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1. Introduction

In this paper, we investigate the closure properties of the extensional typed hierarchy of sequential functionals. It is
always difficult to decidewhere a concept inmathematics came from, butwewill let the history of the sequential functionals
start with Platek’s thesis [12]. Platek constructed an alternative to the full typed structure of hereditarily total functionals
introduced by Kleene [6]. He worked with general finite types while Kleene restricted himself to the products of pure types.
Platek’s functionals are partial and they are ordered essentially by graph extension. In addition, they are monotone with
respect to these orderings. We will not need the details of Platek’s constructions.

Platek also defined a concept of computable functional and relativized computable functional based on an extension of
typed λ-calculus, and he showed that this concept is equivalent to what we will obtain if we interpret Kleene’s definition
from [6] in Platek’s typed structure.

Platek never published his thesis, but an account of the main concepts and proofs can be found in Moldestad’s book [9].
Scott [19] added a continuity requirement to Platek’s construction, and this led to his LCFwith the denotational semantics

based on a typed hierarchy of what has later been termed Scott domains. Scott’s paper, though only published after many
years as a historical document, was influential in many respects on the development of theoretical computer science.

There will be objects in Scott’s hierarchy that are not the interpretation of any LCF-term, even when relativized to
constants for functions f : N → N. In [14], Sazonov gave a characterization of the objects in Scott’s model that would
be the interpretations of such terms, devising a natural notion of strategies. This may be viewed as the first characterization
of what we will call the sequential functionals. Most of the content of [14] is also covered in [15,16].

Scott’s model is not fully abstract for LCF in the sense that there will be LCF-terms T1 and T2 with different interpretations
in the Scott model, but such that wemay always substitute one for the other as a subterm of a program (a term of base type)
withoutmaking any difference on the evaluated value. They are observationally equivalent but have different interpretations.
Milner [8] constructed another hierarchy of Scott domains that served as the domain for a fully abstract interpretation of
LCF, and he showed that up to isomorphism there can only be one such model. By construction, the interpretation of each
type inMilner’s model is closed under least upper bounds of countable chains, but the sequential nature of these least upper
bounds were left unknown in general.
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In his seminal paper [13] Plotkin rewrote LCF to PCF, with a sequential strategy for the operational semantics that is
adequatewith respect to the Scott andMilner interpretations, and PCF canbe seen as a prototype for functional programming
languages of the Haskell style. PCFΩ is PCF extendedwith constants and rewriting rules for each f : N → N, and one possible
definition of the sequential functionals could be the typed extensional hierarchy of functionals hereditarily definable in
PCFΩ . One natural problem will then be if this hierarchy coincides with Milner’s model.

Normann [11] answered this in the negative, for pure type 3 these structures do not coincide, the sequential functionals
do not contain upper bounds of each countable chain.

Over the last 15 years there has been a number of independent approaches to the sequential functionals, see Nickau [10],
Abramsky et al. [1], Hyland and Ong [5], Escardó and Ho [4] and Sazonov [17,18].

In this paper we will investigate the order-theoretical closure properties of the sequential functionals in some depth.
Sazonov [17,18] formed five ‘‘hypotheses’’ on these closure properties and we verify four of them. The result from [11]
has been improved in the sense that there will also be types at level 2 where the set of sequential functionals contains
unbounded chains. We show that even for finite sequential functionals, interpreted as compacts in Milner’s model, it is
quite frequent that the object is the nontrivial least upper bound of an infinite chain of finitary functionals. We only offer a
full characterization for the pure types.

We will also show that sequential functionals, and even finitary ones, need not be continuous in the sense that they
commute with least upper bounds within the ordered sets of sequential functionals itself. This does not come as a surprise,
and just illustrates that since we are not dealing with directed complete partial orderings, the least upper bound operator,
which will be partial on the set of chains, is not a natural addition to the structure. Our result here, Corollary 5.3, actually
solves a problem asked in Escardó and Ho [4], see Remark 5.4.

These results have values of two kinds. First they shed a new light on the order-theoretical closure properties of the
sequential functionals, actually anomalous properties from the point of view of the usual domain theory, studied here in
a systematic way, and thereby present new proof techniques giving a better understanding of the nature of sequential
computability. Second, they witness that some other approaches are required to a non-traditional and more satisfactory
domain theory of sequentiality such as (i) in terms of natural (pointwise) limits considered by Sazonov [17,18] which shows
that sequential functionals are continuous and comprise topological f-spaces of Ershov, and (ii) in terms of rational ascending
chains leading to operational and synthetic domain theory by Escardó and Ho [4] (where the reader can find more on the
related work).

We have attempted to make the paper reasonably self-contained. This means that we give an introduction to the
sequential functionals that can be read without detailed knowledge of the literature. We use a known characterization of
the finite sequential functionals, see Hyland and Ong [5], as our starting point and see the infinite ones as natural extensions
of the finite ones. Section 2 is devoted to the introduction of the sequential functionals.

In a sense, our sequential proceduresmay be viewed as infinitary PCF-terms on normal form. Two importantmotivations
for introducing the sequential functionals this way, and not via some of the established characterizations, e.g. via games, are

1. We want to stay as close to the original formulations from early workers on computing with functionals, like Platek,
Kleene, Scott, Plotkin and others, as possible, since we think that this provides the best intuition.

2. We need a mathematically precise definition of an evaluation path where the instances of applications in subcomputa-
tions are presented explicitly.

In Section 3 we prove a folklore normal form theorem for sequential functionals of a type at level 1 or of pure type 2, and
show via two examples that such results cannot be extended beyond these types. In Section 4 we first give a detailed proof
of the ‘‘folklore’’ result that the sequential functionals of pure type 2 form a directed complete partial ordering. Then we
show that this cannot be extended to all types of level 2. In Sections 5 and 6 we develop our methods for producing infinite
chains of sequential functionals with no upper bound or with pre-specified finite least upper bounds. In Section 7 we will
discuss some loose ends and directions for further research.

Even if the paper to a large extent is self-contained, a knowledge of LCF or PCFwith standard operational and denotational
semantics for these calculi will be an advantage. We recommend Amadio and Curien [2] or Streicher [20] for background
reading, together with the original papers we have referred to.

2. The sequential functionals of finite type

In this section we will introduce the sequential functionals. We do this by first defining what we will call finite sequential
procedureswith an operational semantics, then consider the extensional version, the finite sequential functionals and finally
extend the constructions to sequential procedures and to sequential functionals. For the sake of completeness, we give detailed
constructions and proofs, but even if the approach is semi-novel, there are no new results in this section.

2.1. Finite sequential procedures

We will deal with objects of simple, finite types. The types are syntactical entities, given by the grammar

Type σ
σ ::= ι | (σ → σ)
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There aremanyways to give an interpretation of these types, either as sets of terms or as sets of more set theoretical objects.
What is common for all decent interpretations is that ι is interpreted either as N = {0, 1, 2, . . .}, as N⊥ = N ∪ {⊥} where ⊥

is the ‘‘undefined’’ integer or as a set of terms representing elements in one of these structures. Normally we also have that
σ = (τ → δ) either is interpreted as a set of functions or as a set of terms representing functions.

We will follow the standard convention, and drop the outer set of parentheses. Further, we will write τ , δ → π for
τ → (δ → π) and iterate this convention. This reflects the standard isomorphism between sets X × Y → Z and
X → (Y → Z) known as ‘‘Currying’’.

Thus any type can be written on the normal form

σ = τ1, . . . , τt → ι

where t ≥ 0. When t = 0, this simply means ι.
If σ = τ1, . . . , τt , δ1, . . . , δd → ι and π = δ1, . . . , δd → ι we will also have that

σ = τ1, . . . , τt → π.

We will use the standard definition of the level of a type:

The level of ι is 0.
If σ = τ1, . . . , τt → ι, the level of σ will be 1 + the maximal level of τi for i = 1, . . . , t .

The level of an object in a typed structure will be the level of the corresponding type.
We will now define one of the key concepts of this paper, the typed finite sequential procedures, abbreviated as FSP’s.
We will give an inductive definition of this class. Formally, an FSP is a piece of syntax. We will discuss possible

interpretations later.

Definition 2.1. Let

σ = τ1, . . . , τt → ι

be a type. Simultaneously for all σ we will define the set of FSP’s, the finite sequential procedures, of type σ as follows:

1. If a = ⊥ or a ∈ N, then Cσ
a is an FSP of type σ . If σ = ι, we identify C ι

a with a.
2. If

• 1 ≤ i ≤ t
• τi = δ1, . . . , δdi → ι
• Sj is an FSP of type τ1, . . . , τt → δj for each j from 1 to di
• K ⊆ N is finite
• Tk is an FSP of type σ for each k ∈ K
then

T = (i; S1, . . . , Sdi; K ; {Tk}k∈K )

is an FSP of type σ . We will also write this by using variables x⃗ of the types τ⃗ in the form of the conditional equation (see
more on this notation below)

T (x⃗) = Tk(x⃗) if xi(S⃗(x⃗)) = k ∈ K .

We let FSPσ denote the set of FSP’s of type σ .
In case 2, if τi = ι, we have the formal notation

T = (i; ; K ; {Tk}k∈K }),

or with variables,

T (x⃗) = Tk(x⃗) if xi = k ∈ K .

Wemay drop the upper index from Cσ
a whenever it is clear from the context or does not matter.

When we later refer to a ‘‘constant’’ we will by default mean an FSP of the form Cσ
a , where a ∈ N.

The intuitive understanding of these procedures is best obtained by interpreting them over an arbitrary applicative
structure:

Definition 2.2. An applicative structure consists of a set Jσ K for each type σ and application operators Appτ ,δ : (Jτ → δK)
× Jτ K → JδK for each pair τ and δ of types, such that JιK = N⊥.

In addition we will require

(i) For every type σ = τ1, . . . , τt → ι and a ∈ N⊥ there is an element in Jσ K representing the constant function a defined
on Jτ1K × · · · × JτtK.

(ii) The structure is closed under case-constructions as in 2. of Definition 2.3 below.
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If we have an applicative structure, F ∈ Jτ → δK and x ∈ Jτ K, we will write F(x) or Fx instead of Appτ ,δ(F , x), even in the
cases where F is not really a function. Examples of relevant applicative structures are the set of terms in PCF, the Scott model
of algebraic domains and Milner’s model. We are not going to work with applicative structures in general, only with some
particular examples.

Wewill nowgive an interpretation of the FSP’s over an applicative structure. In order to simplify the reading,we introduce
variables for elements of the interpretations of the types, and later we will use variables in this way for this purpose. The
variables are, however, not a part of our formal syntax.

Definition 2.3. Given an applicative structure J·K with application operators, we give the following interpretation of each
FSP of type σ = τ1, . . . , τt → ι. We use variables x1, . . . , xt for elements of types τ1, . . . , τt respectively.

1. Cσ
a (x1, . . . , xt) = a.

2. If T = (i; S1, . . . , Sdi; K ; {Tk}k∈K ) for i > 0 we let

T (x1, . . . , xt) =

Tk(x1, . . . , xt) if
xi(S1(x1, . . . , xt), . . . , Sdi(x1, . . . , xt)) = k ∈ K ,
⊥ otherwise.

Remark 2.4. In the sequel, we will use the terminology of this definition, and not the formally introduced syntax. This is
easier to read, and we will be at liberty to choose variables in such a way that our arguments are simpler to follow. We will
also let the ‘‘otherwise’’-case be implicit in 2. above. We actually used this notation in order to explain the intended reading
of the syntactic entities in Definition 2.1.

We will feel free to use vector notation for sequences. When the meaning is clear from the context, we e.g. will write x⃗
for sequences x1, . . . , xt of variables, and sometimes even expressions like S⃗(x⃗) for

(S1(x1, . . . , xt), . . . , Sdi(x1, . . . , xt))

when the meaning is clear from the context.
It may improve the readability if we distinguish ‘‘if’’ in our notation with variables for FSP’s from regular uses of ‘‘if’’, and

for that reason we will use boldface, if. Thus our format is

T (x⃗) = Tk(x⃗) if xi(S⃗(x⃗)) = k ∈ K .

If τi = ι this reduces to

T (x⃗) = Tk(x⃗) if xi = k ∈ K .

There will bemany cases of pairs of different finite sequential procedures that define the same function over any applicative
structure. In particular, all Cσ

⊥
are definable using an empty set K .

One way to interpret an FSP is as a term in aminor extension of simply typed λ-calculus. Wewill need a term for each natural
number, a constant for the undefined and terms for each

if t = a then . . . else . . . ,

with a ∈ N, e.g. what we need is a small fragment of PCF without the fixed point constants and without much of the
arithmetics. Then, of course, each set theoretical model for this fragment of typed λ-calculus can be used to give an
interpretation of each FSP. In the sequel, wewill be interested in the extensionalmodel of sequential functionals to be defined
later, but for now, we will wish to restrict ourselves to using the finite sequential procedures of type σ as the preliminary
interpretation of σ . This requires that we define an application operator on the typed family of finite sequential procedures,
or, as we might formulate it, show that the class of finite sequential procedures is closed under application.

We will view application as a special case of composition. If T is an FSP of type α → δ and if S is an FSP of type τ⃗ → α,
we will consider the ordinary composition

H(x⃗) = T (S(x⃗))

where both sides are of type δ, or equivalently,

H(x⃗, y⃗) = T (S(x⃗), y⃗)

where both sides are of type ι, using appropriate lists of typed variables. Then, if τ⃗ is the empty sequence, this gives us plain
application, which we will denote [TS] in this context.

For the proof of the Theorem 2.8 below to go smoothly, we have to define a more general version of the composition
operator ◦.

Example 2.5. If T is of type (ι → ι), (ι → ι), ι → ι and S is of type ι → (ι → ι), the composition T ◦ S is not uniquely
defined unless we specify in which context the composition is made. Two possible interpretations will be

(T ◦ S)(f , n, k) = T (f , S(n), k).
(T ◦ S)(g, n,m) = T (S(n), g,m).
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For the sake of simplicity, we will assume that α appears first in the list, that T is of type α, σ⃗ , τ⃗ → ι and that S is of type
δ⃗, σ⃗ → α. We assume further that z is a variable of type α, x⃗ is a list of variables of types δ⃗, y⃗ is a list of variables of types σ⃗
and u⃗ is a list of variables of types τ⃗ . Then we aim at defining an FSP (T ◦ S) such that the following equation is valid in all
applicative structures:

(T ◦ S)(x⃗, y⃗, u⃗) = T (S(x⃗, y⃗), y⃗, u⃗).

When we consider T of type α, σ⃗ , τ⃗ → ι and S of type δ⃗, σ⃗ → α, it is for notational convenience, and our construction
will also cover the case where the list of argument types of T is any permutation of the type-vector α, σ⃗ , τ⃗ , and where the
list of type arguments of S is any permutation of the type-vector δ⃗, σ⃗ . If we define composition where we deviate from the
standard notation, we will explain carefully which type serves the rôle of α and which types serve the other rôles.

Note that the more general case, where T is of type α, σ⃗ , τ⃗ → β , is covered by our treatment, since if β = η⃗ → ι, we
may replace τ⃗ by τ⃗ , η⃗, and we will be in the situation we consider above.

In the proof of Theorem 2.8 we will be considering iterated compositions

T ◦ (S1, . . . , Sn)

which will mean

(· · · ((T ◦ S1) ◦ S2) · · ·).

Here we of course have to make clear for all variables in T and S1, . . . , Sn which rôle they play, e.g. for which variable in T
do we substitute Si.

We will only need the situation where the order of iterated composition does not really matter in the following sense:
T will be of type α1, . . . , αn, σ⃗ , τ⃗ → ι and each Si will be of type δ⃗, σ⃗ → αi, and iterated composition will be of type
δ⃗, σ⃗ , τ⃗ → ι and satisfy the equation

(T ◦ (S1, . . . , Sn))(x⃗, y⃗, u⃗) = T (S1(x⃗, y⃗), . . . , Sn(x⃗, y⃗), y⃗, u⃗).

In our application, we will use other letters for the FSP’s, other variables, and they will not come in the same order as in this
explanation.

Finally, we will remark that our composition operator is syntactical (defined by manipulations with the syntax), and that
it will be used to define the syntactical application operator [TS] on the typed hierarchy of FSP’s.

First we observe that all FSP’s have dummy extensions:

Lemma 2.6. Let τ⃗ = (τ1, . . . , τn) and δ⃗ = (δ1, . . . , δm) and assume that there is an injectivemapρ : {1, . . . ,m} → {1, . . . , n}
such that for all i with 1 ≤ i ≤ mwe have that τρ(i) = δi.

Let T be an FSP of type δ⃗ → ι.
Then there is a ‘‘dummy extension’’ T ′ of T to an FSP of type τ⃗ → ι such that for all applicative structures, if x⃗ are of types τ⃗ , y⃗

are of types δ⃗ and xρ(i) = yi for i ∈ {1, . . . ,m} we have that

T (y⃗) = T ′(x⃗).

The proof is trivial by induction on the rank of T .
We will need the following lemma in our proof of the composition theorem:

Lemma 2.7. Let x⃗ be a sequence of variables of types τ⃗ .
Let S(x⃗) be an FSPof type τ⃗ → ι and let Tk(x⃗) be an FSP of type τ⃗ → ι for each k in a finite set K .
Then there is an FSP T of type τ⃗ → ι that satisfies

T (x⃗) = Tk(x⃗) if S(x⃗) = k ∈ K .

Proof. We use induction on the rank of S.

If S = C τ⃗→ι
k for some k ∈ K , we let T = Tk.

If S is another constant, we let T = C τ⃗→ι
⊥

.
If

S(x⃗) = Sl(x⃗) if xi(R⃗(x⃗)) = l ∈ L

we let

T (x⃗) = Hl(x⃗) if xi(R⃗(x⃗)) = l ∈ L

where Hl is defined, using the induction hypothesis, as

Hl(x⃗) = Tk(x⃗) if Sl(x⃗) = k ∈ K .

This ends the proof. �
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When we use the expression

T (x⃗) = Tk(x⃗) if S(x⃗) = k ∈ K ,

we mean the FSP that is constructed in this proof.
We will now be ready to formulate and prove the Composition Theorem.

Theorem 2.8. Let T be a finite sequential procedure of type α, σ⃗ , τ⃗ → ι and let S be a finite sequential procedure of type
δ⃗, σ⃗ → α.

Then there is a finite sequential procedure

T ◦ S ∈ FSPδ⃗,σ⃗ ,τ⃗→ι

such that we in any applicative structure, and for all x⃗ of types δ⃗, y⃗ of types σ⃗ and u⃗ of types τ⃗ in the given applicative structure,
have that

(∗) (T ◦ S)(x⃗, y⃗, u⃗) = T (S(x⃗, y⃗), y⃗, u⃗).

Proof. We first give a self-referential definition of the syntactical operator ◦, and then prove that it is everywhere well
defined. It will then be clear from the construction that (∗)will hold. Recall that thewaywe order the types and the variables
are just for convenience, and that our composition is meant to make sense independently of howwe organize the types and
variables.

If T = Cα,σ⃗ ,τ⃗→ι
a , we let

T ◦ S = C δ⃗,σ⃗ ,τ⃗→ι
a .

If

T (z, y⃗, u⃗) = Tk(z, y⃗, u⃗) if yi(R1(z, y⃗, u⃗), . . . , Rr(z, y⃗, u⃗)) = k ∈ K

we let

(T ◦ S)(x⃗, y⃗, u⃗) = (Tk ◦ S)(x⃗, y⃗, u⃗)
if yi((R1 ◦ S)(x⃗, y⃗, u⃗), . . . , (Rr ◦ S)(x⃗, y⃗, u⃗)) = k ∈ K .

The case

T (z, y⃗, u⃗) = Tk(z, y⃗, u⃗) if uj(R1(z, y⃗, u⃗), . . . , Rr(z, y⃗, u⃗)) = k ∈ K

is handled in the analogue way.
There will be hidden variables in Rs(z, y⃗, u⃗) unless its type is ι, but the same variables will be hidden in (Rs ◦ S)(x⃗, y⃗, u⃗),

so the typing is correct.
If

T (z, y⃗, u⃗) = Tk(z, y⃗, u⃗) if z(R1(z, y⃗, u⃗), . . . , Rs(z, y⃗, u⃗)) = k ∈ K

we must split the construction into several cases.

1.1 α = ι and x⃗, y⃗, u⃗ is the empty sequence.
Then S is simply an element of N⊥, and we want T ◦ S to be an element of N⊥ as well. Let T ◦ S = Tk ◦ S if S = k ∈ K ,

and T ◦ S = ⊥ otherwise.
1.2 α = ι, but at least one of x⃗, y⃗ or u⃗ is nonempty.

Since α = ι, s = 0, i.e. there are no Rj’s.
We let

(T ◦ S)(x⃗, y⃗, u⃗) = (Tk ◦ S)(x⃗, y⃗, u⃗) if S(x⃗, y⃗) = k ∈ K ,

see Lemmas 2.6 and 2.7.
2.1 α ≠ ι and x⃗, y⃗, u⃗ is the empty sequence.

Let α = π⃗ → ι, where π⃗ has length s, and let πi = ρ⃗i → ι. The variables for Ri will be z and the hidden variables for
ρ⃗i. S will be an element of type α, so, if well defined, Ri ◦ S is an element of type πi.

S may also be viewed as a term of type ι in variables v⃗ of types π⃗ , and then, when we substitute Ri ◦ S of type πi for
vi using iterated composition, we obtain S ◦ ((R1 ◦ S), . . . , (Rs ◦ S)) of type ι. If this composition is well defined, it will
be an element of N⊥.

If S ◦ ((R1 ◦ S), . . . , (Rs ◦ S)) = k ∈ K , we let T ◦ S = Tk ◦ S while otherwise, we let T ◦ S = ⊥.
2.2 α ≠ ι and x⃗, y⃗, u⃗ is nonempty.

We then let

(T ◦ S)(x⃗, y⃗, u⃗) = (Tk ◦ S)(x⃗, y⃗, u⃗) if (S ◦ ((R1 ◦ S), . . . , (Rs ◦ S)))(x⃗, y⃗, u⃗) = k ∈ K ,

see Lemma 2.7.
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Whenwe substitute S for z in Ri we get an object of type πi in variables x⃗, y⃗, u⃗, and when we then view S as an object
of type ι in typed variables x⃗, y⃗, v⃗ and substitute Ri ◦ S for vi in this term for S, we get a term of type ι in variables x⃗, y⃗, u⃗.
Thus the typing of T ◦ S is correct.

This ends our construction. It remains to prove that T ◦ S is well defined, i.e. actually an FSP.
We prove this by induction on the level of the type α and subinduction on the rank of T in the inductive definition of

FSP’s.
The induction base will be α = ι, and then we will use subinduction on the rank of T .
If T is a constant, T ◦ S is a constant, so T ◦ S is well defined.
If T is not a constant,wewill be in one of the cases 1.1 or 1.2. In case 1.1, Swill be an element ofN⊥, andby the subinduction

hypothesis each Tk ◦ S is defined, so T ◦ S is defined. In case 1.2, we rely on the subinduction hypothesis and Lemma 2.7.
The induction step will be when α ≠ ι. If T is a constant, the result is again trivial. This is the subinduction base. For the
subinduction step we will be in case 2.1 or 2.2.

In both cases, Ri ◦ S is well defined for i = 1, . . . , s, by the subinduction hypothesis, and each Tk ◦ S is well defined by
the same assumption.

In both cases, we consider Ri ◦ S as a term of type πi in variables x⃗, y⃗, u⃗ (which is the empty sequence in case 2.1). Since
the level of πi is lower than that of α, we use the induction hypothesis and see that S ◦ ((R1 ◦ S), . . . , (Rs ◦ S)) is well defined.

This is all we need in order to obtain that T ◦ S is well defined. This ends the proof of Theorem 2.8. �

Corollary 2.9. The finite sequential procedures may be organized to an applicative structure.

Proof. Let T be of type τ → δ and S of type τ .
Let Appτ ,δ(T , S) = T ◦ S where we consider S as a closed term of type τ and compose it with the first variable in T . �

If T is an FSP of type τ⃗ → δ and S⃗ are FSP’s of types τ⃗ , we write [T S⃗] for what is obtained by iterating application of T
on the elements of S⃗ using the syntactical composition operator. When we write T S⃗ in plain juxtaposition terminology, we
have extended our formal language to accept applicative terms like in λ-calculus.

In the sequel, we will argue by induction on the length of an evaluation, and then it will be useful to represent this
evaluation in away that is closer to the intuition. Our composition operator ◦may be considered as an operational semantics
on applicative terms involving FSP’s:

Definition 2.10. We consider the term language L consisting of

1. Typed constants representing each FSP of type σ for each type σ . Constants are terms.
2. IfM is a term of type σ → τ and N is a term of type σ , then (MN) is a term of type τ .

We call the terms in L finite applicative terms, or just applicative termswhen no confusion may arise.

We will follow the standard conventions for leaving out ( and ). Each term in L of type δ will correspond to an FSP of type
δ via our rewriting rules for ◦. The rewriting process can be made deterministic, and in particular, if M is a term of type ι,
the rewriting process can be seen as an evaluation of the term. We will make the concept of an evaluation path precise in
Definition 2.11, and the construction of an evaluation path is what we will technically consider to be an evaluation.

Each termM in L is of the form

M = TN1 · · ·Nt

where T is an FSP and N1, . . . ,Nt are in L. IfM is of type ι, then the evaluation ofM can be viewed as a list of terms, where
we at some steps need to evaluate another term in order to know which step to take.

Definition 2.11. LetM be a closed term in L of type ι.
Let

M = TN1 · · ·Nt

where T is an FSP.
The evaluation path of M is a nested structure consisting of a sequence of terms in L and, recursively, of subevaluation

paths surrounded by brackets [ and ] constructed as follows:

1. If T = Cσ
a we let the evaluation path be the sequenceM, a.

2. If

T (x⃗) = Tk(x⃗) if xi(R1(x⃗), . . . , Rs(x⃗)) = k ∈ K

we let the evaluation path ofM start withM and then we write the evaluation path of

Ni(R1N⃗) · · · (RsN⃗)

within brackets [ and ].
If this path ends with ⊥ or some k ∉ K , we end the evaluation path ofM by writing ⊥ at the end. If, on the other side,

this path ends with a k in K , we continue the evaluation path forM by writing down the evaluation path of TkN⃗ .



582 D. Normann, V.Yu. Sazonov / Annals of Pure and Applied Logic 163 (2012) 575–603

Our construction of the evaluation path follows the rewriting procedure from the proof of Theorem 2.8 in a deterministic
way, andwill terminate as a consequence of Theorem 2.8 and its proof. This means that all evaluation paths are finite ending
either in an integer or in ⊥ as the recognized outcome of the evaluation.

The full argument for this is too space-consuming, but the idea behind it is as follows:
First note that the proof of the termination of the rewriting process gives us that the order of rewriting different

subexpressions does not matter for termination.
If we view the term TN1 . . .Nt as an iterated composition T ◦ (N1, . . . ,Nt), we split the argument into two cases:
If T is a constant, then the rewriting of TN1 · · ·Nt takes t steps, while we in the evaluation path only use one step. The

result will be the same.
If

T (x⃗) = Tk(x⃗) if xi(R1(x⃗), . . . , Rs(x⃗))

the first i − 1 steps of the rewriting of TN1 · · ·Nt just gives us as the first intermediate step

Si(xi, . . . , xt) = TN1 · · ·Ni−1(xi, . . . , xt) = TkN1 · · ·Ni−1(xi, . . . , xt)
if xi(R1N1 · · ·Ni−1(xi, . . . , xt), . . . , RsN1 · · ·Ni−1(xi, . . . , xt)) = k ∈ K

and the task to rewrite SiNi · · ·Nt . This is because we are in the simple case before step no. i in the rewriting process.
At step iwemust employ the part of the construction that splits into cases 1.1, 1.2, 2.1 and 2.2, and this is where the real

evaluation takes place. In our construction of an evaluation path, what we put within the brackets is the evaluation path for

Ni(R1N⃗) · · · (RsN⃗)

and in the rewriting process for the iterated application we will get

Ni ◦ ((R1N1 · · ·Ni−1), . . . , (RsN1 · · ·Ni−1))(xi, . . . xt).

In the further application of our main expression on Ni, . . . ,Nt , we have to evaluate

Ni(R⃗N⃗),

and it is this we capture by the subpath in brackets [ and ] of the evaluation path.
Thus, the evaluation, considered as producing an evaluation path, is taking shortcuts in comparison with the rewriting

process, but every step in the former can be found as the result of a number of steps in the latter, so termination of the
evaluation process is granted.

2.2. Finite sequential functionals

We have seen that the finite sequential procedures form an applicative typed structure by themselves.
For the sake of notational simplicity, wewill not distinguish between the applicative term TS and its translation [TS] to an

FSP, meaning that we will drop the use of [· · ·]. Thus all applicative terms are understood to be finite sequential procedures
themselves.

We will now define an extensional ordering reflecting how we understand these procedures as set theoretical functions.
We then prove that all FSP’s aremonotonewith respect to this ordering and use this to extract the extensional interpretation
of each FSP.

Definition 2.12. We define the pre-ordering ⊑σ on FSPσ by recursion on the type σ as follows:
1. If σ = ι , let ⊑ι be the flat ordering on N⊥.
2. If σ = τ1, . . . , τt → ι where t ≥ 1, we let T1 ⊑σ T2 if for all sequences S⃗ of FSP’s of types τ⃗ we have that

T1S⃗ ⊑ι T2S⃗.

Wemay drop the index σ from ⊑σ when it is not needed.

Lemma 2.13. Each FSP T is monotone with respect to ⊑.

Proof. We use induction on the type and subinduction on the rank of T .
If T is a constant, the claim is trivial, so let

T (x⃗) = Tk(x⃗) if xi(R1(x⃗), . . . , Rr(x⃗)) = k ∈ K .

Let S⃗ ⊑ S⃗ ′

Then, by the subinduction hypothesis, RjS⃗ ⊑ RjS⃗ ′ for j = 1, . . . , r .
By the induction hypothesis, Si is monotone, so Si(R⃗S⃗) ⊑ Si(R⃗S⃗ ′), and since Si ⊑ S ′

i we have that

Si(R⃗S⃗ ′) ⊑ S ′

i (R⃗S⃗
′).

It follows that if Si(R⃗S⃗) = k ∈ K , then S ′

i (R⃗S⃗
′) = k.

We may then use the subinduction hypothesis on Tk.
This ends the proof. �
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The partial pre-ordering⊑σ induces an equivalence relation≡σ on the finite sequential procedures, and as a consequence
of Lemma 2.13 all FSP’s will respect this relation. Thus we have a quotient structure that will be an applicative structure, and
which we will use to give the extensional interpretation of the procedures. The ordered set of extensional interpretations of
finite sequential procedureswill be isomorphic to the ordered set of compacts inMilner’smodel [8], and the ideal completion
will in fact, up to isomorphism, be Milner’s model.

In general, the pre-ordering ⊑σ on FSPσ is not computable. This can be deduced from the main result in [7]. We do not
give the detailed argument. Being extensional by construction, this applicative structure is isomorphic to a typed structure
of set theoretical functions.

Definition 2.14. By recursion on the type σ we define the finite sequential functional ⟨T ⟩ for each finite sequential procedure
T as follows:

If a ∈ N⊥, we let ⟨a⟩ = a.
If T ∈ FSPτ→δ and G = ⟨S⟩ where G is in FSPτ , we let ⟨T ⟩(G) = ⟨TS⟩.
The finite sequential functionals of type τ → δ are, by definition, exactly the functions of the form ⟨T ⟩ where T ∈ FSPτ→δ .

Overloading our notation, we will use ⊑ and ⊑σ also for the induced ordering on the finite sequential functionals.

The key structures under investigation in this paperwill be the typed structure of finite sequential functionals, seen as partial
orderings, and the extension to the sequential functionals to be defined below.

Nowwewill establish some similarities between the finite sequential functionals and the compacts in algebraic domains
representing spaces of continuous functionals.

Lemma 2.15. The finite sequential functionals of a given type form a lower semi-lattice.

Proof. Let T and S be elements of FSPσ . Let

H(x⃗) = a if T (x⃗) = S(x⃗) = a for some a,
H(x⃗) = ⊥ otherwise.

It is a simple exercise to construct an FSP from T and S acting as H , and we clearly have that ⟨H⟩ is the greatest lower bound
of ⟨T ⟩ and ⟨S⟩. This ends the proof. �

As usual, we will write ⊓ for a greatest lower bound, and ⊔ for a least upper bound whenever it exists.
For each type σ and each c ∈ N we will define the c-projection Pσ

c . We will use this to show that any finite, bounded set
of finite sequential functionals will have a least upper bound.

Definition 2.16. We define the c-projection Pσ
c as a finitary sequential procedure:

P ι
c(x) = b if x = b ∈ {0, . . . , c}.

If σ = τ1, . . . , τt → ι we let

Pσ
c (x, y1, . . . , yt) = b if x(Pτ1

c (y1), . . . , Pτt
c (yt)) = b ∈ {0, . . . , c}.

We may use the monotonicity of each finite sequential functional to show, by induction on σ , that Pσ
c (T ) ⊑ T for all T of

type σ . Moreover, Pσ
c (T ) will always be a fixed point for Pσ

c in the sense that

Pσ
c (Pσ

c (T )) ≡σ Pσ
c (T ),

and the image of Pσ
c is a finite set of finite sequential functionals.

Definition 2.17. We let FSPc
σ be the set of finite sequential procedures T such that whenever some Cτ

a is a subprocedure of
T then a ≤ c , and whenever a set K is used in a subprocedure of T , then K is bounded by c.

We let FSPc be the union of all FSPc
σ .

Lemma 2.18. For each finite sequential procedure T ∈ FSPσ there is a T ′
∈ FSPc

σ such that [Pσ
c T ] = Pσ

c ◦ T ≡σ T ′. Moreover, for
T ∈ FSPc

σ we have [Pσ
c T ] ≡σ T . In particular, the range of ⟨Pσ

c ⟩ and the set of fixed points of ⟨Pσ
c ⟩ coincide with the set of finite

functionals representable by elements of FSPc
σ .

Proof. This follows by induction on the rank of T . �

In the sequel, T and S (with indices) will denote finite sequential procedures, while F and G (with indices) will denote
finite sequential functionals. If other letters are needed, the nature of the objects they denote will be clear from the context.
We will also write Pσ

c instead of ⟨Pσ
c ⟩ when it is clear from the context that we operate on functionals and not procedures.

Lemma 2.19. Let σ be a type, and let {F1, . . . , Fn} be a finite, bounded set of sequential functionals of type σ . Then there is a least
upper bound

{F1, . . . , Fn}

in the set of finite sequential functionals of type σ .



584 D. Normann, V.Yu. Sazonov / Annals of Pure and Applied Logic 163 (2012) 575–603

Proof. Let c be so large that each Fi is a fixed point of Pσ
c . If F is an upper bound for {F1, . . . , Fn} we also have that Pσ

c (F)
is an upper bound. It follows that if we take the greatest lower bound of the nonempty, but finite, set of upper bounds for
{F1, . . . , Fn} in the image of Pσ

c , we get the least upper bound of the given set. This ends the proof. �

Theorem 2.20. Let t ≥ 1 and let F be a finite sequential functional of type σ = τ⃗ → ι.
Then there is a pairwise ⊑τ⃗ -incomparable set {G⃗1, . . . , G⃗n} of τ⃗ -sequences of finite sequential functionals such that for any

τ⃗ -sequence G⃗ we have that

F(G⃗) ∈ N ⇔ ∃i(1 ≤ i ≤ n)(G⃗i ⊑ G⃗).

It is easy to see that there will be at most one set satisfying the required properties of {G⃗1, . . . , G⃗n}. We call this set the basis
for F .

Proof. By Lemma 2.18, choose c such that F is a fixed point for Pσ
c . Then, for any G⃗ of type τ⃗ we have that

F(G⃗) = Pσ
c (F)(G⃗) = F(P τ⃗

c (G⃗)).

Since P τ⃗
c (G⃗) ⊑ G⃗ for all G⃗, we get the basis by selecting all ⊑-minimal elements in

{P τ⃗
c (G⃗) | F(G⃗) ∈ N}.

Since this set is finite, there will be minimal elements below any element.
This ends the proof. �

Corollary 2.21. Let F be a finite sequential functional of type σ and let {Fn}n∈N be a ⊑σ -increasing sequence of sequential
functionals bounded by F and with F as its pointwise least upper bound.

Then there is an n0 ∈ N such that F = Fn for all n ≥ n0.

Proof. Let {G⃗1, . . . , G⃗k} be the basis for F . Since F is the pointwise limit of the Fn’s, there is a number n0 such that
F(G⃗i) = Fn(G⃗i) for all i = 1, . . . , k and n ≥ n0.

Then F = Fn for all n ≥ n0. This ends the proof. �

Definition 2.22. Let σ = τ1, . . . , τt → ι and let G⃗ be a sequence of finite sequential functionals of type τ⃗ . Let a ∈ N.
We define the step function

Σ = G⃗ → a

of type σ by

Σ(F⃗) = a if G⃗ ⊑ F⃗ .
Σ(F⃗) = ⊥ otherwise.

Corollary 2.23. (a) Each step function is sequential.
(b) Each finite sequential functional will be the least upper bound of a finite set of step functions.

Proof. (a) Let {f⃗i,1, . . . , f⃗i,ki} be the base for Gi. Then

Σ(F⃗) = a if
t

i=1

ki
j=1

(Fi(f⃗i,j) = Gi(f⃗i,j)),

and this can clearly be represented as a sequential functional.
(b) Let F be given, let {G⃗1, . . . , G⃗n} be a basis for F and let ai = F(G⃗i) for i = 1, . . . , n. Then

F =

n
i=1

(G⃗i → ai). �

Remark 2.24. We will pay special attention to step functions in this paper, see Section 5.
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2.3. The sequential functionals

As already mentioned, the ideal completion of the finite sequential functionals will be Milner’s model from 1977,
see [8]. For many years it was open whether all functionals in Milner’s model are sequential in the sense that they are
PCFΩ-definable. Normann [11] showed that this is not the case, by constructing a functional of pure type 3 in Milner’s
model that is not PCFΩ-definable. In this section we will give an alternative definition of the sequential functionals. It is
known, e.g. from [5] that our definition coincides with the one referring to PCF.

The finite sequential procedures are defined via an inductive definition. The sequential procedures will be defined in a
very similar way, except that we use a co-inductive definition, and we permit infinite branching:

Definition 2.25. The sequential procedures SPσ of type σ = τ1, . . . , τt → ι is, uniformly for all types σ , the largest class
satisfying that if T ∈ SPσ then

either T = Cσ
a for some a ∈ N⊥

or t > 0 and T is of the form (i; R1, . . . , Rs; K ; {Tk}k∈K ), where K ⊆ N may now also be infinite, and
1 ≤ i ≤ t and τi = δ1, . . . , δs → ι
Rj ∈ SPτ⃗→δj for j = 1, . . . , s
Tk ∈ SPσ for all k ∈ K .

That is, unlike FSP’s, we allow SP’s to be possibly infinitely nesting formal expressions having ‘‘locally’’ the same style as
FSP’s and with possible infinite K ’s.

The following few lines are for the readers who would like a more formal treatment of the co-inductive definition:
Let N∗ be the set of finite strings of natural numbers with Λ the empty string and x · y denoting concatenation for x, y

strings or individual numbers. Let N′ be the set of copies 1′, 2′, . . . of positive natural numbers, also called queries. Note that
t and s above depend on σ and so can be written as t(σ ) and s(i, σ ) for 1 ≤ i ≤ t(σ ). We also denote τ⃗ → δj as σ(i, j)
taking into account the actual dependence of this type on σ and i.

We can formally represent any SP T of type σ as a pair (σ , T̄ ) where T̄ is a partial function (labeled tree)

T̄ : N∗
→ N ∪ N′

such that the following two conditions hold:

1. If T̄ (Λ) = a ∈ N∗ or undefined then T̄ (x) is undefined for any nonempty string x ∈ N, and we denote T = Cσ
a or = Cσ

⊥
,

respectively.
2. If T̄ (Λ) = i′ ∈ N′ then 1 ≤ i ≤ t(σ ) must hold, and we let

• R̄j = λx ∈ N∗.T̄ (j · x) for any 1 ≤ j ≤ s(i, σ ) (where T̄ (j) for any of these j could be possibly undefined),
• T̄k = λx ∈ N∗.T̄ ((s(i, σ ) + 1 + k) · x) for any k ∈ N for which T̄ (s(i, σ ) + 1 + k) is defined (this defines a K ⊆ N),
• and assume (recursively) that Sj = (σ (i, j), S̄j) and Tk = (σ , T̄k) satisfy the same conditions 1 and 2 as T = (σ , T̄ ).

Evidently, if T̄ (x·y) is defined then so is T̄ (x), for any x, y ∈ N∗. Thismeans that T̄ may be considered as a possibly infinite tree
with the nodes labeled by elements of N ∪ N′. The allowed shape of such trees (with labels ignored) is absolutely arbitrary.
In fact, we also allow the empty tree (if T̄ (Λ) is undefined) having even no root. All the non-leaf nodes must have queries
i′ ∈ N′ as labels, and leafs can have any label a ∈ N or i′ ∈ N′.

Note that the type σ in T = (σ , T̄ ) is used for imposing a restriction on labels i′ ∈ N′ in the tree T̄ and for treating the
tree as an SP as described above.

If T̄ in T = (σ , T̄ ) is finite then T can be identified with an FSP.
In order to see that the sequential procedures form an applicative structure, the best approach will be to use the

constructions of composition and application for the finite procedures, and then extend them to the non-finite case. To
this end, we need the intensional ordering of the sequential procedures as defined below.

Definition 2.26. For each type σ we will define the ordering ≺σ on the set of finite sequential procedures (dropping the
index when appropriate) as follows:

If σ = ι, we let ≺σ =⊑σ .
If σ = τ⃗ → ι, we let Cσ

⊥
≺ T for any T ∈ FSPσ .

If σ = τ⃗ → ι,

T (x⃗) = Tk(x⃗) if xi(R1(x⃗), . . . , Rr(x⃗)) = k ∈ K

and

S(x⃗) = Sl(x⃗) if xi(Q1(x⃗), . . . ,Qr(x⃗)) = l ∈ L

we let T ≺ S if K ⊆ L, Tk ≺ Sk for k ∈ K and Rj ≺ Qj for all j = 1, . . . , r .
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We extend the ≺-relation to L adding the extra rule

M1N1 ≺ M2N2 when M1 ≺ M2 and N1 ≺ N2.

Using the co-inductive analogue to the definition of≺, we extend≺ to the intensional ordering≺
∗ on the general sequential

procedures. When we consider a sequential procedure T as a typed tree (σ , T̄ ), the relation T ≺
∗ S means just the set

theoretical inclusion T̄ ⊆ S̄ for trees understood as partial maps N∗
→ N ∪ N′.

Wemake the following observations for FSP’s:
Lemma 2.27. (a) If T ≺ T ′ then T ⊑ T ′.
(b) If M1 ≺ M2 are terms in L of type ι and M1 evaluates to a number, then M2 evaluates to the same number via a path of the

same length, where each term N1 in the evaluation path of M1 is ≺-below the term N2 at the corresponding location in the
evaluation path for M2, and where there is a complete matching between occurrences of [ and ] in the two paths.

(c) If M1 ≺ M2 are two terms in L that are rewritten to the FSP’s T1 and T2 by the process in the proof of Theorem 2.8, then
T1 ≺ T2. More generally, the composition operator T ◦ S is (trivially) monotonic in T and S with respect to ≺.

Proof. (a) is proved by a simple induction on the rank of T and (b) is proved by a simple induction on the location in the
evaluation path ofM1. Every step in the evaluation ofM1 will be copied as a step in the evaluation ofM2 preserving ≺.

In order to prove (c) we must extent the definition of ≺ further to the set of intermediate expressions in the rewriting
process involving the composition operator, and then use induction on the number of applications of the rewriting rules
that are used.

This ends the proof. �

Lemma2.27 shows that both evaluation and composition ◦ aremonotonicwith respect to≺. Since the sequential procedures
can be viewed as the limits of ≺-chains of finite sequential procedures, our definitions of evaluation path and composition
◦ are directly transferred to SP.

In particular, this means that {SPσ }σ type can be organized to an applicative structure (that is not extensional). Note that
the rewriting procedure for composite terms with general sequential procedures do not terminate in the sense of taking
only finitely many steps. Composition of sequential procedures is technically defined as a limit of compositions of the finite
approximations. Since we will consider mainly evaluation paths, we do not need to go into detail about how to extend ◦.

Given the co-inductive set of sequential procedures of type σ we extend this to a set of general applicative terms by
Definition 2.28. 1. A sequential procedure of type σ is a general applicative term of type σ .
2. If M is a general applicative term of type σ → τ and N is a general applicative term of type σ , then (MN) is a general

applicative term of type τ .

Clearly every general applicative term is of the form

M = TN1 · · ·Nt

where T is a sequential procedure and each Ni is a general applicative term.

Definition 2.29. We define the relation M ⊢ a between general applicative terms M of type ι and natural numbers a by
induction as follows:
1. IfM = TN1 · · ·Nt and T = Cσ

a then
M ⊢ a.

1. If
- M = TN1 · · ·Nt
- T = (i; R1, . . . , Rs; K ; {Tk}k∈K )

- Ni(R1N⃗, . . . , RsN⃗) ⊢ k for some k ∈ K
- TkN⃗ ⊢ a

then
M ⊢ a.

By recursion on this inductive definition, we define the evaluation path whenM ⊢ a in accordance with Definition 2.11.

It follows by an easy proof by induction that ifM ⊢ a for some a, then a is unique.

Remark 2.30. The evaluation paths from Definition 2.11 might conclude with the value ⊥, while this will not be the case
here. The inductive definition of the relation

M ⊢ a

is for a ∈ N only. It can be proved by a simple induction on the rank of M ⊢ a that the evaluation path exists, is unique and
finite.

There is a canonical interpretation of sequential procedures and applicative terms over the typed structure of Scott
domains. Our operational semantics is adequate for this interpretation, in the sense that if an applicative term of type ι
is interpreted as an integer, there will be an evaluation path demonstrating this. We will neither need nor prove this here.
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Remark 2.31. Our approach here is very close to the original approach from [14] (see also [15,16]) using strategies.

Definition 2.32. Overloading our use of notation, we extend the definition of the extensional interpretation ⟨T ⟩ to the set of
sequential procedures such that ⟨T ⟩(⟨S⟩) = ⟨TS⟩ whenever T is a sequential procedure of type τ → δ and S is a sequential
procedure of type τ .

F is a sequential functional of type σ if there is a sequential procedure T with F = ⟨T ⟩.
We identify the finite sequential functionals with sequential functionals by identifying the two interpretations of ⟨·⟩.
We let (Qσ , ⊑σ )be thepartially ordered set of sequential functionals of typeσ , andwe consider the set of finite sequential

functionals of type σ to be a subset of Qσ .

Digression 2.33. (For readers familiar with basic non-standard analysis.)
An alternative approach to the sequential procedures is to consider them as standard parts of hyperfinite sequential

procedures. The transfer principlemay then be used to see that phenomena like rewriting and evaluation are easily extended
from the finite to the general case.

We may consider the projections Pσ
c (see Definition 2.16) as elements of Qσ→σ , and then Pσ

c will map Qσ onto the finite set
of extensional interpretations ⟨T ⟩ of T ∈ FSPc

σ . See [17] for details, where FSP’s are called finitary strategies. Actually, finite
strategies is a more general concept.

We use this to improve Lemma 2.19 to

Observation 2.34. Let X = {F1, . . . , Fn} be a finite, bounded set of finite sequential functionals of type σ .
Then X has a least upper bound in Qσ , and this is finite and coincides with the least upper bound in the set of finite sequential

functionals of type σ .

3. Normal form theorems

In Section 2 we introduced the sequential functionals as an ordered set, and we defined them as what is known as the
extensional collapse of the typed structure of sequential procedures. In the sequelwewill be interested inwhen the pointwise
limit of an increasing sequence of sequential functionalswill be sequential. For some positive results in this directionwewill
use a ‘‘Normal Form Theorem’’. This terminology may be misleading, because it is not correct in general that an equivalence
class of finite sequential procedures will contain elements on what we will call ‘‘normal form’’.

Definition 3.1. A finite sequential procedure T is on normal form if it is either a constant, or if it is of the form

T (x⃗) = Tk(x⃗) if xi(R1, . . . , Rr) = k ∈ K

where R1, . . . , Rr are not depending on x⃗, and each Tk is on normal form.

Example 3.2. We define the finite sequential functional H of type

(ι, ι → ι) → ι

as follows:

HL(f ) = 0 if f (0, ⊥) = 0
HR(f ) = 0 if f (⊥, 0) = 0
H(f ) = 0 if f (HL(f ),HR(f )) = 0.

There can be no T on normal form that is equivalent to H , since then for any f , the evaluation path of Tf would have to
consist of a sequence of evaluation paths for faibi where ai and bi only depend on the values of fajbj for j < i. But this cannot
work for both fL = (0, ⊥ → 0) and fR = (⊥, 0 → 0), since termination for both these cases forces us to have ai = bi = 0
for all i, while H does not terminate on input 0, 0 → 0.

Example 3.3. Let σ = (ι → ι)2 → ι and let G and F be the finite sequential procedures of type σ defined by

G(f , g) = 0 if g(⊥) = 0,
F(f , g) = 0 if f (G(f , g)) = 0.

Let f0 be minimal such that f0(0) = 0.
Then {(C0, C⊥), (f0, C0)} is the base for F . There is no way F can be brought to a normal form.

Lemma 3.4. If f is a sequential functional of type σ where σ has level 1, then any sequential procedure defining f is on normal
form.

Proof. Let σ = ιn → ι, and let T be a finite sequential procedure of type σ .
By induction on the rank of T , we prove that T is on normal form.
If T is a constant, T is on normal form by definition.
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If T is not a constant, it is of the form

T (x⃗) = Tk(x⃗) if xi = k ∈ K .

Since the sequence R1, . . . , Rr in this case is the empty sequence, it is in particular independent of the input.
Our next result is well known by workers in the field, and must be considered as a kind of ‘‘folklore’’-result.
For an FSP

T (x⃗) = Tk(x⃗) if xi(R⃗(x⃗)) = k ∈ K

we call xi(R⃗(x⃗)) = ? the first query asked by T . Then all queries (potentially) asked by T are the first query asked by T together
with (recursively) all queries asked by all Tk. �

Lemma 3.5. Every FSP of type (ι → ι) → ι is equivalent to an FSP on normal form.

Proof. We prove this by transforming T to an equivalent T ∗ that is on normal form.
If T is a constant, then it is on normal form, and we let T ∗

= T .
Let

T (x) = Tk(x) if x(R(x)) = k ∈ K .

Now we consider two cases, depending on R:

1. If R is a constant Ca, we let

T ∗(x) = T ∗

k (x) if x(a) = k ∈ K .

2. If R(x) = Rl(x) if x(S(x)) = l ∈ L, we may rewrite the definition of T to a definition where the first query is simpler as
follows: Let

T ′(x) =


(Tk(x) if x(Rl(x)) = k ∈ K) if x(S(x)) = l ∈ L
(Tk(x) if x(⊥) = k ∈ K) if x(S(x)) = m ∈ K \ L

We leave the definition of T ′ as an FSP in the standard syntax for the reader. If x is not a constant, we can derive that
T (x) = T ′(x), and if x = Ca we have that T (x) = T ′(x) = Ta(x) when a ∈ K and T (x) = T ′(x) = ⊥ otherwise. It follows
that T and T ′ are equivalent.

Note that the first query x(R(x)) = ? asked by T was replaced by simpler initial queries x(S(x)) = ?, x(Rl(x)) = ? and
x(⊥) = ? asked by the equivalent FSP T ′. They are simpler e.g. by comparing the size of the tree representation of R vs.
S, Rl and C⊥.

Continuing with similar simplifications of the first queries asked by Tk, (Tk)n, etc., we will simplify all non-constant queries
asked by T in the resulting equivalent version which we call Ṫ . Iterating this procedure T → Ṫ to get T̈ , etc., we will
eventually halt on some T ∗ equivalent to T and asking only the simplest queries of the required form x(Ca(x)) = ? or
x(a) = ?. (That all the above iterations are finite is trivial.)

This ends the proof. �

Examples 3.2 and 3.3 show that this is as far as we will be able go in proving a general normal form theorem.
The construction in the proof of Lemma 3.5 can easily be extended to finite sequential procedures of type σ = (ι →

ι)s → ι for all s ∈ N, and the proof that the rewriting process terminates is valid, but if s > 1 we cannot prove that the
rewriting preserves the extensional interpretations. We do however have

Corollary 3.6 (Of Proof). Let T be a finite sequential procedure of type

(ι → ι)s → ι

where s ∈ N.
Then there is a finite sequential procedure H ⊑ T on normal form such that for every s-sequence f⃗ of unary functions such that

fi is not a constant for any i we have that

T (f⃗ ) = H(f⃗ ).

The details are left for the reader.
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4. Sequential functionals and directed complete partial orderings

Apartial ordering (X, ≤) is a dcpo, a directed complete partial ordering, if every directed subset ofX has a least upper bound.
For many years, it was an open problem if the sequential functionals of any type form a dcpo. This was solved negatively by
Normann [11], who proved that the sequential functionals of pure type 3 is not a dcpo.

In this section we will prove that there even is a type σ at level 2 where (Qσ , ⊑σ ) (see Definition 2.32) is not a dcpo.
Avoiding too much notation, we will simply say that Qσ is a dcpowhen (Qσ , ⊑σ ) is a dcpo.

Our proof will contain the key method used when we address some other problems related to the orderings ⊑σ , so this
section is also a preparation for the sections to come.

By construction, each sequential functional will be the least upper bound of a directed set of finite sequential functionals,
and this least upper bound will actually be the pointwise limit in the style of domain theory. Since any finite bounded set of
finite sequential functionalswill have a least upper bound, and there are only countablymany finite sequential functionals of
a fixed type, any directed set of finite sequential functionalswill contain a cofinal sequence. Thus, in order to prove that some
Qσ is a dcpo, it is sufficient to show that whenever we have an increasing sequence {Fn}n∈N of finite sequential functionals
in Qσ , the pointwise limit is sequential. However, in general the closure of Qσ under pointwise limits is impossible, and this
is a crucial point in developing an appropriate domain theory for sequentiality.

Remark 4.1. Sazonov [17,18] gave a direct construction of the sequential functionals, using strategies, and he defined the
concept of natural least upper bound as being a least upper bound in (Qσ , ⊑σ ) that is also the pointwise least upper bound.
We can define (alternatively) that an ascending chain (xn) in σ has natural (pointwise) supremum y iff

∀f : σ → ι.f (y) ≠ ⊥ ⇐⇒ (∃n : N.f (xn) ≠ ⊥).

This was pointed out by the referee. By relativizing the usual notions of domain theory to this kind of limit, it was shown in
[17,18] that (Qσ , ⊑σ ) are ‘‘natural Scott domains’’ with ‘‘natural compacts’’ that are exactly the finite sequential functionals
defined above by FSP’s, and that the corresponding version of ‘‘natural Scott topology’’ makes them also f -spaces in the
sense of Ershov [3] with all functionals continuous in this topology or, equivalently relative to the above natural limits.

On the other hand, Escardó and Ho [4] use the primitive type ω̄ order-isomorphic to the ordinal ω + 1 as an inessential
extension of PCFΩ and define rational ascending chains of the type σ as sequential functionals c : ω̄ → σ . All such rational
chains have the pointwise lub c(∞) where ∞ is the maximum (limit) element of ω̄. All sequential functionals prove to be
continuous by preserving these rational lubs. Then domains Uf = {x ∈ Qσ | f (x) ≠ ⊥} of any functionals f : σ → ι
are called rational open sets of the type σ . They constitute a rational topology in the sense that they are closed under finite
intersections and ‘‘rational’’ unions. Open sets in this sense are actually ‘‘rationally Scott open’’. Rationally finite elements
are defined as usual, but in terms of lubs of rational chains. Then every element of any type is the lub of a rational chain of
rationally finite elements. Thereby, we have some analogy with T0-spaces (and also with the ordinary Scott domains), but
the ‘‘rational topology’’ is not a topology in the standard sense. For example, due to absence parallel features in PCFΩ + ω̄,
it follows from [4] that we cannot guarantee that open sets are closed under finite union (although closed under unions of
rational ascending chains of ‘‘open’’ sets presented by their characteristic sequential functionals).

Anyway, there are some natural possibilities to consider fully abstract models for PCF (or versions of PCF) in a domain-
theoretic and topological style, although only in somewhat non-classical versions of Scott domains either as (incomplete)
topological f-spaces or in terms of rational topologies where the latter are not topological spaces in a standard sense.

Nevertheless, since these are non-dcpos, there are some interesting anomalies which we intend to study here in a regular
way to get amore complete understanding on the order-theoretical nature of (Qσ , ⊑σ ). It was conjectured in [17,18] that for
some σ , there will be least upper bounds in Qσ that are not natural and that we even may find finite sequential functionals
that are nontrivial least upper bounds of directed sets of sequential functionals. Sazonov also conjectured that there will be
sequential functionals of type σ → ι that will not commutewith least upper bounds of directed sets in Qσ and that we even
might find finitary sequential functionals that are not continuous in this sense.

Observe that Qι = N⊥ is a dcpo. It is also well-known and sufficiently straightforward fact that Qιs→ι are dcpo’s for all
s ≥ 0.

Our first result in this section is a theorem that is known from the literature, but seems to belong to the ‘‘folklore’’ based
on a proof idea that does not fully work. We prove that the sequential functionals of pure type 2 form a dcpo.

Q(ι→ι)→ι is a dcpo

The argument is based on normal representation, which we know does not exist in full generality for sequential
functionals of non-pure type 2. The ‘‘folklore’’ proof only works when we assume that we only deal with strict functions,
or, if the limit function F terminates on a constant function, then it terminates on a strict, finite approximation to that
constant. We give the proof in pedantic details, details that may be useful in future generalizations of the theorem.We have
no reference to a published version of a proof for the full theorem, and this is also a reason for including one here. First, we
will consider a concept of critical elements. This is given in a more general form than we will really need in this paper. We
believe that it is interesting in itself and that it will probably be used for similar applications in future proofs.
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Critical arguments of sequential functionals of level 2
Throughout this subsection till Theorem 4.9, we will let

σ = τ1, . . . , τt → ι = τ⃗ → ι

where τi = ιsi → ι for some si ≥ 0.
Throughout the note, we will let f⃗ , g⃗ ∈ FSPτ⃗ and we will let F ,G,H ∈ FSPσ , also when indices are used. More generally,

we can consider that F ,G,H are any monotonic maps Qτ⃗ → Qι. We will always let 1 ≤ i ≤ t , n ∈ N and

f⃗ = (. . . , fi, . . .).

F is a constant if F(C ιs1→ι
⊥

, . . . , C ιst →ι
⊥

) ≠ ⊥.

Definition 4.2. Let a⃗ be of type ιis .
We say that (i, a⃗) is critical for F relative to f⃗ if a⃗ is minimal such that for all g⃗ with f⃗ ⊑ g⃗ where F(g⃗) ∈ N we have that

gi(a⃗) ∈ N while fi(a⃗) = ⊥.
We let

Crf⃗ (F)

denote the set of (i, a⃗) that are critical for F relative to f⃗ .

We observe that if F(f⃗ ) ∈ N, then Crf⃗ (F) = ∅.

Lemma 4.3. If there is no g⃗ ⊒ f⃗ such that F(g⃗) ∈ N, then only objects of the form (i, ⊥⃗) can serve as elements of Crf⃗ (F), if there
are any. This holds exactly for those i for which fi(⊥⃗) = ⊥.

Proof. Assume that (i, a⃗) ∈ Crf⃗ (F). Then, by definition, fi(a⃗) = fi(⊥⃗) = ⊥ and, by definition, the premise and theminimality
of a⃗ we must have that (i, ⊥⃗) ∈ Crf⃗ (F) and a⃗ = ⊥⃗. �

Lemma 4.4 (Finiteness). For finite F (and f⃗ ), Crf⃗ (F) is a finite set.

Proof. If F(f⃗ ) ∈ N or if there is no extension g⃗ of f⃗ such that F(g⃗) ∈ N, we have already observed this. �

Now let (i, a⃗) ∈ Crf⃗ (F) and assume that there is at least one g⃗ ⊒ f⃗ such that F(g⃗) ∈ N.
Let c ∈ N be so large that F is a fixed point for Pσ

c and such that each fi is a fixed point for Pτi
c .

Then

F(g⃗) = Pσ
c (F)(g⃗) = F(P τ⃗

c (g⃗)).

Moreover

f⃗ = P τ⃗
c (f⃗ ) ⊑ P τ⃗

c (g⃗).

It follows, by the definition of critical elements, that

Pτi
c (gi)(a⃗) ∈ N.

Then there is a b⃗gi in the base for Pτi
c (gi) with b⃗gi ⊑ a⃗.

The minimality requirement on a⃗ implies that

a⃗ =


{b⃗gi | f⃗ ⊑ g⃗ ∧ F(g⃗) ∈ N}.

Since there are only finitely many possible least upper bounds of sets of base elements for functions in FSPc
τi
, the lemma

follows.

Lemma 4.5 (Monotonicity). (a) If F ⊑ G and (i, a⃗) ∈ Crf⃗ (G), then there is a b⃗ ⊑ a⃗ such that (i, b⃗) ∈ Crf⃗ (F).
(b) If F ⊑ G ⊑ H and (i, a⃗) ∈ Crf⃗ (F), but (i, a⃗) ∉ Crf⃗ (G) then (i, a⃗) ∉ Crf⃗ (H).

Proof. (a) Let f⃗ ⊑ g⃗ and assume that F(g⃗) ∈ N.
Then G(g⃗) ∈ N since F ⊑ G, so gi(a⃗) ∈ N.
Then the minimality requirement on Crf⃗ (F) gives us that there is a b⃗ ⊑ a⃗ in Crf⃗ (F).

(b) If (i, a⃗) ∈ Crf⃗ (H) there is, by (a), a b⃗ ⊑ a⃗ with (i, b⃗) ∈ Crf⃗ (G), and by the assumption, b⃗ is strictly below a⃗.
By (a) again, there is a c⃗ ⊑ b⃗ such that (i, c⃗) ∈ Crf⃗ (F).
But then c⃗ is strictly below a⃗, contradicting theminimality assumption on a⃗. Thus the assumption that (i, a⃗) ∈ Crf⃗ (H)

leads to a contradiction. �
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Lemma 4.6 (Stabilization). Let F0 ⊑ F1 ⊑ · · · be an increasing sequence of finite sequential functionals of the type σ = τ⃗ → ι,
F : Qτ⃗ → Qι be its pointwise least upper bound, and let f⃗ be given.

Then there is an n0 ∈ N such that for all m ≥ n0 we have that

Crf⃗ (Fm) = Crf⃗ (F).

Proof. Let

X = {(i, a⃗) | ∃n(i, a⃗) ∈ Crf⃗ (Fn)}.

We will show that X is finite by obtaining a contradiction from
Assumption. X is infinite.
Let i be such that

Xi = {a⃗ | (i, a⃗) ∈ X}

is infinite.
For each a⃗ ∈ Xi, let #(a⃗) be the number of coordinates j such that aj ≠ ⊥, and for each k, let

Xi,k = {a⃗ ∈ Xi | #(a⃗) ≤ k}.

Let k be minimal such that Xi,k is infinite.
For each a⃗ ∈ Xi,k, let n(a⃗) be the least n such that (i, a⃗) ∈ Crf⃗ (Fn).
By Lemma 4.4 we have that {n(a⃗) | a⃗ ∈ Xi,k} is unbounded.
For each a⃗ ∈ Xi,k with n(a⃗) > 0, there is, by Lemma 4.5(a), a a⃗′

⊑ a⃗ such that (i, a⃗′) ∈ Crf⃗ (Fn(a⃗)−1), and by definition of
n(a⃗), a⃗′ is strictly below a⃗.

It follows from Lemma 4.5(b) that if 0 < n(a⃗) < n(b⃗) where both a⃗ and b⃗ are in Xi,k, then a⃗′
≠ b⃗′.

Since a⃗′ is strictly below a⃗, we have that #(a⃗′) < #(a⃗).
Altogether this shows that there are infinitely many a⃗′

∈ Xi with #(a⃗′) < k, contradicting the choice of k.
This shows that our assumption leads to a contradiction, and that X is finite.
If we now let Cn be the upper cone of Crf⃗ (Fn) in X , it follows from Lemma 4.5(a), that {Cn}n∈N is decreasing with respect

to inclusion as n increases, and must stabilize since X is finite.
Since Crf⃗ (Fn) is the set of minimal elements in Cn, stabilization of the sequence Crf⃗ (Fn) from some n0 follows.
To show Crf⃗ (Fn0) ⊆ Crf⃗ (F), first note that if (i, c⃗) ∈ Crf⃗ (Fn0) then fi(c⃗) = ⊥ and, by stabilization, for all g⃗ ⊒ f⃗ andm ≥ n0,

Fm(g⃗) ∈ N implies gi(c⃗) ∈ N, that is F(g⃗) ∈ N implies gi(c⃗) ∈ N. This means that we almost have (i, c⃗) ∈ Crf⃗ (F), except
we only need minimality of c⃗ . Assume b⃗ ⊑ c⃗ also satisfies this condition: fi(b⃗) = ⊥ and for all g⃗ ⊒ f⃗ , F(g⃗) ∈ N implies
gi(b⃗) ∈ N. Then also Fn0(g⃗) ∈ N implies gi(b⃗) ∈ N, and we have b⃗ ∈ Crf⃗ (Fn0) which implies c⃗ = b⃗.

For the converse inclusion, assume (i, b⃗) ∈ Crf⃗ (F). Then by monotonicity Lemma 4.5(a), (i, b⃗) extends some (i, c⃗) ∈

Crf⃗ (Fn0), and by already shown inclusion we have (i, c⃗) ∈ Crf⃗ (F). By minimality, c⃗ = b⃗. All of this proves Crf⃗ (Fn0) = Crf⃗ (F).
This ends the proof. �

Lemma 4.7 (Existence of Critical). If a finite sequential F has a representation on normal form, F(f⃗ ) = ⊥ and there is at least
one i such that fi(⊥⃗) = ⊥, then Crf⃗ (F) ≠ ∅.

Proof. If there is no g⃗ ⊒ f⃗ such that F(g⃗) ∈ N, this follows from Lemma 4.3. �

If there is an extension g⃗ of f⃗ with F(g⃗) ∈ N there will be a first query gj(a⃗) = ? in the evaluation of F(g⃗) following the
normal strategy that is answered by gj, but unanswered by fj in the case of computing F(f⃗ ), and this will be independent of
g⃗ ⊒ f⃗ . Then there is a b⃗ ⊑ a⃗ such that (j, b⃗) ∈ Crf⃗ (F).

Corollary 4.8. For the pointwise lub F as in Lemma 4.6 and any list of finite arguments f⃗ , Crf⃗ (F) is finite. If F(f⃗ ) = ⊥ and not all
f⃗ are constants then Crf⃗ (F) ≠ ∅.

Proof. Use Lemmas 4.4, 4.6 and 4.7. �

Now we have to restrict the list of level 1 arguments f⃗ just to one unary function f . Thus the above considerations on
critical elements will not be used in this paper in their full generality. To simplify denotations, we will consider that Crf (F)
consists of some elements a ∈ Qι rather than pairs (1, a) according to the above agreement.

Theorem 4.9. Let σ = (ι → ι) → ι.
Let {Fn}n∈N be an ⊑σ increasing sequence of finite sequential functionals in Qσ .
Then the pointwise least upper bound

F(f ) =


n∈N

Fn(f )

is sequential.
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Proof. Before describing the strategy for F itself, we will do so for some approximation G ⊑ F .

Normal strategy for G. We will now use the above Lemmas to find a normal sequential strategy for some

G(f ) ⊑ F(f ) =


n∈N

Fn(f )

where we assume that Fn of the type (ι → ι) → ι is any increasing sequence of finite functionals having normal
representations. Thereby, for non-constant f (f (⊥) = ⊥) the inclusion will be actually equality.

We may also assume that

(∗⊥) F(⊥) = ⊥, and ⊥ ∉ Cr⊥(F).

Indeed, otherwise eitherwe can immediately letG(f ) = F(⊥) ≠ ⊥ so thatG is in fact a constant functional, or the sequential
procedure for computing of F(f ), and hence of G(f ), consists in asking only one query f (⊥) = ?. If a ∈ N is the answer, then
f = Ca and the strategy outputs the correct result G(Ca) = F(Ca) (if defined).

Thus, under the above assumption, let any f be given, and let f0 = ⊥ ⊑ f .
By Corollary 4.8 the set Crf0(F) of elements that are critical for F relative to f0 is finite and nonempty. Let a0 ∈ N be critical

for F relative to f0.
If f (a0) = ⊥ we conclude that G(f ) = ⊥.
Otherwise, let f1 be f restricted to {a0}.
Assume, by induction, that we have constructed non-constant approximations

⊥ = f0 ⊑ f1 ⊑ · · · ⊑ fk ⊑ f , fi(⊥) = ⊥.

Further the computation will go similarly to the previous part. Thereby we will need fi(⊥) = ⊥ for Corollary 4.8 to be
applicable to all fi.

As for f0 = ⊥, we may again assume that

(∗fk ) F(fk) = ⊥ and ⊥ ∉ Crfk(F).

Indeed, otherwise either we can immediately let G(f ) = F(fk) ≠ ⊥, and the computation is finished, or the rest of
the sequential procedure for computing G(f ) consists in asking only one query f (⊥) = ?. If a ∈ N is the answer, then
(fk ⊑ f = Ca and) the strategy outputs the correct result G(Ca) = F(Ca) (if defined).

As in the base case, the assumption (∗fk ) and Corollary 4.8 imply that the sets Crfk(F) of elements that are critical for F
relative to fk are finite, nonempty and there should exist some ak ≠ ⊥ in Crfk(F).

The strategy continues the process as follows.

If f (ak) = ⊥, we know that F(f ) = ⊥, so the strategy has no continuation.
If not, we let fk+1 be the extension of fk such that fk+1(ak) = f (ak).
It follows from the fact that all ai ≠ ⊥ that fk+1(⊥) = ⊥, as required for our inductive argument, and this finishes the
induction step of our construction of the sequence fi.

Note that a sequence fk generated this way is infinite if for each constructed fk, (∗fk ) holds (so that ak exists) and f (ak) ≠ ⊥,
thus allowing to define fk+1. Otherwise (if either (∗fk ) fails, or it holds, but f (ak) ≠ ⊥), it is finite.

Anyway, the process we have described clearly is an infinitary, sequential process defining a functional G ⊑ F . In fact,
some steps of this procedure are not effective, e.g., such as checking the first part of (∗fk ), but effectivity is not required. Also
in the description of this procedure we referred to a particular f . Formally, the description could (and in fact must) be done
in terms of questions asked by this procedure and reaction to any possible answers, independently of whether these are
generated by any f given in advance or not. For an input f , the process may terminate with a positive (in N) or a negative
(⊥) conclusion, or it may go on for ever. It remains to prove that for any f such that f (⊥) = ⊥ and F(f ) ∈ N, this process
will terminate.

We can evidently assume that f is finitary. This process involves constructing a strongly increasing sequence fk of
sequential approximations to f which therefore must be finite. Therefore for some k either (∗fk ) fails, or it holds, but
f (ak) = ⊥. We know from the above considerations that in any of these cases the strategy computes the correct result,
if defined at all.

Thus, the correct normal strategy for G(f ) is constructed.

Non-normal strategy for F . Now, let us construct a strategy for F(f ) on the base of the strategies for G(f ) and af to be defined
below. The strategy for F(f ) should also work correctly on constant functions f = Ck.

It starts as G(f ), and if (∗⊥) fails then we know that it outputs the required value F(f ).
If (∗⊥) holds, it asks f (a0) = ?, and if the answer is k, there will be two cases.

1. If F(h) ≠ ⊥ for some (finite) partial constant h ⊑ Ck then the strategy for G(f ) continues its work. Even if f = Ck,
G(f ) = G(h) = F(h) ≠ ⊥ will be correctly computed by this strategy.
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2. If F(h) = ⊥ for all partial constants h ⊑ Ck then another auxiliary strategy based on G will decide if f is the constant
Ck or if for some b, f (b) ≠ k. This decision should be guaranteed to work in the case F(f ) ≠ ⊥. Otherwise the decision
procedure should diverge. In detail, the auxiliary strategy works as follows:

We proceed computing the values f (a0), f (a1), . . ., again by using the strategy for G generating the sequence
a0, a1, . . ., either forever or until the sequence ai breaks as was described above, or until we find some value f (an) ≠ ⊥

which is different from k. In the last case, we let this an be af . We let af = ⊥ if the last case never holds. This is actually
another sequential procedure satisfying the property:
(*) If the limit functional F(f ) terminates and f ⋢ Ck, then G(f ) and hence af will terminate, and thereby af , witnessing

that f ⋢ Ck, will be detected from f .
Indeed, G(f ) must terminate with the same result as F(f ) because f is not a constant. If, however, af does not terminate
then G(f ) has terminated without detecting any difference between f and Ck. That is, for some partial constant h ⊑ Ck,
h ⊑ f and both G(h) and F(h) will terminate, contrary to our initial assumption of the case 2.

Saying that about the auxiliary procedure for af , our main procedure F(f ) (for any f ) in the case 2 considered moves
to the ‘‘non-normal’’ part and asks for f (af ). Three cases are possible:
(a) If f = Ck we get the answer f (af ) = k.
(b) If f ⋢ Ck and F(f ) ≠ ⊥, then (*) implies that af is defined and f (af ) ≠ k.
(c) If f ⊑ Ck and f ≠ Ck then af = ⊥ and hence f (af ) = ⊥. But in this case also F(f ) = ⊥ by our initial assumption of

the case 2. So, this diverging possibility should not bother us.
Then, when we have separated between f = Ck and f ⋢ Ck (knowing that f (a0) = k), by asking the question f (af ) = ?,
we just give the right answer F(Ck) in the first case, and use the normal strategy for G(f ) in the second case when f is
definitely not a constant.

This ends the proof of the theorem. �

This theorem gives us that Qσ is a dcpo, where σ = (ι → ι) → ι. Our next result shows that the above theorem cannot
be generalized to full generality.

Types σ for which Qσ is not a dcpo

Proposition 4.10. Let σ = (ι, ι → ι) → ι.
Then Qσ is not a dcpo.

Proof. We will give an explicit construction of an increasing sequence of finite sequential functionals of type σ that is not
bounded by any sequential functional, and later we will refer to this construction.

We let i, j, k, l etc. denote integers, f , g etc. denote functions of type ι, ι → ι and F , G etc. denote sequential functionals
of type σ .

Construction

Let f0(a, b) = 0 if a = 0, f0(a, b) = ⊥ otherwise.
If m > 0, let fm(a, b) = 1 if b = m or if b < m and a = 1 and let fm(a, b) = ⊥ otherwise.

Claim 1. For each n there is a sequential Gn such that for all m

Gn(fm) ∈ N ⇔ m ≤ n,

and such that Gn(f0) = 0 while Gn(fm) = 1 for 0 < m ≤ n.

Proof of Claim 1. Let G0(f ) = 0 if f (0, ⊥) = 0.
For n > 0, let

Gn(f ) = f (· · · f (f (Gn−1(f ), n), n − 1), . . . , 0)

provided all intermediate values are either 0 or 1.
We prove by induction on n that Gn satisfies the requirement.
Clearly G0(f0) = 0 and G0(fm) = ⊥ form > 0, since then fm(0, ⊥) = ⊥.
Now let n > 0 and assume that Gn−1 satisfies the claim. First we see that Gn(f0) = 0. This follows from the induction

hypothesis, that Gn−1(f0) = 0 and the fact that

Gn(f0) = f0(· · · f0(f0(0, n), n − 1), . . . , 0).

The left hand side argumentswill all be evaluated to 0,while the values of the right hand side arguments are of no importance
(since ⊥ suffices there).

Now let 1 ≤ m ≤ n. Then the value of fm(Gn−1(fm), n) is ⊥ if m < n and 1 if m = n. When we then iterate application of
fm using smaller and smaller arguments on the right hand side, we get the value 1 all the way after reaching the argument
m, so finally the value of Gn(fm) = 1.
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If m > nwe use that Gn−1(fm) = ⊥ and that fm(⊥, i) = ⊥ for all i ≤ n to see that Gn(fm) = ⊥.
This ends the proof of the claim.

Claim 2. Let F be a sequential functional (not necessarily finite) such that F(fn) ∈ N for n = 0 and for infinitely many n > 0.
Then F(⊥ι,ι→ι) ∈ N.

Proof of Claim 2. We assume that F is given by a sequential strategyM , and prove the claim by induction on the length of the
evaluation path forM(f0).

EitherM is a constant, orM is of the form

M(f ) = Mk(f ) if f (L(f ), R(f )) = k ∈ K

where K is not necessarily finite and each L, R and Mk are sequential.
Since M(f0) ∈ N we must have that f0(L(f0), R(f0)) ∈ N which actually means that L(f0) = 0, and then with a shorter

evaluation path. If n > 0 andM(fn) ∈ N we must have that fn(L(fn), R(fn)) ∈ N, and then in particular that R(fn) ∈ N.
If 1 ≤ n,m ≤ k we have that fn and fm are bounded by gk where gk(a, b) = 1 if b ≤ k and ⊥ otherwise. It follows that if

R(fn) and R(fm) both are in N, then they are equal. So, for infinitely many n we have that R(fn) < n, and we then must have
that L(fn) = 1 for these infinitely many n.

By the induction hypothesis, Lmust be a constant, contradicting that L(f0) = 0 and L(fn) = 1 for infinitely many n.
Thus M cannot be of the described form, and must be a constant.
This ends the proof of the claim.
By Claim 1 and Lemma 2.19 there will be a minimal sequential functional Fn such that Fn(f0) = 0 and Fn(fm) = 1 for

0 < m ≤ n, and this sequence will be strictly increasing.
By Claim 2, this sequence, that is not bounded by a constant functional, is not bounded by any sequential F .
This ends the proof of the proposition. �

Definition 4.11. Let σ and τ be types.
A sequential embedding-projection-pair, or e-p-pair for short, betweenQσ andQτ is a pair (Φ, Ψ ) of sequential functionals

of types σ → τ and τ → σ respectively such that Ψ (Φ(x)) = x for all x ∈ Qσ and Φ(Ψ (y)) ⊑ y for all y in Qτ .
We say that σ ↩→ τ if there is a sequential e-p-pair between Qσ and Qτ .
We extend these definitions to products Qσ⃗ in the obvious way.

Lemma 4.12. (a) ↩→ is transitive and reflexive.
(b) If σ⃗ ↩→ τ⃗ then σ⃗ → ι ↩→ τ⃗ → ι.
(c) τi ↩→ τ⃗ when τi is one of the coordinates in τ⃗ .
(d) If n ≥ 2, then ι2 ↩→ ιn.
(e) If the level of τ is ≥ 1, then ι2 ↩→ τ .

All proofs are both standard and trivial, and are left for the reader. When we prove (b) we use the standard way of lifting an
e-p-pair between Qσ and Qτ to an e-p-pair between Qσ→ι and Qτ→ι.

Theorem 4.13. Let σ = τ1, . . . , τt → ι be a type.
If at least one τi is of level ≥ 2 or of the form ιs → ι where s ≥ 2, then (Qσ , ⊑σ ) is not a dcpo.

Proof. By assumption there is a τi that is not of the form ι or ι → ι.
By combining the claims of Lemma 4.12 we see that (ι, ι → ι) → ι ↩→ σ , so there are sequential functionals Φ of type

((ι, ι → ι) → ι) → σ and Ψ of type σ → ((ι, ι → ι) → ι) such that Ψ ◦ Φ is the identity on Q(ι,ι→ι)→ι.
Let {Fn}n∈N be the increasing, unbounded sequence in Q(ι,ι→ι)→ι constructed in the proof of Proposition 4.10.
Then {Φ(Fn)}n∈N is an increasing sequence in Qσ . If H is an upper bound for this sequence, Ψ (H) will be an upper bound

for {Fn}n∈N, so this sequence must be unbounded in Qσ , and Qσ is not a dcpo.
This ends the proof. �

Remark 4.14. There is an interesting gap in our knowledge. If s > 1 we actually do not know if

Q(ι→ι)s→ι

is a dcpo or not.
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5. Step functions of finite sequential procedures

In the introductory part of Section 4 we discussed the four conjectures set up by Sazonov [17,18]. In this section we will
verify these four conjectures.

Definition 5.1. We say that a sequential functional F of type σ is a limit functional if there is a strictly increasing sequence
{Fn}n∈N of sequential functionals of type σ such that

F =


n∈N

Fn

in Qσ .

This concept is closely related to the concept of not being compact for algebraic domains, but since the definition of a compact
is meant to work for dcpo’s and we are dealing with structures that are not dcpo’s, we choose this terminology. However
note that we do not relate this specific concept of a limit with the topological limit for any topology discussed above in
Remark 4.1 because we do not require here from this limit to be either pointwise or rational one, and this is the crucial point
for the results of this paper.

Clearly every sequential functional that is not a finite sequential functional will be a limit functional, so our problem
will be to decide when a finite sequential functional also will be a limit functional. (But for pointwise or rational limits the
answer is always ‘‘no’’.) The existence of an example was Conjecture 2 of Sazonov, and will also verify Conjecture 1.

Limit step functions of level 2

Proposition 5.2. C (ι,ι→ι)→ι
0 is a limit functional.

Proof. Let {fn}n∈N be the sequence of functions in Qι,ι→ι constructed in the proof of Proposition 4.10, and for each n let Hn
be the minimal sequential functional such that Hn(fm) = 0 when m ≤ n. These functionals exist by using Claim 1 of the
proof of Proposition 4.10. This is a strictly increasing sequence, and by construction it is bounded by C (ι,ι→ι)→ι

0 . Claim 2 in
the same proof gives us that C (ι,ι→ι)→ι

0 is the least upper bound of the sequence.
This ends the proof of the proposition. �

Corollary 5.3. The finite sequential functional Φ of type ((ι, ι → ι) → ι) → ι defined by

Φ(H) = 0 if H(C ι,ι→ι
⊥

) = 0

does not commute with least upper bounds of increasing sequences in Q(ι,ι→ι)→ι.

Proof. Let Hn be as in the proof of Proposition 5.2. Then Φ(Hn) = ⊥ for each n, while

Φ


n∈N

Hn


= Φ(C (ι,ι→ι)→ι

0 ) = 0.

This ends the proof. �

Remark 5.4. Corollary 5.3 verifies the other two conjectures of [17,18].
It also answers one part of the problem asked after Remark 8.2 in [4], there is an increasingω-sequencewith a least upper

bound, and a program that does not respect this least upper bound.
We do not know the answer to the other part of the problem in [4], as we have no examples of a bounded set of sequential

functionals that does not have a least upper bound.

In rest of this section and in Section 6 wewill use a construction similar to the one used in the proof of Proposition 4.10, and
an adaption of the proof used in [11] to produce further examples of finitary limit functionals.

We will employ the following notation:

Definition 5.5. Let σ = τ⃗ → ι be a type, and let f⃗ be a sequence of finite sequential functionals of types τ⃗ .
We let Σf⃗ be the step function f⃗ → 0, see Definition 2.22.

Lemma 5.6. Let σ = τ , τ⃗ → ι, let f be a finite sequential functional of type τ and let f⃗ be finite sequential functionals of
types τ⃗ .

If Σf is a limit functional, then Σf ,f⃗ is a limit functional.

Proof. If F is of type τ → ι we define Φf⃗ (F) of type τ , τ⃗ → ι by

Φf⃗ (F)(g, g⃗) = F(g) if f⃗ ⊑ g⃗ .
Φf⃗ (F)(g, g⃗) = ⊥ otherwise.
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If G is of type τ , τ⃗ → ι, we define Ψf⃗ (G) of type τ → ι by

Ψf⃗ (G)(g) = G(g, f⃗ ).

Then (Φf⃗ , Ψf⃗ ) is a sequential e-p-pair between Qτ→ι and Qτ ,τ⃗→ι

It follows that if

Σf =


n∈N

Fn

then

Φf⃗ (Σf ) = Σf ,f⃗ =


n∈N

Φ(Fn).

This ends the proof of the lemma. �

This lemma shows that we can obtain much by focusing on the simpler cases σ = τ → ι.
First we will prove a number of propositions of the form ‘‘Σf is a limit functional’’, and then we will summarize the

consequences of Lemma 5.6 and these other propositions.

Proposition 5.7. If g ∈ Qιr→ι is finite, where r ≥ 3, and g(⊥r) = ⊥, then Σg is a limit functional.

Proof. Choose c such that g ∈ FSPc−1, see Definition 2.17.
Since g is not a constant and the ordering in which we write the variables is not important, we may assume that g is of

the form

g(x, y, z, t⃗) = gk(y, z, t⃗) if x = k ∈ K

(the variable x can be omitted from gk when its value is set to k in advance).
For each m, let fm be as in the proof of Proposition 4.10.
For each m ≥ 0, we define hm ⊒ g as follows, leaving it for the reader to bring the definition to the syntactically correct

form:

hm(x, y, z, t⃗) = gk(y, z, t⃗) when x = k ∈ K
hm(x, y, z, t⃗) = fm(y, z) if x = c
hm(x, y, z, t⃗) = ⊥ otherwise.

Claim 1. For each n there is a finitary sequential Hn such that

Hn(hm) ∈ N ⇔ m ≤ n

and then Hn(hi) = 0 for 0 ≤ i ≤ n.

Proof of Claim 1. Let Gn be as in the proof of Proposition 4.10 and let

Hn(f ) = 0 · Gn(λ(y, z).f (c, y, z, ⊥⃗)).

Then Hn(hm) = 0 · Gn(fm), and the claim holds.
From now on in this proof we will let Hn ⊑ Σg be the least finite sequential functional satisfying Claim 1.

Claim 2. LetM be of type (ιr → ι) → ι be sequential, but not necessarily finite.
If M(hn) ∈ N for infinitely many n including n = 0, thenM(g) ∈ N.

Proof of Claim 2. This claim is similar to Claim 2 of the proof of Proposition 4.10, but with g in place of ⊥, and our argument
follows the same pattern.

We use induction on the length of the evaluation path ofM(h0).
If M is a constant, then the conclusion obviously holds.
LetM(f ) = Ml(f ) if f (A(f ), L(f ), R(f ), T⃗ (f )) = l ∈ L.
SinceM(h0) ∈ N we have that h0(A(h0), L(h0), R(h0), T⃗ (h0)) = l ∈ L. There are two possibilities:

1. A(h0) = k ∈ K and gk(L(h0), R(h0), T⃗ (h0)) = l ∈ L.
2. A(h0) = c and f0(L(h0), R(h0)) ∈ N and hence L(h0) ∈ N.
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We split the argument into those cases:

1. There will be two subcases, out of which at least one must hold:
1.1 A(hn) = k ∈ K for infinitely many n such that M(hn) ∈ N. Then we use the induction hypothesis, and obtain that

A(g) = k ∈ K .
Either gk is the constant l or the evaluation of

gk(L(h0), R(h0), T⃗ (h0))

will involve the evaluation of some S1(h0), . . . , St(h0) where S1, . . . , St all are among L, R, T⃗ .
In the first case, gk(L(g), R(g), T⃗ (g)) = l.
In the other case, we prove by induction on j ≤ t that we will have that Sj(hn) ∈ N for infinitely many n ∈ N and

that, by the main induction hypothesis, Sj(g) = Sj(h0).
As a consequence, we have that gk(L(g), R(g), T⃗ (g)) = l also in this case.
We finally use the induction hypothesis to see thatMl(g) ∈ N. It follows thatM(g) = M(h0) ∈ N.

1.2 A(hn) = c for infinitely many n. This is, however, impossible, since by the induction hypothesis, A(g) ∈ N, and then
we cannot have different values c and k of A(h) for different extensions h of g .

1. We will prove that this case is impossible. This case also splits into two subcases:
2.1 A(hn) = k ∈ K for infinitely many n.

This contradicts the induction hypothesis like the case 1.2.
2.2 A(hn) = c for infinitely many n such that M(hn) ∈ N.

As in the proof of Claim 2 in the proof of Proposition 4.10 we have that all R(hn) are compatible when n > 0, and
thus will all be in a set {⊥, k} for some fixed k.

Then, if n > k and hn(c, L(hn), R(hn), T⃗ (hn)) = fn(L(hn), R(hn)) ∈ N we must have that L(hn) = 1.
This, together with the observation that L(h0) = 0 in this case, contradicts to the conclusion that L(g) ∈ N since

g ⊑ hn, n ≥ 0.

This ends the proof of Claim 2.
A consequence of Claim 2 is that if a sequential functionalH is an upper bound of the strictly increasing sequence {Hn}n∈N,

then H(g) = 0. Thus Σg is the nontrivial least upper bound of the sequence, and Σg is a limit functional.
This ends the proof of Proposition 5.7. �

Limit step functions of level > 2

We will now consider step functions of a type σ of level above 2. We let FSPc
σ be as before.

Definition 5.8. We define the c-total sequential functionals by recursion on σ as follows:

The c-total elements of type ι are the numbers 0, . . . , c.
H ∈ Qτ→δ is c-total if H maps c-total objects of type τ to c-total objects of type δ.

Lemma 5.9. Let σ = τ⃗ → ι be an arbitrary type. For every c-total functional H of type σ , there is a unique minimal c-total
functional H ′

⊑ H. It is definable by an FSPc
σ , gives the same values of type ι for c-total inputs of types τ⃗ and is undefined on

non-c-total inputs. In particular, the base of H ′ consists of the set {f⃗1, . . . , f⃗t} of all minimal c-total inputs of types τ⃗ .

Proof. By the induction hypothesis, the set {f⃗1, . . . , f⃗t} of all minimal c-total inputs of types τ⃗ is finite. We can compute
H ′(f⃗ ) sequentially, by identifying an i such that f⃗i ⊑ f⃗ and outputting H(f⃗i). If not all f⃗ are c-total then no f⃗i ⊑ f⃗ and so
H(f⃗ ) = ⊥. There are evidently only finitely many of so defined minimal c-total H ′. �

Lemma 5.10. For each type σ and c ∈ N there is a sequential functional ∆σ of type σ → ι that terminates exactly on extensions
of c-total H’s of type σ , and such that H ′ of the previous lemma is uniformly sequentially computable from ∆σ (H).

Proof. If σ = ι this is trivial.
If σ = τ⃗ → ι we test if H of type σ is c-total by listing, up to equivalence, all sequences f⃗1, . . . , f⃗t of minimal c-total

elements of type τ⃗ and, one by one evaluate H(f⃗i).
If one of the evaluations fails by not giving a value ≤ c , H is not c-total.
If all evaluations terminate with values ≤ c , we conclude that H is c-total, we let ∆σ (H) be a natural number coding the

list of values of H(f⃗i) for i = 1, . . . , t . �

From this number we can compute H ′(f⃗ ), by first computing ∆τ⃗ (f⃗ ) and then, if it terminates, use the value of ∆τ⃗ (f⃗ ) to
identify an i such that f⃗i ⊑ f⃗ . (Here we use Lemma 5.9 on the base of H ′.)

Then we go back to ∆σ (H) to deduce what H ′(f⃗ ) must be.
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Definition 5.11. For each type σ ≠ ι, let gc
σ be the least c-total object of type σ that takes the value c on all c-total inputs.

We let gc
ι = c.

We will write g⃗c for the more cumbersome g⃗c
τ⃗
when τ⃗ is clear from the context.

Lemma 5.12. Let H ∈ FSPc−1
σ be such that H is not a constant. Then there is an extension H̃ in FSPc

σ of H such that

1. H̃ is c-total.
2. H̃(g⃗c) = c.

Proof. If H is a constant, we let H̃ = H . Then H̃ is c-total, but we do not have that H̃(g⃗c) = c.
Now assume that H is not a constant.
Let

H(f⃗ ) = Hk(f⃗ ) if fi(T⃗ (f⃗ )) = k ∈ K ,

where si is the length of T⃗ .
We then define H̃(f⃗ ) by

If fi(T̃1(f⃗ ), . . . , T̃si(f⃗ )) = k ∈ K then H̃(f⃗ ) = H̃k(f⃗ ).
If fi(T̃1(f⃗ ), . . . , T̃si(f⃗ )) ∈ {0, . . . , c} \ K then H̃(f⃗ ) = c

where we leave it for the reader to transform this to the correct syntax. Note that c ∉ K since H ∈ FSPσ
c−1. By the induction

hypothesis, each T̃j is c-total, and each H̃k is c-total when k ∈ K .
Thus, if f⃗ is c-total, then each T̃j(f⃗ ) is c-total, and

fi(T̃1(f⃗ ), . . . , T̃si(f⃗ )) ∈ {0, . . . , c}.

If the value is k ∈ K , we use the induction hypothesis on Hk to show that H̃(f⃗ ) ∈ {0, . . . , c}, otherwise this conclusion
follows directly.

If the input is g⃗c , it follows from the first part that H̃(g⃗c) ∈ {0, . . . , c}.
Since gc

i only takes the value c , part 2 follows directly.
This ends the proof of the lemma. �

Remark 5.13. If for some f⃗ (not necessarily c-total) we have that H(f⃗ ) ∈ N, we clearly have that H̃(f⃗ ) ∈ N by the same
evaluation, since we nowhere in the construction change anything as long as we follow one of the old evaluation paths.
Moreover, in this case H(f⃗ ) = H̃(f⃗ ) < c.

Lemma 5.14. Let H ∈ FSPc−1
σ and assume that H is not a constant.

Then there is an ⊑-extension Ĥ of H such that Ĥ(g⃗c) = c and such that the base for Ĥ consists of the base for H together
with g⃗c .

Proof. Let Ĥ(f⃗ ) = H(f⃗ ) if H̃(f⃗ ) < c and let Ĥ(f⃗ ) = c if H̃(f⃗ ) = c and g⃗c
⊑ f⃗ .

By Lemma 2.7, Ĥ is in FSPσ . This ends the proof. �

We will now prove the final proposition, Proposition 5.19 in the direction of step functions being limit functionals. The
proof of this proposition is an elaboration of the proof of the main result in [11], and we split the argument into several
definitions and lemmas that in reality just are parts of the proof of 5.19. For the gain of notational simplicity, we will not
distinguish between the FSP H and its interpretation as a finite sequential functional.

Until the proof of Proposition 5.19 we will fix H ∈ FSPc
σ to be of level ≥ 2, and we will assume that H is not a constant.

The aim will be to prove that ΣH is a limit functional.
We letσ = τ⃗ → ιwhere τj = δ⃗j → ιwith s and sj the lengths of tuple types τ⃗ and δ⃗j, respectively.Without restricting the

generality we can assume that τ1 = δ⃗1 → ι has level ≥ 1. For each natural number d, we let d̄ be the s1-tuple (Cd, . . . , Cd)

of the tuple type δ⃗1 with each occurrence of Cd having its own type depending on the position according to the structure of
δ⃗1. We will assume that Ĥ and g⃗ c are as in Definition 5.11 and Lemma 5.14.

We will define the sequential functionals Fn ⊒ H for each n, and in parallel we will define the objects Tn for all n ≥ 0 and
Sn for all n > 0. These will be finite objects of type τ1. These objects will depend on H .

Definition 5.15 (Of Fn, Sn, Tn).

n = 0 If Ĥ(f⃗ ) < c we let F0(f⃗ ) = H(f⃗ ).
If Ĥ(f⃗ ) = c and f1(c + 1) = 1 we let F0(f⃗ ) = 0.
In all other cases we let F0(f⃗ ) = ⊥.
Let T0(c + 1) = 1 and let T0 be undefined for all other inputs.
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n > 0 If Ĥ(f⃗ ) < c we let Fn(f⃗ ) = H(f⃗ ).
If Ĥ(f⃗ ) = c then Fn(f⃗ ) = 1 in cases (i) and (ii) below, otherwise the value is ⊥.

(i) f1(c + 1 + n) = 0 and f1(c + 1) = 0.
(ii) f1(c + 1 + n) = 1 and f1(c + 1 + i) = 0 for 0 < i < n.
We let Tn(c + 1 + n) = 0 and Tn(c + 1) = 0 and we let Tn be undefined for all other inputs.

We let Sn(c + 1 + n) = 1, we let Sn(c + 1 + i) = 0 for 0 < i < n, and we let Sn be ⊥ for all other inputs.

We see that each Fn is in FSPσ since we (almost) gave the algorithm for each of them. (We do not follow the convention that
the letter F is restricted to sequential functionals here.)

Since d is both maximal and finite, we can replace the phrase if x⃗ = dwith a sequential query depending on d. We used
this implicitly in defining Sn and Tn as finite sequential procedures.

This and the following considerations are also used in the proof of the next lemma.
The base for F0 will consist of the base for H together with ((gc

1 ⊔ T0), gc
2, . . . , g

c
s ), where gc

j are of the types of τj. When
n > 0, the base for Fn will consist of the base for H together with ((gc

1 ⊔ Tn), gc
2, . . . , g

c
s ) and ((gc

1 ⊔ Sn), gc
2, . . . , g

c
s ).

Note that mentioned above lubs T ′
n = gc

1 ⊔ Tn and S ′
n = gc

1 ⊔ Sn of type τ1 (of level ≥ 1) indeed exist. For τ1 of level 1
this is trivial. For level > 1 appropriate T ′

n(x⃗) and S ′
n(x⃗) are sequentially computable by checking first whether xr(C⃗c) ≤ c

for any chosen argument xr of level > 0. If ‘‘yes’’, output gc
1(x⃗); if c < xr(C⃗c) ≤ c + 1+ n, output Tn(x⃗) or Sn(x⃗), respectively;

otherwise the result is ⊥. Then, we can show e.g. that gc
1 ⊑ T ′

n by using Lemma 5.9: if gc
1(x⃗) ∈ N then all x⃗ are c-total and so

xr(C⃗c) ≤ c and T ′
n(x⃗) computes as gc

1(x⃗). We leave the rest of the proof on T ′
n and S ′

n to the reader.

Lemma 5.16. For each n ∈ N there is an FSP Θn of type σ → ι such that for all i ∈ N:

Θn(Fi)↓ ↔ i ≤ n.

Proof. We will give an explicit construction of Θn by recursion on n. We will in addition prove from the construction that

Θn(F0) = 1 and Θn(Fi) = 0 if 1 ≤ i ≤ n.

We let

Θ0(F) =


1 if F((gc

1 ⊔ T0), gc
2, . . . , g

c
s ) = 0

⊥ otherwise

Θ0 clearly has the specified property.
Assume now that Θn is defined with the specified property.
We define the auxiliary Rn+1 of type σ , δ⃗1 → ι as follows:

Rn+1(F , x⃗) =


Θn(F) if x⃗ = c + 1
1 if x⃗ = c + 1 + n + 1
0 if x⃗ = c + 1 + i ∧ 1 ≤ i ≤ n
⊥ otherwise

in other words,

Rn+1(F) = [c + 1 → Θn(F)] ⊔ Sn+1,

and we let

Θn+1(F) = 1−· F(gc
1 ⊔ Rn+1(F), gc

2, . . . , g
c
s ).

Since we are interested in Θn+1(Fi), we need to know more on Rn+1(Fi).
From the inductionhypothesiswewill see that T0 ⊑ Rn+1(F0), that Ti ⊑ Rn+1(Fi) for 1 ≤ i ≤ n and that Sn+1 = Rn+1(Fn+1)

and, moreover, that Sn+1 = Rn+1(Fi) for all i ≥ n + 1.
Then the desired property of Θn+1 follows, and the proof is complete. �

We will now modify H (any H ∈ FSPc−1
σ which is not a constant) to Ḣ with the same observational interpretation as H ,

but such that evaluations relative to Ḣ can be seen as evaluations relative to each Fn, i.e. Ḣ ≺ Fn.

Definition 5.17. We define Ḣ via the following procedure:

Ḣ(f⃗ ) = H(f⃗ ) if Ĥ(f⃗ ) < c.

Note that if Ĥ(f⃗ ) = c (or, equivalently, g⃗ c
⊑ f⃗ ) then both Ḣ(f⃗ ) = ⊥ and H(f⃗ ) = ⊥.

If M is an applicative term with one free variable x of some type τ , and F is an FSP of type τ , we let M[F ] be the term
where we have substituted F for x.

Lemma 5.18 (Main). Let M be a typed applicative term of base type comprising of SP’s and one free variable of type σ . Assume
that M[Fn]↓ for infinitely many n, in particular terminating on n = 0. Then, for all n, all evaluations of M[Fn] will follow the same
path, and this will be an evaluation path for M[Ḣ] as well.
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A consequence will be that if M[Fn]↓ for infinitely many n including n = 0, then it does so for all n and the value must be
the same for all n because of H = Ḣ ⊑ Fn.

Proof. We prove this by induction on the length of the evaluation ofM[F0]. We will follow the evaluation path ofM[F0] and
we will use the induction hypothesis to show that this must agree with an evaluation path forM[Ḣ] and thus, for allM[Fn].

The only nontrivial case is whenM = xN⃗ , since all evaluation paths will agree until we meet a case like this.
So we assume that Fn(N⃗[Fn]) terminates for infinitely many n including n = 0, and let X be the set of n for which this

happens.
For each n, the procedure for computing Fn(N⃗[Fn]) starts by computing Ĥ(N⃗[Fn]). By the induction hypothesis, we may

as well evaluate Ĥ(N⃗[Ḣ]).
Now we must distinguish between two cases:

1. Ĥ(N⃗[Ḣ]) evaluates to c.
2. Ĥ(N⃗[Ḣ]) evaluates to a number < c .

We will verify that the statement of the lemma holds in case 2 and prove that case 1 is impossible. Together, this will form
the induction step in this case. The rest of the proof splits into those two cases.

1. If this is the case, the evaluation paths of F0(N⃗[F0]) and the various Fn(N⃗[Fn]) will be different from each other. Indeed,
the next step for n = 0 is to evaluate N1[F0](c + 1) and test if the value is 1. Termination requires that this is so.

If n > 0 the next step will be to evaluate N1[Fn](c + 1 + n) and test if the value is 0 or 1, and termination of M[Fn]
requires that one of these two values will be the result in this case. Moreover,
1.0 If the value is 0, we must in addition have N1[Fn](c + 1) = 0.
1.1 If the value is 1, we must in addition have N1[Fn](c + 1 + i) = 0 for all i such that 0 < i < n.
If 0 < n < m and n,m ∈ X (the set where termination is assumed), we cannot be in case 1.1 for both n and m since Fn
and Fm are consistent, and we require N1[Fn](c + 1 + n) = 1 and N1[Fm](c + 1 + n) = 0.

Thus,with one possible exception,wemust be in case 1.0 for all positive n ∈ X . But then,we have thatN1[F0](c + 1) =

1 terminates via a subevaluation of the evaluation of M[F0] and for infinitely many n we have that N1[Fn](c + 1) = 0
terminates. By the induction hypothesis then N1[Ḣ](c + 1) terminates, which would mean that this term has two
different values 1 and 0, so this case is impossible.

2. In this case, the computation path of

M[Fn] = Fn(N⃗[Fn])

contains a proper subpath evaluatingH(N⃗[Fn]) as given in Definition 5.15which terminates for all n ∈ X , including n = 0.
Then we can use the induction hypothesis, that we actually get H(N⃗[Ḣ])↓, and the evaluation path used here is the one
we used in evaluating H(N⃗[Fn]) actually for all n.

But this also gives us the complete path for evaluating Ḣ(N⃗[Ḣ]), and we are through.

This ends the proof. �

It follows that

Proposition 5.19. For any finite sequential functional H of level ≥ 2 such that H(⊥⃗) = ⊥ we have that ΣH of level > 2 is a
limit functional.

Proof. By H ⊑ Fn, we have ΣFn ⊑ ΣH . Assume Θ is any upper bound of ΣFn . Then Θ(Fn) = 0 for all n and hence
Θ(H) = Θ(Ḣ) = 0 as well, that is ΣH ⊑ Θ . Thus, ΣH =


n ΣFn .

It remains to see that the sequence Θn =


k≤n ΣFk is strictly increasing.
This follows from Lemma 5.16, (the Θn’s are not the same), and the proof is complete. �

Let us summarize what we have proved.

Theorem 5.20. Let σ = τ1, . . . , τs → ι and let f⃗ be a sequence of type τ⃗ .
Assume that for some i ≤ s we have that τi is either of level≥ 2 or of the form ιr → ιwhere r ≥ 3, and that fi is not a constant.
Then Σf⃗ is a limit functional.

Proof. Combine Lemma 5.6 and Propositions 5.7 and 5.19. �

This theorem gives also a full characterization of limit step functions of the types σ = τ⃗ → ι with each τi either of level
≥ 2 or of the form ιr → ι where r ≥ 3 by using the following simple

Proposition 5.21. Any finite functional whose all base tuples consist of constants has only finitely many approximations and so
is not a limit one.
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6. Extensions to finite sequential functionals of type level above 2

In Section 5 we did not achieve a full characterization of when a step function is a limit functional. Interestingly enough,
the remaining problems are with step functions of certain types of level 2, andwe have to leave these problems open. In this
sectionwewill consider arbitrary finite sequential functionalsΘ at type level≥ 3, andwewill see that if there is at least one
base element H⃗ with a non-constantHi of type level≥ 2, we can elaborate the argument from the proof of Theorem 5.20 and
obtain that the functional at hand is a limit functional. We will of course make a precise statement of what we can prove.

The proof of Proposition 5.7 does not extend from step functions to arbitrary finite sequential functionals, so we do not
have a similar result for type (ιr → ι) → ι even when r ≥ 3.

Theorem 6.1. Let α = σ , σ⃗ → ι where σ is of level ≥ 2 and let Θ be a finite sequential functional of type α.
Let {(Hj,Hj,1, . . .Hj,s) | j ≤ m} be finite sequential procedures representing the base elements of Θ and assume that there is

at least one j ≤ m such that Hj is not a constant.
Then Θ is a limit functional.

Proof. Let H⃗j = (Hj,1, . . . ,Hj,s).
Our argument will be based on the proof of Theorem 5.20, and we will use notation from the last part of Section 5 .
Let c be so large that Hj and Hj,i are in FSPc−1 for all j ≤ m and i ≤ s.
Whenever Hj is not a constant, we let Ĥj be constructed from Hj as Ĥ was constructed from H in Lemma 5.14. We also

construct Fj,n extending Hj as in Section 5 when Hj is not a constant. Then we let

F⃗j,n = (Fj,n, H⃗j).

If Hj is a constant, we let

F⃗j,n = (Hj, H⃗j).

Claim 1. For each n ∈ N there is a finite sequential procedure Θn of type α such that

1. Θn(F⃗j,k) = Θ(Hj, H⃗j) when k ≤ n and Hj is not a constant.
2. Θn(F⃗j,k) = ⊥ when k > n and Hj is not a constant.
3. Θn(F⃗j,k) = Θ(Hj, H⃗j) when Hj is a constant.

Proof of Claim 1. For n > 0, let Θ ′
n be the Θn from Lemma 5.16.

If n = 0 we adjust the definition to

Θ ′

0(F) =


1 if F((gc

1 ⊔ T0), gc
2, . . . , g

c
s ) ≤ c

⊥ otherwise.

If Hj is not a constant, the key property of Θ ′
n is that

Θ ′

n(Fj,k)↓ ⇔ k ≤ n,

and this property is not altered by our adjustment. From the construction of Θ ′
n for n > 0, we see that Θ ′

n(Hj)↓ if Hj is a
constant. Our adjustment for n = 0 makes the same hold then since Hj ∈ FSPc−1.

We let

Θn(F , F⃗) = Θ(F , F⃗) if Θ ′

n(F)↓.

2. and 3. follow directly from the property of Θ ′
n and the definition of F⃗j,k.

1. follows because in this case

Θn(F⃗j,k) = Θ(F⃗j,k) = Θ(Fj,k, H⃗j) = Θ(Hj, H⃗j).

The final equation holds because Hj ⊑ Fj,k and Θ(Hj, H⃗j)↓. This ends the proof of Claim 1.
We now let Θn be a ⊑-minimal FSP satisfying Claim 1. Then Θn ⊑ Θ and the sequence is strictly increasing.

Claim 2. IfM is a sequential functional of type α and Θn ⊑ M for each n, then Θ ⊑ M .

Proof of Claim 2. We have to prove thatM(Hj, H⃗j) = Θ(Hj, H⃗j) for each base element (Hj, H⃗j) for Θ .
If Hj is a constant, we have for every n that

Θ(Hj, H⃗j) = Θn(Hj, H⃗j) ⊑ M(Hj, H⃗j).

If Hj is not a constant, we will rely on the Main Lemma, Lemma 5.18:
LetMj(F) = M(F , H⃗j).



602 D. Normann, V.Yu. Sazonov / Annals of Pure and Applied Logic 163 (2012) 575–603

Then, for all k and n ≥ k, e.g. n = k,

Θ(Hj, H⃗j) = Θn(F⃗j,k) = M(F⃗j,k) = Mj(Fj,k) ∈ N.

It follows from the Main Lemma thatMj(Hj) terminates with the same value, and consequently that

M(Hj, H⃗j) = Θ(Hj, H⃗j).

This ends the proof of the claim.
Then Θ is the least upper bound in Qα of the strictly increasing sequence {Θn}n∈N, and thus Θ is a limit functional.
This ends the proof of the theorem. �

It is of course not important that it is the first type in the list of σ ’s that satisfies the special requirements.
For functionals of pure types and also for functionals with all arguments having levels≥ 2we have a full characterization

(by also using Proposition 5.21 and Theorem 4.9 on the pure type 2 and similar simpler versions of the latter theorem for
types of level 1):

Corollary 6.2. (a) Let Θ be a finite sequential functional of any type α = σ⃗ → ι with all σ⃗ of levels ≥ 2.
Then Θ is a limit functional if and only if there at least one component of some its base tuple is not a constant.

(b) Let Θ be a finite sequential functional of pure type α at any level k.
Then Θ is a limit functional if and only if k > 2 and at least one base element of Θ is not a constant.

We also know that for types α of levels ≤ 1 there are no limit finite objects.

7. Discussion and conclusions

In this paper we have shown that if σ is a type of level ≤ 1 or pure type 2, then the sequential functionals Qσ of type
σ form a dcpo, and we have shown that if σ = (ι, ι → ι) → ι, or more complex than that one, then Qσ is not a dcpo. We
have neither been able to decide from the literature nor from our attempts of proving it one way or the other if Qσ is a dcpo
when σ = (ι → ι)s → ι, where s > 1. The observed fact that we do not have a normal form theorem for these functionals
is a definite obstacle in the attempted proofs, but we dare conjecture that these types will form dcpo’s.

For pure types we have obtained a full characterization of when a finite sequential functional is a limit functional, and
for sequential step functions, we also have a full characterization when the type is σ = τ⃗ → ι with the list τ⃗ containing
only types of level ≥ 2 or level 1 types ιs → ι with s ≥ 3 (see a comment after Theorem 5.20). It came as a surprise that the
final difficulties would be for types of the form τ → ι where τ is at level 1. Qιs can be embedded into

{0, . . . , s − 1}⊥ → N⊥,

andmay be viewed as a space of functions over a finite domain. In order to prove Propositions 4.10 and 5.2we only need that
this domain has two elements. In order to adjust themethod to showing that certain step functions are limit functionals, we
need an extra element in the domain, see Proposition 5.7. In order to extend this to finite sequential functionals in general,
we need an infinite domain, i.e. we have to step one type level up, since the domain then cannot be represented as a cartesian
product at type level 0.

As we have left some characterizations open, we intend to continue the exploration of the ordering of sequential
functionals. There are also other questions to ask, like

1. Given a bounded chain Fn and an element S such that {Fn, S} is bounded for each n, will the chain and the element have
a common upper bound?

2. Will a finite, bounded set in Qσ have a least upper bound in Qσ ?
3. Will every infinite bounded set have a least upper bound?

The motivation for investigating such problems is not so much that finding the answers is so important, but that we believe
that the process of finding the answerswill teachusmore about the limitations on the one side and thepotential of sequential
functional algorithms on the other side.

The first problem was solved in the negative during the revision after acceptance of this paper.
Assuming that sufficiently many interesting results can be found, we plan to write a sequel to the present paper, and the

solution of the first problem will then be included.
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