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AND-OR PARALLELISM ON 
SHARED-MEMORY MULTIPROCESSORS 

GOPAL GUPTA AND BHARAT JAYARAMAN” 

D This paper presents an extended and-or tree and an extended WAM 
(Warren Abstract Machine) for efficiently supporting both and-parallel 
and or-parallel execution of logic programs on shared-memory multipro- 
cessors. Our approach for exploiting both and- and or-parallelism is based 
on the binding-arrays method for or-parallelism and the RAP (Restricted 
And-Parallelism) method for and-parallelism, two successful methods for 
implementing or-parallelism and and-parallelism, respectively. Our com- 
bined and-or model avoids redundant computations when goals exhibit 
both and- and or-parallelism, by representing the cross product of the 
solutions from the and-or parallel goals rather than recomputing them. 
We extend the classical and-or tree with two new nodes: a “sequential” 
node (for RAPS sequential goals), and a “cross-product” node (for the 
cross product of solutions from and-or parallel goals). The paper also 
presents an extension of the WAM, called AO-WAM, which is used to 
compile logic programs for and-or parallel execution based on the ex- 
tended and-or tree. The AO-WAM incorporates a number of novel 
features: (i) inclusion of a base array with each processor’s binding array 
for constant-time access to variables in the presence of and-parallelism, (ii) 
inclusion of new stack frames and instructions to express solution sharing, 
and (iii) novel optimizations which minimize the cost of binding-array 
updates in the presence of and-parallelism. a 
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1. INTRODUCTION 

There are three main forms of parallelism in logic programming languages: 

1. or-parallelism 
2. independent and-parallelism, and 
3. dependent and parallelism 

Or-parallelism arises when more than one rule defines some relation and a 
procedure call unifies with more than one rule head-the corresponding bodies 
can then be executed in or-parallel fashion. Or-parallelism is thus a way of 
efficiently executing a nondeterministic procedure; it speeds up the search for a 
solution to the top-level query by exploring alternative solutions in parallel. 
Independent and-parallelism arises when more than one goal is present in the query 
or in the body of a procedure, and the run-time bindings for the variables in these 
goals are such that two or more goals are independent of one another, i.e., their 
resulting argument terms after applying the bindings of the variables are either 
variable-free (i.e., ground) or have nonintersecting sets of variables. And-paralle- 
lism is thus a way of speeding up a divide-and-conquer algorithm by executing the 
subproblems in parallel. Dependent and-parallelism arises when two or more goals 
in the body of a procedure have a common variable and are executed in parallel. 
Dependent and-parallelism can be exploited in two ways: (i) the two goals can be 
executed independently until one of them accesses/binds the common variable; (ii) 
once the common variable is accessed by one of the goals, it is bound to a 
structure, or stream (the goal generating this binding is called the producer), and 
the structure is read as an input argument of the other goals (called the consumer). 
Case (i) is very similar to independent and-parallelism. Case (ii) is sometimes also 
referred to as stream-parallelism, and is useful for speeding up producer-consumer 
interactions found in system programs by allowing the consumer goal to compute 
with one element of the stream while the producer goal is computing the next 
element. Stream-parallelism forms the basis for Committed Choice Languages 
(e.g., Parlog [5], GHC [34], and Concurrent Prolog [30]). 

In this paper, we have chosen to focus on or-parallelism and independent 
and-parallelism for two reasons: (i) we believe that or-parallelism and independent 
and-parallelism tend to occur more commonly at the applications level, and (ii) 
dependent and-parallelism together with or-parallelism is somewhat more difficult 
to realize in an implementation.’ 

We note at the outset that the target machines of interest to us in this paper are 
shared-memory rather than distributed-memory multiprocessors. The reason for 
this focus is that, given the dynamic nature of memory access in logic programs, we 
believe that the performance during parallel execution would be better on shared- 
memory multiprocessors rather than on distributed-memory multiprocessors, whose 
access to remote memories is expensive. Because it is likely that there will be large 
units of essentially sequential execution during parallel execution, it is very 
important that we be able to take advantage of implementation techniques for 
sequential execution, i.e., the WAM (Warren Abstract Machine) 1381. In this 

’ Recently, however, attempts have been made to exploit or-parallelism together with dependent 
and-parallelism [15, 17, 32, 391. 
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connection, it may be noted that we can readily adapt the WAM for shared-mem- 
ory machines. Thus, our approach contrasts with approaches such as the Reduce-Or 
Process Model (ROPM) [22], Limited-OR/Restricted-And Parallel Model 
(LORAP) [2], and others which are primarily designed for nonshared memory 
multiprocessors. 

While there are many opportunities for or-parallelism and and-parallelism in 
logic programs, realizing them in an actual implementation poses significant 
challenges. Therefore, before describing our proposed approach, we present in the 
next section the major problems to be addressed and objectives that should be met 
by any and-or parallel execution system. We first discuss the problems in exploit- 
ing pure or-parallelism and pure and-parallelism separately, and then discuss the 
problems in combined and-or parallelism. Briefly, we propose three criteria for 
or-parallel implementations: constant-time access to variables, constant-time task- 
creation, and constant-time task-switch; and three criteria for and-parallel imple- 
mentations: avoid wasteful overcomputation (e.g., back-unification [35]), avoid 
complex run-time dependency analysis, and support intelligent backtracking. The 
criteria for a combined and-or parallel implementation are essentially the union of 
the criteria for pure or-parallel and pure and-parallel implementations. In addi- 
tion, it is desirable to avoid overcomputation when both and-parallelism and or- 
parallelism arise within a set of goals. 

In view of the above criteria, our system for realizing and-or parallelism 
combines or-parallelism with restricted and-parallelism (RAP) [9, 191. This system 
was developed (and can be understood) in four stages. 

1. We first developed an abstract model for representing and-or parallel 
computations, called the extended and-or tree model. The extended and-or 
tree has, besides and nodes and or nodes, two new nodes: the sequential 
node, to support RAP’s sequential goals, and the cross-product node, to help 
avoid overcomputation when and-parallel goals also exhibit or-parallelism. 

2. The extended and-or tree model is a high-level model in that it does not 
address how multiple or-parallel environments are efficiently maintained, and 
how parallel execution and scheduling are done. While the model allows 
these issues to be independently addressed, in our work we consider the 
binding-arrays method [36, 371 for environment representation, and a 
scheduling method for coarse-grain parallelism. We chose the binding-arrays 
method since it provides constant-time access to the two most frequently 
occurring operations: variable-access and task-creation. The emphasis on 
coarse-grain parallelism follows from our interest in shared-memory multi- 
processors. The binding arrays CBA) method for purely or-parallel systems 
cannot be directly used for supporting multiple environments. In this paper, 
we present an extension of binding arrays that accommodates independent 
and-parallelism in the presence of or-parallelism. 

3. We then showed how to map the extended and-or tree onto a collection of 
stacks that lie in the address space of a shared-memory multiprocessor. We 
developed an extended instruction set for parallel execution, called And-Or 
WAM (AO-WAM), into which source programs would be compiled. 
AO-WAM has all the instructions of WAM plus some extra instructions for 
compiling and-parallelism, as well as for allocating space for the new nodes 
introduced in the extended and-or tree, and for incorporating optimizations. 
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4. To minimize the overheads of a task-switching inherited from the binding- 
arrays approach, we developed a number of optimizations for AO-WAM by 
exploiting and-parallelism. Essentially, we reduce the overhead by reducing 
the number of conditionally bound variables’ whose bindings need to be 
installed during task-switching. These techniques can be incorporated in a 
compiler, and can lead to substantial savings in execution time. 

The remainder of this paper is organized as follows: Section 2 presents objec- 
tives for and-or parallel implementations; Section 3 describes the extended and-or 
tree; Section 4 describes our environment representation and strategy for parallel 
execution, and compares them with other schemes; Section 5 describes the data 
areas and instruction set of AO-WAM, including code for a simple example; 
Section 6 describes how the overheads in AO-WAM due to the cost of task- 
switching can be reduced; and Section 7 presents conclusions. 

We assume the reader has some familiarity with the Warren 
(WAM) binding arrays, and Restricted And-Parallelism (RAP). 

2. OBJECTIVES FOR AND-OR PARALLEL IMPLEMENTATIONS 

2.1. Objectives for Or-Parallelism 

Abstract Machine 

The following three criteria are of central importance in any or-parallel implemen- 
tation: 

1. the cost of environment creation should be constant-time; 
2. the cost of variable access and binding should be constant-time; and 
3. the cost of tusk switching should be constant-time 

The term “constant-time” here means that the time for these operations is 
independent of the number of nodes in the or-parallel search tree, as well as the 
number of goals and the size of terms that appear in goals. These criteria are 
derived from a consideration of the three important operations in any logic 
programming system (sequential or parallel): allocation of space for variables 
(environment creation), unification (variable access and binding), and resumption 
after success or failure (task switching). While it would be ideal if an or-parallel 
execution model could satisfy all three criteria, we have shown [12] that this ideal 
cannot be achieved by any or-parallel model using a finite number of processors 
and constant-time addressable memory. Other desirable characteristics of an ideal 
or-parallel implementation are that it should execute as efficiently as a sequential 
implementation in case only one processor is available. Also, it should be amen- 
able to optimizations that apply to sequential implementations, such as last-call 
optimization. 

The fact that at least one of the criteria must be sacrificed partly explains why so 
many or-parallel execution models have been proposed in the literature. Based on 
which criteria one chooses to satisfy, one has a different execution model for 

’ Conditionally bound variables, or conditional variables, are those variables that can potentially 
receive multiple bindings during execution. 
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or-parallelism. This also suggests a natural scheme for classifying various execution 
models for or-parallelism, which we have given in 1121. 

In the and-or implementation to be described later, the environment represen- 
tation used is based on the binding-arrays method [36, 371 because it provides 
constant-time access to the two more frequently occurring operations: variable 
access and task creation. The binding-array method works by constructing an 
or-parallel tree of nodes, where each node contains the local variables of some 
clause. Each conditional variable is assigned a unique offset in a binding array, 
which stores the values of conditional variable. Each processor maintains its own 
binding array; the binding arrays of two processors working on two different 
or-parallel paths would have the same entries only at those indices that correspond 
to varaibles in the common ancestor nodes of the two paths. A processor creates a 
new or-parallel task by assigning unique offsets in a binding array for the unbound 
variables in the calling node and extending its binding array accordingly (the task 
of assigning offsets, in practice, is relegated to unification). The main overhead of 
this method is that binding arrays need to be updated upon context-switch 
(conditional bindings are also recorded in the trail, in addition to the binding array, 
for the purpose of updating during task-switching); however, this overhead can be 
minimized by not switching too often or not switching to too distant nodes in the 
tree. Other properties of this method are that, if there is only one processor 
available, the performance from a depth-first search strategy would compare well 
with a sequential implementation, and it supports standard sequential optimiza- 
tions. 

2.2. Objectives for And-Parallelism 

As noted earlier, exploiting and-parallelism requires the identification of indepen- 
dent subgoals because executing dependent subgoals in parallel often results in 
wasteful computation. Three different approaches have been proposed to detect 
dependencies: (1) by run-time monitoring of the status of variables (bound or 
unbound) and dynamically restructuring tasks to obtain optimal and-parallelism 161; 
(2) by global compile-time analysis assuming worse cases for subgoal dependencies 
[81; and (3) by monitoring at run-time the status of terms (ground or nonground) 
and using a static task-structure, conditioned upon the status of terms, to obtain 
restricted and-parallelism [9]. The third approach is a nice compromise between 
(11, where run-time overheads are high, and (21, where exploited parallelism is low. 
While a naive approach would traverse arguments of subgoals to determine if they 
are ground or not, clearly a desirable solution is one that avoids such a time-con- 
suming run-time analysis. Thus, the time taken for detecting subgoals indepen- 
dence should be independent of the size of their respective arguments. 

Unlike or-parallel implementations, a pure and-parallel implementation must be 
able to backtrack upon failure [20]. To understand the problem, consider the 
subgoals shown below, where “,” is used between sequential subgoals (because of 
data dependencies) and “II” for parallel subgoals (no data dependencies). 

a,b,(clldlle),g,h 

Assuming that all subgoals can unify with more than one rule, there are several 
possible cases depending upon which subgoal fails. If subgoal a or b fails, 
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sequential backtracking occurs, as usual. Because c, d, and e are mutually indepen- 
dent, if either one of them fails, backtracking must proceed to b-but see further 
below. If g fails, backtracking must proceed to the rightmost choice point within 
the parallel subgoals cl(d((e, and recompute all goals to the right of this choice 
point. If e were the rightmost choice point and e should subsequently fail, 
backtracking would proceed to d, and, if necessary, to c. Thus, backtracking within 
a set of and-parallel subgoals occurs only if initiated by a failure from outside these 
goals, i.e., “from the right.” If initiated from within, backtracking proceeds outside 
all these goals, i.e., “to the left.” This latter behavior is a form of “intelligent” 
backtracking [20]. 

To sum up, the following criteria should be satisfied by an ideal and-parallel 
implementation: avoid wasteful overcomputation, avoid complex run-time depen- 
dency analysis, and support intelligent backtracking. As with or-parallel implemen- 
tations, it is desirable that an and-parallel implementation perform comparably 
with a sequential implementation in the single-processor case and support standard 
sequential optimizations. 

Among the well-known methods for and-parallel execution of logic programs are 
Conery’s abstract model [7], improvements of this model by Kumar [24], and the 
Restricted And-Parallel (RAP) model of DeGroot [91 and its refinement by 
Hermenegildo and Nasr [20]. Of these, the refined RAP method comes closest to 
realizing the criteria mentioned earlier. In this method, program clauses are 
compiled into Conditional Graph Expressions (CGEs) of the form 

meaning that, if condition is true, goals goal,. . . goal,, are to be evaluated in 
parallel; otherwise, they are to be evaluated sequentially. The condition can be 
either the constant true, or it can be ground(u,, . . . , uJ, which checks whether all of 
the variables ui, . . . , u, are bound to ground terms, or it can be indepen- 
dent(u,,... , u,), which checks whether the set of variables reachable from each of 
Ul,. . ., u,, are disjoint from one another. Checking for ground and independence 
involves very simple run-time tests, details of which are presented in [9J. The 
method is conservative in that it may type a term as nonground even when it is 
ground-another reason why the method is regarded as “restricted.” Techniques 
to perform these checks at compile time may be found in [26, 271. This model has 
been efficiently implemented on shared-memory multiprocessors using a variant of 
WAM [21]. 

2.3. Objectives for And-Or Parallel Implementations 

Since an and-or parallel implementation must exploit both and-parallelism as well 
as or-parallelism, it is reasonable to adopt the union of the criteria for pure 
or-parallel and pure and-parallel implementations: constant variable-access, task- 
creation, and task-switch times (pure or-parallel case); and avoidance of wasteful 
computation and efficient determination of subgoal independence (pure and- 
parallel case). However, when there is potential for both and- and or-parallelism in 
a single program, exploiting either form of parallelism alone can lead to unneces- 
sary overcomputation. For example, consider the following program for finding 
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“cousins at the same generation” taken from [33]: 

sg(X,X) :- person(X). 

sg(X,Y) :- parent(X,Xp), parent(Y,Yp) ,sg(Xp,Yp) I 

In executing a query such as ?- sg(fred, john) under a (typical) purely or-parallel 
or a purely and-parallel or a sequential implementation, the goal parent (john, Yp) 
will be reexecuted for every solution to parent (fred, XP).~ This is clearly redundant 
since the two parent goals are independent of each other. It would be better to 
compute their solutions separately, take a cross product of these solutions, and 
then try the goal sg(Xp,Yp) for each of the combinations. In general, for two 
independent goals G, and G, with m and II solutions, respectively, the cost of the 
computation can be brought down from m * n to m + n by computing the solutions 
separately and combining them through a cross product (assuming the cost of 
computing the cross product is negligible). However, for independent goals with 
very small granularity, the gain from solution sharing may be overshadowed by the 
cost of computing the cross product, etc.; therefore, such goals should either be 
executed serially, or they should be recomputed instead of being shared [14]. 
Independent goals that contain side effects and extralogical predicates should also 
be treated similarly [14, 161. This is because the number of times, and the order in 
which, these side effects will be executed in the solution sharing approach will be 
different from that in sequential execution or parallel execution with recomputa- 
tion, altering the meaning of the logic program. While solution sharing may not be 
applicable in all cases, it does reduce the number of logical inferences performed 
at run-time, and therefore is also used in “optimal” computational models of logic 
programming, such as the Extended Andorra Model [18, 391. 

To sum up, the criteria for a combined and-or parallel implementation are 
essentially the union of the criteria for pure or-parallel and pure and-parallel 
implementations. In addition, it is desirable to avoid overcomputation when both 
and-parallelism and or-parallelism arise within a set of goals. 

3. THE EXTENDED AND-OR TREE MODEL 

We begin by describing extensions to the basic and-or tree. Figure 1 shows an 
extended and-or tree for a simple program. There are four kinds of nodes in the 
tree: In addition to and nodes and or nodes corresponding to and-parallel and 
or-parallel goals, respectively, we also have cross-product nodes, to hold the cross 
product of solutions from and-or parallel goals, and sequential nodes, which 
correspond to sequential goals in the RAP model. The cross-product node and the 
sequential node act as delimiters between which and-parallel execution takes place. 
Thus, the sequential node marks the end of and-parallel execution and resumption 
of and-sequential (but or-parallel) execution. Nodes have space for their subgoals 
(also called goal-list), and or-nodes have space for the bindings of the variables 
occurring in the subgoals. 

3A purely and-parallel system can avoid reexecution of independent goals, but most existing ones do 
not. 

4 Solution sharing has also been proposed in other models for and-or parallelism such as ROPM 
[22] and PEPSys [40]. 
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?- a, (b II c), d. 

C &L cl c2 &d> . . . 

I 
I 

<el, fl> l *a <e 2, f2> &sa 52 92 2 g4 

or-node 0 crosspraduct node 

and-node 0 
<L j> sequential node 

FIGURE 1. An extended and-or tree. 

Cross-product nodes are introduced to facilitate sharing of solutions4 of and- 
parallel goals, and serve to avoid the overcomputation alluded to in the previous 
section. They are analogous to join-nodes in the PEPSys model [23, 401, and are 
parents of and-nodes and sequential nodes. Each element in the cross-product set 
is a tuple which corresponds to one specific solution for the and-parallel goals. The 
cross-product set e x f shown in the example tree gets created as follows: Once the 
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and-nodes labeled e and f have been created for and-parallel goals with corre- 
sponding names, the solutions for their goals are found (by exploring the subtrees 
rooted below e and f, respectively). Next, the set of solutions for e and f are 
cross-produced, and the resulting set stored in the cross-product node, the parent 
node of e and f; for example, the cross-product set {(e’,f’>,(e2,f’>,(e’,f2>, 
( e2, f 2)} corresponding to the cross-product node labeled e X f. The components of 
tuple are labels (addresses) of terminal nodes of the and-branches. An and-branch 
is a branch rooted at an and-node, and consists of those nodes lying along a path 
from this and-node to a leaf node representing one solution for the associated 
and-parallel subgoal (e.g., nodes labeled b and b’ form an and-branch rooted at b). 
Note that we represent the cross-product set symbolically, i.e., using label of 
terminal nodes (e.g., the memory address of the terminal node could serve as its 
label). However, one can also perform an explicit join of bindings produced for 
variables in the and-parallel subgoals, as done, for example, in ROPM [221. The 
cross-product set can either be computed incrementally as individual solutions for 
e and f are produced or it can be computed in one single operation after the 
solutions to e and f have been found-clearly, the former approach is better since 
it avoids potentially nonterminating computations. 

The structure of the extended and-or tree, except perhaps for the sequential 
nodes, should be evident now from the description in the previous paragraphs and 
Figure 1. We therefore clarify the role of sequential nodes. (Note that, in the 
figure, (bllc) indicates that b and c can be executed in and-parallel.) For example, 
suppose that the and-nodes e and f have produced solutions e’ and f’, respectively. 
A tuple (e’,f’> would then be inserted in the cross-product set associated with 
node labeled e x f, as described earlier. A sequential node labeled (e’,f’ > would 
then be created corresponding to this tuple to solve goal g. Similarly, the creation 
of other tuples (e1,f2), (e’,f’>, etc., result in the creation of the corresponding 
sequential nodes rooted under e x f. Likewise, when goals g’, g2, etc., are solved, 
tuples (b’,g’), (b’, g2>, etc, are inserted in the cross-product set b x c, and 
similarly sequential nodes labeled (b’, g’ >, etc., are created for the execution of 
goal d. Thus, a sequential-node is created for every possible continuation of the 
CGE; and-parallel computations in the extended and-or tree are “bracketed” 
between a cross-product node and a sequential node. 

Note that initiating the execution of a sequential goal corresponding to a 
sequential node such as (el,fl > depends only on the completion of and-branches 
e' and f’, and not on other and-branches of e and f. Hence, execution of a 
sequential goal (which corresponds to the goal in the continuation of the CGE) 
may be initiated as soon as its corresponding sequential node has been created, 
even though the preceding and-parallel goals have not been completely solved. 

An or-node, a sequential-node, or an and-node fails if all its children nodes fail, 
in which case it is deleted from the tree. A cross-product node fails if any one of its 
children and-nodes fail, in which case the entire subtree rooted at the cross 
product is deleted from the tree. A limited form of intelligent backtracking is 
obtained in this way-if an and-parallel subgoal fails, the computation does not 
unnecessarily backtrack over sibling and-parallel goals. 

Different forms of parallelism naturally arise in the extended and-or tree: 
(i> execution of two or-nodes in parallel gives rise to or-parallelism; (ii) execution 
of two and-nodes in parallel gives rise to and-parallelism; and (iii) execution 
of two sequential nodes with the same parent cross-product node gives rise to or- 
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parallelism (also called consumer instance parallelism in [28]). Also note that the 
cross-product set can be incrementally generated in parallel.5 

4. EXECUTION IN THE EXTENDED AND-OR TREE 

The extended and-or tree is a general model for exploiting and-or parallelism in 
logic programs. Not described in this model are 

(a) how multiple or-parallel environments are efficiently maintained; 
(b) how and-parallel computations are expressed; and 
(c) how parallel execution and scheduling is performed. 

We believe that any existing scheme described in the literature can be used 
(perhaps with slight modification) for solving problems (a) and (b), although we 
advocate the binding arrays for the former and CGEs for the latter. The binding 
arrays scheme requires some extensions in order to work in the presence of 
and-parallelism. 6 In the next few subsections, we. describe these extensions, along 
with how various operations are performed in our realization of the extended 
and-or tree. 

4.1. Variable Access 

In the presence of both and-parallelism and or-parallelism, the binding-arrays 
method for the pure or-parallel case must be extended to achieve constant-time 
access to variables. To see the problem, consider the goals (p,(qlllq2),r), where 
ql and q2 also exhibit or-parallelism. Suppose further that goal p has been 
completed. In order to execute goals ql and q2 in and-parallel (exploiting 
or-parallelism within them at the same time), it is necessary to maintain separate 
binding arrays for them. As a result, the binding-array offsets for any conditional 
variables that come into existence within these two goals will overlap. (Recall that 
conditional variables are variables which are unbound at the time of branching.) 
Thus, when goal r is attempted, we are faced with the problem of merging the 
binding arrays for ql and q2 into one composite binding array or maintaining 
fragmented binding arrays. 

To solve the above problem, first recall that in the binding-array method [36,37], 
an offset-counter is maintained for each branch of the or-parallel tree for assigning 
offsets to conditional variables. However, offsets to the conditional variables in the 
and-parallel branches cannot be uniquely assigned since there is no implicit 
ordering among them; at run-time, a processor can traverse them in any order. We 
introduce one more level of indirection in the binding array to solve this problem. 

In addition to the binding array, each processor also maintains another array 
called the base array. As each or-node is created, it is assigned a unique integer id. 
When a processor encounters an or-node, it stores the offset of the next free 
location of the binding away in the ith location of its base array, where i is the 

‘identifier of the or-node. The offset-counter is reset to zero when an or-node is 

5 An efficient, general method for incremental parallel generation of a cross-product set is given in 
[lOI. 

6 In [13], we show how some other or-parallel environment representation techniques can be 
adapted for implementing the extended and-or tree. 
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deref(V) 
term*V{ 

/*unbound variables are bound to themselves*/ 

if V + tag = = VAR 
if not V + value = = V 

deref(V + value) 
else V 

else if V + tag = = NON-VAR 
V 

else { /*conditional var bound to (i, v)*/ 
val = BA[v + base[i]]; /*BA is the binding array.*/ 
if val -+ value = = val 

else dLef(val)]] 

FIGURE 2. Dereferencing algorithm. 

created. Subsequent conditional variables are bound to the pair (i, v), where u is 
the value of the counter. The counter is incremented after each conditional 
variable is bound to this pair. The dereferencing algorithm is given in Figure 2. 
Note that, in this algorithm, if a variable has the tag value VAR, then this indicates 
that it is either bound to another variable or to itself. If a variable is bound to 
itself, it means that it is unbound, following the convention used by most Prolog 
systems. The tag NON-VAR indicates that the variable is bound to an atomic value 
or a structure. 

In the above scheme, access to variables is still constant-time, although the 
constant is somewhat larger compared to the binding-arrays method for pure 
or-parallelism. Also note that now the base array is also to be updated on a 
task-switch. 

This variable binding scheme is very general and not dependent on any schedul- 
ing strategy. A processor may switch from any node to any other node, and 
provided it makes all the appropriate changes to its binding array and base array, it 
can still access all the variables in its environment correctly. However, assigning a 
unique identifier to every or-node may be a large overhead since it is also incurred 
for or-nodes which are not part of and-branches. By using a modified technique 
which requires a particular scheduling strategy described below, we can avoid this 
work for the or-nodes. In this technique, we incur the labeling overhead only in the 
presence of and-parallelism; hence, pure or-parallelism is exploited without the 
extra overhead of assigning ids to or-nodes. 

In the improved technique, we label the and-nodes rather than or-nodes with 
unique integer ids.7 This would also require that rather than resetting the offset 
counter when an or-node is created, it must be reset when an and-node is created. 
Thus, we incur an overhead only on creation of and-nodes, i.e., only in the 
presence of and-parallelism. If the identifier of an and-node is j and this and-node 
is encountered by a processor, the offset of the next free location in the binding 
array of that processor is stored in the jth location of its base array. All conditional 
variables arising in an and-branch corresponding to the and-node are bound to the 
pair (j, v>, where u is the value of the offset-counter. The dereferencing algorithm 
remains the same. The node scheduling strategy should be such that when 

7 The ids need to be unique across an or-branch, but for simplicity, we assume that they are unique 
across the whole and-or tree. 
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conditional variables are loaded in the binding array, they occupy contiguous 
locations (the importance of conditional variables occupying contiguous locations 
in the BA is further explained in Section 5.1.3.3). It turns out that a simple 
scheduling strategy suffices, namely, one in which a processor does not work on 
another and-goal, unless it has found a solution to the current and-goal (i.e., once 
an and-goal or an alternative inside an and-goal is picked, the processor will not 
arbitrarily switch tasks unless it has produced a solution or failure occurs). Other 
processors, of course, may work in parallel on other and-goals. Also, during 
unloading of the binding array, the processor should traverse the and-branches in 
the opposite order of traversal during loading (the loading and unloading opera- 
tions are explained in the next subsection). This ensures contiguity in the binding 
array when a processor selects an unfinished choice point in the course of 
unloading an and-branch from its binding array. In addition, it ensures that 
conditional variables occur in the binding array in order of their seniority, like in 
the binding-arrays scheme for pure or-parallelism. 

4.2. Parallel Execution and Scheduling 

We first note that we can assume the extended and-or tree lies in a memory space 
accessible to all processors because we are targeting our implementation at 
shared-memory multiprocessors. At the start of execution, it simply consists of the 
root node. In our scheme, processors traverse the branches of the tree, executing 
subgoals in the nodes, and growing and contracting the tree in the process. Since 
the number of branches in the and-or tree would be much larger than the number 
of processors, each processor ends up executing more than one branch of the tree. 
This is accomplished through backtracking on success/failure. The movement of a 
processor from its current site to the place where work is available is called task 
switching. A processor that has created a node is eventually responsible for solving 
the entire tree rooted at the node. However, other idle processors may eagerly help 
by taking up any available work from this subtree. A processor does not become 
idle until the entire subtree rooted at the node it undertook to solve is explored. 
This ensures coarse granularity of parallelism, and results in less task switching. 

We now describe the algorithm that a processor uses for selecting work in the 
extended and-or tree. The algorithm, which is invoked when a processor runs out 
of work, makes use of two basic operations: load and unload. In the load operation, 
a processor, given a cross-product tuple, updates its binding array with the 
conditional bindings that are found from the trails of the and-parallel branches of 
the solutions corresponding to the tuple; the base array is simultaneously updated. 
We therefore say the processor loads the tuple into its binding array. For example, 
referring to Figure 1 once again, if a processor has its binding array (and base 
array) stationed at the cross-product node e x f, then before it can continue 
execution below the sequential node labeled (e’, f' ), it must load all the condi- 
tional bindings along the and-branches e-e’ and f-f’. If, however, the processor’s 
arrays were stationed at node e’ and it wanted to continue with the tuple (e’,f’>, 
then it just needs to load conditional bindings made along f-f’. The unload 
operation is the opposite of the load operation, i.e., during the unload operation, 
conditional bindings occurring in the and-branch of the solutions in the tuple are 
purged from the binding array; the base array is also purged. (See also Sections 
5.1.3.1 and 5.3.1.2). 



AND-OR PARALLELISM ON SHARED-MEMORY MULTIPROCESSORS 71 

The load and unload operations are the costs we incur because we are not 
recomputing the and-parallel goals, an activity that is generally more prone to 
overhead. In our scheme, all solutions to an and-parallel goal are computed only 
once. One can show that the loading and unloading operations due to solution 
sharing entail fewer operations than recomputing the and-parallel goals. If there 
were no sharing, all and-branches would be recomputed, and during the recompu- 
tation, all variables encountered would be accessed at least once during unification. 
However, if they are shared instead, no frames are pushed on the stacks, and hence 
these stack operations are avoided, Also, only conditional variables (rather than all 
variables) are accessed during loading; furthermore, they are accessed only once. 

In order to realize parallelism from the extended and-or tree, every processor 
works on a branch until it exhausts the goal-list. If it is working on an and-branch, 
it grows that branch until a solution for the and-subgoal is found. If at least one 
solution has been produced for each of the other sibling and-parallel goals, the 
processor inserts all the tuples that can be formed from this solution into the 
cross-product set. It then selects the appropriate tuple from the cross-product set, 
loads its binding array, and continues execution. If a solution has not been found 
for some of the sibling and-goals, the processor commences execution of one of 
these and-goals, rather than searching for all solutions of the current and-subgoal. 
This ensures that solutions to the top-level query are produced as quickly as 
possible. If it is working on an or-branch, it likewise grows this branch until a 
solution is found for the top-level query. After the processor has found a solution, 
it traverses the tree upwards, and if it finds any untried alternatives, it takes them 
up (updating appropriately the pool to which this untried work belongs). However, 
if there are no untried alternatives, it examines the work pool of the processors 
which are working in the subtree below it. We assume that each processor 
maintains a pool of work it produces, which it will eventually carry out if aided by 
no other processor. It assists these processors by taking work from them so that all 
solutions in the subtree are computed quickly. Notice that the behavior of the 
processor depends on whether it is executing an or-branch or an and-branch. The 
algorithm for work selection is described in Figure 3. 

Note that the binding array is updated not only during loading and unloading of 
tuples, but also when a processor moves up from one node to another. Also note 
that while moving up, if the processor happens to be the creator of that node, it has 
to wait for other processors working in the subtree below to finish before it can 
reclaim this node from memory or move further up. We can avoid this idling by 
letting the processors work in other sections of the and-or tree, without reclaiming 
the node they created, even though there are other processors working in the 
subtree below. This will lead to creation of ghost nodes which will have to be 
reclaimed later. Such a strategy has been used by Aurora [25]. 

4.3. Comparison with Other Schemes 

We now compare briefly our extended and-or tree model with the ROPM 1221 and 
PEPSys [40]-the two other prominent models proposed for and-or parallel 
execution. Basically, the three systems take a different approach to or-parallelism, 
each incurring a different kind of cost: nonconstant-time variable access (PEPSyS), 
nonconstant-time task creation (ROPM), and nonconstant-time task switch (our 
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task-switch() 
case A of /*A is the current node*/ 

OR-NODE: 
if or-node has untried alternatives 

execute the alternative clause 
else if or-node is not part of and-branch 

Ll: steal work from processors below 
/*return here only if no work found*/ 

if no processor below 
untrail and move one node up; task-switch( ); 

else got0 Ll 
else /*or-node is part of and-branch*/ 

L2: if no solution produced in subtree below 
if no processors below 

untrail and move one node up; task-switch(); 
else 

else 

steal work from processors below 
/*return here only if no work found*/ 

got0 L2 

AND-NODE: 
untrail and move one node up; task-switch(); 

if no solution found for this and-node and no processor working below it 
send kill messages to all processors working below the 

parent cross-product node. 
untrail and move one node up; task-switch( ); 

else 
move one node up to the cross-product node; task-switch0; 

CROSS-PROD-NODE: 
if there is work available (untried and-node or tuple) at this node 

execute it 
else if there is an untried choice point in subtree below 

execute it 
else if there are processors working in subtree below 

L3: steal work from these processor and execute it. 
/*return here only if no work found*/ 

if there are processors working below 
got0 L3; 

SEQ-NODE: 
untrail and move one node up; task-switch0; 

unload tuple in sequential node from binding array. 
If while unloading an and-branch, and or-node with 
untried alternative is found, execute that alternative. 

else 
move one node up to the parent cross-product node; 
task-switch( 1; 

FIGURE 3. Algorithm for selecting work. 

approach). The ROPM model is based on the concept of Data Join Graphs (DJGs). 
The DJG is used for the dual purpose of representing dependencies between 
subgoals in a clause, as well as for recording the execution state at run-time. 
Although DJGs are more general than CGEs, they seem more prone to overheads, 
e.g., intricate operations have to be performed to remove redundancies during join 
evaluation [29]. In the PEPSyS system, the join algorithm does not allow more than 
two and-parallel goals to be joined together, making and-parallel execution of more 
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than two goals slightly inefficient. Some of the complexity of this system is due to 
the designers’ goal to incorporate backtracking along with and- and or-parallelism. 

Our model is derived from the intuition that, for shared-memory multiproces- 
sors, schemes that have nonconstant time task-creation of nonconstant-time vari- 
able access are less efficient than those with nonconstant time task-switching. This 
is because the number of variable accesses and task creations is dependent on the 
logic program being executed, while the number of task switches is dependent on 
the scheduler. While the scheduler can be carefully tuned by the implementor to 
minimize the number of task-switches, this kind of tuning is virtually impossible to 
perform in minimizing the number of variable accesses or task creations. In 
systems with non-constant time task-switching (such as ROPM), it is possible to 
reduce the number of expensive task-creation operations by adopting some tech- 
nique for granularity control, e.g., goals whose terms are “smaller” than a certain 
threshold are not executed in parallel, thereby avoiding the overhead for creating 
parallel subtasks within this goal. However, adopting such a technique may lead to 
a loss of parallelism because grains are fixed at compile-time. On the contrary, by 
adopting the approach where task-switching is nonconstant-time operation, the 
same effect is achieved dynamically, e.g., in the Aurora system, a distinction is 
made between the shared and private section. The shared section grows as more 
processors become available. 

A noteworthy point about our proposed system is that the exploitation of 
and-parallelism and or-parallelism does not appreciably degrade the performance 
of programs that contain only pure or-parallelism or pure and-parallelism. If we 
exploit only or-parallelism, we believe that our system could be as efficient as the 
Aurora system [25, 311, a purely or-parallel system based on binding arrays; 
likewise, if we exploit only and-parallelism, we believe that our system could be as 
efficient as the RAP-WAM system 1211, a purely and-parallel system based on 
CGEs. In both cases, the indirection in accessing conditional variables in our 
system (due to base arrays) would marginally degrade performance. This over- 
head is, we believe, a small price to pay for obtaining one system for both and- 
parallelism and or-parallelism, with the added benefits of solution sharing. 

5. AO-WAM: A WAM EXTENSION FOR AND-OR PARALLEL EXECUTION 

Figure 4 summarizes the state of an AO-WAM processor-all processors have a 
similar storage model. As a processor executes the extended WAM instructions 
(described in Section 5.2), it pushes nodes along a branch in the extended and-or 
tree onto its stacks. Because idle processors may eagerly help other processors, it 
can happen that nodes along a branch are distributed across the stacks of different 
processors. In the remaining description, we explain the processor-state, concen- 
trating on features not present in the standard WAM model [381. 

5.1. AO- WAM Machine State 

5.1.1. Data Areas. 
(i) Correspondence of nodes in extended and-or tree to frames in stacks: All nodes 

in the extended and-or tree map directly to the stack frames. However, a single 
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FIGURE 4. AO-WAM data areas and registers. 

choice point is created for a set of sibling or-nodes of the extended and-or tree, 
and one environment record is created for each or-node. In subsequent sections, 
we shall refer to choice-points as or-nodes, by abuse of terminology. Given two 

nodes nl and n2, where nl is above n2 in the stack, it is true that nl is a 
descendant of n2 in the and-or tree or they are in independent and-branches. As a 
corollary of this, space from the node and environment stacks is always reclaimed 
from the top. 

(ii) Separation of local stack into environment and node stacks: There are two 
advantages of this separation. (1) During space allocation, it is easy for the 
processors to access the topmost node in the stack (through register B,, described 
later). (2) It simplifies the task of updating the binding array. It also enables 
incorporation of other scheduling strategies, and thus makes the architecture 
amenable to modifications. 
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(iii) Separation of trail into local and global trails: This is done to reduce the 
amount of working during task switching (explained in Section 6). 

(iv) Introduction of solution nodes: A solution node is pushed on the node stack 
when the end of an and-branch is reached. Thus, it corresponds to the tip of an 
and-branch. It serves two purposes. (1) Its memory address is used as the symbolic 
name for the corresponding solution in cross-product tuple. (2) It helps ensure that 
an and-parallel solution does not get deleted from the stack until the entire cross 
product has been tried. 

5.1.2. Node-Scheduling Areas.. The node-scheduling areas are used to identify 
available work, and are organized as follows. (i) Or-Node Queue: The untried 
or-nodes are organized as a queue for scheduling because we believe that those 
closer to the root would contain bigger subtrees, maximizing the granularity of 
work. (ii) Cross-Product Queue: The untried cross-product tuples are organized as a 
queue for the same reason. (iii) And-Node Stack: Untried and-nodes are organized 
as a stack because later and-subgoals must be solved before earlier and-subgoals, 
which we think helps in avoiding speculative work and finding the first solution 
faster. 

Or-nodes and cross-product nodes have a processor bit-uector (similar to [4]). 
This vector tells which processors are working in the subtree rooted at that node. A 
processor sets the bit at position pid, where pid is the processor identifier of the 
processor when it passes through the node while moving to the site where work is 
available. It resets this bit when it returns while traveling up the tree. The bit 
vector scheme is suitable for only a small number of processors (maximum of 32 in 
our implementation). Other scheduling schemes which allow more processors can 
also be adapted to our model, e.g., those of [l, 31 which are designed for or-parallel 
systems. 

5.1.3. Variable Access Arrays.. These were introduced in Section 4.1; here, we 
describe in more detail the loading and unloading of conditional bindings in the 
binding and base arrays. We also discuss how space in the binding array is 
managed. 

5.1.3.1. UNTRAILING VARIABLES: UNLOADING. As a processor moves up from 
the node where it is currently stationed to the parent of that node, it updates its 
global environment so that correct bindings are accessed during variable derefer- 
encing. The untrailing operation consists of marking as unbound all the conditional 
variables in the section of the trail corresponding to the intervening local environ- 
ments (or-nodes) (Figure 5(ii) and Figure S(iii)). This involves marking as unbound 
the binding array slots corresponding to these conditional variables. We mentioned 
earlier that the conditional bindings created by an environment are also recorded 
in the trail stack. Since the trail stack contains the conditional bindings of the 
environment frames residing in the local stack, we must identify the section of the 
trail that contains the conditional binding created by these intervening environ- 
ments. This section of the trail-stack frame can be identified by two pointers, one 
pointing to the beginning (bottom) and one to the end (top). These pointers can be 
stored in the nodes itself, as part of the machine state. We can avoid storing the 
pointer to the bottom of the trail-section since the bottom of one trail-section will 
be the top of the trail-section of the node preceding the current node in the stack 
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(Figure 4). We need not store a pointer to the top of the trail-section in the 
and-node or a sequential node since there are no intervening local-environments 
between it and its parent node. Thus, it is only stored for the choice points and the 
cross-product nodes. The top of the trail-section at any given time is easily 
obtained since it would be the same as the top of the trail stack at the time the 
node is pushed onto the local-stack. 

Note that although we call this operation untrailing, only the binding array gets 
modified; the trail is left untouched, in contrast with the untrailing operation in 
sequential systems where part of the trail stack is also reclaimed. This is because 
the trail is also used for loading the binding array of a process that may later pick 
work from that region of the tree. A section of trail is reclaimed only when its 
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associated frame is reclaimed from the local stack (this reclamation will be 
performed only when we are sure that the subtree rooted at the node correspond- 
ing to this frame has been completely explored). 

5.1.3.2. BINDING INSTALLATION: LOADING. During forward execution, when a 
processor finds a solution for an and-parallel goal in CGE, and wants to continue 
with the execution of the continuation of the CGE, then it has to install all 
conditional bindings created during execution of other goals in the CGE in its 
binding array. This operation, termed loading in Section 4.1, is further illustrated in 
Figure 6. Thus, the operation of binding installation is very similar in nature to 
untrailing, except that instead of marking variables as unbound in the binding 
array, their correct binding is put instead. It has the effect of merging the binding 
arrays alluded to earlier. 

Loading and unloading are also performed during task-switching. When a 
processor task-switches from node n, to node n2, it moves up from n2 to the 
common ancestor node (say c) of n1 and n2, unloading conditional bindings from 
the binding array along the way. It then installs conditional bindings from the 
binding lists of nodes lying between the node c and n2. To install the bindings, the 
processor has to traverse the path from c to node Q. During a task-switch, when a 
sequential node is encountered, then conditional bindings made along and-branches 
corresponding to tuple associated with this sequential have to be unloaded or 
loaded, depending upon whether the sequential node lies between n, and c or 
between c and n2. 

5.1.3.3. CONTIGUITY IN BINDING ARRAYS. Every conditional variable in the 
Extended And-Or tree has an associated and-node whose and-id is used for 
dereferencing its value. Consider the tree shown in Figure 7(i). The nodes labeled 
rzr and n2 have a common ancestor and-node (labeled a). All the conditional 
variables along the branch a-a,-n,-~ .. . would use a,‘~ and-id as their and-id 
(the first element in the pair to which conditional variables are bound). If the 
offsets (the second element in the pair) of two conditional variables corresponding 
to nodes n1 and n2, respectively, along the and-branch differ by k, then their 
corresponding slots in the binding array should also differ by k. In other words, all 
conditional variables created in a given and-branch should be allocated space 
contiguously. If this is not the case, then the dereferencing algorithm would not 
work correctly for these variables. We call this condition the contigzdy condition. It 
is hard to ensure this condition because n1 and n2 may have intervening (nested) 
and-branches where the offset counter is reset. Since these nested and-branches 
would always be traversed while going from its to n2 (or vice versa), the conditional 
variables of these and-branches would occupy slots in the binding array somewhere 
in between those of n, and n2. Since the counter is reset on arriving at an 
and-branch, the constraint mentioned earlier would be violated, leading to incor- 
rect dereferencing of variables (Figure 7(u)). 

To circumvent the foregoing problem, we propose the following solution. When 
a CGE is encountered in an and-branch, the current value of the offset counter is 
recorded in the cross-product node. When a cross-product tuple corresponding to 
this CGE is generated, the offset counter is restored to the value recorded in the 
cross-product node. The number of conditional variables found along each and- 
branch comprising the tuple is then summed and added to the offset counter. The 
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FIGURE 6. Binding installation during loading. 

number of conditional variables in an and-branch is easily determined since it is 
recorded in its solution node (by recording the value of its local offset counter 
during the time of its creation). The updated value of the offset counter is then 
stored in the sequential node and used for assigning offsets to the subsequent 
conditional variables (Figure 8). As a result, the contiguity constraint is not 
violated. 
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The contiguity constraint requires that processors move up the tree strictly 
along the path they followed during forward execution; otherwise, variables would 
be incorrectly dereferenced. To illustrate why this is essential, consider the exam- 
ple tree shown in Figure 9. Suppose a processor creates the branch a-a,-a,-a,-s,. 
Its base array and binding array would now appear as shown in Figure 9(i). Let us 
assume that the processor moves up to a, from s,, and then decides to execute an 
untried alternative of b,. When it moves up to a,, it would remove the conditional 
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variables with offsets 8-12 from the binding array since they are no longer in its 
environment. Suppose it produces the branch b,-b,-s, with conditional variable 
offsets as shown. Now, the binding array and base array would be as shown in 
Figure 9(n). At this point, if Pl decides to return a, and pursue its other 
alternative, then binding of conditional variables along the branch below b would 
be overwritten and therefore lost. If we store conditional variables with offsets 
8-15 and 15-19 (i.e., conditional variables along the path a,-a,-s3) after the 
conditional variables of b in the binding array, then conditional variables below a, 
cannot be dereferenced correctly because the contiguity property is destroyed for 
the branch rooted at a. Thus, it is important that, while moving up the tree, nodes 
with available work be tried in the order they were created, i.e., Pl should pursue 
the untried alternative of a, before trying the untried alternative of b,. Note that 
this order is indeed the one that would be dictated by the work-scheduling strategy 
of Sections 4.1 and 4.2. As a result, the binding array behaves like a stack. Node 
reclamation is now simplified since the associated conditional variables that are no 
longer needed can be reclaimed from the binding array by simply moving the 
next-free-location pointer. 

5.1.4. Registers. In addition to the regular WAh4 registers, we have the following 
extra registers. (i) B,, which points to the top of the local node stack. (ii) L,, which 
points to the top of the local environment stack. (iii) D, which points to the current 
and-node, i.e., the and-node in whose scope the current environmental falls. The 
current value of D is saved in the Cont D field in cross-product nodes so that it can 
be restored when sequential nodes are pushed. (iv) OC, which is the offset counter 
for the conditional variables. (v) CFA, in which the address of the code sequence to 
be executed, if the CGE fails, is loaded. (vi) CPQ, AS, and OQ, which hold pointers 
to the heads of the work queues/stacks. The CPQ, AS, and OQ pointers are stored 
in nodes to restore the respective work queues/stacks on failure. 

5.2. AO- WAM Instruction Set 

The AO-WAM supports all of the instructions supported by WAM. The new 
instructions introduced in the AO-WAM consist of the check instructions 
(check_me_else, check-ground and check-independent) of RAP-WAM [191 
for compiling CGEs, and instructions for allocating space for various nodes: 
alloc_cross_prod n, Addr, alloc_and Addr, alloc_sequential, and alloc_solu- 
tion Addr. The check_me_else instruction loads a register with the address 
(called Check Fail Address or CFA) where the execution is to branch if the CGE 
condition evaluates to false. The check-ground (respectively, check-indepen- 
dent) instruction checks if the variables in their arguments are grounded (respec- 
tively, independent). The instructions for allocating space are used to allocate 
space for the various nodes. The example in the next section illustrates their 
meaning and use. The first argument, n, in alloc_cross_prod n, Addr is used to 
trim the environment of the calling predicate in a similar fashion as the allocate 
instruction of WAM. Three interesting new instructions are: 

put-and-variable Yn, Ai: is the same as the put-variable Yn, Ai instruction 
except that the variable Yn is globalized and a reference to the global value is 
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saved in Ai. Yn is also initialized with the same reference. This instruction is 
used to globalize unbound variables in the and-parallel subgoals, so that 
during update (loading and unloading of tuples) of the binding arrays, the 
processor has to only look at the trail for global (or heap) variables. 

put_and_value Yn, Ai: is the same as the put-value Yn, Ai instruction except 
that if the variable Yn dereferences to an unbound local variable, then it is 
globalized and a reference to it is saved in Ai. Yn is also initialized with the 
same reference. This instruction is used to globalize variables in the and- 
parallel subgoals, which are bound to unbound variables, so that during 
update (loading and unloading of tuples) of the binding arrays, the processor 
has to only look at the trail for global variables. 

push_and_call Code/n: similar to push_call instruction in RAP-WAM. Push 
an entry into the and-goal stack, i.e., push the instruction address of the 
subgoal, argument registers Al -An (loaded through the regular put instruc- 
tions) and the current environment register. Exclusive access to the stack is 
obtained while pushing the entry. 

In addition to the operations associated with specific instructions, each proces- 
sor performs certain other actions to handle exceptions such as failure and 
messages from other processors. These noninstruction-related actions are sketched 
below. 

failure: If failure occurs, the task-switch routine in Section 4.2 is invoked. As a 
processor moves up the tree looking for work, it reclaims space from nodes 
which it created. If it reaches an and-node, for which no solution has been 
found, and there are no processors working below in the branches of that 
and-node, then the cross product corresponding to that and-node has failed. 
The processor sends a kill message to all the processors working below the 
parent cross-product node to signal this failure of the cross product. It 
restores its registers, node stack, environment stack, and heap up to the 
parent node of the cross-product node. It also purges its binding array and 
base array from the trail. 

kill: This message is received by a processor when a cross product fails. The 
address of the cross-product node that has failed is also received. The 
processor restores is registers and stacks up to the parent-node to the 
cross-product node whose address is received. The binding array and base 
array are also purged. Next, the processor calls the task-switch routine to 
look for work. 

A prototype implementation of the AO-WAM is operational, and preliminary 
results from the small test cases are very encouraging. 

5.3. Example 

In this section, we give the computer generated AO-WAM code for a simple 
clause. The code, which has been verified on our sequential implementation, is 
annotated to explain the effect on the instructions. 

f(X,Y) :- a(x,Y), b(KY) ,c(X,Y,Z) ,d(XY,Z). 
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Suppose the graph expression generated is the following: 

f(X, Y) :- a(X, Y) , (ground(X, Y) * b(X, Y) JJc(X, Y, Z)) , d(X, Y, Z) . 

where a is expected to ground X and Y so that b and c can be executed in parallel. 
The code is as follows: 

f/3: 
allocate 
get-variable X, Al 
get-variable Y, A2 
put-value X, Al 
put-value Y, A2 
call a/2, 3 
check-me-else SEQCODE 
check-ground X 
check-ground Y 
allot-cross- prod 3, ADDR 

putand-value X, Al 
putand-value Y, A2 
push-and-call bl 

put-value X, Al 
put-value Y, A2 
putand-variable Z, A3 
call cl, 3 

HWC: 

alloc_solution ADDR 

ADDR: 
allot-sequential 

deallocate 
execute CALLd 

SEQ-CODE: 

Entry point for procedure f 
Push environment for f. 

unify arguments off. 
load arg. registers to execute a. 

Call a 
store the address SEQCODE in CFA 
If X not ground jump to SEQ-CODE 
If Y not ground jump to SEQ-CODE 

Allocate a cross-product node. 
ADDR is the address from where 

execution continues when a 
tuple is picked up. 

load argument registers for b. 

push the and-call entry in the 
and-goal stack. 

load argument registers for c. 
Pick up c for execution. 

globalize Z for split trail optim. 
start c’s execution 

Return here after a solution to 
the and-subgoal found 

Push a solution node, store the 
solution found, and check to see 

if more unsolved and-goal present. 
If yes, load registers & execute 
one, else pick a tuple containing 

the current solution, load E 
register from parent cross- 

product node and branch to ADDR. 

Push the sequential node, update 
BA to execute sequential goal d. 

Dealloc the env. frame for f. 
execute d . 

branch here if CGE cannot 
be executed in parallel. 

put-value X, Al 
put-value Y, A2 
call b/2, 3 
put-value X, Al 
putvalue Y, A2 
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put-variable Z, A3 
call c/3,3 

CALLd: 
put-value X, Al 
putvalue Y, A2 
putvalue Z, A3 
deallocate 
execute d /3 

a/2:. . . a’s code.. . 
bl: alloc_and HWC 

Dealloc the env. frame for f. 

allocate an and node for and- 
parallel execution and set the 

continuation code pointer to HWC. 
b/2: . ..b’s code... 

cl : alloc_and HWC 

c/3: . ..c’scode... 

d/3: . ..d’scode... 

In the code above, when the processor reaches the end of an and-branch, it 
executes an alloc_solution instruction. This instruction is responsible for checking 
if there are more untried and-nodes, and if there are none, picking a tuple so that 
the execution can continue with the next sequential goal. The binding array is 
loaded with the conditional bindings made along the and-branches corresponding 
to the tuple-elements in the allot-sequential instruction. When the processor 
reaches the end of an or-branch (recognized by the condition that the continuation 
pointer register points to the end of the top-level query), it reports the solution and 
then calls the task-switch routine of Setion 4.2. If failure occurs while executing an 
and-branch or an or-branch, then the task-switch routine is called too. 

6. OPTIMIZING BINDING ARRAY UPDATE 

The major overhead incurred in our scheme is updating the binding arrays. There 
are two situations where we need to update binding arrays: (i) during task-switch- 
ing, and (ii) during the loading/unloading operation, The update overhead in task 
switching is inherited from the binding-arrays method, while the update overhead 
in loading/unloading results from the need to have flexibility in processor move- 
ment during task scheduling. We try to minimize the overhead due to task-switch- 
ing by choosing a suitable scheduling strategy (keeping task granularity large so 
that processors switch tasks less often), but that has no effect on the loading/un- 
loading overhead. In this section, we discuss some optimizations which reduce the 
overhead in both task-switching and loading/unloading operations. These opti- 
mizations reduce the number of binding-array updates to be performed during the 
operation. A more detailed description can be found in [13]. 

Splitting the Trail: Note that after an and-parallel subgoal G has been solved, 
subsequent goals are only interested in the bindings produced for G’s unbound 
variables. Thus, once an and-parallel goal has been solved, then while loading the 
binding array, we need only consider the conditional variables in G and ignore 
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those of its descendants. This can be safely done because, even if the conditional 
variables in G get bound to conditional variables of its descendants, the conditional 
variables of the descendant nodes would not be accessed when G’s variables are 
dereferenced because in WAM, younger variables point to older ones. However, 
bindings of G’s conditional variables might reside in the trail section of descendant 
frames. If we globalize the conditional variables in the and-parallel subgoal and 
split the trail into a global trail and a local trail, we need only consider the global 
trail during loading of a tuple in the binding array. Although we would still be 
loading some unneeded variables, we would save the work of loading all local 
conditional variables in the descendant subgoals. This justifies the inclusion of the 
instructions put-and-variable and put-and-value. 

Promoting Variables: There are two instances where conditional variables can be 
promoted to unconditional variables, resulting in less task switch time: first, when a 
processor takes the last alternative from an or-node and is the last one using that 
or-node; and second, while moving up the tree when a processor passes an or-node 
which has just one active path below it. The first is similar to the WAM trust 
operation and to the contraction operation in the SRI model [36]. In both cases, 
conditional variables up to the previous or-node can be made unconditional. When 
a variable is promoted, it also needs to be removed from the binding array. 

Cross-Product Enumeration: When a processor is moving up the tree and possibly 
unloading a cross-product tuple, it is very likely that after getting to the cross-prod- 
uct node, it will pick up another tuple to continue execution. The branches 
corresponding to the new tuple would be loaded before execution is begun. 
However, the new tuple might have some elements in common with the old tuple 
just unloaded, which we would have to load again. Thus, an obvious improvement 
would be to save the loading/unloading steps for the common elements in the 
tuple. This improvement has two advantages-not only is less work done, but the 
contention for the node-stacks and trail is also reduced. 

“Ground” CGEs: Frequently, the CGEs are of the form: 

(ground(X,Y) =+ b(X,Y)llc(X,Y)lld(X,Y,Z)). 

In such CGEs, X and Y would be ground if the condition succeeds; hence, there is 
no need for proessors to load their binding arrays from branches of b and c when 
they pick up a tuple from the cross-product set of b, c, and d. However, they do 
need to load their binding arrays from d’s branch since d has a potential 
conditional variable, Z, as its argument. We believe that this optimization would 
improve the performance of the system since the ground condition is frequently 
found in CGEs. 

Trimming Binding Arrays: Because conditional variables are either local or 
global, if we have a separate binding array for local and global conditional 
variables, the concept of environment trimming can be extended to the local 
binding array. Separation of binding arrays also necessitates two base arrays, one 
each for the two binding arrays. Also, offsets to local conditional variables can be 
determined at compile time. Thus the call and put-variable instructions are 
modified by adding an extra argument, similar to [25]. The extra argument in call is 
used for trimming the local binding array and that in put-variable for assigning 
the offset to the local conditional variable. Since local binding array gets trimmed, 
there are fewer conditional bindings to unload on a task-switch. 
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7. CONCLUSION 

In this paper, we have presented (i) a general model for exploiting and- and 
or-parallelism in a single framework, (ii) an extension of the binding-arrays method 
for environment representation in the presence of and-parallelism, (iii) a parallel 
execution strategy for coarse-grain parallelism, (iv) an extension of the WAM 
instruction set in terms of which combined and-or parallelism is initiated, and (v) 
optimizations to reduce the cost of task-switching incurred by the binding-arrays 
approach. The resulting system, called AO-WAM, differs from the WAM in that 
the new instructions support compilation of CGEs, sharing of and-parallel solu- 
tions, and efficient task-switching. Standard optimizations, such as last-call opti- 
mization and environment trimming, still apply, although the conditions under 
which they can be applied would slightly change due to solution sharing. A 
prototype implementation of AO-WAM is operational, and has shown encourag- 
ing results. In particular, the prototype has shown that the parallel overhead in the 
AO-WAM is only a small constant factor of the total sequential execution time 
[Ill. 

Our combined and-or model preserves the performance characteristics of the 
binding-arrays method for pure or-parallelism and the RAP method for pure 
and-parallelism, namely, constant-time variable access, constant-time task creation, 
efficient dependency checking of subgoals, and restricted intelligent backtracking. 
Additionally, the computation of and-parallel subgoals are shared across different 
solution paths when these subgoals also exhibit or-parallelism, thus yielding better 
time and space performance. Even the main sources of overhead of the binding- 
arrays approach, i.e., task switching, as well as the loading/unloading overhead 
arising from sharing computation, are reduced in our model because of our 
optimizations. 
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