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a b s t r a c t 

The performance of intelligent electromyogram (EMG)-driven prostheses, functioning as artificial alterna- 

tives to missing limbs, is influenced by several dynamic factors including: electrode position shift, varying 

muscle contraction level, forearm orientation, and limb position. The impact of these factors on EMG pat- 

tern recognition has been previously studied in isolation, with the combined effect of these factors being 

understudied. However, it is likely that a combination of these factors influences the accuracy. We inves- 

tigated the combined effect of two dynamic factors, namely, forearm orientation and muscle contraction 

levels, on the generalizability of the EMG pattern recognition. A number of recent time- and frequency- 

domain EMG features were utilized to study the EMG classification accuracy. Twelve intact-limbed and 

one bilateral transradial (below-elbow) amputee subject were recruited. They performed six classes of 

wrist and hand movements at three muscular contraction levels with three forearm orientations (nine 

conditions). Results indicate that a classifier trained by features that quantify the angle, rather than am- 

plitude, of the muscle activation patterns perform better than other feature sets across different contrac- 

tion levels and forearm orientations. In addition, a classifier trained with the EMG signals collected at 

multiple forearm orientations with medium muscular contractions can generalize well and achieve clas- 

sification accuracies of up to 91%. Furthermore, inclusion of an accelerometer to monitor wrist movement 

further improved the EMG classification accuracy. The results indicate that the proposed methodology has 

the potential to improve robustness of myoelectric pattern recognition. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

 

 

 

 

 

 

 

 

 

 

 

f  

a  

b

 

c  

h  

2  

T  

a  

I  

a  

t  

s  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
1. Introduction 

An artificial hand is an example of a technology that can be

used to help a person, with a congenital condition or after an in-

jury that results in the loss of the limb, perform essential activ-

ities of daily living ( Nazarpour, Cipriani, Farina, & Kuiken, 2014 ).

Nowadays, commercial prosthetic hands are highly sophisticated,

offering individual finger movement. These prosthetic hands are

controlled with an intelligent interface that infers movement in-

tentions by deciphering the electrical activity of muscles, known

as the surface electromyogram (EMG) signal. The EMG signals

are recorded non-invasively from the skin surface of the remain-

ing arm to which the prosthesis is attached. Myoelectric inter-
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aces based on EMG pattern recognition have gained considerable

ttention thanks to their naturalness enabling human intentions to

e conveyed to control a machine. 

EMG pattern recognition has been adopted in academic and

ommercial research, showing improvements in the control of

and prostheses ( Al-Timemy, Bugmann, Escudero, & Outram,

013a; Asghari Oskoei & Hu, 2007; Atzori et al., 2014; Kuiken,

urner, Soltys, & Dumanian, 2014; Nazarpour, Sharafat, & Firooz-

badi, 2007; Zardoshti-Kermani, Wheeler, Badie, & Hashemi, 1995 ).

n this framework, a natural map from users’ limb motion to

nalogous, but discrete, prostheses function is formed by ex-

racting the movement intent from multi-channel EMG signals. A

ignificant amount of research has been devoted to various as-

ects of EMG pattern classification systems such as preprocess-

ng and filtering, feature extraction and reduction and classifica-

ion ( Boostani & Moradi, 2003; Phinyomark et al., 2013 ). A number

f studies have produced promising results in terms of classifica-
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ion accuracy (generally > 90%) and real-time performance ( Rasool,

qbal, Bouaynaya, & White, 2016 ). However, despite encouraging

emonstrations, translation of this research into the clinic has been

imited ( Jiang, Dosen, Müller, & Farina, 2012; Kuiken et al., 2014 ).

his shortcoming may be because it is very difficult for the am-

utees to generate distinct activity patterns for different movement

lasses of hand or wrist movements. This will lead to overlap of

he movement classes in the feature space which will in turn im-

air the classification. Advanced machine learning with induced ar-

ificial variability or, perhaps, with daily recalibration may improve

he accuracy ( Liu, Sheng, Zhang, He, & Zhu, 2016 ). However, be-

ause it is not clinically viable to emulate all possible variations,

uring prosthesis use, incorrect classifications will likely take place

n response to EMG patterns that were not observed during train-

ng or recalibration. 

Moreover, EMG pattern recognition performance is influenced

y many factors including, but not limited to, change in limb posi-

ion (with respect to the body) ( Fougner, Scheme, Chan, Englehart,

 Stavdahl, 2011; Park, Suk, & Lee, 2016 ), shift in EMG electrode lo-

ation ( Hargrove, Englehart, & Hudgins, 2008; Spanias, Perreault, &

argrove, 2016 ), change of forearm orientation ( Peng et al., 2013 ),

arying the muscular contraction force level ( Al-Timemy, Bugmann,

scudero, & Outram, 2013b; Al-Timemy, Khushaba, Bugmann, & Es-

udero, 2015; He, Zhang, Sheng, Li, Zhu, 2015 ), and the changing

haracteristics of the myoelectric signals itself over a long time ( He

t al., 2015; Liu, Zhang, Sheng, & Zhu, 2015 ), that in turn makes

he long term myoelectric control an open challenge. MacIsaac

t al. ( MacIsaac, Parker, Scott, Englehart, & Duffley, 2001 ), tested

he effect of joint angle and muscle contraction levels individu-

lly by estimating the EMG mean frequency and conduction ve-

ocity. They showed that both factors contribute to the variabil-

ty observed in EMG parameter estimation, with the effect of joint

ngle variation being more dominant than that of the force level.

imilarly, Tkach et al. ( Tkach, Huang, & Kuiken, 2010 ) investigated

he individual effects of electrode movement, variation in mus-

le contraction effort, and fatigue on the EMG pattern recogni-

ion accuracy. They showed that muscle fatigue has the small-

st effect whereas electrode movement and force level variations

an significantly affect the accuracy. In addition, several research

roups have studied isolated effects of the forearm posture, po-

ition, and orientation ( Fougner et al., 2011; Peng et al., 2013 ).

hey showed that with employing accelerometers and using train-

ng data from all positions that the user expects to encounter dur-

ng real-time usage ( Fougner et al., 2011; Peng et al., 2013 ) the

solated effect of forearm posture, position, and orientation can be

educed. Furthermore, Yang et al. ( Yang, Yang, Huang, & Liu, 2015 )

eported that paradigms in which the EMG signals are collected

uring dynamic arm postures with varying muscular contractions

an largely reduce the misclassification rate. However they only

sed the mean absolute value of the EMG signals as feature and

ence the effectiveness of other feature extraction methods was

ot quantified. 

Previous research quantified the effect of dynamic factors on

MG pattern recognition performance in isolation. In this paper,

e investigate the combined effect of multiple dynamic factors.

e consider varying the muscle contraction effort s, the first dy-

amic factor, across three levels along each of three different fore-

rm orientations, the second dynamic factor. We further study the

lassification performance at each contraction level and forearm

rientation with a number of time- and frequency-based EMG

eatures. This is a novel analysis step; not previously utilized in

his direction with multiple factors. Recently, we introduced power

pectral descriptor features of the EMG signals to mitigate the

mpact of muscular contraction levels on EMG power spectrum

haracteristics ( Al-Timemy et al., 2015 ). Here, we compare the

lassification performance of this and five other EMG and ac-
elerometry features. In addition, we test generalizability of the

lassification across different forearm orientations and muscle con-

raction effort s. A preliminary version of this work was reported in

 Khushaba, Al-Timemy, & Kodagoda, 2015 ). 

In Section 2 , we present the methods of recording and analysis

f the EMG signals and the details of our generalization protocols.

esults are reported in Section 3 , before we discuss their signifi-

ance and conclude in Section 4 . 

. Methods 

.1. Subjects 

Twelve intact-limbed and one bilateral amputee subjects (age

ange: 20–33 years, 1 female) with average forearm circumference

f 26.59 ± 2.41 cm, participated in this study. At the time of the

xperiment, the amputee subject (30 years old male) had lived for

ix years with his condition. 

Data for ten of the able-bodied subjects was collected at Uni-

ersity of Technology, Sydney, Australia. Data from the three sub-

ects (including one amputee subject) was collected in Babylon and

aghdad, Iraq. Participants had no previous experience with EMG-

ontrolled interfaces. Subjects were introduced to the system in a

0-min briefing session before the main experiment. 

All participants observed the corresponding university’s re-

earch ethics committee approvals and gave informed consent to

articipate in the study. 

.2. Data acquisition 

Data recorded in Australia : Data from six EMG electrodes was

ecorded with a Bagnoli desktop EMG system (Delsys Inc., USA),

ith a gain of 10 0 0. Electrodes were equally spaced across the

ircumference of the forearm for the intact-limbed as shown in

ig. 1 a. A 2-slot adhesive skin interface was applied on each of the

ensors to firmly attach them to the skin. A conductive adhesive

eference electrode (dermatrode reference electrode) was placed

ear the subjects’ wrist. An additional 3-D accelerometer (MPU-

050 from InvenSense) was attached to the participants’ wrist as

hown in Fig. 1 a to record wrist acceleration. A 12-bit analog-to-

igital converter (National Instruments, BNC-2090) was used to

ample the signal at 40 0 0 Hz. The accelerometer data was re-

ampled to match the sampling rate of the EMG signals, with an

riginal sampling rate of 26.6 ± 0.3Hz. 

Data recorded in Iraq : Data was recorded from three subjects in

raq, one bilateral amputee and two intact-limbed subjects. Skin

as first prepared with an abrasive gel (NuPrep, USA). For the am-

utee subject, eight pairs of Ag/AgCl electrodes (Tyco Healthcare

mbH, Germany) were placed around the amputee’s right stump

 Fig. 1 b) and connected to an EMG amplifier (built in-house). As for

he other two intact-limbed subjects, the EMG sensors were placed

n the forearm. The EMG signals were then amplified with a cus-

om built amplifier (gain: 10 0 0), bandpass filtered between 20–450

z with a 50Hz notch filter, and sampled at a rate of 2,0 0 0 Hz with

 16-bit ADC (National Instruments NI USB-6210). A Labview-based

oftware was developed to acquire and display the EMG signals. All

ecorded signals were analyzed using MATLAB 

®(Mathworks, USA). 

.3. Experimental protocol 

Subjects sat in front of a standard computer screen. They per-

ormed six classes (C1-C6) of movements, namely, hand close (C1),

and open (C2), wrist extension (C3), wrist flexion (C4), wrist ulnar

eviation (C5), and wrist radial deviation (C6). 

We considered three forearm orientations: wrist fully

upinated, at rest, and fully pronated, denoted by Orienta-
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Fig. 1. (a) Configuration of the EMG electrodes and the wrist accelerometry sensor 

on the forearm of an intact-limbed subject; (b) the placement of the EMG elec- 

trodes on the amputee’s stump . 

Fig. 2. The three forearm orientations at which subjects performed the six classes 

of movements, each at three muscular contraction levels. 
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tions 1 to 3 in Fig. 2 . At each orientation, subjects repeated all

six movements at three different muscular contraction levels:

low, medium, and high. Three trials for each movement were

recorded, with each beginning with the low contraction level

and gradually increasing the intensity of contraction. Instructions

appeared clearly on the computer screen using an image of the

desired movement along with a text caption. 

In total, 162 trials per subject were collected: 6 movement

classes × 3 forearm orientations × 3 contraction levels × 3 trials

per movement. The number of conditions was selected such that

experiment remains short, and yet, it would be possible to con-

duct statistical analysis. To avoid fatigue, each trial lasted 5 s and

subjects had up to 10 s of rest between trials. 

The loss of proprioceptive feedback from the hand after ampu-

tation can make the task very challenging for the amputee subjects
 Pistohl, Joshi, Ganesh, Jackson, & Nazarpour, 2015 ). We therefore

howed the raw EMG signals on the screen to help the amputee

o generate the movement with the required muscular contraction

evel. 

.4. Data analysis 

We investigated the combined effect of forearm orientation and

uscle contraction level on the generalizability of the EMG pattern

ecognition. We therefore defined two schemes: 

1. Within-orientation generalizability , in which we evaluated the

classification performance when the training and testing

data were selected from the same forearm orientation con-

dition; and 

2. Between-orientation generalizability , in which the classifier

was trained and tested with data recorded in different ori-

entation conditions. 

.5. Feature extraction 

We investigated the effect of the extracted features on the gen-

ralizability of the EMG pattern recognition. Using an overlapping

indow size of 150 ms with 75 ms increments (50% overlap), we

xtracted the following features: 

1. Wavelet transform-based features: The Symmlet family with

five decomposition levels = was used. Features were the log-

arithm of the mean of the squared wavelet coefficients at

each level ( Asghari Oskoei & Hu, 2007; Phinyomark, Lim-

sakul, & Phukpattaranont, 2011 ); 

2. Time-domain (TD) features: comprising root mean square

(RMS), waveform length (WL), number of zero-crossings

(ZC), slope sign change (SSC) and mean absolute value

(MAV) ( Hakonena, Piitulainenb, & Visala, 2015; Tenore et al.,

2009 ); 

3. TDAR1: a combination of the RMS feature and 5 th −order au-

toregressive (AR) coefficients ( Chan & Green, 2007 ). 

4. TDAR2: a combination of sample entropy (SE), WL, fourth or-

der cepstrum coefficients and the 5 th −order AR coefficients.

5. Discrete Fourier transform based features (DFT) ( He et al.,

2015 ); 

6. Time-domain power spectral descriptors (TD-PSD) ( Al-

Timemy et al., 2015; Khushaba, Takruri, Miro, & Kodagoda,

2014 ); 

Feature sets 1 to 4 have been used in myoelectric control

idely ( Boostani & Moradi, 2003; Hakonena et al., 2015 ). The DFT

5) and TD-PSD (6) features were recently proposed in ( Al-Timemy

t al., 2015; He et al., 2015; Khushaba et al., 2014 ). In the interest

f completeness we briefly review the underlying concepts of the

FT and TD-PSD features. The interested reader is referred to ( Al-

imemy et al., 2015; He et al., 2015; Khushaba et al., 2014 ) for fur-

her information. 

The DFT and TD-PSD features form a set of invariants to force

evel variations in two steps: (1) a set of features describing the

MG power spectrum are extracted either from the EMG power

pectrum, for DFT features, or directly from the time-domain sig-

al, for TD-PSD; (2) a cosine similarity function is employed to es-

imate the angle between the extracted power spectrum character-

stics from the original EMG signals and their non-linear version in

D-PSD, while the DFT method considers the angle between force

evels within each of predefined frequency bands. The resulting

ector is then used as the final feature set. This mechanism has

roven robust to the variability caused by force level variations on

he intact-limbed ( He et al., 2015 ) and amputees ( Al-Timemy et al.,

015 ), with TD-PSD offering more powerful solutions for amputees,

hile performing equivalently to DFT on intact-limbed subjects. 
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Fig. 3. An example of the RMS of the EMG signals from six channels during a wrist 

flexion movement at three different levels. 
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Fig. 4. Within-orientations generalization results averaged across all subjects; with 

training data from a specific contraction level and testing data from all possible 

contraction levels in each of orientations 1 (a), 2 (b) and 3 (c) as introduced in 

Fig. 2 . Error bars represent the standard error. 
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Furthermore, we investigated the potential enhancement of the

lassification accuracy when the RMS of the accelerometry sensor

ignal was included as an additional element in the above feature

ectors. 

.6. Classification 

We used a support vector machine (SVM) classifier with a radial

asis kernel. Parameters were optimized based on training accu-

acy: C = 32 and γ = 0.0625. The utilized SVM classifier performed

omparably to linear discriminant analysis (LDA) classifier. 

.7. Statistical analysis 

To test the statistical significance of our results, we carried

ut repeated measures ANOVA, unless stated otherwise. Where re-

uired, post-hoc analysis with a Bonferroni correction was per-

ormed. Significance level was set to 0.05. All statistical analysis

ere performed in IBM 

®SPSS Statistics (ver. 21). 

. Experimental results 

In reporting the results, we first combine all results from all

ubjects ( n = 13 ). Following that we report the classification results

or the amputee subject. Finally, we investigate the relative infor-

ation in the EMG and accelerometer features in Section 3.5 . 

.1. Generation of graded muscular contraction levels 

We first verified whether the subjects could produce EMG ac-

ivity in all different classes of movement at three muscular con-

raction levels (low, medium, and high). This was carried out by

nalyzing the RMS of EMG activity across all channels, orienta-

ions and movements. Fig. 3 depicts a representative radar plot of

he EMG signals RMS values collected from one subject performing

rist flexion (C4) when the wrist was fully pronated (Orientation

). The RMS values from the different channels were then grouped

n separate columns for each force level, thereby constructing an

MS matrix. A one-way ANOVA was utilized to validate statistical

ignificance, treating each column of the RMS matrix as a sepa-

ate group. We determined whether the population means of the

olumns are equal. A significant difference between the means of

he different force levels was observed ( p = 0 . 003 ). 
.2. Within-orientation generalization 

At each orientation condition, we compared the performance

f different f eature sets when the classifier was trained with data

ecorded on a certain contraction level and was tested with data

rom all possible force levels. We selected the first two trials for

raining and the third was used for testing. The results of this ex-

eriment are shown in Fig. 4 . An 3-by-6 (orientations-by-features)

NOVA with repeated measures showed that there is no significant

ifference between the classification scores achieved in different

orearm orientations ( n = 13 , F 2 , 24 = 3 . 08 , p = 0 . 06 ). 

We however observed a significant effect of the extracted

eatures ( n = 13 , F 1 . 78 , 21 . 39 = 10 . 03 , p < 10 −3 , Greenhouse-Geisser-

orrected). Bonferroni corrected post-hoc pairwise comparisons

howed that the TD-PSD features result in significantly higher clas-

ification scores when compared to the TD (difference: 10 . 82% ,

p = 0 . 01 ), TDAR (difference: 5 . 9% , p = 0 . 01 ) and TDAR2 (difference:



158 R.N. Khushaba et al. / Expert Systems With Applications 61 (2016) 154–161 

Fig. 5. Class-wise classification accuracy results, averaged across all subjects, using 

the TD-PSD features when training and testing data was acquired from the same 

forearm orientation. Error bars represent the standard errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Class-wise classification accuracy, averaged across all subjects, using the TD- 

PSD features when the training and testing data was acquired from different fore- 

arm orientations. Error bars represent the standard errors. 

Fig. 7. Between-orientations generalization averaged across all subjects; with train- 

ing data from one contraction level from all orientations, and testing data from all 

contraction levels in all orientations. Error bars represent the standard error. 
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5 . 7% , p = 0 . 02 ) features. However, the difference between the re-

sults achieved by the TD-PSD, the DFT and the wavelet transform

were statistically insignificant ( p > 0.05). Interestingly, DFT fea-

tures outperformed the classic TD features by 10.46% ( p = 0 . 04 ). As

the TD-PSD feature set has previously shown to outperform DFT

and other feature sets when tested on a group of amputees, we

applied only TD-PSD for the remaining of the within-orientation

analysis. Classification resulted in higher accuracies when the

training data was collected at medium contraction effort s ( Fig. 4 ). 

We investigated the classification accuracy of individual move-

ment classes with the TD-PSD features ( Fig. 5 ). A 3-by-6

(orientations-by-class), ANOVA with repeated measures showed no

differences across the three forearm orientations ( n = 13 , F 2 , 17 =
0 . 47 , p = 0 . 63 ), despite the observed differences in the class-wise

recognition results. 

3.3. Between-orientation generalization 

We considered training the classifier with the TD-PSD features

extracted from data collected in all contraction levels within a spe-

cific forearm orientation. We then tested the classifier with data

from all contraction levels within the remaining orientations, that

is, the training and testing samples were from different orienta-

tions. 

The performance of the classifier in this case dropped signifi-

cantly when compared to the case when the training and testing

data was collected at the same forearm orientation ( n = 13 , F 1 , 35 =
96 . 37 , p < 10 −3 ). Results are shown in Fig. 6 . This finding is in line

with the earlier work of Fougner et al. (2011) . 

We further investigated the between-orientation generalization

by repeating the classification for all feature sets according to the

muscular contraction levels. To that end, the classifier was trained

with data recorded at a certain contraction level from all orienta-

tions. Then it was tested with data from all muscular contraction

levels from all orientations. In other words, both the training and

testing data were from all orientations. 

Classification scored are shown in Fig. 7 . Statistical tests re-

vealed the main effects of training data (ANOVA, repeated mea-

sures, n = 13 , F 2 , 24 = 20 . 3 , p < 10 −3 ) and the extracted features

(ANOVA, repeated measures, corrected with Greenhouse-Geisser,

n = 13 , F 2 . 12 , 25 . 48 = 10 . 41 , p < 10 −3 ). A pair-wise post-hoc analysis

of the main effect of the training data showed that the classifier

achieved the highest classification results when trained with data
ecorded at medium contraction level (medium-low difference:

 . 6% , p < 10 −3 ) and (medium-high difference: 5 . 6% , p = 0 . 002 ). 

A pair-wise post-hoc analysis of the main effect of the ex-

racted features revealed that the scores achieved with the TD-

SD feature were significantly higher than that of all other fea-

ures p < 10 −3 , but the DFT feature (difference: 2 . 21% , p = 0 . 34 ).

n addition, the performance achieved with the DFT feature was

ignificantly better than that achieved with the TD features only

difference: 8 . 79% , p = 0 . 03 ). All other differences were statistically

nsignificant ( p > 0.05). 

Fig. 8 illustrates the average confusion matrix of the classifica-

ion results across all subjects with the TD-PSD features achieved

t medium contraction levels. Between all classes, C2 (Hand Open)

howed the largest error. The misclassification of C2 in this case

ight be because of the variability of opening with different con-

raction level. It may be that with further training, and with visual

eedback, these results can be further enhanced across all forearm

rientations and muscular contraction levels. 
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Fig. 8. A representative classification confusion matrix when training with the 

medium contraction level data and testing with all contraction levels and all ori- 

entations. 

Table 1 

Classification accuracy of the amputee subject’s data only with TD-PSD 

and DFT features, with training and testing data from all contraction 

levels within each forearm orientation. 

Test Test Test 

orientation1 orientation2 orientation3 

Train TD-PSD 90 .2% TD-PSD 72 .6% TD-PSD 48 .6% 

Orientation1 DFT 84 .9% DFT 62 .6% DFT 43 .9% 

Train TD-PSD 79 .4% TD-PSD 95 .8% TD-PSD 55 .1% 

Orientation2 DFT 55 .3% DFT 95 .7% DFT 58 .2% 

Train TD-PSD 66 .6% TD-PSD 68 .5% TD-PSD 96 .6% 

Orientation3 DFT 54 .2% DFT 68 .1% DFT 96 .5% 

Table 2 

Classification accuracy of the amputee subject’s data only with 

TD-PSD and DFT features, with training and testing data from 

all forearm orientations within each specific contraction level. 

Test Test Test 

Low Med High 

Train TD-PSD 93 .2% TD-PSD 85 .4% TD-PSD 83 .0% 

Low DFT 88 .4% DFT 77 .3% DFT 75 .3% 

Train TD-PSD 91 .7% TD-PSD 90 .5% TD-PSD 73 .1% 

Med DFT 86 .0% DFT 81 .9% DFT 71 .3% 

Train TD-PSD 81 .1% TD-PSD 93 .4% TD-PSD 93 .1% 

High DFT 68 .7% DFT 78 .0% DFT 87 .5% 
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Fig. 9. Relative information in the EMG and accelerometer features. Inclusion of the 

accelerometer data improves the classification accuracy. 
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.4. Classification results for the amputee subject 

Finally, we report the classification scores for the amputee sub-

ect in the following two scenarios: 

1. With the classifiers trained based on data of all contrac-

tion levels within each orientation and tested based on data

of all muscular contraction levels from other orientations.

The overall accuracy results for this scenario are shown in

Table 1 ; 

2. With training and testing data that belong to all orientations

for each contraction level. The overall accuracy results for

this scenario are shown in Table 2 . 

The results in both tables are given for the TD-PSD and the DFT

eatures only, as these were the most promising features in terms

f generalization capability as demonstrated in Fig. 7 . 
.5. Relative information in the EMG and accelerometer data 

We quantified the benefit of including the accelerometry in-

ormation in the classification. We used data from subjects for

hom the accelerometry data was recorded. The mean classifica-

ion performance averaged across ten subjects and orientations for

he three contraction level train-testing conditions are shown in

ig. 9 . The classification accuracy when using the combined TD-

SD and accelerometer features was significantly higher than that

ith the TD-PSD features only condition (ANOVA, repeated mea-

ures, n = 10 , F 1 , 9 = 31 . 37 , p < 10 −4 ). 

. Concluding remarks 

With using a subset of well-known EMG feature extraction, we

tudeid the effects of combined effect of forearm orientation and

uscular contraction level on the performance of EMG pattern

ecognition. Both of the TD-PSD and DFT features were previously

sed in ( Al-Timemy et al., 2015; He et al., 2015 ) to reduce the ef-

ect of varying the contraction level on the classification accuracy

f the EMG signals. However, neither of these feature sets were

ested previously in experiments with more than one dynamic fac-

or affecting the EMG signals. Our results show that the recently

roposed TD-PSD and DFT features are superior, in terms of clas-

ification accuracy, to other features; with a tendency for the TD-

SD feature to produce higher results. Training the classifier with

ata from different forearm orientations and using the TD-PSD and

FT features offered promising solutions to the problem of identi-

ying the hand and wrist movements when performed at different

rientations and muscular contraction levels. 

Analysis of the amputee data suggested, predictably, that train-

ng and testing a classifier with the data collected at the same fore-

rm orientation provides the highest scores. In addition, our results

howed that there is a considerable advantage in including data

rom all orientations in the training set to support the classifier

ith generalizability to novel data. 

These results indicate that when training a classifier with data

ith low or high contraction levels, the classifier can generalize

easonably to other conditions. In addition, we showed that train-

ng the classifier with data recorded at medium contraction lev-

ls can significantly enhance generalization on novel data with

edium and low contraction conditions, but not at the high con-

raction level. For amputees, generating large-amplitude EMGs for

 long time may become very tiring, as they may have not used
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their muscles for a long time. Therefore, it is more practical to train

the amputees on gestures at low or medium contraction levels to

avoid fatigue and indeed misclassification. Moreover, our results

suggest that changing the forearm orientation has a more pro-

found impact on the classification results than changing the mus-

cular contraction levels ( Figs. 5 and 6 ). Specifically, Fig. 5 showed

no differences between the classification accuracy results when the

training and testing data were acquired from the same orienta-

tion. However, training and testing on data from different orien-

tations affected the classification results significantly ( Fig. 6 ). Thus,

the collection of training data from multiple orientations was nec-

essary to enhance generalization ( Fig. 7 ). 

The presented results suggest several future research directions

to further improve the performance of myoelectric-driven intelli-

gent systems: 

• More efforts should be directed towards advancing the meth-

ods of feature extraction to overcome the influence of dy-

namic factors that limit the performance. The use of advanced

machine learning methods such as deep neural networks and

muscles synergies extraction should also be investigated on

problems under the influence of multiple dynamic factors as

such methods may provide substantial improvements upon the

utilized time-and-frequency EMG feature extraction methods

( Diener, Janke, & Schultz, 2015; Ison, Vujaklija, Whitsell, Farina,

& Artemiadis, 2016; Park & Lee, 2016 ). Meanwhile, we showed

that the performance of the learning algorithms can be im-

proved by using feature extraction methods that rely on the an-

gular information of muscle activation patterns. Features such

as the TD-PSD and the DFT proved more successful than oth-

ers in reducing the impact of the two dynamic factors that we

considered in this paper. Such features can be readily imple-

mented into a prosthesis controller for real-time control, espe-

cially that the EMG pattern recognition systems are nowadays

becoming available for clinical testing, e.g. the COAPT complete

control system ( Kuiken et al., 2014 ) 1 . 
• More research efforts should be directed to investigate whether

accelerometry could provide a reliable alternative or comple-

mentary medium for motor intention detection when the qual-

ity of the EMG signal deteriorates under many circumstances

such as altered skin conditions, temperature change and sweat

( Asghari Oskoei & Hu, 2007; Farina et al., 2014; Jiang et al.,

2012 ). We provided evidence that the inclusion of accelerom-

etry information can significantly improve the classification

scores in our experiments. The use of accelerometry in EMG

decoding was first proposed by ( Fougner et al., 2011; Scheme,

Fougner, Stavdahl, Chan, & Englehart, 2010 ). They demonstrated

that when data was collected under multiple limb positions,

the use of accelerometry information yielded a significant im-

provement in motion classification accuracy. Our results are

in line with the work of Atzori et al. (2014) ; Krasoulis, Vi-

jayakumar, and Nazarpour (2015) ; Kyranou, Krasoulis, Erden,

Nazarpour, and Vijayakumar (2016) who showed that inertial

measurements, e.g. accelerometry, information can yield higher

classification and finger movement reconstruction performance

when compared to decoding with EMG-features only. This find-

ing could have a remarkable impact in clinical applications,

where the use of multi-modal information improves robustness

by inducing redundancy. 
• Moreover, we previously showed that it may be possible to con-

trol a prosthesis hand with arbitrary and abstract maps be-

tween upper-limb muscles and active joints of prosthetic hands,

for example, grasping an object by contacting the index fin-

ger muscle only or by contracting a small group of muscles
1 https://www.coaptengineering.com/ 

D  

 

that do not control the grasp naturally ( Pistohl, Cipraini, Jack-

son, & Nazarpour, 2013 ). Future research may include fusion of

the EMG and accelerometry in abstract control interfaces to test

whether subjects can learn to control the prosthesis with ac-

celerometry data as well as they can with EMG. 

Finally, the main strength of this paper was that it provided

 pioneering evaluation into the combined effect of multiple dy-

amic factors on the EMG classification accuracy using different

eatures. To the authors’ knowledge this has not been previously

nvestigated. On the other hand, it is also important to discuss a

ew points that may be considered as limitations of the proposed

esearch method, including: Firstly, a small number of hand move-

ents were considered in this work. It should be noted here that

hree trials for each of these movements were performed at each

f the muscular contraction levels within each specific forearm ori-

ntation. Following that, the whole set was repeated for the re-

aining two forearm orientations. Despite the resting periods in-

luded between the trials, some of the recruited 13 subjects re-

orted that the inclusion of any further hand movements could be

atiguing. Hence, we limited the experiment to six classes of move-

ents only. Secondly, we recruited only one amputee subject in

his study because the length of residual forearm of our other am-

utee volunteers was not adequate to study the effect of forearm

rientation. We continue to recruit more amputees to study the in-

uence of forearm orientation and muscular contraction levels on

MG pattern recognition. 
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