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Abstract In recent years, structural and functional studies reveal that tyrosine kinases (TKs) act as the

essential components of signal transduction pathways that regulate cancer cell proliferation, apoptosis

and angiogenesis, and therefore become potential targets for anticancer therapy. Most of TK inhibitors

(TKIs) are small molecular and hydrophobic compounds, thus they can rapidly reach their specific

intracellular targets and inhibit the activation of the related TKs. Unfortunately, accompanied with

patients who gain great benefit of TKIs therapy, increasing evidences of acquired resistance to these

agents have been documented. The unveiling point mutations within the kinase domain, gene

amplification or overexpression, or modification of signaling pathway have been implicated in drug

resistance. Additionally, overexpression of ABC transporters is likely to set stage for resistant

development. In this review, we focus on the discussion of the molecular mechanisms of acquired

resistance to TKIs therapy. The mechanistic understanding may help to put forward new hypotheses on

drug development and design better therapies to overcome TKIs resistance.
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1. Introduction

Carcinogenesis in numerous cases is based on a pathological

intracellular signal transduction, in which the activation of

specific tyrosine kinases plays a major role including regulation

of cell growth, differentiation, adhesion, motility, death and

so on1,2. Mutations in TKs and aberrant activation of their

intracellular signaling pathways have been causally linked to

cancers. So the connection has driven the development of a new

generation of drugs that block or attenuate TKs activity,

providing a broader therapeutic window with less toxicity and

high efficiency. Nowadays, targeted therapies represent an

integrative approach to cancer therapy that has already led to

important clinical results. Although several TKIs have been

approved by Food and Drug Administration (FDA) and

applied in the clinic or in the clinical trial, increasing evidences

have shown that cancer cells treated with TKIs tend to acquire

genetic modifications to escape the inhibition from these agents.

Insight into the molecular events underlying TKI-resistance is

needed for the development of new treatment approaches,

such as next generation TKIs, despite the mechanisms are

varied and some of them are uncertain. In this review, we

summarize the molecular mechanisms of acquired resistance to

TKIs therapy.
2. Tyrosine kinases

The human protein kinase genome (also known as the kinome)

contains 518 protein kinase genes, including genes that encode

transmembrane receptor tyrosine kinases (RTKs) and soluble

cytoplasmic tyrosine kinases (also known as non-receptor tyrosine

kinases, NRTKs)3,4. Humans have 58 known RTKs which fall

into 20 subfamilies, including the well-known insulin receptor,

Fms-like tyrosine kinase 3 (FLT3), epidermal growth factor

receptor (EGFR), platelet-derived growth factor receptor

(PDGFR)3,5. All RTKs have a similar molecular architecture,

with ligand-binding domains in the extracellular region, a single

transmembrane helix, and a cytoplasmic region that contains the

protein tyrosine kinase (TK) domain plus additional carboxy (C-)

terminal and juxtamembrane regulatory regions6. Activation of

RTKs is initiated by hormones or binding of growth factors to

specific sites within the extracellular domain of the receptor. Upon

ligand binding, RTKs undergo a dimerization process (or a

conformational change), i.e., a bivalent ligand interacts simulta-

neously with two receptor molecules and effectively crosslinks

them into a dimeric complex3,6, resulting in autophosphorylation

of the tyrosine kinase domains3,7. Most tyrosine autophosphor-

ylation sites are located in non-catalytic regions of the receptor

molecule and function as binding sites for Src homology 2 (SH2)

or phosphotyrosine binding (PTB) domains of a variety of

signaling proteins7. Then the phosphotyrosine residues in the

cytoplasmic regions of RTKs are recognized as docking sites by

signaling factors such as PLCg1 through their SH2 domains and

hence link PTK activation to downstream signaling pathways8.

On the other hand, NRTKs account for third of the

approximately 90 known TKs which fall into 10 subfamilies

based on kinase domain sequence, including the well-char-

acterized Src, c-Abl, JAK. They are lack of transmembrane

domains and are found in the cytosol, the nucleus, and the

inner surface of the plasma membrane9. Normally, NRTKs

maintained in an inactive state through multiple mechanisms,
including binding of inhibitory proteins or lipids or intramo-

lecular autoinhibition10. Activation of NRKTs occurs through

binding to transmembrane receptors or a variety of intracel-

lular signals including dissociation of inhibitors or transpho-

sphorylation by other tyrosine kinases. Upon tyrosine

phosphorylaton activation, immunoreceptor tyrosine-based

activation motifs (ITAMs) serve as a docking site for down-

stream signaling molecules and adapter proteins containing

SH2 or phosphotyrosine binding domains, leading to multiple

cascades of signal transmission11. The involvement of NRTKs

in cancer can occur through various mechanisms such as

overexpression, mutation, and translocation; and therefore,

many compounds have been developed attempting to inhibit

their activity12.

Taken together, the TKs’ functions are as a point of

convergence for diverse signaling pathways and define key

biological outcomes, such as cell proliferation, differentiation,

motility and survival, in response to a wide range of physio-

logical stimuli8. Phosphorylation of tyrosine residues in target

TKs is essential for maintaining cellular homeostasis and

modulating gene expression in various intercellular and intra-

cellular signaling pathways. TKs are therefore important

targets for basic research and drug development3,5.
3. Small molecule tyrosine kinase inhibitors

Alterations of TKs signal transduction found in proliferative

disorders lead to the hypothesis that tyrosine kinase inhibitors

(TKIs) could have anticancer effects and, as a result, the

development of TKIs has become a hot area of anticancer

drug research.

The idea behind much of anti-TK drugs discovery is to find

small molecules that directly inhibit the catalytic activity of the

kinase by interfering with the binding of ATP or substrates9.

Generally, most of these TKIs can be categorized into four

groups: (1) ATP-competitive inhibitors, which bind predomi-

nantly to the ATP-binding site of the kinase when this site is in

the active conformation; (2) inhibitors that recognize and bind

to the non-active conformation of the ATP-binding site of the

kinase, thus making activation energetically unfavorable;

(3) allosteric inhibitors, that bind outside of the ATP-binding

site, modifying the tridimensional structure of the receptor and

disrupting the interaction between the ATP and the kinase

pocket; and (4) covalent inhibitors, that bind irreversibly by

covalently bonding to the ATP-binding site of the target

kinase12. Some TKIs target a wide range of kinase, such as

Imatinib, which is a drug used to treat certain types of cancer.

By 2011, Imatinib has been approved by FDA to treat ten

different cancers, including all stages of CML, GISTs and Phþ

B-ALL. It is unclear whether this lack of selectivity should be

considered an advantage or a shortcoming versus non-selective

TKIs. However, many receptor tyrosine kinase pathways

(for example, PDGF, EGF and VEGF) are simultaneously

activated, suggesting that multi-target TKIs could be superior

to selective inhibitors of a single receptor3.

Until 2011, 11 tyrosine kinase inhibitors have received US

Food and Drug Administration approval as cancer treat-

ments. There are considerable efforts to develop small mole-

cule inhibitors for a host of other kinases that are implicated

in cancer and other diseases. Here we have summarized the

information of the TKIs in Table 113.



Table 1 Tyrosine kinase inhibitor approved by FDA until 2011.

Name Alternative

name

Targets Clinical application Chemical structure

Receptor tyrosine kinase inhibitors

Erlotinib Tarceva, OSI-

774

EGFR Advanced or metastatic NSCLC,

pancreatic cancer

Gefitinib Iressa,

ZD1839

EGFR Advanced or metastatic NSCLC

Lapatinib Tykerb, GW

572016

EGFR, HER2 HER-2þ advanced or metastatic

breast cancer

Pazopanib Votrient,

GW-786034

VEGFRs, PDGFRs, c-Kit Advanced RCC

Sorafenib Nexavar,

BAY43-9006

Raf kinase, VEGFR2, c-

Kit,

FLT3, PDGFR-b

Advanced RCC, advanced HCC

Sunitinib Sutent

SU11248

VEGFR, PDGFR,

c-Kit, FLT3, CSF-1R

Imatinib–resistant or intolerant GISTs,

metastatic RCC

Vandetanib Caprelsa

ZD6474

VEGFR, EGFR Metastatic medullary thyroid cancer

Non-receptor tyrosine kinase inhibitors

Crizotinib Xalkori ALK Advanced or metastatic ALKþ NSCLC

Dasatinib Sprycel, BMS

354825

BCR–ABL, SRC family,

c-Kit, EPHA2, PDGFR

All phases of CML with resistance to

prior therapy including imatinib,

PhþALL with resistance to prior

therapy

Imatinib Gleevec,

STI571

BCR–ABL, c-Kit, PDGFR All stages of CML, GISTs, Phþ

B-ALL, dermatofibrosarcoma

Nilotinib Tasigna,

AMN107

BCR–ABL, PDGFR, c-Kit Chronic phase and accelerated phase

Phþ CML in adult patients resistant

to prior therapy, GISTs

Adapted from Wang et al.13.
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Although chemists continue to develop novel cytotoxic agents

with unique mechanisms of action, many of these compounds

are still limited by their general toxicity to proliferating cells,

including some normal cells14. Targeted therapy provides a new

approach for cancer therapy that has the potential for avoiding

some of the drawbacks associated with cytotoxic chemother-

apy15. While most novel, target directed cancer drugs have

pregenomic origins, one can anticipate a post genomic wave of

sophisticated ‘‘smart drugs’’ to fundamentally change the treat-

ment of all cancers16. However, clinical and in vitro evidences

have shown that cells treated with TKIs tend to acquire genetic

modifications resulting in resistance to these agents. Better

understanding of the mechanism of action of a drug may also

help in defining potential mechanisms of resistance. Clearly, the

lessons learnt from the targeted agents can aid the design and

evaluation of next generation compounds17.
4. Mechanisms of resistance to TKIs

4.1. Mutations

Up to now, more than 100 mutations have been described

affecting more than 70 amino acids causing resistance by

heterogeneous molecular mechanisms18. The most common

and prevalent mechanism leading to against TKIs therapy is

point mutations within the kinase domain, which decrease the

affinity of the TKIs to binding domain. Some mutations may

occur around the binding site, which make extensive conforma-

tional changes, thereby impeding TKIs approach through steric

hindrance. Moreover, some mutations may render the predo-

minance of ATP to competitive binding to the kinase compare

with the second generation TKIs, such as Dasatinib, Nilotinib

or Bosutinib19.

4.1.1. T790M mutations induced by Gefitinib

The strongest evidences come from Gefitinib, which mimics

adenosine triphosphate (ATP) and is found to bind with high

affinity to EGFR kinase in a competitive manner20. About

70–80% of non-small cell lung cancers harbor a somatic

mutation in the tyrosine kinase domain of the EGFR gene

that responds to Gefitinib. EGFR mutation usually occurs in

the first 4 exons of the tyrosine kinase domain, and a deletion

involving 5 amino acids (codons 746–750) together with a

point mutation at codon 858 (L858R: replaces leucine 858

with arginine) account for 90% of all EGFR mutations20,21.

This somatic mutation, which seems to arise more frequently

in women and in Asians, is correlated with dramatic clinical

responses to treatment with Gefitinib22. It competitively

inhibits the binding of ATP to the EGFR kinase, resulting

in inhibition of phosphorylation, disrupting downstream

signaling and inducing cell apoptosis. Strikingly, direct bind-

ing measurements show that Gefitinib binds 20-fold more

tightly to the L858R mutant than to the wild-type enzyme and

produce an initially dramatic response in lung cancer patients

harboring the L858R mutant20,23.

However, patients with EGFR-mutant lung adenocarci-

noma develop acquired resistance to Gefitinib after a median

of 10–16 months. More than 60% of these cases harbor a

second EGFR mutation, T790M (threonine-to-methionine

mutation at codon 790 in EGFR), who have the Gefitinib

refractory, additionally; other secondary resistance mutations
(D761Y, L747S, T854A) seem to be rare24–28. The T790 in

EGFR is located at a key position in the ATP binding cleft,

often referred to as the ‘‘gatekeeper residue.’’ And the

molecular mechanism of TKI-resistance is that the ATP

affinity of the oncogenic L858R mutant is increased by more

than an order of magnitude, leading to resistance to Gefitinib.

In a human bronchial epithelial cell line, overexpression of

EGFR T790M confers a growth advantage over cells expres-

sing wild type EGFR29. The development of acquired resis-

tance by the T790M substitution may be modeled in two ways.

In one model, the T790M substitution is absent in the initial

tumor cell population and rises de novo in one or more clonal

populations upon treatment with an EGFR TKI. In the

second model, the T790M substitution pre-exists in cis with

a primary activating mutation in a small population and is

subjected to positive selection pressure in the presence of an

EGFR TKI30.

The T790M mutation also possesses enhanced phosphor-

ylating activity, especially in combination with the L858R

mutation, leading lung cancer cell to survival which indicates

that the T790M mutant is actually an oncogene20. Regales

et al.29 developed mice with inducible expression in type II

pneumocytes of EGFR T790M alone or together with a drug-

sensitive L858R mutation. Both transgenic lines develop lung

adenocarcinomas that require mutant EGFR for tumor

maintenance but are resistant to an EGFR kinase inhibitor.

Notably, EGFR T790M-expressing animals develop tumors

with longer latency than EGFR L858RþT790M-bearing mice

and in the absence of additional kinase domain mutations29.

Interestingly, EGFR T790M alleles have been detected at

lower frequency in untreated NSCLCs, suggesting that they

may confer oncogenic activity to EGFR in addition to their

role in acquired drug resistance31. Additionally, germ line

T790M mutation has been detected in a family that exhibits

inherited predisposition to lung adenocarcinoma32. These

properties may explain that it is initial presence before drug

selection and its rapid selection as the single drug resistance

mutation during therapy with Gefitinib22. So a deeper under-

standing of the molecular and cellular basis of this phenom-

enon is crucial to the future development of alternative

therapies to overcome this resistance33.
4.1.2. T315I mutation induced by Imatinib

Point mutation within the BCR–ABL kinase domain is another

major cause of acquired resistance. Licensed tyrosine kinase

inhibitors are ineffective against these mutations and their

development reduces life expectancy of CML in chronic phase

from 10 years to just 22 months34. Around 30% of patients with

CML will have to stop Imatinib therapy due to intolerance and

resistance35,36. The in vitro data suggest that Imatinib treatment

confers the mutant cell clone with increased oncogenic fitness.

T315I mutation (resulting in substitution of Ile for a Thr

residue at the ‘‘gatekeeper’’ position 315) is at a higher

frequency than other amino-acid substitutions and is respon-

sible for 14% of reported cases occur at certain sites37.

Furthermore, T315I mutation raises particular concern,

because it also provides resistance to second-generation kinase

inhibitors already approved for clinical use (Nilotinib and

Dasatinib; see Tables 1 and 2)36. Threonine at position 315

forms a crucial hydrogen bond with Imatinib and the absence

of an oxygen atom in the substituted isoleucine prevented



Table 2 In vitro sensitivity of non-mutant and mutant

BCR–ABL against TKIs.

Name Imatinib

(nmol/L)

Nilotinib

(nmol/L)

Dasatinib

(nmol/L)

Native BCR–ABL 260 13 0.8

M244V 2000 38 1.3

G250E 1350 48 1.8

Q252H 1325 70 3.4

Y253F 3475 125 1.4

Y253H 46400 450 1.3

E255K 5200 200 5.6

E255V 46400 430 11

V299L 540 N/A 18

F311L 480 23 1.3

T315A 971 61 125

T315I 46400 42000 4200

F317L 1050 50 7.4

F317V 350 N/A 53

M351T 880 15 1.1

E355G 2300 N/A 1.8

F359V 1825 175 2.2

V379I 1630 51 0.8

L387M 1000 49 2

H396P 350 41 0.6

H396R 1750 41 1.3

Quoted from La Rosée et al.36.

Note: Imatinib-sensitive, r1000 (nmol/L) (italic); intermediate-

sensitive r3000 (nmol/L) (bold); insensitive 43000 (nmol/L)

(bold italic). Nilotinib-sensitive r50 (nmol/L); intermediate

sensitive r500 (nmol/L); insensitive 4500 (nmol/L). Dasatinib-

sensitive r3 (nmol/L); intermediate sensitive r60 (nmol/L);

insensitive 460 (nmol/L).

Abbreviation: N/A, no data available.
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bond formation37. Additionally, X-ray crystallography has

revealed how single point mutations in the various domains of

the kinase pocket can affect Imatinib binding36. T315I muta-

tion confers resistance by blocking Imatinib access through

steric hindrance and/or removing of critical hydrogen bonds,

which is resistant to all currently approved BCR–ABL kinase

inhibitors. Various other strategies are in use to optimize the

treatment of CML, including dose optimization of Imatinib,

combination therapy, and use of maintenance therapy with

interferon-alpha and vaccines38,39.

4.1.3. Other mutations induced by related TKIs

Therapeutic inhibition of KIT/PDGFRA kinase activity by

Imatinib has emerged as the first-line treatment option in

patients with inoperable gastrointestinal stromal tumor (GIST)40.

However, Imatinib response depends on KIT/PDGFRA muta-

tional status. Most primary mutations of KIT and PDGFRA in

GIST are sensitive to Imatinib and resistance occurs in most

cases because of the acquisition (or emergence through secondary

to the selective pressure) of secondary mutations41. Secondary

mutations in KIT exon 14 (kinase domain), exon 17 (activation

loop: D816V/H, D820Y, N822Y/K, Y823D) and in PDGFRA

exon 14 (D842V, ATP binding site: T670I) confer Imatinib and

Sunitinib-resistance occur in GIST42–48. Like Imatinib, Sunitinib

targets the inactivated conformation of KIT, PDGFRA kinases

and binds with high affinity to the ATP binding pocket. Both of
them could be effectively against the activation of the primary

mutations of KIT and PDGFRA. However, unlike Imatinib,

Sunitinib does not access the deep hydrophobic part of the ATP

binding site, which explains some differences in the inhibitory

properties of Sunitinib, like the potency against secondary

mutations49. After emergence secondary mutations in KIT and

PDGFRA, the kinases show a reduced binding affinity to the

Imatinib or Sunitinib and still retain the activity

Similarly, activating mutations in the FLT3 are one of the

most common molecular abnormalities found in de novo acute

myeloid leukemia (AML) and have a strong negative prog-

nostic impact50. FLT3 mutations occur within two specific

regions of the FLT3 gene (juxtamembrane (JM) domain and

tyrosine kinase domain)51. The most common type of FLT3

mutations is that of internal tandem duplication (FLT3/ITD)

in the JM domain, which occurs in up to 30% of patients with

AML and in 5% of patients with myelodysplastic syndrome,

whereas point mutations in the TK domain are observed in

approximately 7% of patients with AML52. Both mutations

represent gain-of-function alterations after treated with TKIs,

which render the kinase less accessible to the inhibitors,

leading to the constitutive activation of FLT3 and the potent

proliferation of leukemic cells.

Some of the best-studied FLT3 targeted inhibitors to date

include PKC412, SU5614, Sorafenib and Sunitinib53. Despite

their remarkable efficacy in reducing the leukemic clone in a

subset of patients with AML, remission in patients who have had

single-agent therapy tends to be short and secondary resistance

develops rapidly54. A screening assay (see Table 3) used to study

resistance profiles of three FLT3 inhibitors, PKC412, SU5614

and Sorafenib, showed non-overlapping mechanisms of resis-

tance for these inhibitors. In contrast, an overlapping resistance

profiles displayed for ABL inhibitors, namely Imatinib, Nilotinib

and Dasatinib, show incredible high resistance to the T315I

gatekeeper mutation (see Table 2)55. As a result, a combination

of FLT3 inhibitors might be beneficial to the patients who

acquired FLT3 resistance mutations56–59.

Further studies reveal that a great majority of somatic

mutations in PIK3Ca (PIK3CA) are missense mutations cluster-

ing in exons 9 and 20 in patients with NSCLC by EGFR-TKIs

treated. These mutant exons encode a part of the helical and

kinase domains, respectively. E545K andM1043I point mutation

are detected in the heterozygous mutation exons. Mutant

PIK3Ca stimulates the PI3K/AKT1 pathway and promotes cell

growth in several cancers. [3H]-thymidine incorporation data

suggests that PIKC3a, but not PIKC3b or PIKC3g plays a role

in the Imatinib-resistance, resulting in constitutive activation and

oncogenicity60,61. In addition, novel rarely mutations are detected

after treated with new developed TKIs. The fusion gene EML4-

ALK (echinoderm microtubule-associated protein-like 4 gene

and the anaplastic lymphoma kinase gene) is recently identified

as a novel genetic alteration in NSCLC, which has a strong

oncogenic activity both in vitro and in vivo and may be associated

with resistance to Erlotinib treatment62. Furthermore, from a

Gefitinib-resistant patient carrying the activating L858R muta-

tion, Costa et al.63 identified a novel secondary resistant muta-

tion, L747S in cis to the activating mutation, which attenuated

the up-regulation of Bim (Bcl-2 interacting mediator of cell

death) and reduced apoptosis.

Why do patients acquire these mutations during or after

TKIs therapy? Although the mechanisms are not very clear,

one explanation for these phenomena is that specific TKIs



Table 3 In vitro sensitivity of native FLT3 and mutant

FLT3-ITD or -TKD against TKIs.

Name PKC412

(nmol/L)

SU5614

(nmol/L)

Sorafinib

(nmol/L)

Native FLT3 8 100 8

A627T 97 N/A N/A

N676D 235 400 100

N676I 40 400 40

N676K 100 N/A N/A

N676S 25 100 10

F691I 121 42000 41000

F691L 10 300 41000

G697R 4400 N/A N/A

G697S 53 N/A N/A

C825S 17.5 300 9

D835E 10 350 49

D835N N/A 1000 N/A

D835Y 15 500 49

D839G 20 350 10

D839H 10 300 80

S451F 48 N/A N/A

S84IC 8 125 10

Y842C 4 500 10

Y842D 2 300 250

Y842H 4 700 300

Y842N 9 1000 600

Y842S 4 1000 400

M855T 20 325 10

Adapted from von Bubnoff et al.53,54,56–59.

Note: PKC412-sensitive o12.5 (nmol/L) (italic); intermediate-

sensitive o25.0 (nmol/L) (bold); insensitive Z25 (nmol/L)

(bold italic). SU5614, Sorafenib-sensitive o250 (nmol/L);

intermediate sensitive o500 (nmol/L); insensitive Z500

(nmol/L).

Abbreviation: N/A, no data available.
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treatment help tumor to select the preexisting cell population,

which has a selective advantage24. In addition, the advent

inhibitors increase patients’ genetic instability that promotes

the acquisition of new mutations, which either in drug targets

or the domains those active alternative pathways able to

render cell survival64.

4.2. Modifications of gene copy number and expression level

Gene copy number alteration and protein expression level

change are another two major mechanisms of oncogenic activa-

tion or signaling pathway modification. MET amplification

represents the strongest evidence that cells treated with TKIs

tend to acquire genetic alterations to tolerate the inhibition. The

MET gene encodes a transmembrane tyrosine kinase receptor

that acts as an HGF receptor and is involved with invasion,

metastasis, and angiogenesis in tumors65. Activation of MET

has been shown to protect cancer cells from DNA damage66.

Clinical evidences have indicated that amplification of the MET

oncogene is observed in 20% of resistance cases in NSCLC

patients with Gefitinib or Erlotinib treatment67. As a conse-

quence, tumor cells undergo an adaptive process and acquire

MET amplification during the selection, but not due to selection

of a preexisting population of cells. Those results in receptor
overexpression and ligand-independent activation featured as

the concept of ‘‘oncogenic addiction’’68. It is likely that cells

gaining MET extra copies have a selective advantage under the

selective pressure of the drug. In Gefitinib resistant HCC827

cells, a focal amplification is generated in chromosome 7 that

harboring the MET oncogene69. However, FISH analysis shows

that the acquired copies of MET do not located on chromosome

7 (where the MET gene is positioned) but on a marker

chromosome70. This suggests a mechanism of progressive

acquisition of additional MET copies as a consequence of

asymmetric partitioning of the marker chromosome at mitosis71.

Acquired resistance of NSCLC cells to TKIs is mainly mediated

by a switch to EGFR dependency, which indicates a reciprocal

and complementary relationship between T790M mutation and

MET amplification72,73. Unfortunately, MET amplification

often accompanies with EGFR amplification or KRAS ampli-

fication, which results in MET TKIs therapy failure71,74.

On the other hand, hepatocyte growth factor (HGF) over-

expression may lead to MET ligand-dependent activation. It is

proved that the mechanism of intrinsic resistance to Gefitinib in

NSCLC cells with EGFR-activating mutations is not MET-

amplified75. Notably in some patients without evidence of EGFR

T790M mutation or MET amplification, HGF expression is

greater in the resistant specimen, supporting a role for HGF

alone in promoting drug resistance69. It has been proposed that

activation of HGF/MET signaling can lead to Gefitinib resis-

tance in EGFR mutant cancers by activating PI3K/AKT signal

pathway through two different adapters: ERBB3 when MET is

activated by genomic amplification or GAB1 (Grb2 associated

binder 1) when MET is activated by HGF69,76.

Another well-described mechanism underlying clinical resis-

tance to Imatinib is BCR–ABL gene amplification or

increased mRNA levels of that. It is demonstrated that both

are responsible for an increased level of protein, which is able

to restore oncogenic signaling in presence of a given drug

concentration77. Cytogenetic and molecular techniques, i.e.,

expression of BCR–ABL transcripts is quantified using the

quantitative real-time PCR assay and BCR–ABL gene ampli-

fication is detected using fluorescence in situ hybridization, are

currently used to monitor CML therapy for both response and

relapse78. It is also possible that overexpression of BCR–ABL

may be an early phenomenon, preceding the emergence of a

dominant clone with a mutant kinase domain79. Of note, the

mechanism underlying genomic amplification is likely due to

the genomic instability. Additionally, maintenance of glucose

uptake for cell metabolism can inhibit p53 activation and

promote resistance when BCR–ABL-expressing cells were

treated with Imatinib80.

On the contrary, Virgili et al.81 reported that loss of the

remaining normal ABL1 allele in CML, which resulted from

cryptic interstitial deletion in 9q34 in patients who did not

achieve a complete cytogenetic remission (CCyR) during

treatment, engenders a novel unexpected mechanism of Ima-

tinib resistance. In addition, patients harbor deletion mutation

on exon 19 of EGFR gene or in-frame deletion delE746-A750

follow T790M mutation or epithelial-to-mesenchymal transi-

tion (EMT), which is related with an acquired resistance to

Gefitinib or Erlotinib82,83.

The above results showed that these alterations in gene or

protein expression could account for all resistant mechanisms.

This phenomenon suggests the existence of complicated

relationships among acquired resistance-related genes24.
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4.3. Modification of signaling pathways

Cancer cells can survival and replace the lack of signal in target

therapy by activating modified signaling pathway, leading to the

acquisition of drug resistance. EGFR-TKI, such as Gefitinib

and Erlotinib, shows favorable response to EGFR mutant lung

cancer. However, the responders may acquire resistance induced

by HGF, which activates MET that restores downstream

mitogen activated protein kinase (MAPK)/extracellular signal

regulated kinase (ERK)1/2 and phosphoinositide 3-kinase

(PI3K)/Akt signaling84. Mink et al.85 provided evidence that

paracrine factors secreted from the EGFR-TKI-resistant CAFs

(cancer-associated fibroblast population) mitigate the EGFR-

TKI-mediated blockade of pEGFR and pMAPK in co-cultured

tumor cells, regardless of their EGFR mutational status. Addi-

tionally, elevated IGFR-1b phosphorylation can compensate for

the loss of EGFR signaling function. Either increased insulin-like

growth factor II expression induced by Gefitinib, or heterodi-

merization of EGFR and IGFR-1b, may trigger IGFR-1b signal

transduction via activation of Akt and MAPK, and the crosstalk

between EGFR and IGFR-1b signaling are likely to contribute

to resistance of CRC cells to this agent86. Interestingly, Dumka

et al.87 raised the possibility that development of novel means

to enhance p38 MAPK activation in BCR/ABL expressing

cells may be an approach to promote antileukemic effects of

Dasatinib and, possibly, reverse T315I mutation-mediated resis-

tance. In the other way, Src kinase inhibition with Dasatinib

seems to be related to a lack of inhibition of STAT3 and MAPK

signaling88. In a similar manner, Suzuki et al.89 reported a new

mechanism of Imatinib resistance mediated by the activation of

RAS/MAPK pathway and EphB4.

Moreover, several possible mechanisms of acquired EGFR-

TKIs resistance, such as the involvement of insulin-like

growth factor1 receptor (IGF1R) signaling, the loss of PTEN,
Figure 1 Schematic summary of the main molecular mechanism of a

ABL kinase domain, including T790M or T315I, can decrease or aboli

as MET or BCR–ABL, leading to overproduction of the TK can conf

ligands mediated tumor cells activation without control; (E) Modific

constitutive Akt activation; (F) Increased efflux or decreased influx o

such as MDR1 or hOCT1, can decrease intracellular concentrations.
or PI3K-dependent recruitment of Gab1/Shp2 overexpression,

were reported90. PTEN instability-mediated constitutive Akt

activation is involved in acquired resistance to cetuximab and

also induces de novo resistance to Gefitinib91. Exposure of

Imatinib-resistant EOL-1R cells, which showed epigenetic

silencing of the phosphatase and PTEN gene, to Imatinib

failed to dephosphorylate AKT, ERK and STAT5, although

PDGFRa was effectively inactivated92. Another example is

that PTEN inactivation specifically raises EGFR activity by

impairing the ligand-induced ubiquitylation and degradation

of the activated receptor through destabilization of newly

formed ubiquitin ligase Cbl complexes93. However, loss of

PTEN expression has not been found to be associated with

Lapatinib resistance in any cell lines or clinical specimens94.

When chronically exposing HER2-overexpressing cells to

Lapatinib, resistant cells were found more dependent on

estrogen receptor signaling in terms of cell survival than

parent cells95.

Another mechanism of resistance is that PI3K pathway

inhibitors impaired dephosphorylation of RPS6 (the riboso-

mal S6 protein) in Imatinib-resistant cell lines, suggesting that

an oncogene other than BCR–ABL1 might be responsible for

activation of the PI3K/AKT1/mTOR pathway96. In another

signaling pathway, hyper activation of the pharmacologically

targetable PI3K/mTOR/p70S6K1 axis appears to be central to

the occurrence of Lapatinib resistance in breast cancer97. In

HCC, activation of PI3K/Akt signaling pathway mediates

acquired resistance to Sorafenib therapy98,99.
4.4. Mechanisms of resistance related to drug influx/efflux

Anticancer drug resistance, including TKIs, almost invariably

emerges and poses major obstacles towards curative therapy of
cquired resistance to TKIs. (A) Mutations in the EGFR or BCR–

sh the inhibitory effect of the drug; (B,C) Gene amplification, such

er relative resistance to an inhibitor; (D) Overexpression of RTK

ation of signaling pathways, such as PTEN instability-mediated

f TKIs from the cancer cell, mediated by membrane transporters



Yi-fan Chen, Li-wu Fu204
various human malignancies100. In tumor cell lines, multidrug

resistance (MDR) is often associated with an ATP-dependent

decrease in cellular drug accumulation, which is attributed to the

overexpression of certain ATP-binding cassette (ABC) transpor-

ter proteins101. Among ABC transporters, overexpression of

P-glycoprotein (MDR1/P-gp/ABCB1) and the breast cancer

resistance protein (BCRP/ABCG2) confer resistance to Imatinib

in CML or Gefitinib in NSCLN102,103. In vitro study showed that

chronic Imatinib exposure of Caco-2 cells resulted in a �50%

decrease in intracellular accumulation of Imatinib, probably due

to enhanced ABCG2- and MDR1-mediated efflux, as a result of

upregulated expression of these drug pumps104. Further investiga-

tion indicated that not only Imatinib, Gefitinib, Tandutinib but

Dasatinib are high-affinity substrates of MDR1 and ABCG2,

This may explain why these proteins mediated an effective

resistance in cancer cells against above compounds105–108. Recent

evidences have established that both Sunitinib and Sorafenib are

recognized and bound by both MDR1 and ABCG2, and can also

be effluxed in a specific concentration window109. These finding

illustrate that MDR1 and ABCG2 play roles in oral absorption,

systemic clearance, and cell penetration of certain TKIs in

patients. Collectively, overexpression of ABC transporters pro-

tects tumor cells from TKIs inhibition that the chemo-immune

system seems to recognize targeted TKI drugs as xenobiotics at

the membrane and tissue barriers and, in case of active extrusion,

protects intracellular targets from the action of the TKIs109. And

overexpression of drug transporters may allow the evolution of

genetic alteration cells that confer more potential drug resistance.

Recently, another drug transporters, human organic cation

transporter 1 (hOCT1), has been implicated as possible

mechanism for promoting Imatinib resistance in CML110.

Clinical data suggested that of patients with higher than

median (high) hOCT1 activity, 85% achieved major molecular

response (MMR) by 24 months, versus 45% with no more

than a median (low) hOCT1 activity111. Whereas hOCT1-

mediated influx may be a key determinant of molecular

response to Imatinib, it is unlikely to impact on cellular

uptake and patient response to Nilotinib104,112. In conclusion,

differential expression of influx (hOCT1) and efflux (MDR1,

ABCG2) transporters may be a critical determinant of

intracellular drug levels and, hence, resistance to Imatinib113.

In fact, TKIs such as Nilotinib, Lapatinib, Gefitinib and

Erlotinib showed an effective outcome of reverse ABC

transporters by blocking their efflux function106,114-116.

Noguchi et al.117 found that Erlotinib effectively suppressed

MDR1-mediated resistance to vincristine and paclitaxel, but

did not suppress resistance to mitoxantrone and doxorubicin.

Conversely, Erlotinib appeared to enhance MDR1-mediated

resistance to mitoxantrone in K562/MDR cells. Nevertheless,

a better understanding of the pharmacological interactions of

TKIs used in combinational chemotherapy is important when

coadministration of transporter modulators.
5. Conclusions

So far, a lot of TKIs have been identified and approved for

treatment of cancer. However, the responders acquire resistance

almost without exception. Understanding mechanisms of resis-

tance to TKIs and developing treatment strategies to overcome

resistance are the most important in the current research.

Moreover, clinical monitoring of mutations, certain proteins
overexpression, or gene amplifications should allow loss response

to TKIs to be recognized. In addition, quiescence, microenviron-

ment or microRNA may play roles in mediating resistance to

TKIs. Importantly, these results also underscore the notion that

a single cancer can simultaneously develop resistance induced by

several mechanisms (Fig. 1)68. On the other hand, the lessons

learnt from the TKIs resistance can drive researchers to develop

next generation of TKIs and to design highly effective indivi-

dualized therapies for cancer patients.
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