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Abstract

A new characterization of excessive functions for arbitrary one-dimensional regular di#usion
processes is provided, using the notion of concavity. It is shown that excessivity is equivalent to
concavity in some suitable generalized sense. This permits a characterization of the value function
of the optimal stopping problem as “the smallest nonnegative concave majorant of the reward
function” and allows us to generalize results of Dynkin and Yushkevich for standard Brownian
motion. Moreover, we show how to reduce the discounted optimal stopping problems for an
arbitrary di#usion process to an undiscounted optimal stopping problem for standard Brownian
motion.

The concavity of the value functions also leads to conclusions about their smoothness, thanks
to the properties of concave functions. One is thus led to a new perspective and new facts about
the principle of smooth-8t in the context of optimal stopping. The results are illustrated in detail
on a number of non-trivial, concrete optimal stopping problems, both old and new.
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1. Introduction and summary

This paper studies the optimal stopping problem for one-dimensional di#usion pro-
cesses. Let (�;F;P) be a complete probability space with a standard Brownian motion
B= {Bt ; t¿ 0}, and consider the di#usion process X with state space I ⊆ R and dy-
namics

dXt = �(Xt) dt + �(Xt) dBt (1.1)

for some Borel functions � :I → R and � :I → (0;∞). We assume that I is an
interval with endpoints −∞6 a¡b6 + ∞, and that X is regular in (a; b); i.e., X
reaches y with positive probability starting at x, for every x and y in (a; b). We shall
denote by F= {Ft} the natural 8ltration of X .
Let ¿ 0 be a real constant and h(·) a Borel function such that Ex[e−�h(X�)] is

well-de8ned for every F-stopping time � and x∈I. By convention f(X�(!)) = 0 on
{�=+∞}, for every Borel function f(·). Finally, we denote by

V (x), sup
�∈S

Ex[e−�h(X�)]; x∈I (1.2)

the value function of the optimal stopping problem with reward function h(·) and
discount rate , where the supremum is taken over the class S of all F-stopping
times. The optimal stopping problem is to 8nd the value function, as well as an optimal
stopping time �∗ for which the supremum is attained, if such a time exists.
One of the best-known characterizations of the value function V (·) is given in terms

of -excessive functions (for the process X ), namely, the nonnegative functions f(·)
that satisfy

f(x)¿ Ex[e−�f(X�)] ∀�∈S; ∀ x∈I; (1.3)

see, for example, Shiryayev (1978), Fakeev (1971), Thompson (1971); see also Fakeev
(1970), El Karoui (1981), Karatzas and Shreve (1998, Appendix D), El Karoui and
Karatzas (1991a,b), Bank and El Karoui (2001). For every -excessive function f(·)
majorizing h(·), (1.3) implies that f(x)¿V (x), x∈I. On the other hand, thanks to
the strong Markov property of di#usion processes, it is not hard to show that V (·) is
itself a -excessive function.

Theorem 1.1 (Dynkin, 1963). The value function V (·) of (1.2) is the smallest
-excessive (with respect to X ) majorant of h(·) on I, provided that h(·) is lower
semi-continuous.

This characterization of the value function often serves as a veri8cation tool. It
does not however describe how to calculate the value function explicitly for a general
di#usion. The common practice in the literature is to guess the value function, and
then to put it to the test using Theorem 1.1.
One special optimal stopping problem, whose solution for arbitrary reward functions

is precisely known, was studied by Dynkin and Yushkevich (1969). These authors
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study the optimal stopping problem of (1.2) under the following assumptions:


X is a standard Brownian motion starting in a closed bounded

interval [a; b]; and is absorbed at the boundaries (i:e:; �(·) ≡ 0

on [a; b]; �(·) ≡ 1 on (a; b); and �(a) = �(b) = 0; and I ≡ [a; b]

for some −∞¡a¡b¡∞): Moreover;  = 0; and h(·) is a

bounded Borel function on [a; b]:




: (DY)

Their solution relies on the following key theorem, which characterizes the excessive
functions for one-dimensional Brownian motion.

Theorem 1.2 (Dynkin and Yushkevich, 1969). Every 0-excessive (or simply, exces-
sive) function for one-dimensional Brownian motion X is concave, and vice-versa.

Corollary 1.1. The value function V (·) of (1.2) is the smallest nonnegative concave
majorant of h(·) under the assumptions (DY).

This paper generalizes the results of Dynkin and Yushkevich for the standard Brow-
nian motion to arbitrary one-dimensional regular di#usion processes. We show that the
excessive functions for such a di#usion process X coincide with the concave func-
tions, in some suitably generalized sense (cf. Proposition 3.1). A similar concavity
result will also be established for -excessive functions (cf. Propositions 4.1 and 5.1).
These explicit characterizations of excessive functions allow us to describe the value
function V (·) of (1.2) in terms of generalized concave functions, in a manner very
similar to Theorem 1.2 (cf. Propositions 3.2 and 4.2). The new characterization of the
value function, in turn, has important consequences.
The straightforward connection between generalized and ordinary concave functions,

reduces the optimal stopping problem for arbitrary di#usion processes to that for the
standard Brownian motion (cf. Proposition 3.3). Therefore, the “special” solution of
Dynkin and Yushkevich becomes a fundamental technique, of general applicability, for
solving the optimal stopping problems for regular one-dimensional di#usion processes.
The properties of concave functions, summarized in Section 2, will help establish

necessary and suLcient conditions about the 8niteness of value functions and about
the existence and characterization of optimal stopping times, when the di#usion process
is not contained in a compact interval or when the boundaries are not absorbing (cf.
Propositions 5.2 and 5.7).
We shall also show that the concavity and minimality properties of the value func-

tion determine its smoothness. This will let us understand the major features of the
method of Variational Inequalities; see Bensoussan and Lions (1982), Friedman (1976),
Shiryayev (1978, Section 3.8), Grigelionis and Shiryaev (1966), Iksendal (1998,
Chapter 10), Brekke and Iksendal (1991,1998) for background and applications. We
o#er a new exposition and, we believe, a better understanding of the smooth-8t prin-
ciple, which is crucial to this method. It is again the concavity of the value function
that helps to unify many of the existing results in the literature about the smoothness
of V (·) and the smooth-8t principle.



176 S. Dayanik, I. Karatzas / Stochastic Processes and their Applications 107 (2003) 173–212

The results of this paper have been recently extended in Dayanik (2003) to optimal
stopping problems where the reward is discounted by a continuous additive functional
of the underlying di#usion.
Preview. We overview the basic facts about one-dimensional di#usion processes

and concave functions in Section 2. In Sections 3 and 4, we solve undiscounted and
discounted stopping problems for a regular di#usion process, stopped at the time of
8rst exit from a given closed and bounded interval. In Section 5 we study the same
problem when the state-space of the di#usion process is an unbounded interval, or
when the boundaries are not absorbing.
The results are used in Section 6 to treat a host of optimal stopping problems

with explicit solutions, and in Section 7 to discuss further consequences of the new
characterization for the value functions. We address especially the smoothness of the
value function and take a new look at the smooth-8t principle. In the last section we
point out the connection of our results to Martin boundary theory.

2. One-dimensional regular di�usion processes and concave functions

Let X be a one-dimensional regular di#usion of the type (1.1), on an interval I.
We shall assume that (1.1) has a (weak) solution, which is unique in the sense of the
probability law. This is guaranteed, if �(·) and �(·) satisfy∫

(x−� ;x+�)

1 + |�(y)|
�2(y)

dy¡∞ for some �¿ 0; (2.1)

at every x∈ int(I) (Karatzas and Shreve, 1991, pp. 329–353), together with precise
description of the behavior of the process at the boundaries of the state-space I. If
killing is allowed at some time �, then the dynamics in (1.1) are valid for 06 t ¡ �.
We shall assume, however, that X can only be killed at the endpoints of I which do
not belong to I.
De8ne �r , inf{t¿ 0 :Xt = r} for every r ∈I. A one-dimensional di#usion process

X is called regular, if for any x∈ int(I) and y∈I we have Px(�y ¡ + ∞)¿ 0.
Hence, the state-space I cannot be decomposed into smaller sets from which X could
not exit. Under condition (2.1), the di#usion X of (1.1) is regular.
The major consequences of this assumption are listed below: their proofs can be

found in Revuz and Yor (1999, pp. 300–312). Let J , (l; r) be a subinterval of I
such that [l; r] ⊆ I, and �J the exit time of X from J . If x∈ J , then �J = �l ∧ �r ,
Px-a.s. For x ∈ J , then �J = 0, Px-a.s.

Proposition 2.1. If J is bounded, then the function mJ (x), Ex[�J ], x∈ I is bounded
on J . In particular, �J is a.s. <nite.

Proposition 2.2. There exists a continuous, strictly increasing function S(·) on I such
that for any l, r, x in I, with a6 l¡x¡r6 b, we have

Px(�r ¡�l) =
S(x)− S(l)
S(r)− S(l)

; and Px(�l ¡�r) =
S(r)− S(x)
S(r)− S(l)

: (2.2)
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Any other function S̃ with these properties is an a=ne transformation of S : S̃=�S+
for some �¿ 0 and ∈R. The function S is unique in this sense, and is called the
“scale function” of X .

If the killing time � is 8nite with positive probability, and limt↑� Xt = a (say), then
limx→a S(x) is 8nite. We shall de8ne S(a), limx→a S(x), and set S(X�) = S(l). With
this in mind, we have:

Proposition 2.3. A locally bounded Borel function f is a scale function, if and only
if the process Yf

t , f(Xt∧�∧�a∧�b), t¿ 0, is a local martingale. Furthermore, if X
can be represented by the stochastic di?erential equation (1.1), then for any arbitrary
but <xed c∈I, we have

S(x) =
∫ x

c
exp

{
−
∫ y

c

2�(z)
�2(z)

dz
}

dy; x∈I:

The scale function S(·) has derivative S ′(x)=exp{∫ x
c [−2�(u)=�2(u)] du} on int(I),

and we shall de8ne S ′′(x) , −[2�(x)=�2(x)]S ′(x), x∈ int(I). This way AS(·) ≡ 0,
where the second-order di#erential operator

Au(·), 1
2
�2(·) d

2u
dx2

(·) + �(·) du
dx

(·) on I (2.3)

is the in8nitesimal generator of X . The ordinary di#erential equation Au = u has
two linearly independent, positive solutions. These are uniquely determined up to mul-
tiplication, if we require one of them to be strictly increasing and the other strictly
decreasing (cf. Borodin and Salminen, 2002, Chapter 2). We shall denote the increasing
solution by  (·) and the decreasing solution by ’(·). In fact, we have

 (x) =

{
Ex[e−�c ]; if x6 c

1=Ec[e−�x ]; if x¿c

}
; ’(x) =

{
1=Ec[e−�x ] if x6 c

Ex[e−�c ] if x¿c

}
(2.4)

for every x∈I, and arbitrary but 8xed c∈I (cf. Itô and McKean, 1974, pp. 128–129).
Solutions of Au=u in the domain of in8nitesimal operator A are obtained as linear
combinations of  (·) and ’(·), subject to appropriate boundary conditions imposed on
the process X . If an endpoint is contained in the state-space I, we shall assume that it
is absorbing; and if it is not contained in I, we shall assume that X is killed if it can
reach the boundary with positive probability. In either case, the boundary conditions on
 (·) and ’(·) are  (a) =’(b) = 0. For the complete characterization of  (·) and ’(·)
corresponding to other types of boundary behavior, refer to Itô and McKean (1974,
pp. 128–135). Note that the Wronskian determinant

W ( ; ’),
 ′(x)
S ′(x)

’(x)− ’′(x)
S ′(x)

 (x) (2.5)

of  (·) and ’(·) is a positive constant. One last useful expression is

Ex[e−�y ] =

{
 (x)= (y); x6y

’(x)=’(y); x¿y

}
: (2.6)
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Concave functions. Let F : [c; d] → R be a strictly increasing function. A real-valued
function u is called F-concave on [c; d] if, for every a6 l¡ r6 b and x∈ [l; r], we
have

u(x)¿ u(l)
F(r)− F(x)
F(r)− F(l)

+ u(r)
F(x)− F(l)
F(r)− F(l)

: (2.7)

Here are some facts about the properties of F-concave functions (Dynkin, 1965,
pp. 231–240; Karatzas and Shreve, 1991, pp. 213–214; Revuz and Yor, 1999,
pp. 544–547).

Proposition 2.4. Suppose u(·) is real-valued and F-concave, and F(·) is continuous
on [c; d]. Then u(·) is continuous in (c; d) and u(c)6 lim inf x↓c u(x), u(d)6
lim inf x↑d u(x).

Proposition 2.5. Let (u�)�∈) be a family of F-concave functions on [c; d]. Then u,
∧�∈)u� is also F-concave on [c; d].

Let v : [c; d] → R be any function. De8ne

D+
F v(x) ≡

d+v
dF

(x), limy↓x
v(x)− v(y)
F(x)− F(y)

; and

D−
F v(x) ≡ d−v

dF
(x), lim

y↑x
v(x)− v(y)
F(x)− F(y)

provided that limits exist. If D±
F v(x) exist and are equal, then v(·) is said to be

F-di#erentiable at x, and we write DFv(x) = D±
F v(x).

Proposition 2.6. Suppose u : [c; d] → R is F-concave. Then we have the following:

(i) The derivatives D+
F u(·) and D−

F u(·) exist in (c; d). Both are non-increasing and
D+

F u(l)¿D−
F u(x)¿D+

F u(x)¿D−
F u(r), for every c¡ l¡x¡r¡d.

(ii) For every D+
F u(x0)6 ,6D−

F u(x0) with x0 ∈ (c; d), we have u(x0) + ,[F(x) −
F(x0)]¿ u(x), ∀x∈ [c; d].

(iii) If F(·) is continuous on [c; d], then D+
F u(·) is right-continuous, and D−

F u(·) is
left-continuous. The derivatives D±

F u(·) have the same set of continuity points;
in particular, except for x in a countable set N , we have D+

F u(x) = D−
F u(x).

3. Undiscounted optimal stopping

Suppose we start the di#usion process X of (1.1) in a closed and bounded interval
[c; d] contained in the interior of the state-space I, and stop X as soon as it reaches
one of the boundaries c or d. For a given Borel-measurable and bounded function
h : [c; d] → R, we set

V (x), sup
�∈S

Ex[h(X�)]; x∈ [c; d]: (3.1)
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The question is to characterize the function V (·), and to 8nd an optimal stopping
time �∗ such that V (x) = Ex[h(X�∗)], x∈ [c; d], if such �∗ exists. If h(·)6 0, then
trivially V ≡ 0, and � ≡ ∞ is an optimal stopping time. Therefore, we shall assume
supx∈[c;d] h(x)¿ 0.
Following Dynkin and Yushkevich (1969, pp. 112–126), we shall 8rst characterize

the class of excessive functions. These play a fundamental role in optimal stopping
problems, as shown in Theorem 1.1.
To motivate what follows, let U : [c; d] → R be an excessive function of X . For

any stopping time � of X , and x∈ [c; d], we have U (x)¿ Ex[U (X�)]. In particular, if
x∈ [l; r] ⊆ [c; d], we may take �= �l ∧ �r , where �r , inf{t¿ 0 :Xt = r}, and then the
regularity of X gives

U (x)¿ Ex[U (X�l∧�r )] = U (l) · Px(�l ¡�r) + U (r) · Px(�l ¿�r); x∈ [l; r]:

With the help of (2.2), the above inequality becomes

U (x)¿U (l) · S(r)− S(x)
S(r)− S(l)

+ U (r) · S(x)− S(l)
S(r)− S(l)

; x∈ [l; r]: (3.2)

In other words, every excessive function of X is S-concave on [c; d] (see Section 2
for a discussion). When X is a standard Brownian motion, Dynkin and Yushkevich
(1969) showed that the reverse is also true; we shall show next that the reverse is true
for an arbitrary di#usion process X .
Let S(·) be the scale function of X as above, and recall that S(·) is real-valued,

strictly increasing and continuous on I.

Proposition 3.1 (Characterization of excessive functions). A function U : [c; d] → R is
nonnegative and S-concave on [c; d], if and only if

U (x)¿ Ex[U (X�)] ∀ �∈S;∀ x∈ [c; d]: (3.3)

This, in turn, allows us to conclude the main result of this section, namely

Proposition 3.2 (Characterization of the value function). The value function V (·) of
(3.1) is the smallest nonnegative, S-concave majorant of h(·) on [c; d].

We defer the proofs of Propositions 3.1 and 3.2 to the end of the section, and discuss
their implications 8rst. It is usually a simple matter to 8nd the smallest nonnegative
concave majorant of a bounded function on some closed bounded interval: It coincides
geometrically with a string stretched above the graph of function, with both ends
pulled to the ground. On the contrary, it is hard to visualize the nonnegative S-concave
majorant of a function. The following Proposition is therefore useful when we need to
calculate V (·) explicitly; it was already noticed by Karatzas and Sudderth (1999).

Proposition 3.3. On the interval [S(c); S(d)], let W (·) be the smallest nonnegative
concave majorant of the function H (y), h(S−1(y)). Then we have V (x)=W (S(x)),
for every x∈ [c; d].
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The characterization of Proposition 3.2 for the value function provides information
about the smoothness of V (·) and the existence of an optimal stopping time. De8ne
the optimal stopping region and the time of 8rst-entry into this region, respectively,
by

%, {x∈ [c; d] :V (x) = h(x)} and �∗ , inf{t¿ 0 :Xt ∈%}: (3.4)

The proof of the following result is similar to that in Dynkin and Yushkevich (1969,
pp. 112–119).

Proposition 3.4. If h(·) is continuous on [c; d], then so is V (·), and the stopping time
�∗ of (3.4) is optimal.

Remark 3.1. Since the standard Brownian motion B is in natural scale, i.e., S(x) = x
up to aLne transformation, W (·) of Proposition 3.3 is itself the value function of some
optimal stopping problem of standard Brownian motion, namely

W (y) = sup
�¿0

Ey[H (B�)] = sup
�¿0

Ey[h(S−1(B�))]; y∈ [S(c); S(d)] (3.5)

where the supremum is taken over all stopping times of B. Therefore, solving the
original optimal stopping problem is the same as solving another, with a di#erent
reward function but for a standard Brownian motion. If, moreover, we denote the
optimal stopping region of this problem by %̃ , {y∈ [S(c); S(d)] :W (y) = H (y)},
then %= S−1(%̃).

Proof of Proposition 3.1. We have already seen in (3.2) that excessivity implies
S-concavity. For the converse, suppose U : [c; d] → [0;+∞) is S-concave; then it
is enough to show

U (x)¿ Ex[U (Xt)] ∀x∈ [c; d] ∀t¿ 0: (3.6)

Indeed, observe that, inequality (3.6) and the Markov property of X imply that
{U (Xt)}t∈[0;+∞) is a nonnegative supermartingale, and (3.3) follows from Optional
Sampling. To prove (3.6), let us show

U (x)¿ Ex[U (X0∧t)] ∀x∈ [c; d] ∀t¿ 0; (3.7)

where the stopping time 0, �c ∧ �d is the 8rst exit time of X from (c; d).
First, note that (3.7) holds as equality at the absorbing boundary points x = c and

x = d. Next, 8x any x0 ∈ (c; d); since U (·) is S-concave on [c; d], Proposition 2.6(ii)
shows that there exists an aLne transformation L(·) = c1S(·) + c2 of the scale func-
tion S(·), such that L(x0) = U (x0), and L(x)¿U (x) for all x∈ [c; d]. Thus, for any
t¿ 0, we have Ex0 [U (X0∧t)]6 Ex0 [L(X0∧t)]=Ex0 [c1S(X0∧t)+c2]=c1Ex0 [S(X0∧t)]+c2.
But S(·) is continuous on the closed and bounded interval [c; d], and the process
S(Xt) is a continuous local martingale; so the stopped process {S(X0∧t), t¿ 0} is
a bounded martingale, and Ex0 [S(X0∧t)] = S(x0) for every t¿ 0, by optional sam-
pling. Thus Ex0 [U (X0∧t)]6 c1Ex0 [S(X0∧t)] + c2 = c1S(x0) + c2 = L(x0) = U (x0), and
(3.7) is proved. To show (3.6), observe that since Xt = X� on {t¿ �}, (3.7) implies
Ex[U (Xt)] = Ex[U (X0∧t)]6U (x), for every x∈ [c; d] and t¿ 0.
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Proof of Proposition 3.2. Since � ≡ ∞ and � ≡ 0 are stopping times, we have V ¿ 0
and V ¿ h, respectively. Hence V (·) is nonnegative and majorizes h(·). To show that
V (·) is S-concave we shall 8x some x∈ [l; r] ⊆ [c; d]. Since h(·) is bounded, V (·) is
8nite on [c; d]. Therefore, for any arbitrarily small �¿ 0, we can 8nd stopping times
�l and �r such that Ey[h(X�y)]¿V (y) − �, for y = l; r. De8ne a new stopping time
�, (�l + �l ◦ ,�l)1{�l¡�r} + (�r + �r ◦ ,�r )1{�l¿�r}, where ,t is the shift operator (see
Karatzas and Shreve, 1991, pp. 77, 83). Using the strong Markov property of X , we
obtain

V (x)¿ Ex[h(X�)] = El[h(X�l)]Px{�l ¡�r}+ Er[h(X�r )]Px{�l ¿�r}

= El[h(X�l)]
S(r)− S(x)
S(r)− S(l)

+ Er[h(X�r )]
S(x)− S(l)
S(r)− S(l)

¿ V (l) · S(r)− S(x)
S(r)− S(l)

+ V (r) · S(x)− S(l)
S(r)− S(l)

− �:

Since �¿ 0 is arbitrary, we conclude that V (·) is a nonnegative S-concave majorant
of h(·) on [c; d].
Now let U : [c; d] → R be any other nonnegative S-concave majorant of h(·) on [c; d].

Then, Proposition 3.1 implies U (x)¿ Ex[U (X�)]¿ Ex[h(X�)], for every x∈ [c; d] and
every stopping time �∈S. Therefore U¿V on [c; d]. This completes the
proof.

Proof of Proposition 3.3. Trivially, V̂ (x), W (S(x)), x∈ [c; d], is a nonnegative con-
cave majorant of h(·) on [c; d]. Therefore V̂ (x)¿V (x) for every x∈ [c; d].

On the other hand, Ŵ (y) , V (S−1(y)) is a nonnegative S-concave majorant of
H (·) on [S(c); S(d)]. Therefore Ŵ (·)¿W (·) on [S(c); S(d)], and V (x) = Ŵ (S(x))¿
W (S(x)) = V̂ (x), for every x∈ [c; d].

4. Discounted optimal stopping

Let us try now to see how the results of Section 3 can be extended to the study of
the discounted optimal stopping problem

V (x), sup
�∈S

Ex[e−�h(X�)]; x∈ [c; d] (4.1)

with ¿ 0. The di#usion process X and the reward function h(·) have the same
properties as described in Section 3. Namely, X is started in a bounded closed inter-
val [c; d] contained in the interior of its state space I, and is absorbed whenever it
reaches c or d. Moreover, h : [c; d] → R is a bounded, Borel-measurable function with
supx∈[c;d] h(x)¿ 0.
In order to motivate the key result of Proposition 4.1, let U : [c; d] → R be a

-excessive function with respect to X . Namely, for every stopping time � of X , and
x∈ [c; d], we have U (x)¿ Ex[e−�U (X�)]. For a stopping time of the form �= �l ∧ �r ,
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the 8rst exit time of X from an interval [l; r] ⊆ [c; d], the regularity of X implies

U (x)¿ Ex[e−(�l∧�r)U (�l ∧ �r)]

= U (l) · Ex[e−�l1{�l¡�r}] + U (r) · Ex[e−�r1{�l¿�r}]; x∈ [l; r]: (4.2)

The function u1(x), Ex[e−�l1{�l¡�r}] (respectively, u2(x), Ex[e−�r1{�l¿�r}]) is the
unique solution of Au = u in (l; r), with boundary conditions u1(l) = 1, u1(r) = 0
(respectively, with u2(l) = 0, u2(r) = 1). In terms of the functions  (·), ’(·) of (2.4),
using the appropriate boundary conditions, one calculates

u1(x) =
 (x)’(r)−  (r)’(x)
 (l)’(r)−  (r)’(l)

; u2(x) =
 (l)’(x)−  (x)’(l)
 (l)’(r)−  (r)’(l)

; x∈ [l; r]: (4.3)

Substituting these into inequality (4.2) above, then dividing both sides of the inequality
by ’(x) (respectively, by  (x)), we obtain

U (x)
’(x)

¿
U (l)
’(l)

· F(r)− F(x)
F(r)− F(l)

+
U (r)
’(r)

· F(x)− F(l)
F(r)− F(l)

; x∈ [l; r]; (4.4)

and

U (x)
 (x)

¿
U (l)
’(l)

· G(r)− G(x)
G(r)− G(l)

+
U (r)
’(r)

· G(x)− G(l)
G(r)− G(l)

; x∈ [l; r]; (4.5)

respectively, where the functions

F(x),
 (x)
’(x)

; and G(x), − 1
F(x)

=−’(x)
 (x)

; x∈ [c; d] (4.6)

are both well-de8ned and strictly increasing. Observe now that inequalities (4.4) and
(4.5) imply that U (·)=’(·) is F-concave, and U (·)= (·) is G-concave on [c; d] (cf.
Section 2). In Proposition 4.1 below, we shall show that the converse is also true.
It is worth pointing out the correspondence between the roles of the functions S(·)

and 1 in the undiscounted optimal stopping, and the roles of  (·) and ’(·) in the
discounted optimal stopping. Both pairs (S(·); 1) and ( (·); ’(·)) consist of an increas-
ing and a decreasing solution of the second-order di#erential equation Au = u in
I, for the undiscounted (i.e.,  = 0) and the discounted (i.e., ¿ 0) versions of the
same optimal stopping problems, respectively. Therefore, the results of Section 3 can
be restated and proved with only minor (and rather obvious) changes. Here is the key
result of the section:

Proposition 4.1 (Characterization of -excessive functions). For a given function
U : [c; d] → [0;+∞) the quotient U (·)=’(·) is an F-concave (equivalently, U (·)= (·)
is a G-concave) function, if and only if U (·) is -excessive, i.e.,

U (x)¿ Ex[e−�U (X�)] ∀ �∈S; ∀x∈ [c; d]: (4.7)

Proposition 4.2 (Characterization of the value function). The value function V (·) of
(4.1) is the smallest nonnegative majorant of h(·) such that V (·)=’(·) is F-concave
(equivalently, V (·)= (·) is G-concave) on [c; d].
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The equivalence of the characterizations in Propositions 4.1 and 4.2 in terms of F
and G, follows now from the de8nition of concave functions.

Lemma 4.1. Let U : [c; d] → R be any function. Then U (·)=’(·) is F-concave on
[c; d], if and only if U (·)= (·) is G-concave on [c; d].

Since it is hard to visualize the nonnegative F- or G-concave majorant of a function
geometrically, it will again be convenient to have a description in terms of ordinary
concave functions.

Proposition 4.3. Let W (·) be the smallest nonnegative concave majorant of H ,
(h=’) ◦ F−1 on [F(c); F(d)], where F−1(·) is the inverse of the strictly increasing
function F(·) in (4.6). Then V (x) = ’(x)W (F(x)), for every x∈ [c; d].

Just as in Dynkin and Yushkevich (1969, pp. 112–126), the continuity of the func-
tions ’(·), F(·), and the F-concavity of V (·)=’(·) imply the following.

Lemma 4.2. If h(·) is continuous on [c; d], then V (·) is also continuous on [c; d].

We shall characterize the optimal stopping rule next. De8ne the “optimal stopping
region”

%, {x∈ [c; d] :V (x) = h(x)} and �∗ , inf{t¿ 0 :Xt ∈%}: (4.8)

Lemma 4.3. Let �r , inf{t¿ 0 :Xt = r}. Then for every c6 l¡x¡r6d,

Ex[e−(�l∧�r)h(X�l∧�r )] =’(x)
[
h(l)
’(l)

· F(r)− F(x)
F(r)− F(l)

+
h(r)
’(r)

· F(x)− F(l)
F(r)− F(l)

]
;

=  (x)
[
h(l)
 (l)

· G(r)− G(x)
G(r)− G(l)

+
h(r)
 (r)

· G(x)− G(l)
G(r)− G(l)

]
:

Furthermore,

Ex[e−�r h(X�r )] = ’(x)
h(r)
’(r)

· F(x)− F(c)
F(r)− F(c)

=  (x)
h(r)
 (r)

· G(x)− G(c)
G(r)− G(c)

;

and

Ex[e−�lh(X�l)] = ’(x)
h(l)
’(l)

· F(d)− F(x)
F(d)− F(l)

=  (x)
h(l)
 (l)

· G(d)− G(x)
G(d)− G(l)

:

Proof. The 8rst and second equalities are obtained after rearranging the terms of the
equation Ex[e−(�l∧�r)h(X�l∧�r )]=h(l) ·Ex[e−�l1{�l¡�r}]+h(r) ·Ex[e−�r1{�l¿�r}], where
Ex[e−�l1{�l¡�r}] and Ex[e−�r1{�l¿�r}] are given by (4.3). The others follow simi-
larly.

Proposition 4.4. If h is continuous on [c; d], then �∗ of (4.8) is an optimal stopping
rule.
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Proof. De8ne U (x) , Ex[e−�∗h(X�∗)] for every x∈ [c; d]. We have obviously
V (·)¿U (·). To show the reverse inequality, it is enough to prove that U (·)=’(·) is a
nonnegative F-concave majorant of h(·)=’(·). By adapting the arguments in Dynkin and
Yushkevich (1969, pp. 112–126) and using Lemma 4.3, we can show that U (·)=’(·)
can be written as the lower envelope of a family of nonnegative F-concave functions,
i.e., it is nonnegative and F-concave. To show that U (·) majorizes h(·), assume for a
moment that

,, max
x∈[c;d]

(
h(x)
’(x)

− U (x)
’(x)

)
¿ 0: (4.9)

Since , is attained at some x0 ∈ [c; d], and [U (·)=’(·)]+, is a nonnegative, F-concave
majorant of h(·)=’(·), Proposition 4.2 implies h(x0)=’(x0)=[U (x0)=’(x0)]+,¿V (x0)=
’(x0)¿ h(x0)=’(x0); equivalently x0 ∈%, and U (x0) = h(x0), thus ,= 0, contradiction
to (4.9). Therefore U (·)¿ h(·) on [c; d], as claimed.

Remark 4.1. Let B be a one-dimensional standard Brownian motion in [F(c); F(d)]
with absorbing boundaries, and W , H be de8ned as in Proposition 4.3. From Proposi-
tion 3.2 of Section 3, we have

W (y) ≡ sup
�¿0

Ey[H (B�)]; y∈ [F(c); F(d)]: (4.10)

If h(·) is continuous on [c; d], then H (·) will be continuous on the closed bounded
interval [F(c); F(d)]. Therefore, the optimal stopping problem of (4.10) has an optimal
rule �∗ , {t¿ 0 :Bt ∈ %̃}, where %̃, {y∈ [F(c); F(d)] :W (y)=H (y)} is the optimal
stopping region of the same problem. Moreover %= F−1(%̃).

In light of Remarks 3.1, 4.1 and Proposition 4.3, there is essentially only one class
of optimal stopping problems for one-dimensional di#usions, namely, the undiscounted
optimal stopping problems for Brownian motion. We close this section with the proof
of necessity in Proposition 4.1; the proof of Proposition 4.2 follows along lines similar
to those of Proposition 3.2.

Proof of Proposition 4.1. To prove necessity, suppose U (·) is nonnegative and
U (·)=’(·) is F-concave on [c; d]. As in the proof of Proposition 3.1, thanks to the
strong Markov property of X and the optional sampling theorem for nonnegative su-
permartingales, it is enough to prove that

U (x)¿ Ex[e−(0∧t)U (X0∧t)]; x∈ [c; d]; t¿ 0; (4.11)

where 0, inf{t¿ 0 :Xt ∈ (c; d)}. Clearly, this holds for x=c and x=d. Now 8x any
x∈ (c; d); since U (·)=’(·) is F-concave on [c; d], there exists an aLne transformation
L(·) , c1F(·) + c2 of the function F(·) on [c; d] such that L(·)¿U (·)=’(·) and
L(x) = U (x)=’(x), so that

Ex[e−(0∧t)U (X0∧t)]6 Ex[e(0∧t)’(X0∧t)L(X0∧t)]

= Ex[e−(0∧t)’(X0∧t)(c1F(X0∧t) + c2)]

= c1Ex[e−(0∧t) (X0∧t)] + c2Ex[e−(0∧t)’(X0∧t)] ∀t¿ 0:
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Because  (·) is of class C2[c; d], we can apply Itô’s Rule to e−t (Xt); the stochas-
tic integral is a square-integrable martingale, since its quadratic variation process is
integrable, and because A =  on (c; d) we obtain

Ex[e−(0∧t) (X0∧t)]

=  (x) + Ex
[∫ 0∧t

0
e−s(A −  )(Xs) ds

]
=  (x) ∀ t¿ 0:

Similarly, Ex[e−(0∧t)’(X0∧t)]=’(x), whence Ex[e−(0∧t)U (X0∧t)]6 c1 (x)+c2’(x)=
’(x)L(x) = U (x). This proves (4.11).

5. Boundaries and optimal stopping

In Sections 3 and 4 we assumed that the process X is allowed to di#use in a closed
and bounded interval, and is absorbed when it reaches either one of the boundaries.
There are many other interesting cases: for instance, the state space may not be com-
pact, or the behavior of the process may be di#erent near the boundaries.
It is always possible to show that the value function V (·) must satisfy the properties

of Proposition 3.2 or Proposition 4.2. Additional necessary conditions on V (·) appear,
if one or more boundaries are regular reSecting (for example, the value function V (·)
for the undiscounted problem of Section 3 should be non-increasing if c is reSecting,
non-decreasing if d is reSecting).
The challenge is to show that V (·) is the smallest function with these necessary con-

ditions. Propositions 3.1 and 4.1 meet this challenge when the boundaries are absorbing.
Their proofs illustrate the key tools. Observe that the local martingales, S(Xt) and the
constant 1 of Section 3, and e−t (Xt) and e−t’(Xt) of Section 4, are fundamental
in the proofs of suLciency.
Typically, the concavity of the appropriate quotient of some nonnegative function

U (·) with respect to a quotient of the monotone fundamental solutions  (·), ’(·) of
Au=u, as in (2.4), will imply that U (·) is -excessive. The main tools in this e#ort
are Itô’s rule, the localization of local martingales, the lower semi-continuity of U (·)
(usually implied by concavity of some sort), and Fatou’s Lemma. Di#erent boundary
conditions may necessitate additional care to complete the proof of super-harmonicity.
We shall not attempt here to formulate a general theorem that covers all cases.

Rather, we shall state and prove in this section the key propositions for a di#usion pro-
cess with absorbing and/or natural boundaries. We shall illustrate how the propositions
look like, and what additional tools we may need, to overcome potential diLculties
with the boundaries.

5.1. Left-boundary is absorbing, right-boundary is natural

Suppose the right-boundary b6∞ of the state-space I of the di#usion process is
natural. Let c∈ int(I). Note that the process, starting in (c; b), reaches c in 8nite time
with positive probability. Consider the stopped process X , which starts in [c; b) and is
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stopped when it reaches c. Finally, recall the functions  (·) and ’(·) of (2.4) for some
constant ¿ 0. Since c∈ int(I), we have 0¡ (c)¡∞, 0¡’(c)¡∞. Because b
is natural we have  (b−) =∞ and ’(b−) = 0. Let the reward function h : [c; b) → R
be bounded on compact subsets, and de8ne

V (x), sup
�∈S

Ex[e−�h(X�)]; x∈ [c; b):

For any increasing sequence (bn)n¿1 ⊂ [c; b) such that bn → b as n → ∞, the stopping
times

�n , inf{t¿ 0 :Xt ∈ (c; bn)}; n¿ 1 increase to

�, inf{t¿ 0 :Xt ∈ (c; b)}: (5.1)

In fact, � = inf{t¿ 0 :Xt = c} almost surely since b is a natural boundary. We can
now state and prove the key result.

Proposition 5.1. For a function U : [c; b) → [0;+∞), the quotient U (·)= (·) is
G-concave on [c; b) if and only if U (x)¿ Ex[e−�U (X�)] holds for every x∈ [c; b)
and �∈S.

Proof. SuLciency follows from Lemma 4.3 when we let � be 0, ∞, and �l ∧ �r , for
every choice of x∈ [l; r] ⊂ [c; b). For the necessity, we only have to show (as in the
proof of Proposition 4.1) that

U (x)¿ Ex[e−tU (Xt)]; x∈ [c; b); t¿ 0: (5.2)

And as in the proof of Proposition 4.1, we 8rst prove a simpler version of (5.2),
namely

U (x)¿ Ex[e−(�∧t)U (X�∧t)]; x∈ [c; b); t¿ 0: (5.3)

The main reason was that the behavior of the process up to the time � of reaching
the boundaries is completely determined by its in8nitesimal generator A. We can
therefore use Itô’s rule without worrying about what happens after the process reaches
the boundaries. In the notation of (5.1), we have

U (x)¿ Ex[e−(�n∧t)U (X�n∧t)]; x∈ [c; b); t¿ 0; n¿ 1: (5.4)

This is obvious, in fact as equality, for x ∈ (c; bn). For x∈ (c; bn), X�n∧t lives in
the closed bounded interval [c; bn] contained in the interior of I; and c and bn are
absorbing for {X�n∧t ; t¿ 0}. An argument similar to that in the proof of Proposition
4.1 completes the proof of (5.4).
Since G(·) is continuous on [c; b), and U (·)= (·) is G-concave on [c; b), Proposition

2.4 implies that U is lower semi-continuous on [c; b), i.e., lim inf y→x U (y)¿U (x),
for every x∈ [c; b). Because �n ∧ t → � ∧ t and X�n∧t → X�∧t as n → ∞, we have

Ex[e−(�∧t)U (X�∧t)]6 Ex
[
lim
n→∞

e−(�n∧t)U (X�n∧t)
]

6 lim
n→∞

Ex[e−(�n∧t)U (X�n∧t)]6U (x);
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from lower semi-continuity, nonnegativity, Fatou’s lemma and (5.4). This proves (5.3).
Finally, since c is absorbing, and � ≡ inf{t¿ 0 :Xt = c}, we have Xt = X� = c on
{t¿ �}. Therefore, (5.2) follows from (5.3) as in Ex[e−tU (Xt)]=Ex[e−tU (X�∧t)]6
Ex[e−(�∧t)U (X�∧t)]6U (x), x∈ [c; b), t¿ 0.

We shall investigate next, under what conditions the value-function V (·) is real-
valued. It turns out that this is determined by the quantity

‘b , lim sup
x→b

h+(x)
 (x)

∈ [0;+∞]; (5.5)

where h+(·), max{0; h(·)} on [c; b).
We shall 8rst show that V (x) = +∞ for every x∈ (c; b), if ‘b =+∞. To this end,

8x any x∈ (c; b). Let (rn)n∈N ⊂ (x; b) be any strictly increasing sequence with limit b.
De8ne the stopping times �rn , inf {t¿ 0 :Xt¿ rn}, n¿ 1. Lemma 4.3 implies

V (x)¿ Ex[e−�rn h(X�rn )] =  (x)
h(rn)
 (rn)

· G(x)− G(c)
G(rn)− G(c)

; n¿ 1:

On the other hand, since � ≡ +∞ is also a stopping time, we also have V ¿ 0.
Therefore

V (x)
 (x)

¿ 0 ∨
(

h(rn)
 (rn)

· G(x)− G(c)
G(rn)− G(c)

)
=

h+(rn)
 (rn)

· G(x)− G(c)
G(rn)− G(c)

; n¿ 1: (5.6)

Remember that G is strictly increasing and negative (i.e., bounded from above). There-
fore G(b−) exists, and −∞¡G(c)¡G(b−)6 0. Furthermore since x¿c, we have
G(x) − G(c)¿ 0. By taking the limit supremum of both sides in (5.6) as n → +∞,
we 8nd

V (x)
 (x)

¿ lim sup
n→+∞

h+(rn)
 (rn)

· G(x)− G(c)
G(rn)− G(c)

= ‘b · G(x)− G(c)
G(b−)− G(c)

= +∞:

Since x∈ (c; b) was arbitrary, this proves that V (x) = +∞ for all x∈ (c; b), if ‘b of
(5.5) is equal to +∞.
Suppose now that ‘b is 8nite. We shall show that Ex[e−�h(X�)] is well-de8ned in

this case for every stopping time �, and that V (·) is 8nite on [c; b). Since ‘b ¡∞, there
exists some b0 ∈ (c; b) such that h+(x)¡ (1+ ‘b) (x), for every x∈ (b0; b). Since h(·)
is bounded on the closed and bounded interval [c; b0], we conclude that there exists
some 8nite constant K ¿ 0 such that

h+(x)6K (x) for all x∈ [c; b): (5.7)

Now read Proposition 5.1 with U ,  , and conclude that

 (x)¿ Ex[e−� (X�)] ∀x∈ [c; b) ∀�∈S: (5.8)

This and (5.7) lead to K (x)¿ Ex[e−�h+(X�)], for every x∈ [c; b) and every �∈S.
Thus Ex[e−�h(X�)] is well-de8ned (i.e., expectation exists) for every stopping time
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�, and K (x)¿ Ex[e−�h+(X�)]¿ Ex[e−�h(X�)] for every x∈ [c; b) and stopping time
�, which means

06V (x)6K (x) (5.9)

i.e., V (x) is 8nite for every x∈ [c; b). The following result has been proved (for
a conclusion similar to Propositions 5.2 and 5.10, see Beibel and Lerche, (2001,
Theorem 1).

Proposition 5.2. We have either V ≡ +∞ in (c; d), or V (x)¡+∞ for all x∈ [c; b).
Moreover, V (x)¡+∞ for every x∈ [c; b) if and only if the quantity ‘b of (5.5) is
<nite.

In the remainder of this subsection, we shall assume that

the quantity ‘b of (5:5) is 8nite; (5.10)

so that V (·) is real-valued. We shall investigate the properties of V (·), and describe
how to 8nd it. The main result is as follows; its proof is almost identical to the proof of
Proposition 4.2 with some obvious changes, such as the use of Proposition 5.1 instead
of Proposition 4.1.

Proposition 5.3. V (·) is the smallest nonnegative majorant of h(·) on [c; b) such that
V (·)= (·) is G-concave on [c; b).

We shall continue our discussion by 8rst relating ‘b of (5.5) to V (·) as in Proposition
5.4. Since V (·)= (·) is G-concave, the limit limx↑b V (x)= (x) exists, and (5.9) implies
that this limit is 8nite. Since V (·) moreover majorizes h+(·), we have

‘b = lim sup
x↑b

h+(x)
 (x)

6 lim
x↑b

V (x)
 (x)

¡+∞: (5.11)

Proposition 5.4. If the reward function h(·) is de<ned and bounded on compact sub-
intervals of [c; b), and if (5.10) holds, then limx↑b V (x)= (x) = ‘b.

Proof. Fix any arbitrarily small �¿ 0, and note that (5.10) implies the existence of
some l∈ (c; b) such that

y∈ [l; b) ⇒ h(y)6 h+(y)6 (‘b + �) (y): (5.12)

For every x∈ (l; b) and arbitrary stopping time �∈S, we have {X� ∈ [c; l)} ⊆ {�l ¡�},
on {X0 = x}. Note also that the strong Markov property of X and (5.8) imply that
e−t (Xt) is a nonnegative supermartingale. Consequently,

Ex[e−�h(X�)] = Ex[e−�h(X�)1{X�∈[c;l)}] + Ex[e−�h(X�)1{X�∈(l;b)}]

6KEx[e−� (X�)1{X�∈[c;l)}] + (‘b + �)Ex[e−� (X�)1{X�∈(l;b)}]
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6KEx[e−� (X�)1{�l¡�}] + (‘b + �)Ex[e−� (X�)]

6KEx[e−�l (X�l)1{�l¡∞}] + (‘b + �) (x) = K (l)

×Ex[e−�l] + (‘b + �) (x)

6K (x)Ex[e−�l] + (‘b + �) (x) = K (x)
’(x)
’(l)

+ (‘b + �) (x);

where the right-hand side no longer depends on the stopping time �. Therefore,
V (x)= (x)6K[’(x)=’(l)]+ ‘b + �, for every x∈ (l; b). By taking limits on both sides
as x tends to b, we obtain limx↑b V (x)= (x)6K[’(b−)=’(l)] + ‘b + �= ‘b + �, since
’(b−)=0, and let � ↓ 0 to conclude limx↑b V (x)= (x)6 ‘b. In conjunction with (5.11),
this completes the proof.

Proposition 5.5. Let W : [G(c); 0] → R be the smallest nonnegative majorant of the
function H : [G(c); 0] → R, given by

H (y),




h(G−1(y))
 (G−1(y))

if y∈ [G(c); 0);

‘b if y = 0:

(5.13)

Then V (x)=  (x)W (G(x)), ∀ x∈ [c; b). Furthermore, W (0)= ‘b and W is continuous
at 0.

Since G(·) is continuous on [c; b) and V (·)= (·) is G-concave, V (·)= (·) is contin-
uous on (c; b) and V (c)= (c)6 lim inf x↓c V (x)= (x). However,  (·) is continuous on
[c; b). Therefore, V (·) is continuous on (c; b) and V (c)6 lim inf x↓c V (x). An argument
similar to Dynkin and Yushkevich (1969) gives

Proposition 5.6. If h : [c; b) → R is continuous, and (5.10) holds, then V (·) is contin-
uous on [c; b).

In the remainder of the subsection we shall investigate the existence of an optimal
stopping time. Proposition 5.7 shows that this is guaranteed when ‘b of (5.5) equals
zero. Lemma 5.8 gives necessary and suLcient conditions for the existence of an
optimal stopping time, when ‘b is positive. Finally, no optimal stopping time exists
when ‘b equals +∞, since then the value function equals +∞ everywhere. As usual,
we de8ne

%, {x∈ [c; b) :V (x) = h(x)} and �∗ , inf{t¿ 0 :Xt ∈%}: (5.14)

Remark 5.1. Suppose W (·) and H (·) are functions de8ned on [G(c); 0] as in Propo-
sition 5.5. If %̃, {y∈ [G(c); 0) :W (y) = H (y)}, then %= G−1(%̃).

Proposition 5.7. Suppose h : [c; b) → R is continuous, and ‘b =0 in (5.5). Then �∗ of
(5.14) is an optimal stopping time.
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Proof. As in the proof of Proposition 4.4, U (x) , Ex[e−�∗h(X�∗)], x∈ [c; b) is non-
negative, and U (·)= (·) is F-concave and continuous on [c; b). Since ‘b = 0,

,, sup
x∈[c;b)

(
h(x)
 (x)

− U (x)
 (x)

)
= max

x∈[c;b)

(
h(x)
 (x)

− U (x)
 (x)

)
(5.15)

is attained in [c; b). Now the same argument as in the proof of Proposition 4.4 shows
that U (·)= (·) majorizes h(·)= (·).

Proposition 5.8. Suppose ‘b ¿ 0 is <nite and h(·) is continuous. Then �∗ of (5.14) is
an optimal stopping time if and only if there is no l∈ [c; b) such that (l; b) ⊆ C ,
[c; b) \ %. 1

Proof. This last condition guarantees that , of (5.15) is attained, and the proof of the
optimality of �∗ is the same as in Proposition 5.7. Conversely, assume that (l; b) ⊆ C
for some l∈ [c; b). Then �l6 �∗, Px-a.s., for every x∈ (l; b). The optional sampling
theorem for nonnegative supermartingales implies

V (x) = Ex[e−�∗V (X�∗)]6 Ex[e−�lV (X�l)] = V (l)
’(x)
’(l)

∀ x∈ (l; b); (5.16)

where the last equality follows from (2.6). Since b is natural, (5.16) and Proposition
5.4 imply

‘b = lim sup
x↑b

V (x)
 (x)

6
V (l)
’(l)

lim sup
x↑b

’(x)
 (x)

= 0;

which contradicts ‘b ¿ 0.

5.2. Both boundaries are natural

Suppose that both a and b are natural for the process X in I = (a; b). In other
words, we have  (a+)=’(b−)=0,  (b−)=’(a+)=+∞, and 0¡ (x); ’(x)¡∞,
for x∈ (a; b).
Let the reward function h : (a; b) → R be bounded on every compact subset of

(a; b). Consider the optimal stopping problem V (x), sup�∈S Ex[e−�h(X�)], for every
x∈ (a; b). In this subsection, we state the results without proofs; these are similar to
the arguments in Section 5.1.

Proposition 5.9. For a function U : (a; b) → [0;+∞), U (·)=’(·) is F-concave on (a; b)
(equivalently, U (·)= (·) is G-concave on (a; b)), if and only if U (x)¿ Ex[e−�U (X�)]
for every x∈ (a; b) and �∈S.

1 This condition is stronger than the statement “for some l∈ [c; b), (l; b) ⊆ %”. Indeed, suppose there
exists a strictly increasing sequence bn ↑ b such that (bnk ; bnk+1) ⊆ C for some subsequence {bnk }k∈N ⊆ %.
The original condition in Lemma 5.8 still holds, but there is no l∈ [c; b) such that (l; b) ⊆ %.
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Proposition 5.10. We have either V ≡ +∞ in (a; b), or V (x)¡+∞ for all x∈ (a; b).
Moreover, V (x)¡+∞ for every x∈ (a; b), if and only if

‘a , lim sup
x↓a

h+(x)
’(x)

and ‘b , lim sup
x↑b

h+(x)
 (x)

(5.17)

are both <nite.

In the remainder of this subsection, we shall assume that the quantities ‘a and ‘b

of (5.17) are <nite. Then limx↓a V (x)=’(x) = ‘a, and limx↑b V (x)= (x) = ‘b.

Proposition 5.11. The value function V (·) is the smallest nonnegative majorant of
h(·) on (a; b) such that V (·)=’(·) is F-concave (equivalently, V (·)= (·) is G-concave)
on (a; b).

Proposition 5.12. Let W : [0;+∞) → R and W̃ : (−∞; 0] → R be the smallest non-
negative concave majorants of

H (y),




h(F−1(y))
’(F−1(y))

; if y¿ 0

‘a; if y = 0


 ;

and

H̃ (y),




h(G−1(y))
 (G−1(y))

; if y¡ 0

‘b; if y = 0


 ;

respectively. Then V (x)=’(x)W (F(x))=  (x)W̃ (G(x)), for every x∈ (a; b). Further-
more, W (0) = ‘a, W̃ (0) = ‘b, and both W (·) and W̃ (·) are continuous at 0.

Remark 5.2. Suppose W (·) and H (·) be the functions de8ned on [0;+∞) as in Propo-
sition 5.12. If % , {x∈ (a; b) :V (x) = h(x)} and %̂ , {y∈ (0;+∞) :W (y) = H (y)},
then %= F−1(%̂).

Proposition 5.13. The value function V (·) is continuous on (a; b). If h : (a; b) → R is
continuous, and ‘a = ‘b = 0, then �∗ of (5.14) is an optimal stopping time.

Proposition 5.14. Suppose that ‘a, ‘b are <nite and one of them is strictly positive,
and h(·) is continuous. De<ne the continuation region C , (a; b) \ %. Then �∗ of
(5.14) is an optimal stopping time, if and only if


there is no r ∈ (a; b)

such that (a; r) ⊂ C

if ‘a ¿ 0


 and




there is no l∈ (a; b)

such that (l; b) ⊂ C

if ‘b ¿ 0


 :
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6. Examples

We have applied the results of Sections 3–5 to various optimal stopping problems
that have been studied in the literature, and to some other ones that are new. Below
we present 8ve of them. Several other examples, including optimal stopping problems
originally studied by other means by Guo and Shepp (2001), Karatzas and Ocone
(2002), Iksendal and Reikvam (1998), Salminen (1985), Taylor (1968), can be found
in Dayanik and Karatzas (2002).
As we have seen in the previous sections, solving a discounted optimal stopping

problem with reward function h(·) and discount-rate ¿ 0 for a di#usion X in state-
space I is essentially equivalent to 8nding the smallest nonnegative concave majorant
of

H (y),
(

h
’

)
◦ F−1(y); y∈F(I);

where ’(·);  (·) and F(·) as in (2.4) and (4.6). If h(·) is twice-di#erentiable at x∈I
and y , F(x), then H ′(y) = g(x) and H ′′(y) = g′(x)=F ′(x) with

g(x),
1

F ′(x)

(
h
’

)′
(x) and g′(x) =

2’(x)
�2W ( ; ’)S ′(x)

[(A− )h](x):

Since F ′(·); ’(·), the Wronskian W ( ; ’) of (2.5), and the density of scale S ′(·) are
positive,

H ′(y) ·
(

h
’

)′
(x)¿ 0 and H ′′(y) · [(A− )h](x)¿ 0; y = F(x) (∗)

with strict inequalities if H ′(y) = 0 and H ′′(y) = 0, respectively. The identities in (∗)
will be useful to identify the concavities of H (·) and its smallest nonnegative concave
majorant in the examples below when it is hard to calculate H ′(·) and H ′′(·) explicitly.
The second expression in (∗) also shows explicitly the role of (A−)h, which is used
often by ad-hoc solution methods.

6.1. Pricing an “up-and-out” barrier put-option of American type under the
Black–Scholes model (Karatzas and Wang, 2000)

Karatzas and Wang (2000) address the pricing problem for an “up-and-out” barrier
put-option of American type, by solving the optimal stopping problem

V (x), sup
�¿0

Ex[e−r�(q− S�)+1{�¡�d}]; x∈ (0; d)

with

�d , inf{t¿ 0 : S(t)¿d} (6.1)

using variational inequalities. Here S is the stock price process governed under the
risk-neutral measure by the dynamics dSt = St(r dt+� dBt), S0 = x∈ (0; d), where B is
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Fig. 1. Pricing barrier option.

standard Brownian motion; and the risk-free interest rate r ¿ 0 and the volatility �¿ 0
are constant. The barrier and the strike-price are denoted by d¿ 0 and q∈ (0; d),
respectively, and �d is the time when the option becomes “knocked-out”. The state
space of S is I=(0;∞). Since the drift r is positive, the origin is a natural boundary
for S, whereas every c∈ int(I) is hit with probability one.
We shall o#er here a novel solution for (6.1) using the techniques of Section 5. For

this purpose, denote by S̃ t the stopped stock-price process, which starts in (0; d] and
is absorbed when it reaches the barrier d.
It is clear from (6.1) that V (x) ≡ 0, x¿d, so we need to determine V on (0; d].

Note that V does not depend on the behavior of stock-price process after it reaches
the barrier d, and

V (x) = sup
�¿0

Ex[e−r�h(S̃�)]; x∈ (0; d]

where h(x) , (q − x)+ is the reward function (see Fig. 1(a)). The in8nitesimal
generator A of S is Au(x) , (�2=2)x2u′′(x) + rxu′(x), acting on smooth functions
u(·). The functions of (2.4) with  = r turn out to be  (x) = x and ’(x) = x−2r=�2

,
x∈ (0;∞). Observe that  (0+) = 0, ’(0+) = +∞. Thus the left-boundary is natural,
and the right-boundary is absorbing. This is the opposite of the case studied in Sec-
tion 5.1. Therefore, we can obtain relevant results from that section, if we replace
( (·); G(·); ‘b) by (’(·); F(·); ‘a). The reward function h(·) is continuous on (0; d].
Since ‘0 , limx→0 h+(x)=’(x) = limx→0 (q − x)x2r=�

2
= 0, the value function V (·) is

8nite (Proposition 5.2). Therefore, V (x) =’(x)W (F(x)), x∈ (0; d] by Proposition 5.5,
where F(x),  (x)=’(x)=x, x∈ (0; d], with , 1+(2r=�2)¿ 1, and W : [0; d] → R
is the smallest nonnegative concave majorant of

H (y),




(
h
’

)
◦ F−1(y); y∈ (0; d]

‘0; y = 0




=

{
y1−1=(q− y1=)+; y∈ (0; d]

0; y = 0

}
:
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To identify W (·) explicitly, we shall 8rst sketch H (·). Since h(·) and ’(·) are non-
negative, H (·) is also nonnegative. Note that H ≡ 0 on [q; d]. On (0; q), H (x) =
y1−1=(q− y1=) is twice-continuously di#erentiable, and

H ′(y) = q
(
1− 1



)
y−1= − 1; H ′′(y) = q

1− 
2 y−(1+1=) ¡ 0; x∈ (0; q);

since ¿ 1. Hence H is the strictly concave on [0; q] (See Fig. 1(b)).
The strict concavity of H on [0; q], guarantees the existence of a unique z0 ∈ (0; q)

(Fig. 1(c)), such that

H ′(z0) =
H (d)− H (z0)

d − z0
=− H (z0)

d − z0
: (6.2)

Therefore the straight line Lz0 : [0; d
] → R,

Lz0 (y), H (z0) + H ′(z0)(y − z0); y∈ [0; d]; (6.3)

is tangent to H at z0 and coincides with the chord expanding between (z0; H (z0))
and (d; H (d) ≡ 0) over the graph of H . Since H (z0)¿ 0, (6.2) implies that Lz0 is
decreasing. Therefore Lz0 ¿Lz0 (d

)¿ 0 on [0; d]. It is evident from Fig. 1(c) that the
smallest nonnegative concave majorant of H on [0; d] is given by

W (y) =

{
H (y) if y∈ [0; z0]

Lz0 (y) if y∈ (z0; d]

}
=




H (y) if y∈ [0; z0]

H (z0)
d − y
d − z0

if y∈ (z0; d]


 ;

thanks to (6.2) and (6.3). The strict concavity of H on [0; q] also implies that C̃,
{y∈ [0; d] :W (y)¿H (y)}= (z0; d). We have F−1(y) = y1=, y∈ [0; d]. Let x0 ,
F−1(z0) = z1=0 . Then x0 ∈ (0; d), and

V (x) = ’(x)W (F(x)) =




q− x; 06 x6 x0;

(q− x0) · x
x0

· d
− − x−

d− − x−
0

; x0 ¡x6d:
(6.4)

Since ‘0=0 and h is continuous, the stopping time �∗ of (5.14) is optimal (Proposition
5.7). Because the optimal continuation region becomes C, {x∈ (0; d] :V (x)¿h(x)}=
F−1(C̃) = F−1((z0; d)) = (x0; d) (Remark 5.1), the optimal stopping time becomes
�∗ = inf{t¿ 0 : St ∈ (x0; d)}. Finally, (6.2) can be rewritten

1 + 
x0
q

=  +
(x0
d

)
; (6.5)

after some simple algebra using formulae for H , H ′ and x0 ≡ z1=0 . Compare (6.4)
and (6.5) above with (2.18) and (2.19) in Karatzas and Wang (2000, pp. 263, 264),
respectively.
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6.2. Pricing an “up-and-out” barrier put-option of American type under the
constant-elasticity-of-variance (CEV) model

We shall look at the same optimal stopping problem of (6.1) by assuming now that
the stock price dynamics are described according to the CEV model, dSt = rSt dt +
�S1−�

t dBt , S0 ∈ (0; d), for some �∈ (0; 1). The in8nitesimal generator for this process
is A= 1

2�
2x2(1−�) d2=dx2 + rx d=dx, and the functions of (2.4) with = r are given by

 (x) = x; ’(x) = x ·
∫ +∞

x

1
z2

exp
{
− r

��2 z2�
}
dz; x∈ (0;+∞);

respectively. Moreover  (0+)=0, ’(0+)=1 and  (+∞)=+∞, ’(+∞)=0. There-
fore 0 is an exit-and-not-entrance boundary, and +∞ is a natural boundary for S.
We shall regard 0 as an absorbing boundary (i.e., up on reaching 0, we shall assume
that the process remains there forever). We shall also modify the process such that
d becomes an absorbing boundary. Therefore, we have our optimal stopping prob-
lem in the canonical form of Section 4, with the reward function h(x) = (q − x)+,
x∈ [0; d].
We can show that the results of Section 4 stay valid when the left-boundary of

the state space is an exit-and-not-entrance boundary. According to Proposition 4.3,
V (x) =  (x)W (G(x)), x∈ [0; d] with

G(x), −’(x)
 (x)

=−
∫ +∞

x

1
u2

exp
{
− r

��2 u2�
}
du; x∈ (0; d]; (6.6)

and W : (−∞; G(d)] → R (G(0+)=−∞) is the smallest nonnegative concave majorant
of H : (−∞; G(d)] → R, given by

H (y),
(

h
 
◦ G−1

)
(y)

=




[(q
x
− 1

)
◦ G−1

]
(y) if −∞¡y¡G(q)

0 if G(q)6y6 0


 : (6.7)

Except for y=G(q), H is twice-di#erentiable on (−∞; G(d)). It can be checked that
H is strictly decreasing and strictly concave on (−∞; G(q)). Moreover H (−∞)=+∞
and H ′(−∞) =−q, since G−1(−∞) = 0.
For every −∞¡y¡G(q), let z(y) be the point on the y-axis, where the tangent

line Ly(·) of H (·) at y intersects the y-axis (cf. Fig. 2(a)). Then

z(y) = y − H (y)
H ′(y)

= G(G−1(y))− [(q=x − 1) ◦ G−1](y))
[(−q exp{ (r=��2) x2�}) ◦ G−1](y)

=
[(

2r
�2

∫ +∞

x
u2(�−1) exp

{
− r

��2 u2�
}
du− 1

q
exp

{
− r

��2 x
2�
})

◦ G−1
]
(y);

(6.8)
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Fig. 2. (Pricing barrier options under the CEV model). Sketches of the functions H and W of Proposition
4.3, when (a) G(d)¡z(−∞) (for this sketch, we assume that z(−∞) is 8nite. However, z(−∞) = +∞
is also possible, in which case H does not have a linear asymptote), and (b) G(d)¿z(−∞).

where the last equality follows from integration by parts. It is geometrically clear that
z(·) is strictly decreasing. Since G−1(−∞) = 0, we have

z(−∞) =
2r
�2

∫ +∞

0
u2(�−1) exp

{
− r

��2 u2�
}
du− 1

q
:

Note that G(q)¡z(−∞)¡+∞ if 1=2¡�¡ 1, and z(−∞) = +∞ if 0¡�6 1=2.
Case I: Suppose 8rst G(d)¡z(−∞) (especially, when 0¡�6 1=2). Then there

exists a unique y0 ∈ (−∞; G(q)) such that z(y0) = G(d), thanks to the monotonicity
and continuity of z(·). In other words, the tangent line Ly0 (·) of H (·) at y=y0 ¡G(q)
intersects y-axis at y = G(d). It is furthermore clear from Fig. 2(a) that

W (y) =




H (y) if −∞¡y6y0

H (y0)
G(d)− y
G(d)− y0

if y0 ¡y6G(d)




is the smallest nonnegative concave majorant of H of (6.7) on y∈ (−∞; G(d)]. De8ne
x0 , G−1(y0). According to Proposition 4.3, V (x) =  (x)W (G(x)), x∈ [0; d], i.e.,

V (x) =




q− x if 06 x6 x0

(q− x0) · x
x0

· G(d)− G(x)
G(d)− G(x0)

if x0 ¡x6d


 :

The optimal continuation region becomes C=(x0; d), and �∗ , inf{t¿ 0 : St ∈ (x0; d)}
is an optimal stopping time. The relation z(G(x0)) = G(d), which can be written as

2r
�2

∫ d

x0
u2(�−1) exp

{
− r

��2 u2�
}
du=

1
q
exp

{
− r

��2 x2�0
}
− 1

d
exp

{
− r

��2d
2�
}
;

determines x0 ∈ (q; d) uniquely.
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Case II: Suppose now G(d)¿z(−∞) (cf. Fig. 2(b)). It is then clear that W (y) =
−q[y − G(d)] is the smallest nonnegative concave majorant of H (·) of (6.7) on
(−∞; G(d)]. According to Proposition 4.3, V (x)=  (x)W (G(x))=−qx[G(x)−G(d)],
x∈ [0; d], with V (0)=V (0+)=q. Furthermore, the stopping time �∗ , inf{t¿ 0 : St ∈
(0; d)} is optimal.

6.3. American capped call option on dividend-paying assets (Broadie and Detemple,
1995)

Let the stock price be driven by dSt = St[(r − =) dt + � dBt], t¿ 0, S0 ¿ 0, with
constant �¿ 0, risk-free interest rate r ¿ 0 and dividend rate =¿ 0. Consider the
optimal stopping problem

V (x), sup
�¿0

Ex[e−r�(S� ∧ L− K)+]; x∈ (0;+∞); (6.9)

with the reward function h(x) , (x ∧ L − K)+, x¿ 0. The value function V (·) is
the arbitrage-free price of the perpetual American capped call option with strike price
K¿ 0, and the cap L¿K on the stock S, which pays dividend at a constant rate =.
We shall reproduce the results of Broadie and Detemple (1995) in this subsubsection.
The in8nitesimal generator of X coincides with the second-order di#erential operator

A , (�2=2)x2 d2=dx2 + (r − =)x d=dx. Let >1 ¡ 0¡>2 be the roots of (1=2)�2 x2 +
[r − = − (�2=2)] x − r = 0. Then the increasing and decreasing solutions of Au = ru
are given by  (x) = x>2 and ’(x) = x>1 , for every x¿ 0, respectively. Both end-
points of the state-space I = (0;+∞) of S are natural (Section 5.2). Since ‘0 ,
lim supx↓0 h

+(x)=’(x) = 0, and ‘+∞ , lim supx→+∞ h+(x)= (x) = 0, the value func-
tion V (·) of (6.9) is 8nite, and the stopping time �∗ of (5.14) is optimal (Proposition
5.13). Moreover V (x) = ’(x)W (F(x)), where F(x) ,  (x)=’(x) = x,, x¿ 0, with
, , >2 − >1 ¿ 0, and W : [F(0+); F(+∞)) → [0;+∞) is the smallest nonnegative
concave majorant of H : [F(0+); F(+∞)) → [0;+∞), given by

H (y),
(

h
’

)
(F−1(y)) =




0 if 06y¡K,

(y1=, − K)y−>1=, if K,6y¡L,

(L− K)y−>1=, if y¿L,


 ; (6.10)

thanks to Proposition 5.12. The function H (·) is nondecreasing on [0;+∞) and strictly
concave on [L,;+∞). By solving the inequality H ′′(y)6 0, for K,6y6L,, we 8nd
that

H (·) is

{
convex on [K,; L,] ∩ [0; (r==),K,]

concave on [K,; L,] ∩ [(r==),K,;+∞)

}
:

It is easy to check that H (L,)=L,¿H ′(L,+) (cf. Fig. 3).
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Fig. 3. (Perpetual American capped call options on dividend-paying assets). Sketches of (a) the reward
function h(·), and (b)–(f) the function H (·) of (6.10) and its smallest nonnegative concave majorant W (·).
In cases (b), (d) and (f), the left boundary of the optimal stopping region for the auxiliary optimal stopping
problem of (4.10) becomes L,, and W (·) does not 8t H (·) smoothly at L,. In cases (c) and (e), the left
boundary of optimal stopping region, namely z0, is smaller than L,, and W (·) 8ts H (·) smoothly at z0.

Let Lz(y), yH (z)=z, for every y¿ 0 and z¿ 0. If (r==)K¿L, then

LL,(y)¿H (y); y¿ 0; (6.11)

(cf. Fig. 3(b)). If (r==)K ¡L, then (6.11) holds if and only if

H (L,)
L, ¡H ′(L,−) ⇔ >26

L
L− K

;

(cf. Fig. 3(d,f)). If (r==)K ¡L and >2 ¿L=(L−K), then the equation H (z)=z=H ′(z),
K, ¡z¡L, has unique solution, z0 , [>2=(>2 − 1)],K, ¿ (r==),K,, and Lz0 (y)
¿H (y), y¿ 0, (cf. Fig. 3(c,e)). It is now clear that the smallest nonnegative concave
majorant of H (·) is

W (y) =

{
Lz0∧L,(y) if 06y6 z0 ∧ L,

H (y) if y¿z0 ∧ L,

}
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in all cases. Finally

V (x) = ’(x)W (F(x)) =




(x0 ∧ L− K)
(

x
x0 ∧ L

)>2

if 0¡x6 x0 ∧ L

x ∧ L− K if x¿x0 ∧ L


 ;

where x0 , F−1(z0) = K >2=(>2 − 1). The optimal stopping region is %, {x :V (x) =
h(x)}=[x0∧L;+∞), and the stopping time �∗ , inf{t¿ 0 : St ∈%}=inf{t¿ 0 : St¿
x0 ∧ L} is optimal. Finally, it is easy to check that >2 = 1 (therefore x0 = +∞) if and
only if == 0.

6.4. Options for risk-averse investors (Guo and Shepp, 2001)

Let X be a geometric Brownian Motion with constant drift �∈R and dispersion
�¿ 0. Consider the optimal stopping problem

V (x), sup
�¿0

Ex[e−r�(l ∨ X�)]; x∈ (0;∞); (6.12)

where the reward function is given as h(x), (l∨ x), x∈ [0;∞), and l and r positive
constants.
Guo and Shepp (2001) solve this problem using variational inequalities in order to

price exotic options of American type. As it is clear from the reward function, the
buyer of the option is guaranteed at least l when the option is exercised (an insurance
for risk-averse investors). If r is the riskless interest rate, then the price of the option
will be obtained when we choose � = r.
The dynamics of X are given as dXt = Xt(� dt + � dBt), Xt = x∈ (0;∞), where B

is standard Brownian motion in R. The in8nitesimal generator of X coincides with
the second-order di#erential operator A = (�2x2=2)(d2=dx2) + �x(d=dx) as it acts
on smooth functions. Denote by

>1; >0 , (1=2)[− ((2�=�2)− 1)∓
√

((2�=�2)− 1)2 + (8r=�2)];

with >1 ¡ 0¡>0, the roots of the second-order polynomial f(x) , x2 + ((2�=�2) −
1)x − 2r=�2. The positive increasing and decreasing solutions of Au = ru are then
given as  (x) = x>0 , and ’(x) = x>1 , for every x¿ 0, respectively. Observe that both
end-points, 0 and +∞, of state space of X are natural, and

‘0 , lim sup
x→0

h+(x)
’(x)

= 0; and ‘∞ , lim sup
x→+∞

h+(x)
 (x)

=




+∞ if r ¡�

1 if r = �

0 if r ¿�


 :
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Fig. 4. Options for risk-averse investors.

Now Propositions 5.10 and 5.13 imply that


V ≡ +∞ if r ¡�

V is 8nite; but there is no optimal stopping time if r = �

V is 8nite; and �∗ of (5:14) is an optimal stopping time if r ¿�


 :

(Compare this with Guo and Shepp, 2001, Theorem 4 and 5.) There is nothing more
to say about the case r ¡�. We shall study the case r ¿� in the remainder of this
subsection. (In Dayanik and Karatzas, 2002, we discuss the case r = � for a slightly
di#erent and more interesting problem of Guo and Shepp, 2001.)
According to Proposition 5.12, V (x) = ’(x)W (F(x)) = x>1W (x), x∈ (0;∞), where

F(x),
 (x)
’(x)

= x>0−>1 ≡ x; x∈ (0;∞); , >0 − >1;

and W : [0;∞) → R is the smallest nonnegative concave majorant of

H (y),




h(F−1(y))
’(F−1(y))

if y∈ (0;+∞)

‘0 if y = 0


=

{
H0(y) ≡ ly−>1= if 06y¡l

H1(y) ≡ y(1−>1)= if y¿ l

}
:

In order to 8nd W (·), we shall determine the convexities and the concavities of
H (·), which is in fact the maximum of the concave functions H0(·) and H1(·), with
H0(·)¿H1(·) on [0; l) and H0(·)¡H1(·) on (l;∞). The function H (·) is strictly
increasing and continuously di#erentiable on (0;∞) \ {l} (Fig. 4(b)).
There exist unique z0 ∈ (0; l) and unique z1 ∈ (l;∞) (Fig. 4(c)), such that

H ′(z0) =
H (z1)− H (z0)

z1 − z0
= H ′(z1): (6.13)
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Since both H0 and H1 are concave, the line-segment Lz0 (y), H (z0)+H ′(z0)(y− z0),
y∈ (0;∞), which is tangent to H0 at z0 and to H1 at z1, majorizes H on [0;+∞).
The smallest nonnegative concave majorant W of H on [0;∞) is 8nally given by
(cf. Fig. 4(c))

W (y) =

{
H (y); y∈ [0; z0] ∪ [z1;∞);

Lz0 (y); y∈ (z0; z1):

By solving two equations in (6.13) simultaneously, we obtain

z0 = l
(

>1
>1 − 1

)1−>1 (>0 − 1
>0

)1−>0

z1 = l
(

>1
>1 − 1

)−>1 (>0 − 1
>0

)−>0

; (6.14)

and, if x0 , F−1(z0) = z1=0 and x1 , F−1(z1) = z1=1 , then Proposition 5.12 implies

V (x) = ’(x)W (F(x)) =




l if 0¡x6 x0;

l


[
>0

(
x
x0

)>1

− >1

(
x
x0

)>0]
if x0 ¡x¡x1;

x if x¿ x1:

(6.15)

Moreover, since C̃, {y∈ (0;∞) :W (y)¿H (y)}=(z0; z1), C, {x∈ (0;∞) :V (x)¿
h(x)} = F−1(C̃) = F−1((z0; z1)) = (x0; x1). Hence �∗ , inf{t¿ 0 :Xt ∈ (x0; x1)} is an
optimal stopping rule by Proposition 5.13. Compare (6.15) with (19) in Guo and Shepp
(2001) (note that al and bl of Guo and Shepp (2001) correspond to x0 and x1 in our
calculations).

6.5. An optimal stopping problem for a mean-reverting di?usion

Suppose X is a di#usion process with the state space I = (0;+∞) and dynamics

dXt = Xt[�(�− Xt) dt + � dBt]; t¿ 0;

for some positive constants �, � and �; and consider the optimal stopping problem

V (x), sup
�∈S

Ex[e−�(X� − K)+]; 0¡x¡+∞ (6.16)

with the reward function h(x)= (x−K)+, where K ¿ 0 is also constant. The functions
 (·) and ’(·) of (2.4) are positive, increasing and decreasing solutions of the di#erential



202 S. Dayanik, I. Karatzas / Stochastic Processes and their Applications 107 (2003) 173–212

equation (1=2)�2x2u′′(x) + �x(�− x)u′(x)− u(x) = 0. Let

, ± ,
(
1
2
− ��

�2

)
±
√(

1
2
− ��

�2

)
+

2
�2 ; , − ¡ 0¡, +;

be the roots of the equation (1=2)�2,(,− 1) + ��,−  = 0; and denote by

M (a; b; x),
∞∑
k=0

(a)k
(b)k

xn

n!
; (a)k , a(a+ 1) · · · (a+ k − 1); (a)0 = 1; (6.17)

U (a; b; x),
@

sin @b

{
M (a; b; x)

A(1 + a− b)A(b)
− x1−bM (1 + a− b; 2− b; x)

A(a)A(2− b)

}
(6.18)

two linearly independent solutions of the Kummer’s equation, xw′′(x)+(b− x)w′(x)−
ax=0, where a and b are positive constants (U (a; b; x) is de8ned even when b → ±n,
for integer n), see Abramowitz and Stegun (1984, Chapter 13) and Dixit and Pindyck
(1994, pp. 161–166). Then

 (x), (cx),
+
M (, +; a+; cx); and

’(x), (cx),
+
U (, +; a+; cx); x¿ 0; (6.19)

and c , 2�=�2, a± , 2(, ± + (��=�2)). Using the relations 1 + , ± − a± = , ∓ and
2−a±=a∓, and the integral representations of the conSuent hypergeometric functions
M (a; b; x) and U (a; b; x) (see Abramowitz and Stegun, 1984, Section 13.4), we obtain

 (x) =
(cx),

+
A(a+)

A(a+ − , +)A(, +)

∫ 1

0
ecxt t,

+−1(1− t)−, −
dt; x¿ 0; (6.20)

’(x) =
1

A(, +)

∫ ∞

0
e−t t,

+−1
(
1 +

t
cx

)−, −

dt; x¿ 0: (6.21)

Clearly,  (·) is increasing, and ’(·) is decreasing. By the monotone convergence the-
orem we have  (+∞) =’(0+)=+∞. Hence, the boundaries 0 and +∞ are natural.
Since the limits ‘a and ‘b of (5.17) are zero, the value function V (·) of (6.16) is
8nite; and there is an optimal stopping time, thanks to Propositions 5.10 and 5.13. By
Proposition 5.12, the value function is given by V (x) = ’(x)W (F(x)), x¿ 0, where

F(x),
 (x)
’(x)

=
M (, +; a+; cx)
U (, +; a+; cx)

;

and W (·) is the smallest nonnegative concave majorant of H (y) , (h=’)(F−1)(y),
y¿ 0. Since h is increasing, H is also increasing. If p(x), −�x2 + (��− )x+ K ,
then (A − )h(x) = p(x) for every x¿K . Let D be the only positive root of the
polynomial p(x). Then H (·) is convex on [0; F(K∨D)] and concave on [F(K∨D);+∞)
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Fig. 5. Sketches of (a) h(·), (b) H (·) and W for Example 6.5.

according to (∗) in the opening of Section 6 (in fact, K ¡D if and only if p(K)¿ 0
if and only if �¿K). Finally, it can also be checked that H ′(+∞) = 0; see Fig. 5.

It is now clear that there exists unique z0 ¿K such that H (z0)=z0 = H ′(z0), and
the smallest nonnegative concave majorant W of H coincides with the straight line
Lz0 (y), (y=z0)H (z0) on [0; z0]; and with H on [z0;+∞). If x0 , F−1(z0), then

V (x) = ’(x)W (F(x)) =




(
x
x0

), +

M (, +; a+; cx)
M (, +; a+; cx0)

h(x0); 0¡x¡x0;

h(x); x¿ x0:

The critical value x0=F−1(z0) can be found by solving the di#erential equation H (z)=
zH ′(z); or also by noting that z0 is the unique maximum of H (z)=z on (0;+∞).

7. Smooth-2t principle and necessary conditions for optimal stopping boundaries

We shall resume in this section our study of the properties of the value function V (·).
For concreteness, we focus on the discounted optimal stopping problem introduced in
Section 4, although all results can be carried over for the optimal stopping problems
of Sections 3 and 5.
In Section 4 we started by assuming that h(·) is bounded and showed that V (·)=’(·)

is the smallest nonnegative F-concave majorant of h(·)=’(·) on [c; d] (cf. Proposition
4.2); the continuity of V (·) in (c; d) then followed from concavity. The F-concavity
property of V (·)=’(·) has further implications. From Proposition 2.6(iii), we know that
D±

F (V=’) exist and are nondecreasing in (c; d). Furthermore, 2

d−

dF

(
V
’

)
(x)¿

d+

dF

(
V
’

)
(x); x∈ (c; d): (7.1)

2 The fact that the left-derivative of the value function V (·) is always greater than or equal to the
right-derivative of V (·) was pointed by Salminen (1985, p. 86).
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Proposition 2.6(iii) implies that equality holds in (7.1) everywhere in (c; d), except
possibly on a subset N which is at most countable, i.e.,

d+

dF

(
V
’

)
(x) =

d−

dF

(
V
’

)
(x) ≡ d

dF

(
V
’

)
(x); x∈ (c; d) \ N:

Hence V (·)=’(·) is essentially F-di#erentiable in (c; d). Let

%, {x∈ [c; d] :V (x) = h(x)} and C, [c; d] \ %= {x∈ [c; d] :V (x)¿h(x)}:

When the F-concavity of V (·)=’(·) is combined with the fact that V (·) majorizes h(·)
on [c; d], we obtain the key result of Proposition 7.1, which leads, in turn, to the
celebrated Smooth-Fit principle.

Proposition 7.1. At every x∈% ∩ (c; d), where D±
F (h=’)(x) exist, we have

d−

dF

(
h
’

)
(x)¿

d−

dF

(
V
’

)
(x)¿

d+

dF

(
V
’

)
(x)¿

d+

dF

(
h
’

)
(x):

Proof. The second inequality is the same as (7.1). For the rest, 8rst remember that
V (·) = h(·) on %. Since V (·) majorizes h(·) on [c; d], and F(·) is strictly increasing,
this leads to

h(y)
’(y) − h(x)

’(x)

F(y)− F(x)
¿

V (y)
’(y) − V (x)

’(x)

F(y)− F(x)
and

V (z)
’(z) − V (x)

’(x)

F(z)− F(x)
¿

h(z)
’(z) − h(x)

’(x)

F(z)− F(x)
; (7.2)

for every x∈%; y¡x¡z. Suppose x∈%∩ (c; d), and D±
F (h=’)(x) exist. As we sum-

marized before stating Proposition 7.1, we know that D±
F (V=’)(x) always exist in (c; d).

Therefore, the limits of both sides of the inequalities in (7.2), as y ↑ x and z ↓ x re-
spectively, exist, and give D−

F (h=’)(x)¿D−
F (V=’)(x), and D+

F (V=’)(x)¿D+
F (h=’)(x),

respectively.

Corollary 7.1 (Smooth-Fit Principle). At every x∈% ∩ (c; d) where h(·)=’(·) is
F-di?erentiable, V (·)=’(·) is also F-di?erentiable, and touches h(·)=’(·) at x smoothly,
in the sense that the F-derivatives of both functions also agree at x:

d
dF

(
h
’

)
(x) =

d
dF

(
V
’

)
(x):

Corollary 7.1 raises the question when we should expect V (·)=’(·) to be F-di#er-
entiable in (c; d). If h(·)=’(·) is F-di#erentiable in (c; d), then it is immediate from
Corollary 7.1 that V (·)=’(·) is F-di#erentiable in % ∩ (c; d). However, we know little
about the behavior of V (·)=’(·) on C= [c; d] \% if h(·) is only bounded. If, however,



S. Dayanik, I. Karatzas / Stochastic Processes and their Applications 107 (2003) 173–212 205

h(·) is continuous on [c; d], then V (·) is also continuous on [c; d] (cf. Lemma 4.2),
and now C is an open subset of [c; d]. Therefore, it is the union of a countable family
(J�)�∈) of disjoint open (relative to [c; d]) subintervals of [c; d]. By Lemma 4.3,

V (x)
’(x)

=
Ex[e−�∗h(X�∗)]

’(x)

=
V (l�)
’(l�)

· F(r�)− F(x)
F(r�)− F(l�)

+
V (r�)
’(r�)

· F(x)− F(l�)
F(r�)− F(l�)

; x∈ J�; (7.3)

where l� and r� are the left- and right-boundary of J�, �∈), respectively. Observe
that V (·)=’(·) coincides with an F-linear function on every J�; in particular, it is
F-di#erentiable in J� ∩ (c; d) for every �∈). By taking the F-derivative of (7.3) we
8nd that

d
dF

(
V
’

)
(x) =

1
F(r�)− F(l�)

[
V (r�)
’(r�)

− V (l�)
’(l�)

]
; x∈ J� ∩ (c; d) (7.4)

is constant, i.e., is itself F-di#erentiable in J�∩(c; d). Since C is the union of disjoint J�,
�∈U, this implies that V (·)=’(·) is twice continuously F-di#erentiable in C ∩ (c; d).
From Corollary 7.1 and the F-concavity of V (·)=’(·), it is not hard to prove the
following result.

Proposition 7.2. Suppose that h(·) is continuous on [c; d]. Then V (·) is continuous on
[c; d] and V (·)=’(·) is twice continuously F-di?erentiable in C∩ (c; d). Furthermore,

(i) if h(·)=’(·) is F-di?erentiable on (c; d), then V (·)=’(·) is continuously 3 F-
di?erentiable on (c; d), and

(ii) if h(·)=’(·) is twice (continuously) F-di?erentiable on (c; d), then V (·)=’(·) is
twice (continuously) F-di?erentiable on (c; d) \ @C,

where @C is the boundary of C relative to R or [c; d].

Proposition 7.3 (Necessary conditions for the boundaries of the optimal continuation
region). Suppose h(·) is continuous on [c; d]. Suppose l; r ∈% ∩ (c; d), and h(·)=’(·)
has F-derivatives at l and r. Then DF(V=’)(·) exists at l and r. Moreover, we have
the following cases:

(i) If (l; r) ⊆ C, then

d
dF

(
h
’

)
(l) =

d
dF

(
V
’

)
(l) =

h(r)
’(r) − h(l)

’(l)

F(r)− F(l)
=

d
dF

(
V
’

)
(r) =

d
dF

(
h
’

)
(r);

and,

V (x)
’(x)

=
h(,)
’(,)

+ [F(x)− F(,)]
d
dF

(
h
’

)
(,); x∈ [l; r]; ,= l; r:

3 Note that this is always true no matter whether DF (h=’) is continuous or not. As the proof indicates,
this is as a result of F-concavity of V (·)=’(·) and continuity of F on [c; d].
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(ii) If [c; r) ⊆ C, then

d
dF

(
h
’

)
(r) =

d
dF

(
V
’

)
(r) =

1
F(r)− F(c)

· h(r)
’(r)

;

and,

V (x)
’(x)

=
h(r)
’(r)

+ [F(x)− F(r)]
d
dF

(
h
’

)
(r)

= [F(x)− F(c)]
d
dF

(
h
’

)
(r); x∈ [c; r):

(iii) If (l; d] ⊆ C, then

d
dF

(
h
’

)
(l) =

d
dF

(
V
’

)
(l) =− 1

F(d)− F(l)
· h(l)
’(l)

;

and,

V (x)
’(x)

=
h(l)
’(l)

+ [F(x)− F(l)]
d
dF

(
h
’

)
(l)

= [F(x)− F(d)]
d
dF

(
h
’

)
(l); x∈ (l; d]:

Proof. The existence of DF(V=’), and its equality with DF(h=’) at l and r, follow
from Corollary 7.1. The 8rst and last equality in (i), and the 8rst equalities in (ii) and
(iii) are then clear.
Note that the intervals (l; r), [c; r) and (l; b] are all three possible forms that J�, �∈U

can take. Let l� and r� denote the left- and right-boundaries of intervals, respectively.
Then (7.4) is true for all three cases. In (i), both l� = l and r� = r are in %. Therefore,
V (l) = h(l) and V (r) = h(r), and (7.4) implies

d
dF

(
V
’

)
(x) =

1
F(r)− F(l)

[
h(r)
’(r)

− h(l)
’(l)

]
; x∈ (l; r): (7.5)

Since V (·)=’(·) is F-concave on [c; d] ⊃ [l; r] and F is continuous on [c; d], Proposition
2.6(iii) implies that D+

F (V=’) and D−
F (V=’) are right- and left-continuous in (c; d).

Because V (·)=’(·) is F-di#erentiable on [l; r], D±
F (V=’) and DF(V=’) coincide on

[l; r]. Therefore DF(V=’) is continuous on [l; r], and second and third equalities in (i)
immediately follow from (7.5). In a more direct way,

d
dF

(
V
’

)
(l) =

d+

dF

(
V
’

)
(l) = lim

x↓l
d+

dF

(
V
’

)
(x)

= lim
x↓l

d
dF

(
V
’

)
(x) =

h(r)
’(r) − h(l)

’(l)

F(r)− F(l)
;
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Fig. 6. x∗ is a left- and y∗ is a right-boundary point of %.

d
dF

(
V
’

)
(r) =

d−

dF

(
V
’

)
(r) = lim

x↓l
d−

dF

(
V
’

)
(x)

= lim
x↓l

d
dF

(
V
’

)
(x) =

h(r)
’(r) − h(l)

’(l)

F(r)− F(l)
:

Same equalities could have also been proved by direct calculation using (7.3).
The proofs of the second equalities in (ii) and (iii) are similar, once we note that

V (c)=0 if c∈C, and V (d)=0 if d∈C. Finally, the expressions for V (·)=’(·) follow
from (7.3) by direct calculations; simply note that V (·)=’(·) is an F-linear function
passing through (l�; (V=’)(l�)) and (r�; (V=’)(r�)).

We shall verify that our necessary conditions agree with those of Salminen (1985,
Theorem 4.7); see also Alvarez (2001) where the same conditions are derived by
nonlinear optimization techniques. Let us recall a de8nition.

De2nition 7.1 (Salminen, 1985, p. 95): A point x∗ ∈% is called a left boundary of % if
for �¿ 0 small enough (x∗; x∗ + �) ⊆ C and (x∗ − � ; x∗] ⊆ %. A point y∗ ∈% is called
a right boundary of % if for �¿ 0 small enough (y∗−� ; y∗) ⊆ C and [y∗; y∗+�) ⊆ %
(cf. Fig. 6 for illustration).

We shall also remind the de8nitions of the key functions Gb(·) and Ga(·) of
Salminen’s conclusion. At every x∈ (c; d) where h(·) is S-di#erentiable, let

Gb(x), ’(x)
dh
dS

(x)− h(x)
d’
dS

(x)

and

Ga(x), h(x)
d 
dS

−  (x)
dh
dS

(x): (7.6)

Proposition 7.4. Suppose h(·) is continuous on [c; d]. If h(·),  (·) and ’(·) are S-
di?erentiable at some x∈ (c; d), then h(·)=’(·) and h(·)= (·) are F- and G-
di?erentiable at x, respectively. Moreover,

d
dF

(
h
’

)
(x) =

Gb(x)
W ( ; ’)

and
d
dG

(
h
 

)
(x) =− Ga(x)

W ( ; ’)
; (7.7)
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where Gb(x) and Ga(x) are de<ned as in (7.6), and the Wronskian W ( ; ’) ,
’(·) d 

dS (·)−  (·) d’
dS (·) is constant and positive (cf. Section 2).

Proof. Since h(·),  (·) and ’(·) are S-di#erentiable at x, h(·)=’(·) and F are S-
di#erentiable at x. Therefore, DF(h=’) exist at x, and equals

d
dF

(
h
’

)
(x) =

(d=dS)( h
’)

dF=dS
(x) =

DSh · ’− h · DS’
DS · ’−  · DS’

(x)

=
1

W ( ; ’)

[
’(x)

dh
dS

(x)− h(x)
d’
dS

(x)
]
=

Gb(x)
W ( ; ’)

; (7.8)

where DS ≡ d=dS. Noting the symmetry in (’; F) versus ( ; G), we can repeat all
arguments by replacing (’;  ) with ( ;−’). Therefore it can be similarly shown
that DG(h= )(x) exists and DG(h= )(x) = −Ga(x)=W ( ; ’) (note that W (−’;  ) =
W ( ; ’)).

Corollary 7.2 (Salminen, 1985, Theorem 4.7): Let h(·) be continuous on [c; d]. Sup-
pose l and r are left- and right-boundary points of %, respectively, such that (l; r) ⊆
C. Assume that h(·),  (·) and ’(·) are S (scale function)-di?erentiable on the set
A , (l− � ; l] ∪ [r; r + �) for some �¿ 0 such that A ⊆ %. Then on A, the functions
Gb and Ga of (7.6) are non-increasing and non-decreasing, respectively, and

Gb(l) = Gb(r); Ga(l) = Ga(r):

Proof. Proposition 7.4 implies that DF(h=’) and DG(h= ) exist on A. Since l; r ∈%
and (l; r) ⊆ C, Proposition 7.3(i) and (7.7) imply

Gb(l)
W ( ; ’)

=
d
dF

(
h
’

)
(l) =

d
dF

(
h
’

)
(r) =

Gb(r)
W ( ; ’)

;

i.e., Gb(l) = Gb(r) (Remember also that the Wronskian W ( ; ’) , (d =dS)’ −
 (d’=dS) of  (·) and ’(·) is a positive constant; see Section 2). By symmetry in the
pairs (’; F) and ( ; G), we have similarly Ga(l) = Ga(r).

On the other hand, observe that DF(V=’) and DG(V= ) also exist and, are equal to
DF(h=’) and DG(h= ) on A, respectively, by Corollary 7.1. Therefore

d
dF

(
V
’

)
(x) =

Gb(x)
W ( ; ’)

and
d
dG

(
V
 

)
(x) =− Ga(x)

W ( ; ’)
; x∈A; (7.9)

by Proposition 7.7. Because V (·)=’(·) is F-concave, and V (·)= (·) is G-concave,
Proposition 2.6(i) implies that both DF(V=’) and DG(V= ) are non-increasing on A.
Therefore (7.9) implies that Gb is non-increasing, and Ga is non-decreasing on A.
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8. Concluding remarks: Martin boundary theory and optimal stopping for general
Markov processes

We shall conclude by pointing out the importance of Martin boundary theory (cf.
Dynkin, 1969a,b) in the study of optimal stopping problems for Markov processes.
This indicates that every excessive function of a Markov process can be represented
as the integral of minimal excessive functions with respect to a unique represent-
ing measure. If the process X is a regular one-dimensional di#usion with state space
I, whose end-points are a and b, then Salminen (1985, Theorem 2.7) shows that
the minimal -excessive functions are ka(·) , ’(·), kb(·) ,  (·), and ky(·) ,
min{ (·)= (y); ’(·)=’(y)}, for every y∈ (a; b). Then, according to Martin boundary
theory, every -excessive function h(·) can be represented as

h(x) =
∫
[a;b]

ky(x)Gh(dy); x∈I; (8.1)

where Gh is a 8nite measure on [a; b], uniquely determined by h(·). Now observe
that ky(·)=’(·) is F-concave for every y∈ [a; b]. Therefore, Proposition 4.1 and its
counterparts in Section 5 can also be seen as consequences of the representation (8.1).
The functions  (·), ’(·) of (2.4) are harmonic functions of the process X killed at an
exponentially distributed independent random time, and are associated with points in
the Martin boundary of the killed process, see Salminen (1982, 1984, 1985).
The same connection can be also made by using Doob’s h-transforms. Let � and S

be the life-time and the scale function of X , respectively; see Section 2. Remember
our assumptions that the process is not killed in the interior of the state-space I, and
that the boundaries are either absorbing or natural. For each x∈I, we shall introduce
the probability measure (cf. Borodin and Salminen, 2002, pp. 33–34)

P’
x (A),

1
’(x)

Ex[e−t’(Xt)1A]; A∈Ft ∩ {�¿ t}; t¿ 0: (8.2)

For every stopping time � and A∈F� ∩ {�¿�}, we have P’
x (A) = (1=’(x))Ex[e−�

’(X�)1A]. Therefore, the value function V (x) , sup�∈S Ex[e−�g(X�)1{�¿�}], x∈I of
our discounted optimal stopping problem can be rewritten as

V (x) = sup
�∈S
Ex

[
e−�’(X�)

g(X�)
’(X�)

1{�¿�}

]
= ’(x) sup

�∈S
E’x

[
g(X�)
’(X�)

]
; (8.3)

where E’x is the expectation under P’
x . The process {Xt;Ft ; t¿ 0} is still a regular

di#usion in I under P’
x , now with scale function S̃(·) whose density is given by

S̃
′
(x) =

S ′(x)
’2(x)

; x∈I; (8.4)

and with killing measure k(dy)= (G’(x0; y))−1G’(dy), y∈I. Here x0 ∈I is an arbi-
trary 8xed reference point, G’(·; ·) is the Green function of X under P’

x , and G’ is the
representing measure of the -excessive function ’ in its Martin integral representation
of (8.1) (cf. Borodin and Salminen, 2002, pp. 33–34).
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Two important observations are in order: Under the new probability measure P’
x ,

(i) the scale function of X is F as in (4.6); and (ii) X is not killed in the interior
of the state space I, i.e., G’(int(I)) = 0. (If we use a -excessive function di#erent
from the minimal -harmonic functions  (·), ’(·) of (2.4) in order to de8ne the new
probability measure in (8.2), then X may not have those properties under the new
probability measure.)
Since the Wronskian of  (·) and ’(·)

W ( ; ’),
 ′(x)
S ′(x)

’(x)−  (x)
’′(x)
S ′(x)

=
’2(x)
S ′(x)

d
dx

(
 (x)
’(x)

)
=

’2(x)
S ′(x)

F ′(x)

is constant (Itô and McKean, 1974, p. 130; Borodin and Salminen, 2002, p. 19), the
density in (8.4) can be rewritten as

S̃ ′(x) =W ( ; ’)F ′(x) = constant × F ′(x):

Hence the scale function of X under P’
x is the strictly increasing and continuous

function F(·) of (4.6). On the other hand, since ’ is a minimal -excessive function
and is associated with the point a on Martin boundary, the support of G’ is {a} (cf.
Borodin and Salminen, 2002, p. 33; Salminen, 1985); hence, G’(a; b] = 0.
Therefore {F(Xt);Ft ; t¿ 0} is a regular di#usion on its natural-scale with state

space F(I), and is not killed in the interior of its state space under P’
x . Since (8.3)

can be rewritten as

V (x) = ’(x) sup
�∈S

E’x
[(

g
’

◦ F−1
)
(F(X�))

]
; x∈I

the ratio V=’ is the value function of an undiscounted optimal stopping problem with
the terminal reward function (g=’) ◦ F−1 for a di#usion on the natural scale which is
not killed in the interior of its state space. If the boundaries of I are absorbing or
natural for X under P, then the boundaries of F(I) will be absorbing or natural for
F(Xt) under P’. It is now clear that V=’ is the smallest nonnegative concave majorant
of (g=’) ◦ F−1 on F(I).
By replacing ’(·) by  (·), the other minimal -excessive function for X (associated

with the point b on Martin boundary), we obtain same results in terms of G(·) of
(4.6).
The Martin boundary has been studied widely in the literature for general Markov

processes, and seems the right tool to use if one tries to extend the results of this paper
to optimal stopping of general Markov processes. Such an extension is currently being
investigated by the authors.
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