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Abstract

Zero-schemes on smooth complex projective varieties, forcing all elements of ample and free linear systems to be reducible, are
studied. Relationships among the minimal length of such zero-schemes, the positivity of the line bundle associated with the linear
system, and the dimension of the variety are established. Bad linear spaces are also investigated.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 14C20; 14E25

1. Introduction

Given a linear system on a smooth, complex, projective variety X with dim X ≥ 2, it is often of importance to find
an irreducible element passing through a given set of points. In these circumstances, generality assumptions are not
useful. One is naturally brought to consider sets of points that are able to break all elements of the given linear system.
The first steps in the treatment of this phenomenon were conducted in [1,2], where the notions of bad point and bad
locus were introduced and studied.

Let L be an ample line bundle on X , spanned by V ⊆ H0(X, L). A point x ∈ X is bad for the linear system
|V | if all elements of |V | containing x are reducible or non-reduced. The existence of a bad point for an ample and
free linear system is shown to be exclusively a two-dimensional phenomenon, while bad points do not occur for very
ample linear systems.

The notion of bad point on a projective n-fold X can be generalized in different directions. One can view a single
bad point as a reduced zero-scheme of length one and therefore generalize the notion to zero-schemes of any length.
On the other hand, recalling that bad points occur only on surfaces, one could view a bad point as a linear space of
codimension two, i.e. a sub-manifold Λ of X , isomorphic to Pn−2, such that L |Λ = OPn−2(1).

In this work the more general notions of higher order bad locus, bad zero-scheme, and bad linear space are
introduced. A zero-scheme ξ is bad for the linear system |V | if all elements of |V | containing (scheme theoretically)
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ξ are reducible or non-reduced. The minimum length of a bad zero-scheme for the pair (X, V ) is introduced as a
numerical character denoted by b = b(X, V ), see Section 3 for details. Similarly, b0 denotes the minimum length of
a bad, reduced zero-scheme.

The main goal of the first sections of this work is to investigate relationships among b0, b, the dimension of X , and
the positivity of L .

A crucial point is whether a bad zero-scheme of minimal length imposes independent conditions on |V |. To answer
this question positively, one would need, for any zero-scheme ξ not imposing independent conditions, to find a
subscheme η ⊂ ξ , imposing to |V | linearly independent conditions that are equivalent to the ones imposed by ξ .
While this happens in several instances, e.g. when ξ is reduced, this fact seems doubtful in general. To overcome
this problem, avoiding duplication of statements, a notion of suitable pairs (V, ξ) is introduced, see Section 2 for
details.

In [1, Theorem 2, (i)] it is shown that if b(= b0) = 1 for an ample and free linear system, then dim X = 2.
Theorem 22, under the assumption that there exists a suitable pair (V, ξ), gives the bound dim X ≤ b+1, generalizing
the result above. On the other hand, the corresponding inequality with b0 instead of b holds with no further assumption,
see Remark 23.

Bringing the positivity of L into the picture, one can assume that L is k-very ample, i.e., every zero-scheme of
length k + 1 imposes independent conditions on sections of L . Then, Theorem 30 gives a stronger bound if k ≥ 2.

In [3, Theorem 1.7.9] a characterization of the case b = 2 for L very ample (1-very ample) is given. In particular
X must be a surface and bad zero-schemes of length 2 are contained in a line `. Proposition 33 generalizes this results
under the assumption that L is k-very ample and b is realized by a reduced zero-scheme of length k + 1. In this case
X must also be a surface and the bad, reduced zero-schemes of length k + 1 are contained in a rational normal curve
of degree k.

A similar characterization for k = 2 and b = 3, where b may be realized by a non-reduced zero-scheme, is given
in Proposition 27.

Sharpness of all bounds is illustrated by a series of examples.
Bad linear spaces are discussed in the final section. It turns out that they must necessarily have codimension two

and that they are inherited by hyperplane sections. These two facts are combined to show that bad linear spaces do not
occur at all for very ample linear systems.

2. Notation and background

Throughout this article X denotes a smooth, connected, projective variety of dimension n, n-fold for short, defined
over the complex field C. Its structure sheaf is denoted by OX and the canonical sheaf of holomorphic n-forms on
X is denoted by K X . Cartier divisors, their associated line bundles and the invertible sheaves of their holomorphic
sections are used with no distinction. Mostly additive notation is used for their group.

Let St X be the t-th symmetric power of X and X [t] be the Hilbert scheme of zero-subschemes of X of length t . Let
X [t]

(1,...,1) be the stratum of reduced zero-subschemes of length t . We denote by X [t]
(1+r,1,1,...,1), for 0 ≤ r ≤ min{t−1, n},

the set of zero-subschemes ξ of length t such that Supp(ξ) = {x1, x2, . . . , xt−r }, and Iξ = a · m2 · · · · · mt−r where
mi is the maximal ideal ofOX,xi and a = (ui u j , ur+1, . . . , un | 1 ≤ i ≤ j ≤ r), u1, . . . un denoting local coordinates
at x1.

Given a zero-scheme ξ ∈ X [t]
(1,...,1), we sometimes identify ξ and its support Supp(ξ); for example we write x ∈ ξ

to mean x ∈ Supp(ξ). For any coherent sheaf F on X , hi (X,F) is the complex dimension of H i (X,F). When the
ambient variety is understood, we often write H i (F) and hi (F) respectively for H i (X,F) and hi (X,F). Let L be
a line bundle on X . If L is ample, the pair (X, L) is called a polarized variety. For a subspace V ⊆ H0(X, L) the
following notations are used:

|V |, the linear system associated with V ;
|V ⊗ IZ |, with a slight abuse of notation, the linear system of divisors in |V | which contain, scheme theoretically,

the subscheme Z of X ;
Bs|V |, the base locus of the linear system |V |;
ϕV , the rational map given by |V |.
If V = H0(L) we write L instead of V in all of the above. Let L be a line bundle generated by its global sections.

When the linear span of ϕL(ξ) is a Pk for every zero-scheme ξ ∈ X [k+1] we say that L is k-very ample. Equivalently:
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Definition 1. Let k be a non-negative integer. A line bundle L on X is k-very ample if the restriction map
H0(X, L) → H0(L ⊗Oξ ) is surjective for every zero-scheme ξ ∈ X [k+1].

The second Bertini theorem, see for example [4], is the main tool to handle linear systems whose elements are all
reducible. The following remark on the dimension of the base locus of such linear systems follows easily from that
theorem and will be useful to us.

Remark 2. Let L be a line bundle on a smooth variety X , spanned by a subspace V ⊆ H0(L). Assume Z is a non-
trivial subscheme of X such that |V ⊗ IZ | does not have a fixed component and it is composed with a pencil (i.e. the
rational map associated with |V ⊗IZ | has one-dimensional image). Two generic fibers of the pencil are divisors on X
and their intersection lies in the base locus Bs(|V ⊗ IZ |) of |V ⊗ IZ |. This implies that dim(Bs(|V ⊗ IZ |)) = n − 2.

For ample linear systems we also have the following observation on the dimension of the base locus.

Remark 3. Let L be an ample line bundle on a smooth variety X, spanned by a subspace V ⊆ H0(X, L). Assume ξ

is a zero-scheme on X which imposes k independent conditions on |V |, i.e. dim(|V ⊗ Iξ |) = dim(|V |) − k. Consider

the cohomology sequence 0 → H0(L ⊗ Iξ ) → H0(L)
rξ
→ H0(L ⊗ Oξ ), and let W = rξ (V ), where dim W = k.

Choose a basis for V , taking into account the decomposition V ' Ker(rξ ) ⊕ W , to describe the map ϕV . Then one
sees that ϕV (Bs(|V ⊗Iξ |)) ⊆ P(W ) = Pk−1. As L is ample, ϕV does not contract any positive dimensional subvariety
and thus dim(Bs(|V ⊗ Iξ |)) ≤ k − 1.

The fact that, given a zero-scheme of length b, one can always find a zero-subscheme of any length a ≤ b is going to
be important. For clarity in the exposition we report below a self contained proof.

Lemma 4. Let K be an algebraically closed field. Let ξ be a zero-scheme over K of length b > 0. Let 0 < a < b,
then there is a zero-subscheme ξ ′

⊂ ξ of length a.

Proof. Let ξ = Spec(A). As dim(A) = 0, A is an Artinian ring and thus it is the product of local Artinian rings. Let
A = B1 × · · · × Bk , where Supp(Bi ) = xi and thus Supp(ξ) = {x1, . . . , xk}. Assume length(Spec(Bi )) = bi , i.e.
b = b1 + · · · + bk . If ξ is a reduced subscheme, i.e. b1 = · · · = bk = 1, then a subscheme ξ ′ as desired is given by
the ring B1 × · · · × Ba .

Assume that bi ≥ 2 for some i . To prove the assertion of the lemma it is enough to show that, for every i , we can
find a subscheme η ⊂ Spec(Bi ) with length(η) = bi − 1. Let mi be the maximal ideal of the local ring Bi and let h
be the smallest integer so that mi

h
= 0. Notice that 1 < h ≤ bi . Because length(Spec(Bi )) = bi , it must be mi

bi = 0.
Otherwise Bi would have a filtration of length ≥ bi + 1:

mi
bi ⊂ mi

bi −1
⊂ · · · ⊂ mi ⊂ Bi ,

which would contradict the assumption that dimK (Bi ) = bi . Let x ∈ mi
h−1. The ideal (x) of Bi , generated by x ,

is a one-dimensional K vector space. Consider the surjective map φ : Bi → (x) defined by sending 1 to x . Since
φ(mi) = 0 the map φ factors through Bi/mi = K (because K is algebraically closed) and thus K maps surjectively
onto (x).

This implies that the quotient Bi/(x) defines a subscheme

η = Spec(Bi/(x)) ⊂ Spec(Bi ),

where

length(η) = dimK (Bi/(x)) = dimK (Bi ) − dimK (x) = bi − 1.

The following two lemmata deal with changes in positivity of a k-very ample line bundle when blowing up at
reduced zero-schemes. A detailed study can be found in [5, 4].

Lemma 5. Let L be a k-very ample line bundle on a projective n-fold X, with k ≥ 0. Let π : X̃ → X be the
blow-up of X at ξ ∈ X [t]

(1,...,1), for any 0 ≤ t ≤ k, with exceptional divisors E1, . . . , Et . Then the line bundle

L = π∗(L) − E1 − · · · − Et is globally generated on X̃ .
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Proof. Let Iξ = mx1 · mx2 · · · · · mxt be the ideal defining the reduced zero-scheme ξ . For every point y ∈ (X̃ \ ∪Ei )

consider the zero-scheme of length t + 1 defined by the ideal Iξ ′ = Iξ · mπ(y). It is Supp(ξ ′) = Supp(ξ) ∪ π(y).
Because L is k-very ample, there is a section of L vanishing at Supp(ξ) and not vanishing at π(y). This implies that
there is a section of L not vanishing at y.

If y ∈ Ei for some i , it corresponds to a tangent direction τ to X at π(Ei ) = xi . For simplicity let us fix i = 1.
Choose local coordinates {u1, . . . , un} around x1 and assume that the tangent direction corresponds to the coordinate
u1. The zero-scheme ξ ′

∈ X [t+1]

(2,1,...,1) defined by the ideal Iξ ′ = (u2
1, u2, . . . , un)·mx2 ·· · ··mxt has length t +1 ≤ k+1,

and Supp(ξ ′) = Supp(ξ). Because L is k-very ample, the map

H0(X, L) → H0(L ⊗Oξ ′)

is onto. Therefore there is a section s ∈ H0(X, L) which vanishes at Supp(ξ) and such that ds(τ ) 6= 0. Let D = (s)0
and let s′

∈ H0(L) be the section corresponding to π∗(D) − E1 − · · · − Ek . Thus s′(y) 6= 0.

Lemma 6 ([5, 4.1]). Let L be a k-very ample line bundle on a projective manifold X, with k ≥ 1. Let π : X̃ → X
be the blow-up of X at ξ ∈ X [t]

(1,...,1), for any t ≤ k − 1, with exceptional divisors E1, . . . , Et . Then the line bundle
L = π∗(L) − E1 − · · · − Et is very ample.

Remark 7. In the same context as Lemma 6, X̃ can be naturally identified with a closed subscheme of X [t+1] and,
under this identification, L corresponds to a very ample line bundle of the subscheme. Moreover, if dim X = 2, then
such line bundle extends to a very ample line bundle on the whole X [t+1]. Indeed, let ξ ∈ X [t]

(1,...,1) and for all l ≥ t let

X [l]
ξ = {η ∈ X [l] such that Supp(ξ) ⊆ Supp(η)}.

It is X [t]
ξ = {ξ} and X [t+1]

ξ
∼= X̃ . Let sξ : X → St+1 X be the map defined by sξ (x) = (x, Supp(ξ)), and

ρ : X [t+1]
→ St+1 X be the Hilbert–Chow morphism. It is:

ρ−1(sξ (X)) ∼= X [t+1]

ξ .

Thus the following diagram is commutative:

π

X̃ X [t+1]

ξ X [t+1]

X X St+1 X.

��
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
�

��
� �
� �
� �
� �
�

//

By Lemma 6 the line bundle L = π∗(L) − E1 − · · · − Et defines an embedding of X [t+1]

ξ .
In the case dim(X) = 2 the line bundle L can be equivalently described as follows. Let ζt+1 ⊂ X [t+1]

× X be
the universal family with projection maps p1 : ζt+1 → X [t+1] and p2 : ζt+1 → X . Consider the rank (t + 1) vector
bundle L [t+1]

= p1∗(p∗

2 L). Then

L = det(L [t+1])|X [t+1]

ξ

.

In other words det(L [t+1]) extends L. Note that because dim(X) = 2 and L is (t + 1)-very ample then the line bundle
det(L [t+1]) is very ample, [6,7].

Let L be a line bundle on a smooth complex projective variety X of dimension n ≥ 2 and let ξ be a zero-dimensional
subscheme of X . Let Iξ be the ideal sheaf of ξ and consider the exact sequence

0 → L ⊗ Iξ → L → L ⊗Oξ → 0.

Consider the induced homomorphism H0(X, L) → H0(L ⊗Oξ ). We denote by rξ its restriction to V .

Definition 8. Let X , L , V , ξ , and rξ be as above. The pair (V, ξ) is suitable if, whenever rξ is not surjective, there
exists a subscheme η ⊂ ξ , such that rη is surjective and rη(V ) = ρ(rξ (V )), where ρ : H0(L ⊗Oξ ) → H0(L ⊗Oη) is
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the obvious restriction homomorphism. This is equivalent to requiring that η imposes linearly independent conditions
on V and |V ⊗ Iη| = |V ⊗ Iξ |.

Lemma 9. Let X, L, V , be as in the definition above. Let ξ ∈ X [t]. Then (V, ξ) is suitable in each of the following
cases:

(1) ξ reduced;
(2) ξ ∈ X [t]

(1+r,1,1,...,1);
(3) V = H0(X, L), L is (k − 2)-very ample and t = length(ξ) ≤ k.

Proof. Assume that rξ is not surjective, i.e. ξ ∈ X [t] does not impose t independent conditions. To prove (1), let
Supp(ξ) = {x1, . . . , xt } and let Iξ = m1 · · · · · mt where mi is the maximal ideal of OX,xi . Consider the vector
subspace

Im( rξ ) ⊂ H0(L ⊗Oξ ) ∼= ⊕
t
1OX/mi ∼= Ct .

After extending a basis of Im( rξ ) to H0(L ⊗ Oξ ) one can assume that Im( rξ ) ∼= ⊕
s
1OX/mi ∼= Cs , where s < t .

Then the reduced zero-subscheme η = {x1, . . . , xs} imposes independent conditions on V and it is what we need.
To prove (2) let Supp(ξ) = {x1, . . . , xt−r } and let u1, . . . , un denote local coordinates at x1. Recall that

Iξ = a · m2 · · · · · mt−r where mi is the maximal ideal of OX,xi and a = (ui u j , ur+1, . . . , un | 1 ≤ i ≤ j ≤ r). It is

H0(L ⊗Oξ ) ∼= Ct ,

where the first summand on the right hand side, which is isomorphic to OX/m1, is contained in Im( rξ ) as V spans
L . Notice that the restriction map ρ : H0(X, L) → H0(L ⊗ Oξ ) acts on global sections s ∈ H0(X, L) as follows:
ρ(s) = (s(x1),

∂s
∂u1

(x1), . . . ,
∂s
∂ur

(x1), s(x2), . . . , s(xt−r )). Because only first derivatives at x1 appear, one can proceed
as in the proof of (1) by completing the generator of the first summand above to a basis of Im( rξ ).

To prove (3), note that as L is (k − 2) very ample, then necessarily t = k. By Lemma 4 there exists a subscheme
η ⊂ ξ of length k − 1. Consider the following commutative diagram:

H0(X, L) H0(X, L ⊗Oξ ) ∼= Ck

H0(X, L) H0(X, L ⊗Oη) ∼= Ck−1.

//
rξ

� �
� �
� �
�

� �
� �
� �
�

��
� �
� �
� �
�

ρ

//
rη

As L is (k − 2)-very ample, rη is surjective. Therefore H0(X, L ⊗Oη) ∼= Im( rξ ), and η is the required subscheme.

The above lemma is mostly intended as a useful tool to enhance readability of a number of results expressed in
terms of suitable pairs contained in Sections 3 and 4.

3. Higher order bad loci

The definition of bad locus, introduced in [1] and further studied in [2], can be fairly naturally generalized to
subsets of X [t] as follows.

Definition 10. Let X be a complex, non-singular, projective variety. Let L be a line bundle on X spanned by a
subspace V ⊆ H0(X, L).

(1) The t-th bad locus of (X, V ), for t ≥ 1 is:

Bt (X, V ) = {ξ ∈ X [t]
| |V ⊗ Iξ | 6= ∅ and ∀D ∈ |V ⊗ Iξ |, D is reducible or non-reduced}.

(2) The reduced t-th bad locus of (X, V ), for t ≥ 1 is:

B0
t (X, V ) = Bt (X, V ) ∩ X [t]

(1,...,1).

We write Bt (X, L) and B0
t (X, L) if V = H0(X, L).

An element ξ ∈ Bt (X, V ) is called a bad zero-scheme for the linear system |V |.
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There is a clear relationship among the Bt ’s:

Lemma 11. If Bt (X, V ) 6= ∅ then Bk(X, V ) 6= ∅ for every k ≥ t .

Proof. Let ξ ∈ Bt (X, V ). If dim |V ⊗ Iξ | ≥ 1 let x be any point in X \ Supp(ξ). Otherwise let D be the unique
element in |V ⊗ Iξ | and let x be any point in D \ Supp(ξ). Consider the zero-scheme ξ ′, of length t + 1, obtained by
adding the reduced point x to ξ . It is Supp(ξ ′) = Supp(ξ)∪{x},Oξ ′,y = Oξ,y for every y ∈ Supp(ξ) andOξ ′,x =

OX
mx

.
Because |V ⊗ Iξ ′ | ⊆ |V ⊗ Iξ | all the divisors in |V ⊗ Iξ ′ | are reducible and ξ ′

∈ Bt+1(X, V ).

The above lemma suggests the following definitions.

Definition 12. Let (X, V ) be as above. The b-index of the pair (X, V ) is:

b(X, V ) =

{
∞ if Bt (X, V ) = ∅ for every t ≥ 1
min{t | Bt (X, V ) 6= ∅} otherwise.

The reduced b-index of the pair (X, V ) is:

b0(X, V ) =

{
∞ if B0

t (X, V ) = ∅ for every t ≥ 1
min{t | B0

t (X, V ) 6= ∅} otherwise.

We write b and b0, respectively, for b(X, V ) and b0(X, V ), when the pair (X, V ) is clear from the context.

Remark 13. It follows immediately from the above definition that b(X, L) ≤ b0(X, L). Moreover,
Bb(X, V ) ∩ X [b]

(1,...,1) 6= ∅ if and only if b(X, V ) = b0(X, V ). Notice also that if there are no suitable pairs (V, ξ),
then b < b0.

Remark 14. If |V | contains a reducible element D, then b(X, V ) < ∞. Indeed, let A be an irreducible component
of D. A zero-scheme ξ ⊂ A can be constructed with r = length(ξ) > dim |V ||A and sufficiently general to have
|V ⊗ Iξ | = A + |V − A|. Then ξ ∈ Br (X, V ), hence b(X, V ) ≤ r .

Suppose Pic(X) = Z[L] where L is ample and spanned by V . Then b(X, V ) = ∞. Indeed |V | cannot contain any
reducible element. If A + B were such an element it would be A = aL and B = bL for a, b ≥ 1. This would give
L = (a + b)L which is a contradiction. Recall that Barth–Larsen’s Theorem can provide plenty of such examples.

Remark 15. Let W ⊆ V ⊆ H0(X, L) be two subspaces which generate L . Then clearly Bt (X, V ) ⊆ Bt (X, W ) and
thus b(X, W ) ≤ b(X, V ) and b0(X, W ) ≤ b0(X, V ). This is illustrated in the following example.

Example 16. Let (X, L) = (P2,OP2(2)) and ξ ∈ X [2]. As |L ⊗ Iξ | contains always irreducible conics, it is
b(X, L) ≥ 3. Let now η consist of three distinct points on a line. As all elements of |L ⊗ Iη| are reducible, it is
b(X, L) = b0(X, L) = 3. Now let x0, x1, x2 be homogeneous coordinates on P2 and consider the following vector
subspace of H0(X, L): U := 〈x2

0 + x2
1 + x2

2 , x0x1, x0x2, x1x2〉. Note that U spans L and ϕU : P2
→ P3 is a birational

morphism whose image, Σ , is Steiner’s Roman surface. Theorem 1.1 in [2], since ϕU (X) is neither P2 nor a cone,
implies B1(X, U ) = ∅. Notice that ϕU maps all three points e0 = (1 : 0 : 0), e1 = (0 : 1 : 0), e2 = (0 : 0 : 1) to
(1 : 0 : 0 : 0), the triple point of Σ . In other words,

|U − e0| = |U − e1| = |U − e2|.

Now, let ξ be the zero-scheme consisting of ei and another point p, possibly infinitely near, lying on the line
〈ei , e j 〉. Then every conic in |U ⊗ Iξ | is reducible, containing ei , e j , p, hence the line 〈ei , e j 〉. This shows that
ξ ∈ B2(X, U ) and therefore b(X, U ) = b0(X, U ) = 2 < b(X, L). Finally, let W be either the vector subspace
〈x2

0 , x2
1 , f (x0, x1, x2)〉, where f is a general form of degree 2, or 〈x2

0 , x2
1 , x2

2〉. Then the pairs (X, W ) correspond to
Example 7.2 (i) and Example 7.3 (jjj) in [2], respectively. Recalling that B(X, W ) = {e2} or {e0, e1, e2} respectively,
in both cases we have b(X, W ) = b0(X, W ) = 1 < b(X, U ) < b(X, L).

The following proposition generalizes some points of [1, Theorem 2].

Proposition 17. Let X be a smooth n-dimensional variety. Let L be an ample line bundle on X, spanned by a subspace
V ⊆ H0(X, L). Let ξ ∈ Bb(X, V ), and suppose |V ⊗ Iξ | has finite base locus. Then

(i) n = 2;
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(ii) there is an ample line bundle A on X with h0(A) ≥ 2 such that every D ∈ |V ⊗ Iξ | is of the form
D = Ab1 + · · · + Abr , for some r ≥ 2, with Abi varying in a rational pencil B ⊆ |A|;

(iii) with r as in (ii), for all x ∈ Bs|V ⊗ Iξ |, x is a point of multiplicity r ≥ 2 for all D ∈ |V ⊗ Iξ |. In particular this
is true for all x ∈ Supp(ξ), i.e. Iξ,x ⊆ mr

x , where r ≥ 2;
(iv) Supp(ξ) ⊆ Abi ∩ Ab j = Bs|V ⊗ Iξ |, for all distinct Abi and Ab j appearing in the expression of a general

D ∈ |V ⊗ Iξ |.

Proof. As |V ⊗ Iξ | has finite base locus, Bertini’s second theorem and Remark 2 give (i) and that the image C of the
rational map ϕV ⊗Iξ is one-dimensional. After resolving its indeterminacies, taking Stein’s factorization we get the
following diagram:

X̃ C ⊂ P

B

//
ϕ̃

��
� �
� �
� �
� �

α

??�����������

β

where X̃ is a suitable blow-up of X , B is a smooth curve, α has connected fibres and β is a finite morphism. Note that
B ' P1 because there is at least one exceptional divisor in X̃ , mapping surjectively to B via ϕ̃. Let r = deg β deg C .
Then every D ∈ |V ⊗ Iξ | can be written as D = Ab1 + · · · + Abr , where each Abi is the image on X of a fibre
of α. Thus, r ≥ 2. Notice that all Abi ’s are linearly equivalent as they vary in the rational pencil B. It follows that
h0(A) ≥ 2, L ∼ r A (linearly equivalent) and A is ample. This proves (ii). Let x ∈ Bs|V ⊗ Iξ |. As x ∈ D for all
D ∈ |V ⊗ Iξ |, and there are no fixed components, x must belong to infinitely many elements Ab, b ∈ B, hence to all
of them. Thus x is a point of multiplicity greater or equal to r for all D. In particular, if x ∈ Supp(ξ), Iξ,x ⊆ mr

x . This
proves (iii). Moreover Supp(ξ) ⊆ Bs|V ⊗ Iξ | ⊆ Abi ∩ Ab j for any i, j = 1, . . . , r . To prove (iv), it is then enough
to show that for a general D ∈ |V ⊗ Iξ | it is Bs|V ⊗ Iξ | ⊇ Abi ∩ Ab j for any i, j = 1, . . . , r . This follows from
Bertini’s first theorem because every point y ∈ Abi ∩ Ab j is a singular point for D, which is generally chosen.

The following lemma shows that, in the case of suitable pairs, the linear span of a bad zero-scheme of minimal length
is always of maximal dimension.

Lemma 18. Let X be a smooth n-dimensional variety. Let L be an ample line bundle on X, spanned by a subspace
V ⊆ H0(X, L). Assume b0(X, V ) < ∞.
(i) Let ξ ∈ Bb(X, V ). If (V, ξ) is suitable, then ξ imposes exactly b independent conditions on |V |;

(ii) b(X, V ) ≤ b0(X, V ) ≤ dim |V |.

Proof. To prove (i), assume that dim(|V ⊗ Iξ |) = dim(|V |) − m > dim(|V |) − b. As (V, ξ) is suitable, there exists
a zero-scheme η ⊂ ξ with length(η) < b, such that |V ⊗ Iη| = |V ⊗ Iξ |. This is impossible because it would imply
η ∈ Bt (X, V ) with t < b. If ξ in the argument above is reduced then b = b0, as noted in Remark 13. Moreover in this
case η is reduced and the right side of inequality (ii) follows immediately from (i). Remark 13 completes the proof.

Remark 19. Notice that replacing Bb(X, V ) with B0
b0

(X, V ) and b with b0, the same argument as in the proof of
Lemma 18 shows that (i) holds for every ξ ∈ B0

b0
(X, V ).

The upper bound in Lemma 18 (ii) above can be strict, see Example 16 above with V = H0(X, L) and Example 20
below. Nonetheless it can be attained in some cases, showing that it is optimal. This can be seen in Example 21.

Example 20. Let X = P3 with homogeneous coordinates x0, x1, x2, x3, and consider the vector subspace V of
H0(OP3(2)) generated by the monomials x2

0 , x2
1 , x2

2 , x2
3 . Note that V spans L = OP3(2) and defines a morphism

P3
→ P3 of degree 8. Let {e0, e1, e2, e3} be the standard basis for C4. Now, let ξ = {e0, e1}. Then |V ⊗ Iξ | is the

pencil of quadrics generated by x2
2 and x2

3 . Every such quadric is reducible, hence ξ ∈ B0
2(X, V ). Note that |V ⊗Iξ | has

no fixed component and is composed with the pencil |OP3(1)⊗I`|, ` being the linear span of ξ . In conclusion we have

b(X, V ) ≤ b0(X, V ) = 2 = dim |V | − 1,

and thus b(X, V ) = 2, as B(X, V ) = ∅, see [1, Theorem 2].
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Example 21. Let X be a Del Pezzo surface with K 2
X = 2 and let L = −K X . It is well known that L is ample and

spanned and ϕL : X → P2 is a double cover, branched along a smooth plane quartic curve. Let ξ = {x1, x2} be a
zero-scheme consisting of two distinct points of the ramification divisor such that < ϕL(x1), ϕL(x2) > is a bitangent
line to the branch quartic curve. Then |L ⊗ Iξ | consists of a single element G having double points at x1 and x2. In
fact G = Γ1 + Γ2, where Γ1, Γ2 are two (−1)-curves meeting exactly at x1, x2. Thus b0(X, L) ≤ 2 and it follows
from Corollary 1.3 in [2] that b0(X, L) = 2 = dim |L|.

One of the major results of [1] is the fact that the existence of a bad point forces the variety to be a surface. The
following theorem generalizes this result to include higher order bad loci

Theorem 22. Let X be a smooth n-dimensional variety. Let L be an ample line bundle on X, spanned by a subspace
V ⊆ H0(X, L). Assume there exists ξ ∈ Bb(X, V ), such that (V, ξ) is suitable. Then:

(1) n ≤ b + 1;
(2) If n = b + 1, for every ξ ∈ Bb(X, V ) such that (V, ξ) is suitable, the linear system |V ⊗ Iξ | has no fixed

component and it is composed with a pencil.

Proof. Let ξ ∈ Bb(X, V ). If b = 1, (1) and (2) follow respectively from [1, Theorem 2, (i) and (ii)]. So let
b ≥ 2. By Lemma 18, ξ imposes exactly b conditions on |V |. According to Bertini’s second theorem, the linear
system |V ⊗ Iξ | either has a fixed component Σ or it is composed with a pencil. In the first case, Remark 3 gives
dim(Σ ) = n − 1 ≤ b − 1, i.e. (1) holds as a strict inequality and thus (2) is proven. If |V ⊗ Iξ | is composed with a
pencil, Remarks 2 and 3 give

n − 2 = dim(Bs(|V ⊗ Iξ |)) ≤ b − 1,

which completes the proof of (1).

Remark 23. If there are no suitable pairs (V, ξ), which by Remark 13 implies b < b0, the same argument used in the
proof of Theorem 22, replacing Bb(X, V ) with B0

b0
(X, V ) and Lemma 18 with Remark 19, gives the same statement

as in Theorem 22 for b0 and for all ξ ∈ B0
b0

(X, V ).

Example 20 shows that case (2) of Theorem 22 is effective. On the other hand, the following example illustrates the
fact that if n < b + 1 then the linear system |V ⊗ Iξ | for all ξ ∈ Bb(X, V ) may have a fixed component.

Example 24. Let X be an n-fold and let L be an ample line bundle on X , spanned by a subspace V ⊂ H0(X, L).
Assume that X contains an L-hyperplane, i.e. a divisor F ' Pn−1 such that Ln−1

· F = 1. Let ξ = {x1, x2, . . . , xn}

be a reduced zero-scheme on F such that the linear span of ϕV (ξ) has dimension n − 1, i.e. ϕV (ξ) spans the entire
ϕV (F). Then ξ ∈ B0

n with |V ⊗ Iξ | having F as fixed component. It follows that b(X, V ) ≤ b0(X, V ) ≤ n. On the
other hand Theorem 22 gives b(X, V ) ≥ n, hence b(X, V ) = n.

In particular, if (X, L) = (P(E),OP(E)(1)) is the n-dimensional scroll of a very ample vector bundle E over a
smooth curve C then b(X, L) = b0(X, L) = n. Notice that as (X, L) is a scroll, D ∈ |L| is reducible if and only if D
contains a fibre F = Pn−1 of the scroll.

4. Bad loci and higher order embeddings

The study of Bt (X, L), so tightly connected with linear systems containing zero-schemes of any length, is very
naturally conducted in the context of higher order embeddings. The focus of this section is on the properties of bad
loci of complete linear systems associated with k-very ample line bundles.

Let X be a smooth complex variety and let L be a k-very ample line bundle on X . Assume Bt (X, L) is not empty
for some t . Recall that, by Lemma 9, for all ξ ∈ X [t], t ≤ k + 2, the pair (H0(X, L), ξ) is suitable.

In [1,2], the case of a spanned (0-very ample) line bundle with non-empty B1(X, L) was treated.
When L is very ample (1-very ample) it is b0 ≥ b ≥ 2, see [1, Corollary 2], and a complete characterization of the

case b = 2 is given in [3, Theorem 1.7.9]. In this case n = 2 and, for all D ∈ |L| containing a bad zero-scheme of
length 2, D = `+ R, where ` is a fixed line containing the bad zero-scheme,OX (R) is spanned, and R and ` intersect
transversally. Notice that the same characterization holds for (X, V ), V ⊂ H0(X, L), where |V | is a very ample linear
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system. Notice also that this shows that the natural phenomenon described in Example 24 is the only possibility when
L is very ample and n = 2. The following proposition generalizes the lower bound on b in terms of k-very ampleness.

Proposition 25. Let L be a k-very ample line bundle on a projective n-fold X, n ≥ 2, with k ≥ 1. Then
b(X, L) ≥ k + 1 if either n ≥ 3 or n = 2 and there exists η ∈ Bb(X, L) with x ∈ Supp(η) such that η is reduced at
x, i.e. h0(Oη,x ) = 1.

Proof. Assume by contradiction that b ≤ k and let ξ ∈ Bb(X, L). Notice that the base scheme of |L ⊗ Iξ | is ξ .
Indeed, if such a scheme, Z , strictly contained ξ as a scheme, then there would be a zero-scheme ξ ′ of X , containing
ξ , of length b + 1, such that |L ⊗Iξ | = |L ⊗Iξ ′ |. But this contradicts the k-very ampleness of L , since b + 1 ≤ k + 1.
Then the assertion follows from Proposition 17, (i) and (iii).

Remark 26. Equality in the statement of Proposition 25 does indeed happen. Let (X, L) = (P2,OP2(k)). If k = 1
then b(X, L) = ∞ by Remark 14. Assume k ≥ 2. L is k-very ample. Let ξ = {x1, . . . , xk+1} be a reduced zero-
scheme contained in a line `. Then ξ ∈ B0

k+1(X, L) and thus Proposition 25 gives b0(X, L) = b(X, L) = k + 1.

In line with [3, 1.7.9] where the case b = 2 is fully described, the following proposition gives a complete
characterization of the case b = 3. The role of the line ` for b = 2 is here played by a smooth conic.

Proposition 27. Let L be a k-very ample line bundle on a projective n-fold X, with n ≥ 2 and k ≥ 2. Assume
b(X, L) = 3. Then n = k = 2 and either

(a) (X, L) = (P2,OP2(2)) or
(b) for all ξ ∈ B3(X, L), |L ⊗ Iξ | has a fixed component Γ which is a smooth conic containing ξ .

Proof. We first show that k = 2. Let ξ ∈ B3(X, L). Because b(X, L) = 3, Proposition 25 gives k = 2 except possibly
when n = 2 and ξ is supported on a single point. By contradiction, assume n = 2, k ≥ 3, and let Supp(ξ) = {y}. The
same argument as in the proof of Proposition 25 shows that ξ is the base scheme of |L ⊗Iξ |. Then, by Proposition 17,
all D ∈ |L ⊗ Iξ | are of the form D = Ab1 + · · · + Abr , where Abi varies in a rational pencil B ⊆ |A|, and r = 2
as b(X, L) = 3. Notice that, for a general D, Abi is smooth at y. Otherwise y would be a point of multiplicity ≥ 4
for all D, contradicting b(X, L) = 3. Because h0(Oξ ) = h0(Oξ,y) = 3, it is A2

≤ 1 and hence A2
= 1, A being

ample. Indeed if A2
≥ 2 then Proposition 17, (iv), noting that Supp(ξ) = Bs|L ⊗ Iξ |, implies that all Abi have an

assigned tangent at y. Then, locally at y, each Abi has an equation of the form z2 + Fi (z1, z2) = 0 where Fi has no
terms of degree less than 2. Therefore H0(Oξ,y) ⊇ 〈1, z1, z2, z2

1, z1z2〉, which is a contradiction. It follows that L is
a 3-very ample line bundle, with L2

= (2A)2
= 4, which is impossible. To see this, blow up X at two general points

x1, x2 ∈ X , and, on the new surface X̃ , consider the very ample line bundle L = π∗(L) − E1 − E2 as in Lemma 6.
Note that L2

= 2, while the Picard number of X̃ is at least 3, which is clearly impossible. Thus k = 2. The proof now
splits into 2 cases, according to the cardinality of Supp(ξ).

Case 1. Assume first ξ = ξ ′
∪ {x} where length(ξ ′) = 2 and x 6∈ Supp(ξ ′). Let π : X̃ → X be the blow-up of X at x ,

with exceptional divisor E . Then the line bundle L = π∗(L) − E is very ample by Lemma 6. Let ξ̃ ′ be ξ ′ pulled back
on X̃ . Note that there is a bijection between |L⊗ I

ξ̃ ′ | and |L ⊗ Iξ .|. Hence ξ̃ ′ ∈ B2(X̃ ,L). From [3, 1.7.9] it follows

that n = 2 and |L⊗ ξ̃ ′| = ` + |R|, where ` is an L-line containing ξ̃ ′ scheme theoretically. Let Γ = π(`). Because L
is 2-very ample it must be L · Γ ≥ 2, with equality holding only if Γ ' P1. Because ` and E are L-lines, it must be
ν := ` · E ∈ {0, 1}. Therefore it is 1 = L · ` = (π∗(Γ ) − νE) · (π∗(L) − E) = Γ · L − ν ≥ 2 − 1 = 1 which implies
Γ · L = 2, i.e. Γ is a smooth conic. Moreover ` · E = 1, hence x belongs to Γ . Thus we are in case (b).

Case 2. Assume now that Supp(ξ) = {x}. Let π : X̃ → X be the blow-up of X at x , with exceptional divisor E . As
above the line bundle L = π∗(L) − E is very ample. Note that ξ defines a length 2 zero-scheme η of X̃ supported
on E . Again there is a bijection between |L ⊗ Iη| and |L ⊗ Iξ |, and thus η ∈ B2(X̃ ,L). As before we conclude
that n = 2 and |L ⊗ Iη| = ` + |R|, where ` is an L-line containing η scheme theoretically. If ` 6= E then as above
Γ = π(`) is a smooth conic containing x (hence ξ ) and it is a fixed component for |L ⊗ Iξ |. We are again in case
(b). Let now ` = E . In view of the quoted bijection |L ⊗ Iξ | corresponds to |R| and thus all elements of |R| are
reducible. According to [3, 1.7.9], |R| is base-point free, hence its generic element is smooth. By Bertini’s second
theorem |R| is composed with a pencil and thus R2

= 0. The pencil B is rational because E is transverse to all fibers.
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From 1 = L · ` = `2
+ ` · R = −1+ ` · R we get that ` · R = 2, hence R = Ab + Ab′ , b, b′

∈ B,L · Ab = L · Ab′ = 1.
This shows that X̃ is fibred over P1 by L-lines. Moreover L2

= L · (` + R) = 3, and then it follows that (X̃ ,L)

is a rational cubic scroll. Thus (X, L) = (P2,OP2(a)), for some a ≥ 2. Let f be a fiber of the cubic scroll. Then
π∗(OP2(1)) = E + f . On the other hand R = L − E , which implies that 2E + a f = π∗L = a(E + f ) and thus
a = 2. This gives case (a).

The following example illustrates case (b) of Proposition 27.

Example 28. Let X be a non-minimal Del Pezzo surface with K 2
X ≥ 2 and let L = −2K X . Then L is 2-very ample,

see [8]. Let E ⊂ X be a (−1)-curve, and let ξ ∈ X [3], supported on E . Note that |L ⊗ Iξ | is non-empty, since
H0(X, L) = 1 + 3K 2

X ≥ 7. Moreover, it is clear that E is a fixed component of |L ⊗ Iξ |, since L E = 2. This shows
that ξ ∈ B3(X, L). It thus follows that b(X, L) ≤ 3. Note however that it cannot be b(X, L) = 2, since (X, L) does
not contain lines. Therefore b(X, L) = 3. Note also that the fixed component E of |L ⊗ Iξ | is a rational normal curve
of degree 2 in the embedding given by L .

The following example shows that when L is very ample, but not 2-very ample, the fixed component of |L ⊗ Iξ |

can be singular.

Example 29. Let X be a Del Pezzo surface with K 2
X = 1 and let L = −3K X . Then L is very ample. However L

is not 2-very ample, see [8]. Recall that if X is general in moduli then |−K X | is a pencil containing 12 irreducible
elements having a double point. Let Γ be such an element and let x1 be its singular point. Let x2, x3 be two other
distinct points of Γ and consider the reduced zero-scheme ξ of length 3 consisting of x1, x2, x3. Note that |L ⊗ Iξ | is
non-empty, since H0(X, L) = 7. Moreover, for any D ∈ |L ⊗ Iξ | we have

(D · Γ )x1 ≥ 2, and D ∩ Γ ⊃ {x2, x3}.

Thus

4 ≤ D · Γ = (−3K X ) · (−K X ) = 3.

It thus follows that D is reducible and contains Γ . Therefore ξ ∈ B0
3(X, L) and b0(X, L) = 3. Note however that

it cannot be b(X, L) = 2, since (X, L) does not contain lines. Therefore b(X, L) = 3. Note also that the fixed
component of |L ⊗ Iξ | is a singular plane cubic in the embedding given by L .

As mentioned in the introduction, the main goal of this work is to shed light on the global relationship between n, k
and b in the case of a k-very ample line bundle. Theorem 22 and Proposition 25 give lower bounds for b respectively
in terms of n and k. The fact that equality in Proposition 25 occurs for n = 2, see Remark 26, suggests b ≥ n + k − 1
as a reasonable bound to expect. The following theorem proves the suggested bound for n ≥ 4. Unfortunately, the
information given by the same argument for n = 3 is unsatisfactory.

Theorem 30. Let L be a k-very ample line bundle on a projective n-fold X, with n ≥ 3 and k ≥ 2. Assume there
exists ξ ∈ Bb(X, L) such that (H0(L), ξ) is suitable.

(a) If n ≥ 4 then b(X, L) ≥ n + k − 1. Moreover, if equality holds, then |L ⊗ Iξ | has no fixed component for all
ξ ∈ Bb(X, L) such that (H0(L), ξ) is suitable.

(b) If n = 3 and b = k + 1 then k ≥ 3. Moreover, for all ξ ∈ Bb(X, L) such that (H0(L), ξ) is suitable, |L ⊗ Iξ | has
no fixed component and every irreducible component of Bs|L ⊗ Iξ | is a rational normal curve of degree k.

Proof. As L is very ample, we identify any 0-scheme ξ with its image in the embedding ϕL and by the linear span of
ξ we mean that of ϕL(ξ).

From Proposition 25 it is b = k + m with m ≥ 1. Let ξ ∈ Bb(X, L) be such that (H0(L), ξ) is suitable and let Γ
be a component of maximal dimension of Bs|L ⊗ Iξ |. Set t = dim Γ . Remark 2 gives t = n − 1 or n − 2. It is also
Γ ⊆ 〈ξ〉 = Pk+m−1 because of Lemma 18. Let 〈Γ 〉 = Pr so that t ≤ r and

r ≤ k + m − 1. (1)

Assume that

n ≥ m + 2, (2)
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or

n = m + 1 and t = n − 1. (3)

In both cases it is:

t ≥ m. (4)

As k ≥ 2, Γ cannot contain lines. Thus if Γ is a variety of minimal degree, i.e. deg Γ = codim〈Γ 〉Γ + 1 = r − t + 1,
then one of the following cases must occur [9, Theorem 1]:

(1) Γ is the Veronese surface in P5;
(2) Γ is a rational normal curve of degree r .

In the former case (1) implies m ≥ 4 which contradicts (4). In the latter case it is r ≥ k as L is k-very ample. This
fact combined with (1) and (4) implies that r = k, and m = 1, as t = 1. The assumption n ≥ 3 then implies n = 3 as
in part (b) of the statement.

In view of the above argument we can assume that deg Γ > r − t +1. Let λ be a zero-subscheme of Γ consisting of
r − t + 1 linearly independent points. Then its linear span Λ = 〈λ〉 is a Pr−t . As length(Λ∩Γ ) = deg Γ > length(λ),
there exists a zero-scheme λ′ of Γ ∩ Λ with length(λ′) = length(λ) + 1 and in particular

|L ⊗ Iλ| = |L ⊗ Iλ′ |. (5)

Notice that (1) and (4) imply r − t + 1 ≤ k, hence length(λ′) ≤ k + 1, contradicting the k-very ampleness of L in
view of (5).

Consequently neither of the assumptions (3) and (2) can hold unless the setting is as in part (b) of the statement,
in which case Proposition 27 implies k ≥ 3. Therefore if n ≥ 4 and n = m + 1 = b − k + 1 then t = n − 2, i.e.
|L ⊗ Iξ | has no fixed component for all ξ ∈ Bb(X, L), such that (H0(L), ξ) is suitable. Moreover, if n ≥ 4 it must be
b − k = m > n − 2 i.e. b ≥ n + k − 1. This completes the proof of (a).

Remark 31. If n = 2, and b = k + 1, the k-very ampleness of L forces a potential fixed component Γ of |L ⊗ Iξ |,
for all ξ ∈ Bk+1(X, L), to be a rational normal curve of degree k. This can be seen by using a simple adaptation of the
main argument of the proof of Theorem 30. There are no examples known to us of threefolds (X, L) with b = k + 1
and k ≥ 3.

5. Reduced bad zero-schemes

Let L be k-very ample, k ≥ 1, and assume that B0
t (X, L) is not empty for some t . On the basis of [1,2], the naive

approach would be to consider the blow-up π : X̃ → X of X at one point in the t-th bad locus, hoping to obtain,
inductively, a new pair, (X̃ , π∗(L)− E), polarized with a line bundle which is still very positive, and has a non-empty
B0

t−1. This is, unfortunately, not a good strategy. The new polarized pair contains a linear Pn−1, which is impossible
for a k-very ample line bundle if k ≥ 2. Nonetheless, proceeding with a little care in the same context, it is possible to
obtain a new pair, polarized with a very ample line bundle admitting a non-empty B0

2 .
The following example will shed more light on the situation.

Example 32. Let (X, L) = (P2,OP2(2)). Notice that L is 2-very ample. Let ` be any line in P2 and let x1, x2, x3 be
any three collinear points on `. A conic through the xi s must contain ` and therefore be reducible. Thus the reduced
zero-scheme ξ = {x1, x2, x3} is contained in B0

3(X, L). This is an example of a k-very ample line bundle with non-
empty B0

k+1. Notice that |L ⊗ Iξ | has ` as fixed component.
Let now π1 : X̃1 → X be the blow-up of X at x1 with exceptional divisor E1. It is L1 = π∗

1 (L) − E1 = E1 + 2 f
where f is the proper transform of a line in X through x1. Thus Pic(X̃1) = Z[E1] ⊕ Z[ f ]. Notice that L1 is very
ample and embeds X̃1 in P4 as a rational normal scroll of degree 3. Let y2 and y3 on X̃1 be such that π1(yi ) = xi . Then
{y2, y3} ∈ B0

2(X̃1,L1). The situation here is exactly as described in [3, Theorem 1.7.9] with ` = f and R = E1 + f .
Let now π2 : X̃2 → X be the blow-up of X at x1 and x2 with exceptional divisors E1 and E2. Consider the

line bundle L2 = π∗

2 (L) − E1 − E2. This time L2 is merely spanned and not ample. Let y3 on X̃2 be such that
π2(y3) = x3. Then y3 ∈ B1(X̃2,L2). The divisor ˜̀ = π∗

2 (`) − E1 − E2 is a (−1)-curve through y3, contracted by
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ϕL2 to a smooth point on a smooth quadric surface. The situation here is exactly as described in [2, Theorem 1.1 case
(d)]. Here B1(X̃2,L2) = ˜̀.

Pairs (X, L) with L being k-very ample, whose b0 index achieves the lower bound given in Proposition 25, turn out
to be only 2-dimensional. As [3, Theorem 1.7.9] and Proposition 27 suggest, one would expect that L k-very ample
and b = k + 1 should imply, for all ξ ∈ Bb(X, L), the existence of a fixed component for |L ⊗ Iξ | which is a rational
normal curve of degree k. The following proposition gives the desired characterization assuming b0(X, L) = k + 1,
and k ≥ 2.

Proposition 33. Let L be a k-very ample line bundle on an n-dimensional manifold X with k ≥ 2. Assume
b0(X, L) = k + 1. Then dim X = 2 and for all ξ ∈ B0

k+1 the linear system |L ⊗ Iξ | has a smooth fixed component Γ ,
embedded by |L| as a rational normal curve of degree k, such that ξ ⊂ Γ .

Proof. Let ξ = (x1, . . . , xk+1) ∈ B0
k+1(X, L). Let π : X̃ → X be the blow-up of X at x1, . . . , xk−1 and

yi = π−1(xk+1−i ) for i = 1, 2. Let η = {y1, y2}. Lemma 6 implies that L = π∗(L)− E1 −· · ·− Ek−1 is very ample.
Because |L⊗ Iη| = |L ⊗ Iξ |, it is η ∈ B0

2(X̃ ,L). Therefore (X̃ ,L) must be as in [3, Theorem 1.7.9], i.e. dim X = 2
and there exists a line ` through η with |L ⊗ Iη| = ` + |R| where OX (R) is spanned. Let Γ = π(`). Because L is
k-very ample it must be L · Γ ≥ k, with equality holding only if Γ ' P1. Because ` and Ei are L-lines, it must be
νi := `·Ei ∈ {0, 1}. Therefore it is 1 = L·` = (π∗(Γ )−

∑
i νi Ei )·(π

∗(L)−
∑

i Ei ) = Γ ·L−
∑

i νi ≥ k−(k−1) = 1
which implies Γ · L = k, i.e. Γ is a smooth P1, embedded by |L| as a rational normal curve of degree k. Moreover
` · Ei = 1 for all i , i.e. all xi ’s belong to Γ .

Pairs (X, L) where L is k-very ample, for which b0 = k + 2, can be further described under the assumption that
dim X = 2. The case k = 1 is analyzed first. The general case is then obtained from it.

Proposition 34. Let L be a very ample line bundle on a surface X. Assume b0(X, L) = 3. For all ξ ∈ B0
3 , if |L ⊗ Iξ |

does not have a fixed component then ϕL embeds X in PN , in such a way that there exists a linear P2
⊂ PN , tangent

to ϕL(X) at the 3 points ϕL(Supp(ξ)).

Proof. Due to the assumption on the absence of a fixed component, |L ⊗ Iξ | has finite base locus. Hence, by
Proposition 17, every D ∈ |L ⊗ Iξ | is of the form D = Ab1 + · · · + Abr , r ≥ 2, where all Ab j ’s belong to a rational
pencil B. Moreover, if Supp(ξ) = {x1, x2, x3}, Proposition 17, (iii), implies that r ≥ 2 and that every D ∈ |L ⊗ Iξ |

has a point of multiplicity ≥ 2 at xi for i = 1, 2, 3. This gives the following chain of equalities:
3⋂

i=1

|L ⊗ m2
xi

| = |L ⊗ I2
ξ | = |L ⊗ Iξ |.

By Lemma 18 the term on the right is a linear subspace of codimension 3 in |L|. On the other hand, each of the
linear spaces |L ⊗ m2

xi
| appearing on the left has codimension 3 in |L|, since L is very ample, see for example [10,

Proposition 1.3 and Remark 2.3.3]. This means that the three linear subspaces |L ⊗ m2
xi

| coincide, i.e.,

|L ⊗ m2
x1

| = |L ⊗ m2
x2

| = |L ⊗ m2
x3

|.

In other words, looking at X embedded by |L|, every hyperplane tangent to X at x1 is tangent also at x2 and x3.
Equivalently, X embedded by |L| has the same embedded tangent plane at x1, x2, x3.

Proposition 35. Let k ≥ 1 and L be a k-very ample line bundle on a surface X. Assume b0(X, L) = k + 2. For all
ξ ∈ B0

k+2, if |L ⊗ Iξ | does not have a fixed component then there exists a linear Pk+1, tangent to ϕL(X) at the k + 2
points ϕL(Supp(ξ)).

Proof. Let ξ = {x1, . . . , xk+2} ∈ B0
k+2(X, L). Let η ∈ X [k−1]

(1,...,1) be any reduced zero-scheme obtained by choosing
k − 1 of the k + 2 points of ξ . Let τ = ξ \ η = {x, y, z}. Let π : X̃ → X be the blow-up of X at the k − 1 points of
η with exceptional divisors Ei , let L = π∗(L) −

∑k−1
i=1 Ei , and let τ̃ = {x̃, ỹ, z̃} = π−1(τ ). According to Lemma 6,

L is very ample on X̃ and the proof of Proposition 34 gives |L ⊗ Iτ̃ | = |L − 2x̃ − 2ỹ − 2z̃|. As |L ⊗ Iη| = |L|,
we have |L ⊗ Iξ | = |L ⊗ Iη ⊗ I2

τ |. Because the last equality is true no matter how η was chosen, it follows that
|L ⊗Iη| = |L ⊗I2

η |. This means that the Pk+1 spanned by ϕL(ξ) is tangent to ϕL(X) at the k +2 points ϕL(Supp(ξ)).
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6. Bad linear spaces

As mentioned in the introduction, one may view a bad point as a bad linear space of codimension two, as
Andrew Sommese suggested to the first author. In this section we adopt this point of view. After introducing a natural
definition of bad linear spaces we show that they must necessarily have codimension two and that they are inherited
by hyperplane sections. These two facts are combined to show that bad linear spaces of very ample linear systems do
not occur at all.

Definition 36. Let X be a smooth projective n-fold, n ≥ 2, and let L be an ample line bundle on X spanned by
V ⊆ H0(X, L). Let Λ ⊂ X be an L-linear subspace of codimension ≥ 2, i.e. (Λ, L |Λ) = (Pr ,OPr (1)), for some
r ≤ n − 2. Let IΛ be the ideal sheaf of Λ. We say that Λ is a bad linear space for (X, V ) if for all D ∈ |V ⊗ IΛ|, D
is reducible or non-reduced.

Lemma 37. Let X be a smooth projective n-fold, n ≥ 2, and let L be an ample line bundle on X, spanned by a
subspace V ⊆ H0(X, L). If Λ is a bad linear space of (X, V ), then codimX (Λ) = 2.

Proof. Let ξ be a zero-scheme on X consisting of r + 1 distinct points on Λ, not lying on an L-hyperplane of Λ, so
that |V ⊗IΛ| = |V ⊗Iξ | with ξ imposing r + 1 independent conditions on V . Remark 3 gives dim(Bs|V ⊗Iξ |) ≤ r .
On the other hand Λ ⊂ Bs|V ⊗ Iξ |, hence dim(Bs|V ⊗ IΛ|) = r . In particular, as r ≤ n − 2, |V ⊗ IΛ| has no fixed
component. Thus it follows from Remark 2 that r = dim Bs|V ⊗ IΛ| = n − 2.

The following proposition shows that bad linear spaces are inherited by hyperplane sections. To see this, let (X, L)

and Λ be as above. Let x ∈ Λ. As V spans L , there exists a smooth Y ∈ |V | not passing through x and in particular
Λ 6⊂ Y . Then λ := Λ ∩ Y is an L |Y -hyperplane of Y . Let W be the image of V under the restriction homomorphism
H0(X, L) → H0(Y, L |Y ).

Proposition 38. Let notation be as above. If Λ is a bad linear space for (X, V ), then λ is a bad linear space for
(Y, W ).

Proof. Let ρ : V → W be the homomorphism induced by the restriction H0(X, L) → H0(Y, L |Y ). Clearly ρ is a
surjection and its kernel is C〈s0〉, where s0 ∈ V is a non-trivial section vanishing on Y . So, dim(W ) = dim(V ) − 1.
Note that λ = Pn−3, by Lemma 37 and ρ(V ⊗ IΛ) ⊆ W ⊗ Iλ. Moreover, Ker(ρ) ∩ (V ⊗ IΛ) = {0}, because any
non-trivial element of Ker(ρ) vanishes exactly on Y , hence it cannot vanish on Λ. Therefore the homomorphism

ρ|V ⊗IΛ
: V ⊗ IΛ → W ⊗ Iλ (6)

is an injection. On the other hand

dim(V ⊗ IΛ) = dim(V ) − (dim(Λ) + 1)

= dim(W ) − (dim(λ) + 1)

= dim(W ⊗ Iλ).

Hence (6) is an isomorphism, which gives the assertion.

Theorem 39. Let X be a smooth projective variety of dimension n ≥ 2 and let |V | be a very ample linear system on
X. Then (X, V ) cannot contain bad linear spaces.

Proof. Let S be the smooth surface cut out by (n − 2) general elements of |V | and let |U | be the trace of |V | on S.
Note that the corresponding linear system |U | is very ample on S. Now, by contradiction let Λ be a bad linear space
for (X, V ). By an inductive application of Proposition 38 and Lemma 37 we conclude that p := Λ ∩ S is a bad point
of (S, U ). This contradicts [1, Corollary 2, (ii)].
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[6] F. Catanese, L. Göttsche, d-very ample line bundles and embeddings of Hilbert schemes of 0-cycles, Manuscripta Math. (69) (1990) 337–341.
[7] M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1) (1999) 157–207.
[8] S. Di Rocco, k-very ample line bundles on Del Pezzo surfaces, Math. Nachr. 179 (1996) 47–56.
[9] D. Eisenbud, J. Harris, On varieties of minimal degree (a centennial account), in: Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine,

1985), in: Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13.
[10] A. Lanteri, M. Palleschi, A.J. Sommese, On the discriminant locus of an ample and spanned line bundle, J. Reine Angew. Math 447 (1996)

199–219.


	Higher order bad loci
	Introduction
	Notation and background
	Higher order bad loci
	Bad loci and higher order embeddings
	Reduced bad zero-schemes
	Bad linear spaces
	Acknowledgements
	References


