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Ferredoxins are iron–sulfur proteins that have been studied for decades because of their role in facilitating
the monooxygenase reactions catalyzed by p450 enzymes. More recently, studies in bacteria and yeast
have demonstrated important roles for ferredoxin and ferredoxin reductase in iron–sulfur cluster assembly.
The human genome contains two homologous ferredoxins, ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2 —

formerly known as ferredoxin 1L). More recently, the roles of these two human ferredoxins in iron–sulfur
cluster assembly were assessed, and it was concluded that FDX1 was important solely for its interaction
with p450 enzymes to synthesize mitochondrial steroid precursors, whereas FDX2 was used for synthesis
of iron–sulfur clusters, but not steroidogenesis. To further assess the role of the FDX–FDXR system in mam-
malian iron–sulfur cluster biogenesis, we performed siRNA studies on FDX1 and FDX2, on several human cell
lines, using oligonucleotides identical to those previously used, along with new oligonucleotides that specif-
ically targeted each gene. We concluded that both FDX1 and FDX2 were important in iron–sulfur cluster bio-
genesis. Loss of FDX1 activity disrupted activity of iron–sulfur cluster enzymes and cellular iron homeostasis,
causing mitochondrial iron overload and cytosolic iron depletion. Moreover, knockdown of the sole human
ferredoxin reductase, FDXR, diminished iron–sulfur cluster assembly and caused mitochondrial iron overload
in conjunction with cytosolic depletion. Our studies suggest that interference with any of the three related
genes, FDX1, FDX2 or FDXR, disrupts iron–sulfur cluster assembly and maintenance of normal cytosolic
and mitochondrial iron homeostasis.

Published by Elsevier B.V.
1. Introduction

Ferredoxins are iron–sulfur proteins that generally act as electron
transfer proteins. Ferredoxins, which are found in numerous plants,
bacteria and animals, were among the first proteins to crystallize, and
they have been extensively structurally characterized because of their
known role in providing electrons to cytochrome p450 enzymes,
which need a source of electrons to complete mono-oxygenation reac-
tions involved in normal steroid metabolism and numerous detoxifica-
tion reactions (reviewed in [1,2]). Over the last decade, it has become
apparent that both a ferredoxin and ferredoxin reductase are required
for synthesis of iron–sulfur clusters in severalmodel organisms. A ferre-
doxin gene found in an iron–sulfur cluster biogenesis operon in Azoto-
bacter vinelandii [3] was characterized as a [2Fe–2S] cluster protein [4]
and deletional analysis revealed that a ferredoxin in E. coli was neces-
sary for viability [5]. Since S. cerevisiae lack p450 enzymes, it was not ini-
tially clear why deletions of the ferredoxin, Yah1, [6] and the ferredoxin
reductase, Arh1 [7] were lethal. Based on the emerging possibility that
+1 301 402 0078.
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ferredoxin played an important role in iron–sulfur cluster biogenesis,
depletion studies of ferredoxin (Yah1) were performed in S. cerevisiae,
and iron–sulfur cluster protein activities were concomitantly dimin-
ished. Attempts to rescue the Yah-depleted cells with human FDX1
engineered to contain a yeast mitochondrial targeting signal were un-
successful [8]. Similarly, depletion of the S. cerevisiae ferredoxin reduc-
tase, Arh1, resulted in both a compromise of iron–sulfur cluster
assembly, and also an unexplained decrease of the heme protein, cyto-
chrome C, and cytochrome oxidase subunit 3 [9]. In S. cerevisiae, deple-
tion of either Yah1 or Arh1 resulted in marked mitochondrial iron
overload [8,9], a phenotype that is often observed when iron–sulfur
cluster assembly proteins are deleted in yeast or deficient in some
human diseases [10].

The human genome contains two homologous ferredoxins, FDX1,
located on chromosome 11q22, and a paralogue previously identified
as FDX1L, but renamed as FDX2 in a recent study [11]. Interestingly,
both genes are expressed ubiquitously, (http://www.ebi.ac.uk/gxa),
but FDX1 is very highly expressed in adrenal cortex and medulla,
whereas FDX2, on chromosome 19p13.2, is ubiquitously expressed,
with its highest levels of expression found in regions of the central ner-
vous system, including the cortex, cerebellum and the trigeminal and
dorsal root ganglia. When rescue of the Yah1-depleted S. cerevisiae
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was attempted with FDX2, the rescue was successful, leading Sheftel
et al. to hypothesize that FDX2was dedicated to iron–sulfur cluster bio-
genesis, whereas FDX1 was dedicated to steroid biogenesis. Both ferre-
doxins contain a FeS cluster. Upon knockdown of FDX1, aconitase and
SDH activities were normal, whereas iron–sulfur enzyme activities
were abnormal in cells in which FDX2 was silenced [11], supporting
the proposal by Sheftel et al. that the two ferredoxins have distinct
and non overlapping biochemical roles.

The exact molecular role of ferredoxins in iron–sulfur cluster assem-
bly remains unknown, although experiments in cluster reconstitution
have shown that bacterial ferredoxin may function as the physiological
reductant when iron–sulfur clusters form on the scaffold protein, IscU
[12]. Here, we confirm that knockdown of FDX2 interferes with iron–
sulfur cluster assembly, as previously asserted [11]. However, in con-
trast to the previous study, we demonstrate that FDX1 silencing also
significantly compromises iron–sulfur proteins, and causes mitochon-
drial iron overload and cytosolic iron depletion. In addition, we demon-
strate that knockdown of the sole identified ferredoxin reductase in the
human genome, FDXR, compromises iron–sulfur cluster formation and
leads to misregulation of cellular iron homeostasis. Our results suggest
that both FDX1 and FDX2 and their likely reductase partner, FDXR, con-
tribute to iron–sulfur cluster biogenesis.

2. Materials and methods

2.1. Antibodies

Human FDX1 antibodywas raised against purifiedhuman FDX1pro-
tein whichwas cleaved from a GST fusion protein generated from pGEX
4T-3/hFDX1 with thrombin. Antiserum was generated in New Zealand
white rabbits by Covance Laboratories Inc. (Vienna, VA) and affinity pu-
rified using pure protein coupled on the medium of CNBr-activated
sepharose 4B (Amersham Pharmacia). Antibodies to IRP1, IRP2, FECH
and ALAS2 were generated as described previously [13]. Other anti-
bodies wereα-tubulin (Sigma-Aldrich), SOD2 (Abcam), NTH (R&D sys-
tem, Cat No. MAB2675), Ferredoxin reductase (Abcam), MiroProfile
Total OXPHOS rodent antibody cocktail (MitoScience), Cytochrome C
(MitoScience), heme oxygenase 1 (HMOX-1) (Epitomics), mitoferrin
(MFRN) (generous gift from Prof. Barry Paw), L-ferritin antibody (L-
FTN) (1:5000) was a generous gift from Dr. Esther G. Meyron-Holtz.

2.2. Cell cultures, lysates and subcellular fractionation

Human erythroid leukemia (K562) cells (ATCC) were maintained in
RPMI 1640 medium containing 10% FBS, 2 mM L-glutamine, and 100 U/
ml PenStrep. HeLa cells were grown in Dulbecco's modified Eagle's medi-
um (DMEM)-complete medium (DMEM medium supplemented with
10% fetal calf serum (FCS), 10%U/ml Penicillin-Streptomycin (Gibco),
and 2 mM L-glutamine(Gibco) in a humidified incubator at 5% CO2).
Human colon cancer cell linesHCT116 (American TypeCulture Collection,
Manassas, Virginia) were maintained in McCoy's 5A modified medium
(Life Technologies, Grand Island, New York) supplemented with 10%
FBS and 10%U/ml Penicillin-Streptomycin (Gibco). Treatments with the
iron chelator, deferoxamine mesylate (Dfo, Sigma) or ferric ammonium
citrate (FAC, Fisher Scientific) were performed by incubating cells for
16 h in DMEM-complete medium with 50 μM Dfo or 100 μM FAC, then
washed and incubated in DMEM-completemedium for up to 24 h. Triton
lysates were prepared as previously described with addition of 2 mM cit-
rate. Subcellular fractionswere prepared andmitochondrial iron contents
were measured as previously described [13].

2.3. RNA interference assays

The control siRNA was the non-targeting siRNA (Qiagen). siRNAs
against human FDX1 were purchased from QIAGEN. The target se-
quences are listed in supplemental material Table S1. For RNA
interference experiments, HeLa cells were cultured in DMEM with
10% vol/vol FBS and transfected at 30%–50% confluency with
100 nM siRNA using Lipofectamine 2000 (Invitrogen) every 72 h for
3–9 days. Human erythroid K562 cells (ATCC) were maintained in
RPMI 1640 medium containing 10% FBS, 2 mM L-glutamine, and
100 U/ml PenStrep. To transfect K562 cells, HiPerFect reagent (QIA-
GEN) was used following the manufacturer's protocol. The cells
were subsequently harvested and used for further studies.

2.4. Enzymatic activity assays

All enzymatic assays except aconitase activity assay were carried
out on 96-well plates. A multiscan MCC plate reader (Fisher) was
used for data acquisition.

2.5. Aconitase in-gel assay and electrophoretic mobility shift assay

Aconitase was assayed using a coupled assay after native PAGE
separation, as described previously [13]. IRP-IRE binding activity
was determined by electrophoretic mobility shift assay using a 32P-la-
beled ferritin IRE probe, as described previously [13].

2.6. Lactate dehydrogenase assay

Lactate dehydrogenase (LDH) activity was assessed according to
the manufacturer's instructions. For FDX1 RNAi cells and wild type
cells using Sigma Diagnostics' Lactate Dehydrogenase Kit (Product
No. TOX-7), 100 μg whole protein of each sample was used for the
assay, and an ELISA spectrophotometer system (Fisher Scientific)
was used for data acquisition.

2.7. Xanthine/xanthine oxidase assay

XO activity was assayed using Amplex Red XO Assay Kit (Molecu-
lar Probes).

2.8. Complex I enzyme activity assay

Complex I enzyme activity assay was performed using the Com-
plex I Enzyme Activity Dipstick Assay Kit (MitoScience, MS130)
according to the manufacturer's instructions.

2.9. Quantitative real-time RT-PCR

Total RNA was extracted from HeLa cells using an RNeasy mini kit
(QIAGEN, Maryland, USA) according to the manufacturer's instruc-
tions, and the quality of RNA (i.e., A260/280>1.8) was confirmed. The
determination of mRNA by qRT-PCR was carried out using total RNA
(1 μg) as a template and poly (dT) as a primer for cDNA synthesis
by SuperScript II reverse transcriptase (Invitrogen). The mRNA levels
of each gene were determined by quantitative real-time PCR using
SYBR GreenER qPCR supermix (Invitrogen) and an ABI PRISM
7900HT Sequence Detection System.

A typical reaction mixture contained 25 μl of Platinum SYBR Green
qPCR SuperMix-UDG, 1 μl of both forward primer (10 μM) and re-
verse primer (10 μM), 1 μl ROX Reference Dye, cDNA generated
from 1 μg of total RNA, supplemented with DEPC-treated water to
get a reaction mixture with final volume of 50 μl. The standard cycling
program were: 50 °C for 2 min; 95 °C for 2 min. 40 cycles of: 95 °C for
15 s, 60 °C for 30 s, and 70 °C for 15 s. Correct quantitative RT-PCR
product size was verified by agarose gel electrophoresis (data not
shown). All primers used in the studies are listed in supplemental
material Table S2. Relative transcript abundance was calculated
using the 2−ΔΔct method, with GAPDH as the internal control.
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2.10. Western blot analysis

The protein concentration was determined by the Bradford meth-
od (Pierce Chemical Co., Rockford, IL) with bovine serum albumin
(Pierce Chemical Co.) as the standard. Western blot analysis was car-
ried out as described previously [13].

2.11. Heme and iron assay

RNAi treated cells were washed with PBS to remove culture medi-
um. After lysis, heme was quantified using the QuantiChrom Heme
Assay Kit (BioAssay Systems). Cellular nonheme iron was quantified
using the QuantiChromTM Iron Assay Kit (DIFE-250) from BioAssay
Systems, which measures Fe2+ using a chromagen that forms a blue-
colored complex specifically with Fe2+. In the assay, Fe3+ is reduced
to Fe2+ prior tomeasurement at 590 nm in the presence of chromagen.

2.12. Statistical analysis

All data excepting iron content measurements are expressed as
means±SEM. Statistical analysis was performed using unpaired 2-
tailed Student's t test, with P values less than 0.05 considered to be
significant. In terms of iron content measurement, ANOVA followed
by two-tail Dunett's test was used for statistic analysis, with P value
is less than 0.05 considered to be significant.

3. Results

3.1. FDX1 is a component of both mitochondrial and cytosolic [Fe–S]
machinery

Protein sequence alignment revealed that FDX1 and FDX2 were
33% identical and 52% similar (Fig. 1A), and both contained long
arginine-rich mitochondrial targeting sequences. To investigate the
function of FDX1, we assessed its role in human Fe–S biogenesis by
using RNAi technology in both HeLa and K562 cells and then measur-
ing the enzymatic activities of several iron sulfur proteins. To develop
tools for RNAi experiments, we used two previously reported oligo-
nucleotides to target specifically either FDX1 or FDX2 [11], and we
also designed several new oligonucleotides for each gene using
areas of sequence dissimilarity. No changes of FDX1 mRNA were ob-
served in FDX2 knock-down cells compared with wild-type and neg-
ative control cells (Fig. 1B, left panel); FDX2 mRNA also showed no
obvious changes in FDX1 knock-down cells compared with wild-
type and negative control cells (Fig. 1B, right panel). For these studies,
several new oligos were designed as described in Materials and
methods, and they were used to perform knockdown studies along
with oligos that worked in a previous report [11]. RT-PCR analysis
of either the FDX1 or FDX2 transcripts showed that the highest level
of inhibition was reached 72 h after the third of three successive
transfections (data not shown). Since recent studies on FDX1 and
FDX2 claimed that FDX2, but not FDX1 was a member of the mito-
chondrial FeS protein assembly machinery, we assessed FeS activities
after knockdowns of FDX1 or FDX2. We next performed a series of en-
zyme assays to evaluate the results of either FDX1 or FDX2 knock-
down on the activities of several FeS proteins. First, the non-
denaturing aconitase activity assay was used to monitor FeS cluster
assembly in the mitochondria and cytosol of HeLa cells, a classical ex-
periment that is frequently used to investigate the role of proteins in-
volved in the Fe–S biosynthesis [10]. After only two successive
transfections, we observed decreased mitochondrial and cytosolic
aconitase activities in cells depleted of FDX2, in agreement with a re-
cent report [11], but we also observed diminished cytosolic aconitase
activity in cells depleted of FDX1 (Fig. 1C), which did not agree with
the same recent report [11], and which made us realize that FDX1
might have a clear effect on iron–sulfur cluster biogenesis if we
achieved a more complete knockdown (see Fig. 3).

3.2. Iron responsive element-binding activities of both IRP1 and IRP2 are
activated by FDX1 deficiency

Both mitochondrial and cytosolic aconitase (IRP1) contain a [4Fe–
4S] cluster, and complete disassembly of the Fe–S cluster in cytosolic
aconitase (c-aconitase) converts IRP1 to its RNA-binding form [14].
Therefore, measuring the IRE-binding activity of IRP1 also indicates
the status of the Fe–S cluster status of IRP1. To examine whether im-
pairment of Fe–S cluster biogenesis affected IRE-binding activity, we
prepared a [a-32P]CTP-labeled IRE of ferritin mRNA probe and
employed it in an IRP electrophoretic mobility shift assay in which ex-
tracts of FDX1-depleted HeLa cells were incubated with the IRE probe.
Though aconitase activities were not visibly strongly affected after
two transfections, we observed activation of IRE-binding activity of
IRP1 and IRP2 on gel-shift studies, consistent with cytosolic iron de-
pletion that is a frequent response to compromised iron–sulfur clus-
ter assembly (Fig. 1D) [13]. Since most of IRP1 is in the c-aconitase
form in normal cells, it can be difficult to discern a loss of cytosolic
aconitase activity, whereas an increase in IRE-binding activity can
be more easily appreciated since the initial background activity is
low [14].

3.3. Effects of FDX1 depletion on cellular iron homeostasis

To further characterize the response of HeLa cells to loss of FDX1,
we used our newly created oligos 1 and 2 to deplete FDX1, and we
measured mitochondrial iron concentrations from cells grown in nor-
mal medium or in medium supplemented with iron. We observed
statistically significant increases in mitochondrial iron levels after
fractionation of FDX1 depleted cells, and levels increased 30-fold in
cells grown in iron-supplemented medium (Fig. 2). Subcellular frac-
tions were prepared as previously described [13] and verified by the
western blot of mitochondria and cytosolic protein marker (data not
shown). We also observed punctate accumulations of ferric iron in
cells after knockdown (data not shown).

3.4. FDX1 depletion affected the activities of bothmitochondrial and cytosolic
Fe/S proteins, but did not affect the non-Fe–S containing proteins

To more completely assess the effects of FDX1 siRNA on iron–
sulfur proteins, four newly designed FDX1 siRNA oligos (including
the two oligos we used in experiments in Fig. 1) were used for com-
parison. We performed three or four successive transfections to
achieve greater loss of FDX1, and then performed the in-gel aconitase
activity assay. We found marked loss of mitochondrial and aconitase
activities using each of four new oligos (Fig. 3A). We then chose to
pursue further studies with the two oligos that showed the highest
silencing efficacy. Western blot showed the FDX1 protein levels
were reduced to less than 20% after four successive transfections of
siRNA oligo-treated HeLa cells compared with wild-type and negative
control HeLa cells (Fig. 3B), and we also found substantial increases
in IRP2 in western blots, consistent with stabilization of IRP2 by low
cytosolic iron levels. We also found increased TfR1 and decreased
ferritin (FTN), as expected when IRE-binding activity increases
(Fig. 3B) [14]. As expected, our data showed that FDX1 levels were re-
duced by siRNA treatments, at both protein and mRNA levels, (Fig. 3B
and C). Increased TfR1 mRNA levels were expected, since IRP binding
stabilizes the TfR1 mRNA. Activity of xanthine oxidase, a cytosolic FeS
protein, which contains several [2Fe–2S] clusters [15], was markedly
diminished by FDX1 siRNA treatment (Fig. 3D), whereas ferroportin
levels did not change, and the control enzyme, lactate dehydrogenase,
a non-FeS cytosolic enzyme, was unaffected (Fig. 3E).
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3.5. Complex I activity is inactivated upon FDX1 depletion

To assess the impact of the abnormal iron homeostasis and compro-
mised iron–sulfur protein status, we performed western blots on
multiple mitochondrial proteins and discovered that protein levels of
complexes I–IV were slightly decreased, whereas mitochondrial super-
oxide dismutase, SOD2, was significantly increased (Fig. 4A). We have
previously observed increased SOD2 in response to mitochondrial iron
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overload [17], andwe hypothesize that oxidative stress caused bymito-
chondrial iron overload drives the increased expression of SOD2 in cells
treatedwith FDX1 siRNA.We also found that complex I activity was sig-
nificantly reduced (Fig. 4B), consistent with its dependence on eight
iron–sulfur clusters for function [10].
3.6. Heme deficiency and altered cellular iron homeostasis was caused by
FDX1 depletion in erythroblast cells

To assess the role of FDX1 in a different more specialized cell type, we
performed siRNA studies on the erythroblast cell line, K562. Upon effi-
cient knockdown of FDX1 (Fig. 5A), we observed the expected increases
in IRP2 and TfR1. In addition, we observed a marked increase in FPN
(Fig. 5B) that may be driven by oxidative stress [17]. We have previously
observed that erythroblasts transcribe FPN from a second promoter that
generates a transcript that lacks an IRE in its 5′UTR [16–18], and transla-
tion of this FPN transcript cannot be repressed by IRP activation in cells
with cytosolic iron depletion. We observed significant increases in
mRNA levels of TfR1 and in the mitochondrial iron importer, mitoferrin
(MFRN1, also known as SLC25A37) (Fig. 5C). In addition, we observed
marked decreases in total heme content, despite increased levels of ferro-
chelatase (FECH) protein and mRNA (Fig. 5D, E, F). Interestingly, we
noted decreased levels of ALAS2 protein (Fig. 5E),which catalyzes the ini-
tial step of heme biosynthesis, and is encoded by a transcript that con-
tains an IRE in its 5′UTR in erythroid cells. Thus, under conditions of
iron depletion, ALAS2 expression can be potentially inhibited by activa-
tion of IRPs in erythroid cells. We previously suggested that cytosolic
iron depletion in erythroid precursors and concomitant repression of
ALAS2 translation may account in part for the anemia of a GLRX5 defi-
cient patient [17], and now we have recapitulated that important obser-
vation here with our FDX1 knockdown studies. Additionally, increased
heme oxygenase 1 (HMOX-1) protein levels were also observed
(Fig. 5E), which could also contribute to the decreased heme content.
Taken together, these data indicated that in addition to a general function
in [Fe–S] synthesis and cellular iron homeostasis, the human FDX1 has an
important role in erythropoiesis.
3.7. Ferredoxin reductase (FDXR) is also important for the FeS protein
activity and heme biosynthesis

In the human genome, there is a single ferredoxin reductase,
FDXR, located at chromosomal position 17q24. Since the two ferre-
doxins have been shown to play a role in iron sulfur cluster biogene-
sis, and there is apparently only one ferredoxin reductase, we
predicted that knockdown of FDXR would also affect iron–sulfur clus-
ter biogenesis. After three transfections, FDXR expression was de-
creased at both protein and mRNA levels (Fig. 6A and B) in HeLa
cells, and we saw diminished mitochondrial and cytosolic aconitase
activities (Fig. 6C). IRE binding activities of IRPs increased (Fig. 6D),
and activity of xanthine oxidase decreased (Fig. 6E), whereas activity
of the control, non-[Fe–S] enzyme, lactate dehydrogenase, was unaf-
fected (Fig. 6F). To examine whether FDXR knockdown results reca-
pitulated the mitochondrial iron homeostasis problem that we
observed in FDX1 knockdowns, we analyzed iron assays of mitochon-
drial fractions (Fig. 7). To further analyze the general iron homeosta-
sis pattern, we performed western blots and found that IRP2 and TfR1
levels were increased (Fig. 8A), whereas ferritin decreased. In addi-
tion, we found an increased expression of MFRN1 (Fig. 8A), indicating
that MFRN1 might contribute to mitochondrial iron accumulation,
consistent with the iron assays of mitochondrial fractions. We also
found reduced levels of the nuclear DNA repair protein, NTHL,
which requires an FeS cluster for structural stability, and reduced
amounts of the heme protein, cytochrome C (Fig. 8B). Similar to our
findings in FDX1 knockdowns, we found reduced Complex I activity
(Fig. 8C) in HeLa cells.

To further pursue our observation about cytochrome C, we per-
formed FDXR knockdowns in K562 cells. Heme levels were markedly
reduced (Fig. 9A), whereas ferrochelatase protein and mRNA levels
increased (Fig. 9B and C). Interestingly, we observed increased levels
of BACH1 protein (Fig. 9D), a heme binding protein that normally
works as a repressor of HMOX1.

Additionally, we found the expected changes in IRP2, TfR1, and
ferritin in western blots and we also found that ALAS2 was reduced
(Fig. 9D), consistent with translational repression of ALAS2 by IRPs.
Not unexpectedly, the FDXR knockdown in K562 cells was associated
with iron misregulation similar to the abnormal regulation observed
in the FDX1 knockdown experiments. Since ferrochelatase mRNA
and protein levels were increased, the decreased heme levels were
more likely attributable to ALAS2 deficiency than to loss of ferroche-
latase activity, since the stability of ferrochelatase proteins depends
on presence of an intact [2Fe–2S] cluster [22].

4. Discussion

Here, we have used RNAi techniques to evaluate the roles of FDX1,
FDX2 and FDXR in human iron sulfur cluster biogenesis. After knock-
down, we observed that loss of FDX2 correlated with loss of aconitase
activities, in agreement with a recent publication [11]. However, we
found that siRNA of FDX1, which did not complement S. cerevisiaie
deficient in Yah1, and was previously shown to be dispensable for
iron sulfur cluster assembly [11], was clearly important for iron–sulfur
protein activities, as judged by aconitase assays of mitochondrial and
cytosolic cell fractions and by xanthine oxidase activity assays. Sheftel
et al. asserted that only FDX1 was able to catalyze formation of cortisol,
whereas FDX2 was not, and we did not assess the role of the two
ferredoxins in p450 reactions. However, we disagree with their conclu-
sion that FDX1, which is very highly expressed in the adrenal gland, is
dedicated solely to pathways involving p450 enzymes, as we have
found significant compromise of iron–sulfur protein activities. Even
more impressively, we found that siRNA of FDX1 leads to mitochondrial
iron overload and cytosolic iron deficiency, as indicated bymitochondrial
ironmeasurements, and changes in IRE binding activities and expression
of target proteins.
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Therefore, we suggest that FDX1 and FDX2 represent a duplicated
gene pair in which both contribute to iron–sulfur cluster biogenesis.
FDX2 is not more highly expressed in the adrenal than in other tis-
sues, and we acknowledge the possibility that FDX1 participates
more in p450 reactions. The roles of these two homologues might
be distinguished in mouse knockout models. Murine FDX1 is coded
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as MGI:103224 and there are three commercially available gene-
trapped or targeted alleles. FDX2 is known as FDX1l in mice,
MGI:1915415, and there are nine available trapped alleles. FDXR is
known as FDXr MGI:104724, and there are two targeted alleles that
are commercially available. Thus, there are some questions that
could be pursued using available mouse deletion models.

As might be predicted, we found that the ferredoxin reductase,
FDXR, was needed for FeS activities, heme synthesis in K562, and nor-
mal regulation of cellular iron homeostasis. Thus far, these results and
previous results might predict that the FDX2 knockout would not be
lethal, because FDX1 also participates in FeS activities, whereas
FDX1 knockouts might have problems with stress responses and min-
eralocorticoid production. None of the experiments address the ques-
tion here of how the p450 enzymes of the endoplasmic reticulum
acquire their electrons. Both FDX1 and FDX2 appear to be targeted
to mitochondria [11], but the cytochrome p450 enzymes of the endo-
plasmic reticulum are enzymatically active in the cytosol, and it is
possible that enough ferredoxins are left in the cytosol to fulfill the
role of electron donation for the p450s. Alternatively, the p450s of
the endoplasmic reticulum may partner with other proteins that
can donate reducing equivalents.

[Fe–S] biogenesis and heme biosynthesis are among the most im-
portant pathways of cellular iron metabolism, and we have observed
that the machineries of both processes are impaired in the FDX1
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knock-down cells. We observed that adequate heme synthesis re-
quires FDX1 and FDXR. Heme deficiency could cause a compensatory
increase in iron uptake. BACH1 is a heme binding protein that nor-
mally works as a repressor of HMOX1, and decreased heme concen-
trations may enhance nuclear accumulation of BACH1 [19]. The
increased mRNA and protein expression of ferrochelatase might rep-
resent an attempt to overcome the shortage in heme. It is also
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possible that ferrochelatase was partially inactivated by superoxide
radicals that were generated from the electron transport chain [20].

It also remains unclear which step of iron–sulfur cluster biogene-
sis requires ferredoxin activity [21], although ferredoxin facilitated
the initial formation of the iron–sulfur cluster of IscU in an in vitro
system [12]. One possible way to better understand the role of the
FDX–FDXR proteins in mammalian systems would be to perform
two-hybrid screens for FDX1, FDX2 and FDXR. Since many of the
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Fig. 9. Heme was reduced in FDXR knockdown in HCT116 (K562) cells. Heme levels
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(9C), but ferrochelatase mRNA levels were increased (9C). In western blots, IRP2 levels
increased, TfR1 increased, but ALAS2 protein levels decreased (9D).
steps FeS biogenesis have been identified, it might be possible to inte-
grate the FDX–FDXR contribution by into the FeS biosynthesis scheme
by identifying protein binding partners.
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