
J. LOGIC PROGRAMMING 1993:17:59-89 59

AND-OR PARALLELISM ON
SHARED-MEMORY MULTIPROCESSORS

GOPAL GUPTA AND BHARAT JAYARAMAN”

D This paper presents an extended and-or tree and an extended WAM
(Warren Abstract Machine) for efficiently supporting both and-parallel
and or-parallel execution of logic programs on shared-memory multipro-
cessors. Our approach for exploiting both and- and or-parallelism is based
on the binding-arrays method for or-parallelism and the RAP (Restricted
And-Parallelism) method for and-parallelism, two successful methods for
implementing or-parallelism and and-parallelism, respectively. Our com-
bined and-or model avoids redundant computations when goals exhibit
both and- and or-parallelism, by representing the cross product of the
solutions from the and-or parallel goals rather than recomputing them.
We extend the classical and-or tree with two new nodes: a “sequential”
node (for RAPS sequential goals), and a “cross-product” node (for the
cross product of solutions from and-or parallel goals). The paper also
presents an extension of the WAM, called AO-WAM, which is used to
compile logic programs for and-or parallel execution based on the ex-
tended and-or tree. The AO-WAM incorporates a number of novel
features: (i) inclusion of a base array with each processor’s binding array
for constant-time access to variables in the presence of and-parallelism, (ii)
inclusion of new stack frames and instructions to express solution sharing,
and (iii) novel optimizations which minimize the cost of binding-array
updates in the presence of and-parallelism. a

‘This is an expanded version of the paper, “Compiled And-Or Parallel Execution on Shared
Memory Multiprocessors” in Proc. N. Am&can Conference on Logic Programming, Cleveland, OH,
1989.

Address correspondence to Gopal Gupta, Department of Computer Science, New Mexico State
University, Las Cruces, NM 88001.

* Department of Computer Science, SUNY at Buffalo, Buffalo, NY 14260.
Received December 1990; accepted 1993.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1993

655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$6.00

60 G. GUPTA AND B. JAYARAh4AN

1. INTRODUCTION

There are three main forms of parallelism in logic programming languages:

1. or-parallelism
2. independent and-parallelism, and
3. dependent and parallelism

Or-parallelism arises when more than one rule defines some relation and a
procedure call unifies with more than one rule head-the corresponding bodies
can then be executed in or-parallel fashion. Or-parallelism is thus a way of
efficiently executing a nondeterministic procedure; it speeds up the search for a
solution to the top-level query by exploring alternative solutions in parallel.
Independent and-parallelism arises when more than one goal is present in the query
or in the body of a procedure, and the run-time bindings for the variables in these
goals are such that two or more goals are independent of one another, i.e., their
resulting argument terms after applying the bindings of the variables are either
variable-free (i.e., ground) or have nonintersecting sets of variables. And-paralle-
lism is thus a way of speeding up a divide-and-conquer algorithm by executing the
subproblems in parallel. Dependent and-parallelism arises when two or more goals
in the body of a procedure have a common variable and are executed in parallel.
Dependent and-parallelism can be exploited in two ways: (i) the two goals can be
executed independently until one of them accesses/binds the common variable; (ii)
once the common variable is accessed by one of the goals, it is bound to a
structure, or stream (the goal generating this binding is called the producer), and
the structure is read as an input argument of the other goals (called the consumer).
Case (i) is very similar to independent and-parallelism. Case (ii) is sometimes also
referred to as stream-parallelism, and is useful for speeding up producer-consumer
interactions found in system programs by allowing the consumer goal to compute
with one element of the stream while the producer goal is computing the next
element. Stream-parallelism forms the basis for Committed Choice Languages
(e.g., Parlog [5], GHC [34], and Concurrent Prolog [30]).

In this paper, we have chosen to focus on or-parallelism and independent
and-parallelism for two reasons: (i) we believe that or-parallelism and independent
and-parallelism tend to occur more commonly at the applications level, and (ii)
dependent and-parallelism together with or-parallelism is somewhat more difficult
to realize in an implementation.’

We note at the outset that the target machines of interest to us in this paper are
shared-memory rather than distributed-memory multiprocessors. The reason for
this focus is that, given the dynamic nature of memory access in logic programs, we
believe that the performance during parallel execution would be better on shared-
memory multiprocessors rather than on distributed-memory multiprocessors, whose
access to remote memories is expensive. Because it is likely that there will be large
units of essentially sequential execution during parallel execution, it is very
important that we be able to take advantage of implementation techniques for
sequential execution, i.e., the WAM (Warren Abstract Machine) 1381. In this

’ Recently, however, attempts have been made to exploit or-parallelism together with dependent
and-parallelism [15, 17, 32, 391.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 61

connection, it may be noted that we can readily adapt the WAM for shared-mem-
ory machines. Thus, our approach contrasts with approaches such as the Reduce-Or
Process Model (ROPM) [22], Limited-OR/Restricted-And Parallel Model
(LORAP) [2], and others which are primarily designed for nonshared memory
multiprocessors.

While there are many opportunities for or-parallelism and and-parallelism in
logic programs, realizing them in an actual implementation poses significant
challenges. Therefore, before describing our proposed approach, we present in the
next section the major problems to be addressed and objectives that should be met
by any and-or parallel execution system. We first discuss the problems in exploit-
ing pure or-parallelism and pure and-parallelism separately, and then discuss the
problems in combined and-or parallelism. Briefly, we propose three criteria for
or-parallel implementations: constant-time access to variables, constant-time task-
creation, and constant-time task-switch; and three criteria for and-parallel imple-
mentations: avoid wasteful overcomputation (e.g., back-unification [35]), avoid
complex run-time dependency analysis, and support intelligent backtracking. The
criteria for a combined and-or parallel implementation are essentially the union of
the criteria for pure or-parallel and pure and-parallel implementations. In addi-
tion, it is desirable to avoid overcomputation when both and-parallelism and or-
parallelism arise within a set of goals.

In view of the above criteria, our system for realizing and-or parallelism
combines or-parallelism with restricted and-parallelism (RAP) [9, 191. This system
was developed (and can be understood) in four stages.

1. We first developed an abstract model for representing and-or parallel
computations, called the extended and-or tree model. The extended and-or
tree has, besides and nodes and or nodes, two new nodes: the sequential
node, to support RAP’s sequential goals, and the cross-product node, to help
avoid overcomputation when and-parallel goals also exhibit or-parallelism.

2. The extended and-or tree model is a high-level model in that it does not
address how multiple or-parallel environments are efficiently maintained, and
how parallel execution and scheduling are done. While the model allows
these issues to be independently addressed, in our work we consider the
binding-arrays method [36, 371 for environment representation, and a
scheduling method for coarse-grain parallelism. We chose the binding-arrays
method since it provides constant-time access to the two most frequently
occurring operations: variable-access and task-creation. The emphasis on
coarse-grain parallelism follows from our interest in shared-memory multi-
processors. The binding arrays CBA) method for purely or-parallel systems
cannot be directly used for supporting multiple environments. In this paper,
we present an extension of binding arrays that accommodates independent
and-parallelism in the presence of or-parallelism.

3. We then showed how to map the extended and-or tree onto a collection of
stacks that lie in the address space of a shared-memory multiprocessor. We
developed an extended instruction set for parallel execution, called And-Or
WAM (AO-WAM), into which source programs would be compiled.
AO-WAM has all the instructions of WAM plus some extra instructions for
compiling and-parallelism, as well as for allocating space for the new nodes
introduced in the extended and-or tree, and for incorporating optimizations.

62 G. GUPTA AND B. JAYARAMAN

4. To minimize the overheads of a task-switching inherited from the binding-
arrays approach, we developed a number of optimizations for AO-WAM by
exploiting and-parallelism. Essentially, we reduce the overhead by reducing
the number of conditionally bound variables’ whose bindings need to be
installed during task-switching. These techniques can be incorporated in a
compiler, and can lead to substantial savings in execution time.

The remainder of this paper is organized as follows: Section 2 presents objec-
tives for and-or parallel implementations; Section 3 describes the extended and-or
tree; Section 4 describes our environment representation and strategy for parallel
execution, and compares them with other schemes; Section 5 describes the data
areas and instruction set of AO-WAM, including code for a simple example;
Section 6 describes how the overheads in AO-WAM due to the cost of task-
switching can be reduced; and Section 7 presents conclusions.

We assume the reader has some familiarity with the Warren
(WAM) binding arrays, and Restricted And-Parallelism (RAP).

2. OBJECTIVES FOR AND-OR PARALLEL IMPLEMENTATIONS

2.1. Objectives for Or-Parallelism

Abstract Machine

The following three criteria are of central importance in any or-parallel implemen-
tation:

1. the cost of environment creation should be constant-time;
2. the cost of variable access and binding should be constant-time; and
3. the cost of tusk switching should be constant-time

The term “constant-time” here means that the time for these operations is
independent of the number of nodes in the or-parallel search tree, as well as the
number of goals and the size of terms that appear in goals. These criteria are
derived from a consideration of the three important operations in any logic
programming system (sequential or parallel): allocation of space for variables
(environment creation), unification (variable access and binding), and resumption
after success or failure (task switching). While it would be ideal if an or-parallel
execution model could satisfy all three criteria, we have shown [12] that this ideal
cannot be achieved by any or-parallel model using a finite number of processors
and constant-time addressable memory. Other desirable characteristics of an ideal
or-parallel implementation are that it should execute as efficiently as a sequential
implementation in case only one processor is available. Also, it should be amen-
able to optimizations that apply to sequential implementations, such as last-call
optimization.

The fact that at least one of the criteria must be sacrificed partly explains why so
many or-parallel execution models have been proposed in the literature. Based on
which criteria one chooses to satisfy, one has a different execution model for

’ Conditionally bound variables, or conditional variables, are those variables that can potentially
receive multiple bindings during execution.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 63

or-parallelism. This also suggests a natural scheme for classifying various execution
models for or-parallelism, which we have given in 1121.

In the and-or implementation to be described later, the environment represen-
tation used is based on the binding-arrays method [36, 371 because it provides
constant-time access to the two more frequently occurring operations: variable
access and task creation. The binding-array method works by constructing an
or-parallel tree of nodes, where each node contains the local variables of some
clause. Each conditional variable is assigned a unique offset in a binding array,
which stores the values of conditional variable. Each processor maintains its own
binding array; the binding arrays of two processors working on two different
or-parallel paths would have the same entries only at those indices that correspond
to varaibles in the common ancestor nodes of the two paths. A processor creates a
new or-parallel task by assigning unique offsets in a binding array for the unbound
variables in the calling node and extending its binding array accordingly (the task
of assigning offsets, in practice, is relegated to unification). The main overhead of
this method is that binding arrays need to be updated upon context-switch
(conditional bindings are also recorded in the trail, in addition to the binding array,
for the purpose of updating during task-switching); however, this overhead can be
minimized by not switching too often or not switching to too distant nodes in the
tree. Other properties of this method are that, if there is only one processor
available, the performance from a depth-first search strategy would compare well
with a sequential implementation, and it supports standard sequential optimiza-
tions.

2.2. Objectives for And-Parallelism

As noted earlier, exploiting and-parallelism requires the identification of indepen-
dent subgoals because executing dependent subgoals in parallel often results in
wasteful computation. Three different approaches have been proposed to detect
dependencies: (1) by run-time monitoring of the status of variables (bound or
unbound) and dynamically restructuring tasks to obtain optimal and-parallelism 161;
(2) by global compile-time analysis assuming worse cases for subgoal dependencies
[81; and (3) by monitoring at run-time the status of terms (ground or nonground)
and using a static task-structure, conditioned upon the status of terms, to obtain
restricted and-parallelism [9]. The third approach is a nice compromise between
(11, where run-time overheads are high, and (21, where exploited parallelism is low.
While a naive approach would traverse arguments of subgoals to determine if they
are ground or not, clearly a desirable solution is one that avoids such a time-con-
suming run-time analysis. Thus, the time taken for detecting subgoals indepen-
dence should be independent of the size of their respective arguments.

Unlike or-parallel implementations, a pure and-parallel implementation must be
able to backtrack upon failure [20]. To understand the problem, consider the
subgoals shown below, where “,” is used between sequential subgoals (because of
data dependencies) and “II” for parallel subgoals (no data dependencies).

a,b,(clldlle),g,h

Assuming that all subgoals can unify with more than one rule, there are several
possible cases depending upon which subgoal fails. If subgoal a or b fails,

64 G. GUPTA AND B. JAYARAhIAN

sequential backtracking occurs, as usual. Because c, d, and e are mutually indepen-
dent, if either one of them fails, backtracking must proceed to b-but see further
below. If g fails, backtracking must proceed to the rightmost choice point within
the parallel subgoals cl(d((e, and recompute all goals to the right of this choice
point. If e were the rightmost choice point and e should subsequently fail,
backtracking would proceed to d, and, if necessary, to c. Thus, backtracking within
a set of and-parallel subgoals occurs only if initiated by a failure from outside these
goals, i.e., “from the right.” If initiated from within, backtracking proceeds outside
all these goals, i.e., “to the left.” This latter behavior is a form of “intelligent”
backtracking [20].

To sum up, the following criteria should be satisfied by an ideal and-parallel
implementation: avoid wasteful overcomputation, avoid complex run-time depen-
dency analysis, and support intelligent backtracking. As with or-parallel implemen-
tations, it is desirable that an and-parallel implementation perform comparably
with a sequential implementation in the single-processor case and support standard
sequential optimizations.

Among the well-known methods for and-parallel execution of logic programs are
Conery’s abstract model [7], improvements of this model by Kumar [24], and the
Restricted And-Parallel (RAP) model of DeGroot [91 and its refinement by
Hermenegildo and Nasr [20]. Of these, the refined RAP method comes closest to
realizing the criteria mentioned earlier. In this method, program clauses are
compiled into Conditional Graph Expressions (CGEs) of the form

meaning that, if condition is true, goals goal,. . . goal,, are to be evaluated in
parallel; otherwise, they are to be evaluated sequentially. The condition can be
either the constant true, or it can be ground(u,, . . . , uJ, which checks whether all of
the variables ui, . . . , u, are bound to ground terms, or it can be indepen-
dent(u,,... , u,), which checks whether the set of variables reachable from each of
Ul,. . ., u,, are disjoint from one another. Checking for ground and independence
involves very simple run-time tests, details of which are presented in [9J. The
method is conservative in that it may type a term as nonground even when it is
ground-another reason why the method is regarded as “restricted.” Techniques
to perform these checks at compile time may be found in [26, 271. This model has
been efficiently implemented on shared-memory multiprocessors using a variant of
WAM [21].

2.3. Objectives for And-Or Parallel Implementations

Since an and-or parallel implementation must exploit both and-parallelism as well
as or-parallelism, it is reasonable to adopt the union of the criteria for pure
or-parallel and pure and-parallel implementations: constant variable-access, task-
creation, and task-switch times (pure or-parallel case); and avoidance of wasteful
computation and efficient determination of subgoal independence (pure and-
parallel case). However, when there is potential for both and- and or-parallelism in
a single program, exploiting either form of parallelism alone can lead to unneces-
sary overcomputation. For example, consider the following program for finding

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 6.5

“cousins at the same generation” taken from [33]:

sg(X,X) :- person(X).

sg(X,Y) :- parent(X,Xp), parent(Y,Yp) ,sg(Xp,Yp) I

In executing a query such as ?- sg(fred, john) under a (typical) purely or-parallel
or a purely and-parallel or a sequential implementation, the goal parent (john, Yp)
will be reexecuted for every solution to parent (fred, XP).~ This is clearly redundant
since the two parent goals are independent of each other. It would be better to
compute their solutions separately, take a cross product of these solutions, and
then try the goal sg(Xp,Yp) for each of the combinations. In general, for two
independent goals G, and G, with m and II solutions, respectively, the cost of the
computation can be brought down from m * n to m + n by computing the solutions
separately and combining them through a cross product (assuming the cost of
computing the cross product is negligible). However, for independent goals with
very small granularity, the gain from solution sharing may be overshadowed by the
cost of computing the cross product, etc.; therefore, such goals should either be
executed serially, or they should be recomputed instead of being shared [14].
Independent goals that contain side effects and extralogical predicates should also
be treated similarly [14, 161. This is because the number of times, and the order in
which, these side effects will be executed in the solution sharing approach will be
different from that in sequential execution or parallel execution with recomputa-
tion, altering the meaning of the logic program. While solution sharing may not be
applicable in all cases, it does reduce the number of logical inferences performed
at run-time, and therefore is also used in “optimal” computational models of logic
programming, such as the Extended Andorra Model [18, 391.

To sum up, the criteria for a combined and-or parallel implementation are
essentially the union of the criteria for pure or-parallel and pure and-parallel
implementations. In addition, it is desirable to avoid overcomputation when both
and-parallelism and or-parallelism arise within a set of goals.

3. THE EXTENDED AND-OR TREE MODEL

We begin by describing extensions to the basic and-or tree. Figure 1 shows an
extended and-or tree for a simple program. There are four kinds of nodes in the
tree: In addition to and nodes and or nodes corresponding to and-parallel and
or-parallel goals, respectively, we also have cross-product nodes, to hold the cross
product of solutions from and-or parallel goals, and sequential nodes, which
correspond to sequential goals in the RAP model. The cross-product node and the
sequential node act as delimiters between which and-parallel execution takes place.
Thus, the sequential node marks the end of and-parallel execution and resumption
of and-sequential (but or-parallel) execution. Nodes have space for their subgoals
(also called goal-list), and or-nodes have space for the bindings of the variables
occurring in the subgoals.

3A purely and-parallel system can avoid reexecution of independent goals, but most existing ones do
not.

4 Solution sharing has also been proposed in other models for and-or parallelism such as ROPM
[22] and PEPSys [40].

66 G. GUFTA AND B. JAYARAMAh’

?- a, (b II c), d.

C &L cl c2 &d> . . .

I
I

<el, fl> l *a <e 2, f2> &sa 52 92 2 g4

or-node 0 crosspraduct node

and-node 0
<L j> sequential node

FIGURE 1. An extended and-or tree.

Cross-product nodes are introduced to facilitate sharing of solutions4 of and-
parallel goals, and serve to avoid the overcomputation alluded to in the previous
section. They are analogous to join-nodes in the PEPSys model [23, 401, and are
parents of and-nodes and sequential nodes. Each element in the cross-product set
is a tuple which corresponds to one specific solution for the and-parallel goals. The
cross-product set e x f shown in the example tree gets created as follows: Once the

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 67

and-nodes labeled e and f have been created for and-parallel goals with corre-
sponding names, the solutions for their goals are found (by exploring the subtrees
rooted below e and f, respectively). Next, the set of solutions for e and f are
cross-produced, and the resulting set stored in the cross-product node, the parent
node of e and f; for example, the cross-product set {(e’,f’>,(e2,f’>,(e’,f2>,
(e2, f 2)} corresponding to the cross-product node labeled e X f. The components of
tuple are labels (addresses) of terminal nodes of the and-branches. An and-branch
is a branch rooted at an and-node, and consists of those nodes lying along a path
from this and-node to a leaf node representing one solution for the associated
and-parallel subgoal (e.g., nodes labeled b and b’ form an and-branch rooted at b).
Note that we represent the cross-product set symbolically, i.e., using label of
terminal nodes (e.g., the memory address of the terminal node could serve as its
label). However, one can also perform an explicit join of bindings produced for
variables in the and-parallel subgoals, as done, for example, in ROPM [221. The
cross-product set can either be computed incrementally as individual solutions for
e and f are produced or it can be computed in one single operation after the
solutions to e and f have been found-clearly, the former approach is better since
it avoids potentially nonterminating computations.

The structure of the extended and-or tree, except perhaps for the sequential
nodes, should be evident now from the description in the previous paragraphs and
Figure 1. We therefore clarify the role of sequential nodes. (Note that, in the
figure, (bllc) indicates that b and c can be executed in and-parallel.) For example,
suppose that the and-nodes e and f have produced solutions e’ and f’, respectively.
A tuple (e’,f’> would then be inserted in the cross-product set associated with
node labeled e x f, as described earlier. A sequential node labeled (e’,f’ > would
then be created corresponding to this tuple to solve goal g. Similarly, the creation
of other tuples (e1,f2), (e’,f’>, etc., result in the creation of the corresponding
sequential nodes rooted under e x f. Likewise, when goals g’, g2, etc., are solved,
tuples (b’,g’), (b’, g2>, etc, are inserted in the cross-product set b x c, and
similarly sequential nodes labeled (b’, g’ >, etc., are created for the execution of
goal d. Thus, a sequential-node is created for every possible continuation of the
CGE; and-parallel computations in the extended and-or tree are “bracketed”
between a cross-product node and a sequential node.

Note that initiating the execution of a sequential goal corresponding to a
sequential node such as (el,fl > depends only on the completion of and-branches
e' and f’, and not on other and-branches of e and f. Hence, execution of a
sequential goal (which corresponds to the goal in the continuation of the CGE)
may be initiated as soon as its corresponding sequential node has been created,
even though the preceding and-parallel goals have not been completely solved.

An or-node, a sequential-node, or an and-node fails if all its children nodes fail,
in which case it is deleted from the tree. A cross-product node fails if any one of its
children and-nodes fail, in which case the entire subtree rooted at the cross
product is deleted from the tree. A limited form of intelligent backtracking is
obtained in this way-if an and-parallel subgoal fails, the computation does not
unnecessarily backtrack over sibling and-parallel goals.

Different forms of parallelism naturally arise in the extended and-or tree:
(i> execution of two or-nodes in parallel gives rise to or-parallelism; (ii) execution
of two and-nodes in parallel gives rise to and-parallelism; and (iii) execution
of two sequential nodes with the same parent cross-product node gives rise to or-

68 G. GUPTA AND B. JAYARAMAN

parallelism (also called consumer instance parallelism in [28]). Also note that the
cross-product set can be incrementally generated in parallel.5

4. EXECUTION IN THE EXTENDED AND-OR TREE

The extended and-or tree is a general model for exploiting and-or parallelism in
logic programs. Not described in this model are

(a) how multiple or-parallel environments are efficiently maintained;
(b) how and-parallel computations are expressed; and
(c) how parallel execution and scheduling is performed.

We believe that any existing scheme described in the literature can be used
(perhaps with slight modification) for solving problems (a) and (b), although we
advocate the binding arrays for the former and CGEs for the latter. The binding
arrays scheme requires some extensions in order to work in the presence of
and-parallelism. 6 In the next few subsections, we. describe these extensions, along
with how various operations are performed in our realization of the extended
and-or tree.

4.1. Variable Access

In the presence of both and-parallelism and or-parallelism, the binding-arrays
method for the pure or-parallel case must be extended to achieve constant-time
access to variables. To see the problem, consider the goals (p,(qlllq2),r), where
ql and q2 also exhibit or-parallelism. Suppose further that goal p has been
completed. In order to execute goals ql and q2 in and-parallel (exploiting
or-parallelism within them at the same time), it is necessary to maintain separate
binding arrays for them. As a result, the binding-array offsets for any conditional
variables that come into existence within these two goals will overlap. (Recall that
conditional variables are variables which are unbound at the time of branching.)
Thus, when goal r is attempted, we are faced with the problem of merging the
binding arrays for ql and q2 into one composite binding array or maintaining
fragmented binding arrays.

To solve the above problem, first recall that in the binding-array method [36,37],
an offset-counter is maintained for each branch of the or-parallel tree for assigning
offsets to conditional variables. However, offsets to the conditional variables in the
and-parallel branches cannot be uniquely assigned since there is no implicit
ordering among them; at run-time, a processor can traverse them in any order. We
introduce one more level of indirection in the binding array to solve this problem.

In addition to the binding array, each processor also maintains another array
called the base array. As each or-node is created, it is assigned a unique integer id.
When a processor encounters an or-node, it stores the offset of the next free
location of the binding away in the ith location of its base array, where i is the

‘identifier of the or-node. The offset-counter is reset to zero when an or-node is

5 An efficient, general method for incremental parallel generation of a cross-product set is given in
[lOI.

6 In [13], we show how some other or-parallel environment representation techniques can be
adapted for implementing the extended and-or tree.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 69

deref(V)
term*V{

/*unbound variables are bound to themselves*/

if V + tag = = VAR
if not V + value = = V

deref(V + value)
else V

else if V + tag = = NON-VAR
V

else { /*conditional var bound to (i, v)*/
val = BA[v + base[i]]; /*BA is the binding array.*/
if val -+ value = = val

else dLef(val)]]

FIGURE 2. Dereferencing algorithm.

created. Subsequent conditional variables are bound to the pair (i, v), where u is
the value of the counter. The counter is incremented after each conditional
variable is bound to this pair. The dereferencing algorithm is given in Figure 2.
Note that, in this algorithm, if a variable has the tag value VAR, then this indicates
that it is either bound to another variable or to itself. If a variable is bound to
itself, it means that it is unbound, following the convention used by most Prolog
systems. The tag NON-VAR indicates that the variable is bound to an atomic value
or a structure.

In the above scheme, access to variables is still constant-time, although the
constant is somewhat larger compared to the binding-arrays method for pure
or-parallelism. Also note that now the base array is also to be updated on a
task-switch.

This variable binding scheme is very general and not dependent on any schedul-
ing strategy. A processor may switch from any node to any other node, and
provided it makes all the appropriate changes to its binding array and base array, it
can still access all the variables in its environment correctly. However, assigning a
unique identifier to every or-node may be a large overhead since it is also incurred
for or-nodes which are not part of and-branches. By using a modified technique
which requires a particular scheduling strategy described below, we can avoid this
work for the or-nodes. In this technique, we incur the labeling overhead only in the
presence of and-parallelism; hence, pure or-parallelism is exploited without the
extra overhead of assigning ids to or-nodes.

In the improved technique, we label the and-nodes rather than or-nodes with
unique integer ids.7 This would also require that rather than resetting the offset
counter when an or-node is created, it must be reset when an and-node is created.
Thus, we incur an overhead only on creation of and-nodes, i.e., only in the
presence of and-parallelism. If the identifier of an and-node is j and this and-node
is encountered by a processor, the offset of the next free location in the binding
array of that processor is stored in the jth location of its base array. All conditional
variables arising in an and-branch corresponding to the and-node are bound to the
pair (j, v>, where u is the value of the offset-counter. The dereferencing algorithm
remains the same. The node scheduling strategy should be such that when

7 The ids need to be unique across an or-branch, but for simplicity, we assume that they are unique
across the whole and-or tree.

70 G. GUPTA AND B. JAYAFtAMAN

conditional variables are loaded in the binding array, they occupy contiguous
locations (the importance of conditional variables occupying contiguous locations
in the BA is further explained in Section 5.1.3.3). It turns out that a simple
scheduling strategy suffices, namely, one in which a processor does not work on
another and-goal, unless it has found a solution to the current and-goal (i.e., once
an and-goal or an alternative inside an and-goal is picked, the processor will not
arbitrarily switch tasks unless it has produced a solution or failure occurs). Other
processors, of course, may work in parallel on other and-goals. Also, during
unloading of the binding array, the processor should traverse the and-branches in
the opposite order of traversal during loading (the loading and unloading opera-
tions are explained in the next subsection). This ensures contiguity in the binding
array when a processor selects an unfinished choice point in the course of
unloading an and-branch from its binding array. In addition, it ensures that
conditional variables occur in the binding array in order of their seniority, like in
the binding-arrays scheme for pure or-parallelism.

4.2. Parallel Execution and Scheduling

We first note that we can assume the extended and-or tree lies in a memory space
accessible to all processors because we are targeting our implementation at
shared-memory multiprocessors. At the start of execution, it simply consists of the
root node. In our scheme, processors traverse the branches of the tree, executing
subgoals in the nodes, and growing and contracting the tree in the process. Since
the number of branches in the and-or tree would be much larger than the number
of processors, each processor ends up executing more than one branch of the tree.
This is accomplished through backtracking on success/failure. The movement of a
processor from its current site to the place where work is available is called task
switching. A processor that has created a node is eventually responsible for solving
the entire tree rooted at the node. However, other idle processors may eagerly help
by taking up any available work from this subtree. A processor does not become
idle until the entire subtree rooted at the node it undertook to solve is explored.
This ensures coarse granularity of parallelism, and results in less task switching.

We now describe the algorithm that a processor uses for selecting work in the
extended and-or tree. The algorithm, which is invoked when a processor runs out
of work, makes use of two basic operations: load and unload. In the load operation,
a processor, given a cross-product tuple, updates its binding array with the
conditional bindings that are found from the trails of the and-parallel branches of
the solutions corresponding to the tuple; the base array is simultaneously updated.
We therefore say the processor loads the tuple into its binding array. For example,
referring to Figure 1 once again, if a processor has its binding array (and base
array) stationed at the cross-product node e x f, then before it can continue
execution below the sequential node labeled (e’, f'), it must load all the condi-
tional bindings along the and-branches e-e’ and f-f’. If, however, the processor’s
arrays were stationed at node e’ and it wanted to continue with the tuple (e’,f’>,
then it just needs to load conditional bindings made along f-f’. The unload
operation is the opposite of the load operation, i.e., during the unload operation,
conditional bindings occurring in the and-branch of the solutions in the tuple are
purged from the binding array; the base array is also purged. (See also Sections
5.1.3.1 and 5.3.1.2).

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 71

The load and unload operations are the costs we incur because we are not
recomputing the and-parallel goals, an activity that is generally more prone to
overhead. In our scheme, all solutions to an and-parallel goal are computed only
once. One can show that the loading and unloading operations due to solution
sharing entail fewer operations than recomputing the and-parallel goals. If there
were no sharing, all and-branches would be recomputed, and during the recompu-
tation, all variables encountered would be accessed at least once during unification.
However, if they are shared instead, no frames are pushed on the stacks, and hence
these stack operations are avoided, Also, only conditional variables (rather than all
variables) are accessed during loading; furthermore, they are accessed only once.

In order to realize parallelism from the extended and-or tree, every processor
works on a branch until it exhausts the goal-list. If it is working on an and-branch,
it grows that branch until a solution for the and-subgoal is found. If at least one
solution has been produced for each of the other sibling and-parallel goals, the
processor inserts all the tuples that can be formed from this solution into the
cross-product set. It then selects the appropriate tuple from the cross-product set,
loads its binding array, and continues execution. If a solution has not been found
for some of the sibling and-goals, the processor commences execution of one of
these and-goals, rather than searching for all solutions of the current and-subgoal.
This ensures that solutions to the top-level query are produced as quickly as
possible. If it is working on an or-branch, it likewise grows this branch until a
solution is found for the top-level query. After the processor has found a solution,
it traverses the tree upwards, and if it finds any untried alternatives, it takes them
up (updating appropriately the pool to which this untried work belongs). However,
if there are no untried alternatives, it examines the work pool of the processors
which are working in the subtree below it. We assume that each processor
maintains a pool of work it produces, which it will eventually carry out if aided by
no other processor. It assists these processors by taking work from them so that all
solutions in the subtree are computed quickly. Notice that the behavior of the
processor depends on whether it is executing an or-branch or an and-branch. The
algorithm for work selection is described in Figure 3.

Note that the binding array is updated not only during loading and unloading of
tuples, but also when a processor moves up from one node to another. Also note
that while moving up, if the processor happens to be the creator of that node, it has
to wait for other processors working in the subtree below to finish before it can
reclaim this node from memory or move further up. We can avoid this idling by
letting the processors work in other sections of the and-or tree, without reclaiming
the node they created, even though there are other processors working in the
subtree below. This will lead to creation of ghost nodes which will have to be
reclaimed later. Such a strategy has been used by Aurora [25].

4.3. Comparison with Other Schemes

We now compare briefly our extended and-or tree model with the ROPM 1221 and
PEPSys [40]-the two other prominent models proposed for and-or parallel
execution. Basically, the three systems take a different approach to or-parallelism,
each incurring a different kind of cost: nonconstant-time variable access (PEPSyS),
nonconstant-time task creation (ROPM), and nonconstant-time task switch (our

72 G. GUPTA AND B. JAYARAMAN

task-switch()
case A of /*A is the current node*/

OR-NODE:
if or-node has untried alternatives

execute the alternative clause
else if or-node is not part of and-branch

Ll: steal work from processors below
/*return here only if no work found*/

if no processor below
untrail and move one node up; task-switch();

else got0 Ll
else /*or-node is part of and-branch*/

L2: if no solution produced in subtree below
if no processors below

untrail and move one node up; task-switch();
else

else

steal work from processors below
/*return here only if no work found*/

got0 L2

AND-NODE:
untrail and move one node up; task-switch();

if no solution found for this and-node and no processor working below it
send kill messages to all processors working below the

parent cross-product node.
untrail and move one node up; task-switch();

else
move one node up to the cross-product node; task-switch0;

CROSS-PROD-NODE:
if there is work available (untried and-node or tuple) at this node

execute it
else if there is an untried choice point in subtree below

execute it
else if there are processors working in subtree below

L3: steal work from these processor and execute it.
/*return here only if no work found*/

if there are processors working below
got0 L3;

SEQ-NODE:
untrail and move one node up; task-switch0;

unload tuple in sequential node from binding array.
If while unloading an and-branch, and or-node with
untried alternative is found, execute that alternative.

else
move one node up to the parent cross-product node;
task-switch(1;

FIGURE 3. Algorithm for selecting work.

approach). The ROPM model is based on the concept of Data Join Graphs (DJGs).
The DJG is used for the dual purpose of representing dependencies between
subgoals in a clause, as well as for recording the execution state at run-time.
Although DJGs are more general than CGEs, they seem more prone to overheads,
e.g., intricate operations have to be performed to remove redundancies during join
evaluation [29]. In the PEPSyS system, the join algorithm does not allow more than
two and-parallel goals to be joined together, making and-parallel execution of more

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 73

than two goals slightly inefficient. Some of the complexity of this system is due to
the designers’ goal to incorporate backtracking along with and- and or-parallelism.

Our model is derived from the intuition that, for shared-memory multiproces-
sors, schemes that have nonconstant time task-creation of nonconstant-time vari-
able access are less efficient than those with nonconstant time task-switching. This
is because the number of variable accesses and task creations is dependent on the
logic program being executed, while the number of task switches is dependent on
the scheduler. While the scheduler can be carefully tuned by the implementor to
minimize the number of task-switches, this kind of tuning is virtually impossible to
perform in minimizing the number of variable accesses or task creations. In
systems with non-constant time task-switching (such as ROPM), it is possible to
reduce the number of expensive task-creation operations by adopting some tech-
nique for granularity control, e.g., goals whose terms are “smaller” than a certain
threshold are not executed in parallel, thereby avoiding the overhead for creating
parallel subtasks within this goal. However, adopting such a technique may lead to
a loss of parallelism because grains are fixed at compile-time. On the contrary, by
adopting the approach where task-switching is nonconstant-time operation, the
same effect is achieved dynamically, e.g., in the Aurora system, a distinction is
made between the shared and private section. The shared section grows as more
processors become available.

A noteworthy point about our proposed system is that the exploitation of
and-parallelism and or-parallelism does not appreciably degrade the performance
of programs that contain only pure or-parallelism or pure and-parallelism. If we
exploit only or-parallelism, we believe that our system could be as efficient as the
Aurora system [25, 311, a purely or-parallel system based on binding arrays;
likewise, if we exploit only and-parallelism, we believe that our system could be as
efficient as the RAP-WAM system 1211, a purely and-parallel system based on
CGEs. In both cases, the indirection in accessing conditional variables in our
system (due to base arrays) would marginally degrade performance. This over-
head is, we believe, a small price to pay for obtaining one system for both and-
parallelism and or-parallelism, with the added benefits of solution sharing.

5. AO-WAM: A WAM EXTENSION FOR AND-OR PARALLEL EXECUTION

Figure 4 summarizes the state of an AO-WAM processor-all processors have a
similar storage model. As a processor executes the extended WAM instructions
(described in Section 5.2), it pushes nodes along a branch in the extended and-or
tree onto its stacks. Because idle processors may eagerly help other processors, it
can happen that nodes along a branch are distributed across the stacks of different
processors. In the remaining description, we explain the processor-state, concen-
trating on features not present in the standard WAM model [381.

5.1. AO- WAM Machine State

5.1.1. Data Areas.
(i) Correspondence of nodes in extended and-or tree to frames in stacks: All nodes

in the extended and-or tree map directly to the stack frames. However, a single

74 G. GUPTA AND B. JAYARAMAN

Environment

S

. Soln. node

itial node
* to Cross-prod set
!r lo tuple CIC B

I I I Or - node I Choice Pt

Cross - Producl node

\I Continuation We

lode Scheduling Areas

CPQ

ariable Access Arrays

FIGURE 4. AO-WAM data areas and registers.

choice point is created for a set of sibling or-nodes of the extended and-or tree,
and one environment record is created for each or-node. In subsequent sections,
we shall refer to choice-points as or-nodes, by abuse of terminology. Given two

nodes nl and n2, where nl is above n2 in the stack, it is true that nl is a
descendant of n2 in the and-or tree or they are in independent and-branches. As a
corollary of this, space from the node and environment stacks is always reclaimed
from the top.

(ii) Separation of local stack into environment and node stacks: There are two
advantages of this separation. (1) During space allocation, it is easy for the
processors to access the topmost node in the stack (through register B,, described
later). (2) It simplifies the task of updating the binding array. It also enables
incorporation of other scheduling strategies, and thus makes the architecture
amenable to modifications.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 75

(iii) Separation of trail into local and global trails: This is done to reduce the
amount of working during task switching (explained in Section 6).

(iv) Introduction of solution nodes: A solution node is pushed on the node stack
when the end of an and-branch is reached. Thus, it corresponds to the tip of an
and-branch. It serves two purposes. (1) Its memory address is used as the symbolic
name for the corresponding solution in cross-product tuple. (2) It helps ensure that
an and-parallel solution does not get deleted from the stack until the entire cross
product has been tried.

5.1.2. Node-Scheduling Areas.. The node-scheduling areas are used to identify
available work, and are organized as follows. (i) Or-Node Queue: The untried
or-nodes are organized as a queue for scheduling because we believe that those
closer to the root would contain bigger subtrees, maximizing the granularity of
work. (ii) Cross-Product Queue: The untried cross-product tuples are organized as a
queue for the same reason. (iii) And-Node Stack: Untried and-nodes are organized
as a stack because later and-subgoals must be solved before earlier and-subgoals,
which we think helps in avoiding speculative work and finding the first solution
faster.

Or-nodes and cross-product nodes have a processor bit-uector (similar to [4]).
This vector tells which processors are working in the subtree rooted at that node. A
processor sets the bit at position pid, where pid is the processor identifier of the
processor when it passes through the node while moving to the site where work is
available. It resets this bit when it returns while traveling up the tree. The bit
vector scheme is suitable for only a small number of processors (maximum of 32 in
our implementation). Other scheduling schemes which allow more processors can
also be adapted to our model, e.g., those of [l, 31 which are designed for or-parallel
systems.

5.1.3. Variable Access Arrays.. These were introduced in Section 4.1; here, we
describe in more detail the loading and unloading of conditional bindings in the
binding and base arrays. We also discuss how space in the binding array is
managed.

5.1.3.1. UNTRAILING VARIABLES: UNLOADING. As a processor moves up from
the node where it is currently stationed to the parent of that node, it updates its
global environment so that correct bindings are accessed during variable derefer-
encing. The untrailing operation consists of marking as unbound all the conditional
variables in the section of the trail corresponding to the intervening local environ-
ments (or-nodes) (Figure 5(ii) and Figure S(iii)). This involves marking as unbound
the binding array slots corresponding to these conditional variables. We mentioned
earlier that the conditional bindings created by an environment are also recorded
in the trail stack. Since the trail stack contains the conditional bindings of the
environment frames residing in the local stack, we must identify the section of the
trail that contains the conditional binding created by these intervening environ-
ments. This section of the trail-stack frame can be identified by two pointers, one
pointing to the beginning (bottom) and one to the end (top). These pointers can be
stored in the nodes itself, as part of the machine state. We can avoid storing the
pointer to the bottom of the trail-section since the bottom of one trail-section will
be the top of the trail-section of the node preceding the current node in the stack

76 G. GUPTA AND B. JAYARAMAN

Key:

ocroarpoduclmde

id = 2

loalaackofP1 hnitstwkofP1

unbound1

0dg arr*y Bdg array

Fig (ii): Binding array and BMC Amy Fig(ii):BiianayandBascAmy
ofpmcasorP1wbmstatiodatn 1 ofpce38orPlwhar*crd~n 2

FIGURE 5. Untrailing and unloading.

0 -__C unb X

20 y

(Figure 4). We need not store a pointer to the top of the trail-section in the
and-node or a sequential node since there are no intervening local-environments
between it and its parent node. Thus, it is only stored for the choice points and the
cross-product nodes. The top of the trail-section at any given time is easily
obtained since it would be the same as the top of the trail stack at the time the
node is pushed onto the local-stack.

Note that although we call this operation untrailing, only the binding array gets
modified; the trail is left untouched, in contrast with the untrailing operation in
sequential systems where part of the trail stack is also reclaimed. This is because
the trail is also used for loading the binding array of a process that may later pick
work from that region of the tree. A section of trail is reclaimed only when its

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 77

associated frame is reclaimed from the local stack (this reclamation will be
performed only when we are sure that the subtree rooted at the node correspond-
ing to this frame has been completely explored).

5.1.3.2. BINDING INSTALLATION: LOADING. During forward execution, when a
processor finds a solution for an and-parallel goal in CGE, and wants to continue
with the execution of the continuation of the CGE, then it has to install all
conditional bindings created during execution of other goals in the CGE in its
binding array. This operation, termed loading in Section 4.1, is further illustrated in
Figure 6. Thus, the operation of binding installation is very similar in nature to
untrailing, except that instead of marking variables as unbound in the binding
array, their correct binding is put instead. It has the effect of merging the binding
arrays alluded to earlier.

Loading and unloading are also performed during task-switching. When a
processor task-switches from node n, to node n2, it moves up from n2 to the
common ancestor node (say c) of n1 and n2, unloading conditional bindings from
the binding array along the way. It then installs conditional bindings from the
binding lists of nodes lying between the node c and n2. To install the bindings, the
processor has to traverse the path from c to node Q. During a task-switch, when a
sequential node is encountered, then conditional bindings made along and-branches
corresponding to tuple associated with this sequential have to be unloaded or
loaded, depending upon whether the sequential node lies between n, and c or
between c and n2.

5.1.3.3. CONTIGUITY IN BINDING ARRAYS. Every conditional variable in the
Extended And-Or tree has an associated and-node whose and-id is used for
dereferencing its value. Consider the tree shown in Figure 7(i). The nodes labeled
rzr and n2 have a common ancestor and-node (labeled a). All the conditional
variables along the branch a-a,-n,-~ .. . would use a,‘~ and-id as their and-id
(the first element in the pair to which conditional variables are bound). If the
offsets (the second element in the pair) of two conditional variables corresponding
to nodes n1 and n2, respectively, along the and-branch differ by k, then their
corresponding slots in the binding array should also differ by k. In other words, all
conditional variables created in a given and-branch should be allocated space
contiguously. If this is not the case, then the dereferencing algorithm would not
work correctly for these variables. We call this condition the contigzdy condition. It
is hard to ensure this condition because n1 and n2 may have intervening (nested)
and-branches where the offset counter is reset. Since these nested and-branches
would always be traversed while going from its to n2 (or vice versa), the conditional
variables of these and-branches would occupy slots in the binding array somewhere
in between those of n, and n2. Since the counter is reset on arriving at an
and-branch, the constraint mentioned earlier would be violated, leading to incor-
rect dereferencing of variables (Figure 7(u)).

To circumvent the foregoing problem, we propose the following solution. When
a CGE is encountered in an and-branch, the current value of the offset counter is
recorded in the cross-product node. When a cross-product tuple corresponding to
this CGE is generated, the offset counter is restored to the value recorded in the
cross-product node. The number of conditional variables found along each and-
branch comprising the tuple is then summed and added to the offset counter. The

78 G. GUFTA AND B. JAYARAMAN

,
: id = 0

i

:’
:

-C:
$“i 6 x: <o,o>
4: Y: <O,l>

i
.:

.:’
I

A: <l,O>

9 : x <- 20
8: <l,l>

* : c: <1,2>

Bdq array

id = 2

base array

Bdg array

X

Y

A

B

C

H

P

Q
R

s
next-free-lot -)

iWdB=JArray Fig(ii):BindingamyandBasemayofprooessor + t
llfmgmuatingthelcft P2dtergamting~Iightmdad-brarh.md Bdq array

BdingauaymdBasearnydprocecrarP1rfta
lo&ingtbbidingshnntbxi&tat&umchP1is
nmvreadyto~withltle~~gorlafta
thcCGEUmtgaverisetothcc~~~~-paodudmdc.

FIGURE 6. Binding installation during loading.

number of conditional variables in an and-branch is easily determined since it is
recorded in its solution node (by recording the value of its local offset counter
during the time of its creation). The updated value of the offset counter is then
stored in the sequential node and used for assigning offsets to the subsequent
conditional variables (Figure 8). As a result, the contiguity constraint is not
violated.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 79

id = 1
offmet-

id = 0

axb offeet=

A. id = 4 a b offset=0

Key: mKi-node

cl OWpdG
(ammunart) OccoupEodua~

cl choicepoillt

El 8OlUliUl-node
0

Pi ithw

Uote: Or Nodes are not
shown for clarity.

offset = 10 Fig. 0)

And-branches c-81 and d-s2 have
a total of 12 conditional vars,
hence the offset of aequsntial
node is increased by 12. 0 Pl

conflict with
conditional c
variables of
branch 111912

C 32

Fig. (ii)

FIGURE 7. Problems with binding arrays.

The contiguity constraint requires that processors move up the tree strictly
along the path they followed during forward execution; otherwise, variables would
be incorrectly dereferenced. To illustrate why this is essential, consider the exam-
ple tree shown in Figure 9. Suppose a processor creates the branch a-a,-a,-a,-s,.
Its base array and binding array would now appear as shown in Figure 9(i). Let us
assume that the processor moves up to a, from s,, and then decides to execute an
untried alternative of b,. When it moves up to a,, it would remove the conditional

80 G. GUPTA AND B. JAYAFlAhfAN

variables with offsets 8-12 from the binding array since they are no longer in its
environment. Suppose it produces the branch b,-b,-s, with conditional variable
offsets as shown. Now, the binding array and base array would be as shown in
Figure 9(n). At this point, if Pl decides to return a, and pursue its other
alternative, then binding of conditional variables along the branch below b would
be overwritten and therefore lost. If we store conditional variables with offsets
8-15 and 15-19 (i.e., conditional variables along the path a,-a,-s3) after the
conditional variables of b in the binding array, then conditional variables below a,
cannot be dereferenced correctly because the contiguity property is destroyed for
the branch rooted at a. Thus, it is important that, while moving up the tree, nodes
with available work be tried in the order they were created, i.e., Pl should pursue
the untried alternative of a, before trying the untried alternative of b,. Note that
this order is indeed the one that would be dictated by the work-scheduling strategy
of Sections 4.1 and 4.2. As a result, the binding array behaves like a stack. Node
reclamation is now simplified since the associated conditional variables that are no
longer needed can be reclaimed from the binding array by simply moving the
next-free-location pointer.

5.1.4. Registers. In addition to the regular WAh4 registers, we have the following
extra registers. (i) B,, which points to the top of the local node stack. (ii) L,, which
points to the top of the local environment stack. (iii) D, which points to the current
and-node, i.e., the and-node in whose scope the current environmental falls. The
current value of D is saved in the Cont D field in cross-product nodes so that it can
be restored when sequential nodes are pushed. (iv) OC, which is the offset counter
for the conditional variables. (v) CFA, in which the address of the code sequence to
be executed, if the CGE fails, is loaded. (vi) CPQ, AS, and OQ, which hold pointers
to the heads of the work queues/stacks. The CPQ, AS, and OQ pointers are stored
in nodes to restore the respective work queues/stacks on failure.

5.2. AO- WAM Instruction Set

The AO-WAM supports all of the instructions supported by WAM. The new
instructions introduced in the AO-WAM consist of the check instructions
(check_me_else, check-ground and check-independent) of RAP-WAM [191
for compiling CGEs, and instructions for allocating space for various nodes:
alloc_cross_prod n, Addr, alloc_and Addr, alloc_sequential, and alloc_solu-
tion Addr. The check_me_else instruction loads a register with the address
(called Check Fail Address or CFA) where the execution is to branch if the CGE
condition evaluates to false. The check-ground (respectively, check-indepen-
dent) instruction checks if the variables in their arguments are grounded (respec-
tively, independent). The instructions for allocating space are used to allocate
space for the various nodes. The example in the next section illustrates their
meaning and use. The first argument, n, in alloc_cross_prod n, Addr is used to
trim the environment of the calling predicate in a similar fashion as the allocate
instruction of WAM. Three interesting new instructions are:

put-and-variable Yn, Ai: is the same as the put-variable Yn, Ai instruction
except that the variable Yn is globalized and a reference to the global value is

id

=

0

,,.
-

\
/’

: .
o
ff

re
t=

S

sl

,
cl

o
ff

se
t=

s2

9
1

I

A
n

d
-b

ra
n

ch
es

c-

al

an
d

d
-s

2

h
av

e
a

to
ta

l
o
f

1
2
 c

o
n

d
it

io
n

al

v
ar

s,

h
en

ce

th
e

o
ff

se
t

o
f

se
q
u
sn

tl
al

n

o
d
e

is

in
cr

ea
se

d

by

1
2
.

o
ff

se
t x

=

1
4
+1

2

n
2

=

2
6

o
ff

se
t

=

1
5
+1

2

a5

=

2
7

0
 P
l

N
o
t
e
:

O
r

N
o

d
e

a

ar
e

n
o

t
sh

o
w

n

fo

r
cl

ar
it

y
.

r 0

cv
s

o
f

q-
•x

b

L
lO

cv
s

of

a-
al

-n
l-

cX
d

E
 20

cu

s
of

c-

s1

25

cv
s

o
f

d
-s

2

I L
3
2

cv
s

of

<s
l,

r2
>-

n
2
-s

S

C

3
7
 B

d
q
 a

rr
ay

FI
G

U
R

E

8.
 E

ns
ur

in
g

co
nt

ig
ui

ty

of
 a

 b
in

di
ng

ar

ra
y.

82 G. GUPTA AND B. JAYARAMAN

cl cJmicepoint

cl or-node
(alvironm~)

cl solution-node

0 Pi ithpl.ocam

Note: Or-nodes mu
mt8houmford8rity

id =

q P
id = 0

0 Pl

cvs of
a-aO-al-a+sl

base array

0
0

1

bass array

cvs of
b-bO-b2-a6

Bdq array

0

cvs of
a-aO-al-a4-s3

0
I 1

base array

cvs of
b-bO-b2-16

8dg array

Bdq array

FIGURE 9. Backtracking and contiguity of BAs.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 83

saved in Ai. Yn is also initialized with the same reference. This instruction is
used to globalize unbound variables in the and-parallel subgoals, so that
during update (loading and unloading of tuples) of the binding arrays, the
processor has to only look at the trail for global (or heap) variables.

put_and_value Yn, Ai: is the same as the put-value Yn, Ai instruction except
that if the variable Yn dereferences to an unbound local variable, then it is
globalized and a reference to it is saved in Ai. Yn is also initialized with the
same reference. This instruction is used to globalize variables in the and-
parallel subgoals, which are bound to unbound variables, so that during
update (loading and unloading of tuples) of the binding arrays, the processor
has to only look at the trail for global variables.

push_and_call Code/n: similar to push_call instruction in RAP-WAM. Push
an entry into the and-goal stack, i.e., push the instruction address of the
subgoal, argument registers Al -An (loaded through the regular put instruc-
tions) and the current environment register. Exclusive access to the stack is
obtained while pushing the entry.

In addition to the operations associated with specific instructions, each proces-
sor performs certain other actions to handle exceptions such as failure and
messages from other processors. These noninstruction-related actions are sketched
below.

failure: If failure occurs, the task-switch routine in Section 4.2 is invoked. As a
processor moves up the tree looking for work, it reclaims space from nodes
which it created. If it reaches an and-node, for which no solution has been
found, and there are no processors working below in the branches of that
and-node, then the cross product corresponding to that and-node has failed.
The processor sends a kill message to all the processors working below the
parent cross-product node to signal this failure of the cross product. It
restores its registers, node stack, environment stack, and heap up to the
parent node of the cross-product node. It also purges its binding array and
base array from the trail.

kill: This message is received by a processor when a cross product fails. The
address of the cross-product node that has failed is also received. The
processor restores is registers and stacks up to the parent-node to the
cross-product node whose address is received. The binding array and base
array are also purged. Next, the processor calls the task-switch routine to
look for work.

A prototype implementation of the AO-WAM is operational, and preliminary
results from the small test cases are very encouraging.

5.3. Example

In this section, we give the computer generated AO-WAM code for a simple
clause. The code, which has been verified on our sequential implementation, is
annotated to explain the effect on the instructions.

f(X,Y) :- a(x,Y), b(KY) ,c(X,Y,Z) ,d(XY,Z).

84 G. GUPTA AND B. JAYARAhfAN

Suppose the graph expression generated is the following:

f(X, Y) :- a(X, Y) , (ground(X, Y) * b(X, Y) JJc(X, Y, Z)) , d(X, Y, Z) .

where a is expected to ground X and Y so that b and c can be executed in parallel.
The code is as follows:

f/3:
allocate
get-variable X, Al
get-variable Y, A2
put-value X, Al
put-value Y, A2
call a/2, 3
check-me-else SEQCODE
check-ground X
check-ground Y
allot-cross- prod 3, ADDR

putand-value X, Al
putand-value Y, A2
push-and-call bl

put-value X, Al
put-value Y, A2
putand-variable Z, A3
call cl, 3

HWC:

alloc_solution ADDR

ADDR:
allot-sequential

deallocate
execute CALLd

SEQ-CODE:

Entry point for procedure f
Push environment for f.

unify arguments off.
load arg. registers to execute a.

Call a
store the address SEQCODE in CFA
If X not ground jump to SEQ-CODE
If Y not ground jump to SEQ-CODE

Allocate a cross-product node.
ADDR is the address from where

execution continues when a
tuple is picked up.

load argument registers for b.

push the and-call entry in the
and-goal stack.

load argument registers for c.
Pick up c for execution.

globalize Z for split trail optim.
start c’s execution

Return here after a solution to
the and-subgoal found

Push a solution node, store the
solution found, and check to see

if more unsolved and-goal present.
If yes, load registers & execute
one, else pick a tuple containing

the current solution, load E
register from parent cross-

product node and branch to ADDR.

Push the sequential node, update
BA to execute sequential goal d.

Dealloc the env. frame for f.
execute d .

branch here if CGE cannot
be executed in parallel.

put-value X, Al
put-value Y, A2
call b/2, 3
put-value X, Al
putvalue Y, A2

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 85

put-variable Z, A3
call c/3,3

CALLd:
put-value X, Al
putvalue Y, A2
putvalue Z, A3
deallocate
execute d /3

a/2:. . . a’s code.. .
bl: alloc_and HWC

Dealloc the env. frame for f.

allocate an and node for and-
parallel execution and set the

continuation code pointer to HWC.
b/2: . ..b’s code...

cl : alloc_and HWC

c/3: . ..c’scode...

d/3: . ..d’scode...

In the code above, when the processor reaches the end of an and-branch, it
executes an alloc_solution instruction. This instruction is responsible for checking
if there are more untried and-nodes, and if there are none, picking a tuple so that
the execution can continue with the next sequential goal. The binding array is
loaded with the conditional bindings made along the and-branches corresponding
to the tuple-elements in the allot-sequential instruction. When the processor
reaches the end of an or-branch (recognized by the condition that the continuation
pointer register points to the end of the top-level query), it reports the solution and
then calls the task-switch routine of Setion 4.2. If failure occurs while executing an
and-branch or an or-branch, then the task-switch routine is called too.

6. OPTIMIZING BINDING ARRAY UPDATE

The major overhead incurred in our scheme is updating the binding arrays. There
are two situations where we need to update binding arrays: (i) during task-switch-
ing, and (ii) during the loading/unloading operation, The update overhead in task
switching is inherited from the binding-arrays method, while the update overhead
in loading/unloading results from the need to have flexibility in processor move-
ment during task scheduling. We try to minimize the overhead due to task-switch-
ing by choosing a suitable scheduling strategy (keeping task granularity large so
that processors switch tasks less often), but that has no effect on the loading/un-
loading overhead. In this section, we discuss some optimizations which reduce the
overhead in both task-switching and loading/unloading operations. These opti-
mizations reduce the number of binding-array updates to be performed during the
operation. A more detailed description can be found in [13].

Splitting the Trail: Note that after an and-parallel subgoal G has been solved,
subsequent goals are only interested in the bindings produced for G’s unbound
variables. Thus, once an and-parallel goal has been solved, then while loading the
binding array, we need only consider the conditional variables in G and ignore

86 G. GUPTA AND B. JAYARAh4AN

those of its descendants. This can be safely done because, even if the conditional
variables in G get bound to conditional variables of its descendants, the conditional
variables of the descendant nodes would not be accessed when G’s variables are
dereferenced because in WAM, younger variables point to older ones. However,
bindings of G’s conditional variables might reside in the trail section of descendant
frames. If we globalize the conditional variables in the and-parallel subgoal and
split the trail into a global trail and a local trail, we need only consider the global
trail during loading of a tuple in the binding array. Although we would still be
loading some unneeded variables, we would save the work of loading all local
conditional variables in the descendant subgoals. This justifies the inclusion of the
instructions put-and-variable and put-and-value.

Promoting Variables: There are two instances where conditional variables can be
promoted to unconditional variables, resulting in less task switch time: first, when a
processor takes the last alternative from an or-node and is the last one using that
or-node; and second, while moving up the tree when a processor passes an or-node
which has just one active path below it. The first is similar to the WAM trust
operation and to the contraction operation in the SRI model [36]. In both cases,
conditional variables up to the previous or-node can be made unconditional. When
a variable is promoted, it also needs to be removed from the binding array.

Cross-Product Enumeration: When a processor is moving up the tree and possibly
unloading a cross-product tuple, it is very likely that after getting to the cross-prod-
uct node, it will pick up another tuple to continue execution. The branches
corresponding to the new tuple would be loaded before execution is begun.
However, the new tuple might have some elements in common with the old tuple
just unloaded, which we would have to load again. Thus, an obvious improvement
would be to save the loading/unloading steps for the common elements in the
tuple. This improvement has two advantages-not only is less work done, but the
contention for the node-stacks and trail is also reduced.

“Ground” CGEs: Frequently, the CGEs are of the form:

(ground(X,Y) =+ b(X,Y)llc(X,Y)lld(X,Y,Z)).

In such CGEs, X and Y would be ground if the condition succeeds; hence, there is
no need for proessors to load their binding arrays from branches of b and c when
they pick up a tuple from the cross-product set of b, c, and d. However, they do
need to load their binding arrays from d’s branch since d has a potential
conditional variable, Z, as its argument. We believe that this optimization would
improve the performance of the system since the ground condition is frequently
found in CGEs.

Trimming Binding Arrays: Because conditional variables are either local or
global, if we have a separate binding array for local and global conditional
variables, the concept of environment trimming can be extended to the local
binding array. Separation of binding arrays also necessitates two base arrays, one
each for the two binding arrays. Also, offsets to local conditional variables can be
determined at compile time. Thus the call and put-variable instructions are
modified by adding an extra argument, similar to [25]. The extra argument in call is
used for trimming the local binding array and that in put-variable for assigning
the offset to the local conditional variable. Since local binding array gets trimmed,
there are fewer conditional bindings to unload on a task-switch.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 87

7. CONCLUSION

In this paper, we have presented (i) a general model for exploiting and- and
or-parallelism in a single framework, (ii) an extension of the binding-arrays method
for environment representation in the presence of and-parallelism, (iii) a parallel
execution strategy for coarse-grain parallelism, (iv) an extension of the WAM
instruction set in terms of which combined and-or parallelism is initiated, and (v)
optimizations to reduce the cost of task-switching incurred by the binding-arrays
approach. The resulting system, called AO-WAM, differs from the WAM in that
the new instructions support compilation of CGEs, sharing of and-parallel solu-
tions, and efficient task-switching. Standard optimizations, such as last-call opti-
mization and environment trimming, still apply, although the conditions under
which they can be applied would slightly change due to solution sharing. A
prototype implementation of AO-WAM is operational, and has shown encourag-
ing results. In particular, the prototype has shown that the parallel overhead in the
AO-WAM is only a small constant factor of the total sequential execution time
[Ill.

Our combined and-or model preserves the performance characteristics of the
binding-arrays method for pure or-parallelism and the RAP method for pure
and-parallelism, namely, constant-time variable access, constant-time task creation,
efficient dependency checking of subgoals, and restricted intelligent backtracking.
Additionally, the computation of and-parallel subgoals are shared across different
solution paths when these subgoals also exhibit or-parallelism, thus yielding better
time and space performance. Even the main sources of overhead of the binding-
arrays approach, i.e., task switching, as well as the loading/unloading overhead
arising from sharing computation, are reduced in our model because of our
optimizations.

Thanks are due to to anonymous referees whose comments led to many improvements in the paper.
This research was supported by grant DCR-8603609 from the National Science Foundation. Gopal
Gupta was supported by SERC U.K. grant GR/F 27420, NSF grant CCR 9211732, and by grants from
Sandia Labs (AE-16801, Oak Ridge Associated Universities (CK 004448), and NATO (CRG 921318)
during the preparation and revision of this paper.

REFERENCES

1. Beaumont, T., Muthu Raman, S., et al. Flexible Scheduling or Or-Parallelism in Aurora:
TX&$tol Scheduler, in: Proceed&s of PARLEPI, Springer-Verlag, LNCS 506, pp.

2. Biswas, P., Su, S.-C., and Yun, D. Y. Y. Y., A Scalable Abstract Machine Model to
Support Limited-Or (LOR)/Restricted-AND Parallelism (RAP) in Logic Programs, in:
Fifth International Logic Programming Conference, Seattle,WA, pp. 1160-l 179.

3. Butler, R., Disz, T., Lusk, E., Olson, R., Overbeek, R., and Stevens, R., Scheduling
Or-Parallelism: An Argonne Perspective, in: Proceedings of Joint International Conference
and Symposium on Logic Programming, Seattle, WA, 1988.

4. Ciepielewski, A., Haridi, S., and Hausman, B., Or-Parallel Prolog made Efficient on
Shared Memory Multiprocessors, Journal of Logical Programming 7:125-149.

5. Clark, K., and Gregory, S., Parlog: Parallel Programming in Logic ACM TOPLAS
8(1XJan. 1986).

88 G. GUFTA AND B. JAY-

6. Ccmery, J. S., and Kibler, D. F., And Parallelism in Logic Programs, in: Proceedings of
the International Joint Conference on AZ, 1983.

I. Conery, J., Parallel Interpretation of Logic Programs, Kluwer Academic Press, 1987.
8. Chang, J.-H., Despain, A. M., and DeGroot, D., And-Parallelism of Logic Programs

based on Static Data Dependency Analysis, in: Digest of Papers of COMPCON Spring
1985,1985, pp. 218-225.

9. DeGroot, D., Restricted AND-parallelism, in: International Conference on Fifth Genera-
tion Computer Systems, Nov. 1984.

10. Gupta, G., A Timestamp-Based Technique for Parallel Evaluation of Crossproduct Sets,
Information Processing Letters 44~273-280 (1992).

11. Gupta, G., Parallel Execution of Logic Programs on Shared Memory Multiprocessors,
Ph.D. dissertation, Department of Computer Science, University of North Carolina at
Chapel Hill, Dec. 1991.

12. Gupta, G., and Jayaraman, B., On Criteria for Or-Parallel Execution Models of Logic
Programs, in: Proceedings of the North American Conference on Logic Programming’90,
MIT Press, pp. 604-623.

13. Gupta, G., and Jayaraman, B., Optimizing And-Or Parallel Implementations, in: Pro-
ceedings of the North American Conference on Logic Programming’90, MIT Press, pp.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

737-736. _
Gupta, G., and Santos Costa, V., And-Or Parallelism in Full Prolog with Paged Binding
Arrays, in: Proceedings 1992 Parallel Architectures and Languages Europe, Lecture Notes
in Computer Science, Springer-Verlag.
Gupta, G., Santos Costa, V., Yang, R., and Hermenegildo, M., IDIOM: A Model for
Integrating Dependent-and, Independent-and and Or-parallelism, in: P@ceedings of
International Logic Pmgrammittg Symposium, MIT Press, Oct. 1991.
Gupta, G., and Hermenegildo, M., Recomputation Based And-Or Parallel Execution of
Prolog, in: Proceedings of Zntemational Conference on Fifth Generation Computer Systems
(FGCS92).
Gupta, G., and Warren, D. H. D., An Interpreter for the Extended Andorra Model,
Technical Report, Department of Computer Science, University of Bristol, forthcoming.
Haridi, S., and Janson, S., Kernel Andorra Prolog and its Computation Model, in:
Proceedings of ZCLP, MIT Press, June 1990.
Hermenegildo, M. V., An Abstract Machine for Restricted And Parallel Execution of
Logic Programs, in: 3rd International Conference on Logic Programming, London, 1986,
pp. 25-39.
Hermenegildo, M. V., and Nasr, R. I., Efficient Implementation of Backtracking in
AND-Parallelism, in: 3rd International Conference on Logic Programming, London, 1986.
Hermenegildo, M. V., and Green, K. J., “&-Prolog and Its Performance: Exploiting
Independent And-Parallelism, in: Proceedings of the 7th Zntemational Conference on
Logic Programming, 1990, pp. 253-268.
Kale, L. V., The REDUCE-OR Model for Parallel Evaluation, in: 4th ZntemationaZ
Conference on Logic Programming, Melbourne, 1987, pp. 616-632.
de Kergommeaux, J. C., and Robert, P., An Abstract Machine to Implement Or-And
Parallel Prolog Efficiently, Journal of Logic Programming 8:249-264 (1990).
Lin, Y.-J. and Kumar, V., AND-parallel execution of Logic Programs on a Shared
Memory Multiprocessor: A Summary of Results, in: Fifth International Logic Program-
ming Conference, Seattle, WA.
Lusk, E., Warren, D. H. D., Haridi, S. et al., The Aurora Or-Prolog System, New
Generation Computing 7(2, 3):243-273 (1990).
Muthukumar, K., and Hermenegildo, M. V., Determination of Variable Dependence
Information through Abstract Interpretation, in: Proceedings of NACLP’89, MIT Press.
Muthukumar, K., and Hermenegildo, M. V., The DCG, UDG and MEL Methods for
Automatic Compile-Time Parallelization of Logic Programs for Independent And-Paral-
lelism, in: Proceedings of the 7th International Conference on Logic Programming, pp.
221-236.

AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 89

28. Ramkumar, B., and Kalt, L. V., Compiled Execution of the REDUCE-OR Process
Model, in: Proceedings of NACLP’89, MIT Press.

29. Ramkumar, B., and KaM, L. V., Joining And Parallel Solutions in And/Or Parallel
Systems, in: Proceedings of NACLP’90, MIT Press, pp. 624-641.

30. Shapiro, E. Y., (ed.), Concurrent Prolog: Collected Papers, MIT Press, 1987.
31. Szeredi, P., Performance Analysis of the Aurora Or-Parallel Prolog System, in: Proceed-

ings of the North American Conference on Logic Programming’89, MIT Press, pp. 713-734.
32. Santos Costa, V., Warren, D. H. D., and Yang, R., Andorra-I: A Parallel Prolog System

33.

34.
3.5.
36.

37.

38.

39.

40.

that Transparently Exploits Both And- and Or-Parallelism, in: Proceedings of &irkiples
& Practice of Parallel Programming, Apr. 1991, pp. 83-93.
Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol. II, Computer
Science Press, 1989.
Ueda, K., Guarded Horn Clauses, Ph.D. dissertation, University of Tokyo, 1986.
Wise, D. S., Prolog Multiprocessors, Prentice-Hall, 1986.
Warren, D. H. D., The SRI-Model for Or-Parallel Execution of Prolog-Abstract
Design and Implementation Issues, in: 1987 IEEE International Symposium in Logic
Programming, San Francisco, pp. 92-102.
Warren, D. S., Efficient Prolog Memory Management for Flexible Control Strategies, in:
1984 International Symposium on Logic Programming, Atlantic City, pp. 198-202.
Warren, D. H. D., An Abstract Instruction Set for Prolog, Tech. Note 309, SRI
International, 1983, 28 pages.
Warren, D. H. D., Extended Andorra Model with Implicit Control, talk given at
Workshop on Parallel Logic Programming, 7th International Conference in Logic
Programming, Eilat, Israel, July 1990.
Westpahl, H., Robert, P., Chassin, J, and Syre, J., The PEPSys Model: Combining
Backtracking, AND- and OR-parallelism, in: 1987 IEEE International Symposium in
Logic Programming, San Francisco, pp. 436-448.

