts  made by a given susceptible during one time interval. By adapting the argument 
of Dietz and Schlenzle[2], we then deduce that the PGF of C during (t, t + I] is equal 
to 

E ( z f f l y )  = G[1 - ~(y) + .~(y)z], 0 ~ z. ~ 1. (3) 
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Final ly,  let us make  the usual a s sumpt ion  that a given susceptible b e c o m e s  infect ious 
if he has at least one  effect ive con tac t  with an infective during one time interval.  Thus  a 
given suscept ible  at t will become  infect ious at t + 1 with the probabi l i ty  P t ( y )  given by 

P . ( y )  = P [ C  >~ II v] 

--- 1 - G [ I  - ~ ( y ) ] .  {4) 

It is interest ing to show that this model ing o f  the infection process  general izes  in some 
sense the one  cons idered  in the in t roduct ion.  

Part icular  case.  Let  us suppose  that R - Po isson  (aN)  and ~(y) = qzy. Putting p = 1 
- exp(-~.q: ) ,  we obtain  f rom (4) that 

PI(Y) = 1 - (1 - p)">,  {5) 

with 5/)' = i, which  is precise ly  the in teract ion term in t roduced  in (2). There fore ,  the 
s tandard  hypo thes i s  o f  a cons tan t  probabi l i ty  p for  an effect ive contac t  be tween  any given 
pair  o f  individuals  can be viewed as co r re spond ing  to a part icular  case of  the above  
model ing.  This result  has been pointed  out and c o m m e n t e d  by Dietz and Schlenzle[2]  
(with ~p = 1). 

We close by ment ion ing  that an ex tens ion  of  the model  a l lowed by this app roach  con-  
sists in suppos ing  that a suscept ible  b e c o m e s  infect ious if the number  C of  his infect ious 
con tac t s  is at least equal to k + 1, where  k is a nonnegat ive  integer. This si tuat ion has 
been  studied by Lef'evre[6] in the case where  g = 1 and ~p(y) = v. 

3. T H R E S H O L D  T H E O R E M  W H E N  ~p(y) IS C O N C A V E  

Let  us incorpora te  this new infection process  in the determinist ic  epidemic model  pre- 
sented in the in t roduct ion .  F rom (4), the recur rence  relation (2) for i(t)  becomes  

i(t + I) = (1 - g) i ( t )  + [N  - i ( t )]P.{y( t )]  

= {1 - g) i ( t )  + [N  - i{t)]{l - G[I  - ~(y{t))]}. (6) 

Dividing (6) by N, we deduce  that y ( t )  = i ( t ) / N  is solution o f  the f i rs t-order  dif ference 
equa t ion  

y( t  + 1) = f l y ( t ) ] ,  {7) 

where  

f l y ( t ) ]  = (I - g)y ( t )  + [I - y(t)]{1 - G[1 - ~(y(t))]}. (8) 

We note  that the funct ion  f ( y )  is con t inuous  and maps  [0, 1] into [0. 1]. with f (0)  = 0 
and f (1)  = 1 - g < 1. 

Since by hypothes i s ,  ~p(y) is c o n c a v e ,  it is direct ly verified that f ( y )  is concave  too.  
Consequen t ly ,  we can now establish the fol lowing theorem which general izes  the t heo rem 
2 p roved  by  LefEvre[6].  Le t  m~ = G ' (1 )  = E ( R ) .  

Theorem 1. I f  m ~ ' ( 0 )  ~< g, the sequence  y( t )  converges  to 0 as t - - ,  :c for any 0 ~< y'(0) 
~< 1. If  mtq; ' (0)  > g. the funct ion f ( y )  has two fixed points ,  0 and y*,  the last one being 
the posi t ive root  o f  the equat ion  

y = ( l /g ) ( l  - 3'){1 - G[I  - ~p(y)]}. (9) 
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The state 0 is unstable,  while the state y* is globally stable in the sense that y(t)  converges  
t o y * a s t ~ z c f o r a n y 0 < y ( 0 ) < ~  I. 

Proof .  As f ( y )  is cont inuous and concave ,  with f(0) = 0 and f(1) = 1 - g < I, the 
state 0 is necessari ly  a fixed point of f (y ) ,  and there exists another  fixed point y* > 0 iff 
f ' ( 0 )  > I, that is, mt~p'(0) > g. Clearly,  y* is the positive solution of (9) and is locally 
stable. By a theorem of Rosenkranz{7],  a necessary  and sufficient condition for the global 
stability o f ) ' *  is that if f (y )  has a m ax i m um  in y.w ~ (0, y*),  then f [ f ( y ) ]  > v for all y 
(yM, y*).  F rom (8), we find that f ' ( y )  > - I for all y E (0, 1), and it is easily seen that 
this inequality implies that the Rosenkranz  condition is well satisfied. 

C o m m e n t s .  The theorem states that if m~w'(0) ~< g, the disease dies out ultimately, 
while if m ~ ' ( 0 )  > g, the infection becomes  endemic: This is the threshold phenomenon.  
The condit ion m~p' (0)  .~ g is rather  intuitive. Indeed,  it can be rewrit ten as m ~ ( e )  >-N ge 
as e ---> 0 and consists  thus in compar ing  the expected  numbers  of  infectious contacts  
[ m ~ ( e ) ]  and recover ies  [g~] during one time interval where the proport ion of infectives 
is infinitely small [y = e---~ 0]. An equivalent  interpretation of  the result is that the expected  
number  of  contacts  m~ has to be greater  than a critical value g/~,'(O) in order that the 
infection becoms endemic.  We emphas ize  that this condition depends on the distribution 
of R only through its expecta t ion mj .  We note, however ,  that the temporal  evolution of 
the disease and the endemic level y* are function of the PGF of R. Finally. we remark  
that as m~ is generally an increasing function of N, the theorem implies also that a suf- 
ficiently large population size is needed to maintain endemici ty  in the population. For  
example ,  in the part icular  case considered in Sec. 2 where R - PoissonO, N) and qz(y) = 
~py, the critical population size is simply g/a~,. 

It is worth underlining that if ~:(y) is not concave ,  the threshold theorem 1 is no more 
valid. Indeed,  in that case,  the recurrence relation (7) can admit several  positive fixed 
points,  so that the asympto t ic  behavior  of  the disease process  becomes  more complex .  
This problem is actually under  study. 

4. ON T H E  E N D E M I C  L E V E L  W H E N  q:(y) = ; y  

Let  us make the s tandard hypothesis  ~p(y) = ~py, and consider  the situation where the 
infection becomes  endemic,  which occurs  iff m~p > g. The endemic level y* is then the 
posit ive root of  Eq. (9), with ~p(y) = ,.py. 

The explicit express ion of y* can only be obtained for some particular distributions for 
R. This is the caso, for example ,  when the PGF of R is a fractional linear function (FLF).  
We recall that a F L F  has the form 

g ( z ; m , ,  c) = 1 - mt ( l  - c) + m~(l - c)-'.:/(l - cz), 0 ~ . 7 . ~  1, (10) 

with m~ = g ' (1 ;  m~, c) > 0 and 0 <~ c < 1; it is a PGF i f fm~(l  - c) ~< 1. When the PGF 
G(z)  is a F L F  of  the type (10), some simple calculations give 

PI (y )  = m~(1 - c)¢ey/(1 - c + c~py), 

and if m~p > g, 

y* = (ml - gAp)l{ml + gc/(1 - c)]. ( I I )  

In part icular,  for c = 0, then R - Bernoulli (m~) and if m~p > g, 

)'* = ( n ' / i  - gl~)lrnl. 
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F o r m ~  = c / ( l  - c), t h e n R  - G e o m e t r i c  (1 - e) and  i f m ~  > g,  

v* = (rn~ - g / ~ ) / m ~ ( 1  + g) .  

T h e s e  two  c a s e s  will be  r e e x a m i n e d  in Sec .  5. 
G e n e r a l l y ,  h o w e v e r ,  y*  c a n n o t  be  d e t e r m i n e d  exp l i c i t ly .  It is t h e n  use fu l  to c o n s t r u c t  

s i m p l e  b o u n d s  for  v* in t e r m s  o f  s o m e  i m p o r t a n t  p a r a m e t e r s  of  the  d i s t r i b u t i o n  o f  R.  
A n o t h e r  i n t e r e s t  o f  t hese  b o u n d s  c o m e s  f r o m  tha t  qu i te  o f t en ,  it is d i f f icul t  to k n o w  e x a c t l y  
the  c o m p l e t e  d i s t r i b u t i o n  o f  R. T h e  t wo  f o l l o w i n g  t h e o r e m s  give  s u c h  l o w e r  a n d  u p p e r  
b o u n d s  for  y* .  

T h e o r e m  2. 

• Le t  m :  = G " ( I )  = E [ R ( R  - 1)], a n d  s u p p o s e  that  o n l y  m~ and  m :  a re  k n o w n .  Le t  

a = the  i n t e g e r  par t  o f  (m~ + m , ) / m ~ ,  

A = m2/(c~ + I) - m ~ ( a  - 1)/(a + 1), (12) 

/3  = m l  - m 2 / o t ,  

C = A + B = 2 m l / ( a  + 1) - mz/cx(a + 1). 

T h e n  the  bes t  l o w e r  b o u n d  for  y* is the  s ta te  Ybl = ( 1 -- Cz)/q~, w h e r e  z~ is the  roo t  s m a l l e r  
t h a n  1 o f  the  e q u a t i o n  Ht(z )  = 0 wi th  

H~(z) = q: + [2 - (1 - ,4)][Az ~'-~ + B7 ~ - (C  + g ) l / g ,  1 - q: ~ z ~< 1. (13) 

• Le t  Po = G(0)  = P ( R  = 0). a n d  s u p p o s e  tha t  o n l y  m~ and  p~ are  k n o w n .  Le t  

13 = the  i n t e g e r  par t  o f m ~ / ( l  - po). (14) 

xl = m~ - 13(1 - po). 

T h e n  the  bes t  u p p e r  b o u n d  for  y* is the  s ta te  vt,~, = (1 - ~,,)/~, w h e r e  c,, is the  roo t  s m a l l e r  

t h a n  1 of  the  e q u a t i o n  H,,(:~) = 0 wi th  

H,,(z) = ~ + [z - (1 - ~)][xl.z ~+~ + (I - Po - n ) z  ~ 

- (1  - P o  + g ) ] / g ,  1 - ~ ~< .7. ~< 1. ( 1 5 )  

P r o o f .  T h e  c o n s t r u c t i o n  o f  b o u n d s  for  y* i n v o l v e s  b o u n d i n g  o f  the  f u n c t i o n  G(1 - qzy) 
in (9). W e  first  d e r i v e  the  l o we r  b o u n d  Ybl. R e c e n t l y ,  N a r a y a n [ 8 ]  has  o b t a i n e d  the  bes t  
u p p e r  b o u n d  for  a P G F  G ( z )  = ~ 7 = o  P~z j,  0 ~< z ~< 1, wi th  m~ > 0 a n d  m_~ < :¢ f ixed .  
T h i s  b o u n d  is a P G F  G, , ( z ) ,  0 ~< z ~< l ,  w i th  G~,(1) = m~, G',',(1) = m2.  and  is g i v e n  by  

G ( z )  <~ G, , (z)  = A z  ~-~ + B z  ~" - C + I, 0 ~< z ~< 1. (16) 

w h e r e  a , A , B , C  are  d e f i n e d  in (12). I n s e r t i n g  (16) in (8), we t h e n  f ind  that  

f l y ( t ) ]  /> f~[y( t ) ]  = (I - g ) y ( t )  + [I - y ( t ) ]{ l  - G,,[1 - ~y(t) ]} .  

C l e a r l y ,  the  f u n c t i o n  f~ (y )  has  the  s a m e  p r o p e r t i e s  as f ( y ) ,  and  the  r e c u r r e n c e  r e l a t i o n  

y ( t  + 1) = f / [ ( y ( t ) ]  
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has a posi t ive fixed point  ybt i f fmlw  > g. We thus deduce  that y~,~ is the best  lower  bound  
for  v* when  mt and m,_ are known.  Af ter  some calculat ions ,  we obtain that zz = 1 - ~y~,t 
is the root  smaller  than 1 o f  the equa t ion  H~(z) = 0 where  H~(z) is given by (13). We note  
that the funct ion  H~(z) is c o n v e x ,  with Ht(l  - ~) = ~:, H~(1) = 0. and has a min imum 
in the interval (I - ~. 1). We now der ive the upper  bound  ybu- In his work .  Narayan[8]  
has also ob ta ined  a lower  bound  for  G(z),  0 ~ z <~ 1, in terms of  the three first factorial  
m o m e n t s .  This  bound  is ra ther  compl i ca t ed  and is not a lways  a PGF.  It is the reason why  
we have  prefer red  ano the r  bound  given by H e y d e  and Schuch[9]  which is the best  lower  
bound  for  a P G F  G(z) = ~Y=o piz ~. 0 <~ z ~< 1, with 0 < m t <  ~c and po fixed. This bound  
is a P G F  G~(z), 0 <~ z <~ 1, with G ; ( I )  = m~, G~(0) = po, and is given by 

G(z) >! G~(z) = "qz ~*j + (1 - po - q)z  ~ + po, 0 ~< z ~< 1. (17) 

where  13, rl are defined in (14). Inser t ing  (17) in (8), we find that 

f[y( t)]  <~ f . [y ( t ) ]  = (1 - g)y( t )  + [1 - y(t)]{1 - G,[I - q~y(t)]}. 

By the same a rgumen t  as for Yb~, we then deduce  that Ybu defined above  is the best  upper  
bound  for  y* when  m~ and po are known.  We note that the graph of  H . ( z )  is similar to 
that o f  Hi(z). 

In t heo rem 3 be low,  we der ive  explicit  lower  and upper  bounds  for 3'*. These  bounds .  
howeve r ,  are less tight than those  obta ined  in the theorem 2. 

Theorem 3 (in the no ta t ions  o f  the t he o re m  2). 
• Suppose  that  mt and m2 are known .  Then  a lower  bound  for v* is the state y~ given by 

the fo rmula  (11) where  c takes  the fol lowing value ct: 

c/ = [a (a  - 1)ml + m2] /a(a  + l )ml .  (18) 

• Suppose  that  mt and po are known .  Then  an upper  bound  for y* is the state y .  given 
by the fo rmula  (11) where  c takes  the fol lowing value c . :  

c .  = [v I - m + 13(rl + m)l/(rl + m)(13 + 1). (19) 

Proof. To der ive  this result ,  we bound  the funct ion  G(I  - ~y) in (9) by using F L F s  
ww o f  the fo rm (10). As  shown  by  Lef6vre  et a/.[10], an upper  bounding  F L F  for  a P G F  
G(z) = ~Y=o piz j, 0 <~ z <~ 1, with m t >  0 and m2 < :~ fixed is g(z; rot, c~) with cl given 
by (18), and a lower  bound ing  F L F  for  G(z),  0 <~ z <~ I, when  0 < m~ < :~ and  po are 
f ixed is g(z; m~, c . )  with c .  g iven by  (19). Apply ing  the same method  as for  the t h e o r e m  
2 and then using the result  (1 I), we finally get the theorem.  

Table 1. 

g = 0.25 g = 0.75 

Po Yt Ybl Y* yt, u y,, yt Ybl Y* Ybu Y. 

0.05 0.733 0.749 0.783 0.790 0.840 0.428 0.481 0.511 0.535 0.588 
0.15 0.698 0.721 0.753 0.764 0.799 0.349 0.405 0.424 0.454 0.480 
0.25 0.664 0.691 0.716 0.729 0.757 0.270 0.318 0.327 0.354 0.368 
0.35 0.611 0.644 0.669 0.679 0.698 0.164 0.202 0.206 0.220 0.224 
0.45 0.569 0.590 0.605 0.613 0.626 0.037 0.044 0.044 0.047 0.047 
0.55 0.494 0.507 0.514 0.520 0.527 . . . . .  
0.65 0.362 0.369 0.372 0.376 0.378 . . . . .  
0.75 0.114 0.116 0.116 0.117 0.118 . . . . .  
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g = 0.25 g = 0.75 

Po Y/ Yba Y* Ybu Y~ Y'~ )'~l Y* Ybu Y,, 

0.05 0.658 0.661 0.789 0.792 0.877 0.384 0.394 0.549 0.559 0.699 
0.15 0.638 0.648 0.765 0.773 0.849 0.347 0.380 0.496 0.529 0.630 
0.25 0.611 0.631 0.733 0.749 0.815 0.300 0.352 0.429 0.481 0.545 
0.35 0.579 0.611 0.692 0.716 0.767 0.240 0.300 0.341 0.397 0.431 
0.45 0.535 0.577 0.636 0.666 0.702 0.157 0.207 0.221 0.265 0.276 
0.55 0.472 0.518 0.556 0.585 0.610 0.035 0.047 0.048 0.059 0.059 
0.65 0.360 0.408 0.429 0.449 0 .461 . . . . .  
0.75 0.182 0.197 0.200 0.209 0 .210  . . . . .  

It is ve ry  s imple  to c o m p u t e  t hese  b o u n d s  numer i ca l l y .  F o r  i l lus t ra t ion ,  some  e x a m p l e s  
a re  p r e s e n t e d  be low .  The  s t a tes  y~, Yb~, Y*, Yt, u, 3',, are g iven  for  d i f fe ren t  va lues  o f p o  and 
g in the  ca se  w h e r e  ~p = 1 and R ~ Po i s son(m~)  (Table  13 or  R ~ G e o m e t r i c ( l  - c) 

(Tab le  2). 

5. T H E  T R A N S I E N T  B E H A V I O R  W H E N  ~(.v) IS C O N C A V E  

The  i t e r a t ed  va lues  o f  y ( t )  can be c o m p u t e d  d i rec t ly  f rom (7) and  (8). In t h e o r e m  4 
b e l o w ,  we  s h o w  that  w h e n  tp(y) is c o n c a v e ,  the  s e q u e n c e  y ( t )  c o n v e r g e s  e i the r  m o n o -  

t on i ca l l y  (to 0 o r  y*)  or  by  osc i l l a t ing  a r o u n d  y* .  The  i m p o r t a n t  f ac to rs  o f  the d i s c u s s i o n  
are  the  e x i s t e n c e  o r  not  o f  the f ixed  po in t  y*,  the  e x i s t e n c e  or  not  o f  an in te r io r  m a x i m u m  
for  f ( y )  in y,w ~ (0, 1), and  the r e l a t ive  pos i t i ons  of  3'* and  y w. The  p r o o f  of  the t h e o r e m  
is i m m e d i a t e  and  o m i t t e d .  We ju s t  r e m a r k  that  f t y )  has  a m a x i m u m  in vw ~ (0. I) iff 

f ' ( l )  < 0, tha t  is, G[ I  - ~(13] < g. 
T h e o r e m  4. T h r e e  qua l i t a t i ve ly  d i f fe ren t  t r ans ien t  b e h a v i o r s  for  y ( t )  are poss ib l e .  

• Case  (I): m ~ p ' ( 0 )  ~< g.  T h e n  y ( t )  d e c r e a s e s  to 0 for  any  0 ~< y(0) ~< 1. 
• Case  (II): ml tp ' (0 )  > g and e i t he r  G [ I  - ,¢(1)] 1> g,  or  G[1 - ~p(1)] < g and y,vt 1> 

y*.  Then  y ( t )  i n c r e a s e s  to y* if 0 < 3'(0) ~< y* .  and d e c r e a s e s  to y* if3 '* ~< y(0) ~< yo, 
w h e r e  yo is e i the r  the  va lue  1 if G[ I  - ¢(1)] >t g, o r  G[1 - ¢ ( I ) ]  < g and y* ~< I - 
g,  o r  the  l a rges t  roo t  o f  the  e q u a t i o n  f ( y )  = y* .  y ~ (0, 13, if G[1 - q:(1)] < g and y,w 
> / y *  > 1 - g. I f y o  < y(0) ~< 1, y(1)  < v* and y ( t ) ,  t >/ 2. i n c r e a s e s  to y*.  

• Case  (III) :  rn~p ' (0)  > g,  G[ I  - tp(1)] < g and yM < 3'*. Then  y'(t) c o n v e r g e s  by  osc i l l a t ing  
a r o u n d  y* as  soon  as it t akes  a va lue  in the in terva l  (y6- ,  3"6- ], w h e r e  3'6- is the  sma l l e s t  
roo t  o f  the  e q u a t i o n  f ( y )  = y*,  y E (0, 13, and  y6- is e i the r  the va lue  1 if y6- ~< 1 - g,  
o r  the  l a rges t  roo t  o f  the  e q u a t i o n  f ( y )  = y o ,  5' ~ (0, I),  i f y o  > 1 - g. I f 0  < y(0)  < 
y 6 ,  y ( t )  beg ins  by  inc reas ing  unti l  it en t e r s  into the in te rva l  (3 ' o ,  Y6-]. If  y ( t )  = y6- 
for  s o m e t ,  t h e n y ( t  + I) = v*. I f  y 6  < y ( 0 )  ~< l . y ( 1 ) < v 6 -  a n d y ( t ) , t / >  2, e v o l v e s  

as  i nd i ca t ed  a b o v e .  
W e  now i l lus t ra te  this  t h e o r e m  for  th ree  pa r t i c u l a r  d i s t r i bu t ions  o f  R and u n d e r  the  

a s s u m p t i o n  ~p(y) = ~py. I f  R - Bernoul l i (m~) ,  the  c o n v e r g e n c e  is a l w a y s  m o n o t o n e ,  and  
the c a s e s  (I) o r  (II) (wi th  yo = 1) o c c u r  a c c o r d i n g  as m ~  ~< g or  r o t e  > g. I f R  
G e o m e t r i c ( l  - c), the c a s e s  (I), (II) ,  and  ( l I I )  a re  poss ib l e :  in func t ion  o f  the p a r a m e t e r s  
1 - c and  g,  t h e y  occu r ,  for  a g iven  va lue  o f  ~p, as s h o w n  in Fig.  1, w h e r e  the func t ions  

hi, i = 1, 2, a re  de f ined  by  

h t = cq~/(1 - c), 

h e  = ( 1 / 2 ) { - 1  + c~/(1 - c) - ( [ - I  - c~/ ( l  - c)] 2 - 4) ~ :}. 
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k l ,  N k2\  k3 , g h 2 hl g / 

(II) 

0.l.7 

1 " C  I , ~ , rnl~ 
0 1 0 1 2.21.5 2.1.67 

Fig. I. Fig. 2. 

If R - Poisson(m~),  the three cases  are possible too;  in funct ion o f  the pa ramete r s  m~ 
and g,  they  o c c u r  as shown  in Fig. 2, where  the func t ions  ki, i = I, 2 . 3 .  are defined by 

kl = t n ~ ,  

k_. = [I + m l ~ ( l  

/<3 = [1 + m , ~ ( I  

- y , ) ]  e x p ( - , n , q z y , ) ,  

- 3'2)] e x p ( - m l ~ y : ) ,  

y, and y._ being the smallest  and largest  roots ,  when  they exist,  o f  the equat ion  

(1 - y)[exp(m,%v) - tn l~y]  = 1. 0 < y  < 1. 

The  ca lcula t ions  leading to these results  are e l emen ta ry  but tedious ,  and are not given 
here.  
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