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INTRODUCTION

This paper gives the proof of the following main theorem
(Theorem 12.5.1): Let L be a finite-dimensional restricted simple Lie
algebra over an algebraically closed field F of characteristic p > 7. Then L is
of classical or Cartan type (and thus is completely classified). This result
was conjecturcd by Kostrikin and Safarcvié [KS66] and was announced in
[BW84].

Work on simple Lie algebras of characteristic p goes back to the pioneer-
ing work of Jacobson and Zassenhaus in the 1930s. The notion of restricted
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Lie algebra (also called Lie p-algebra) was introduced by Jacobson
[Jac37] in 1937. We recall that ([Jac37]; cf [Jac62, p.187; BWS2,
Sect. 1.1]) a restricted Lic algebra over Fis a Lie algebra L together with a
map x — x” satisfying certain conditions, in particular,

(ad x)” =ad(x?) forall xel.

(Indeed, if (ad x)” is an inner derivation for every x in some basis for L
then L can be given the structure of a restricted Lie algebra and if L is
centerless there is a unique such structure.)

The study of restricted Lie algebras (and, in particular, the study of the
classification problem for restricted simple Lie algebras) has proved fruitful
for several reasons. First, Lie algebras which arise “in nature” are generally
restricted, e.g., the derivation algebra Der 4 of any algebra A, the Lie
algebra of an algebraic group, the primitive elements of an irreducible
cocommutative Hopf algebra (infinitesimal formal group), and the Lie
algebras corresponding to subfields of purely inseparable field extensions of
exponent one. Second, all known nonrestricted simple Lie algebras are
closely related to restricted simple Lie algebras; more explicitly, each of the
restricted simple Lie algebras of Cartan type generalizes to a family of sim-
ple Lie algebras, and these families, together with the algebras of classical
type, give all the known simple L. Third, certain technical tools are
available in a restricted Lie algebra L which are not available in an
arbitrary Lie algebra. (Here and throughout this paper, except where
otherwise stated, we assume that all Lie algebras are finite-dimensional
over a field F as above.) For example, an element xe L has a Jordan-
Chevalley—Seligman decomposition into its semisimple and nilpotent parts
[Sel67, Theorem V.7.2].

We remark that there is an important distinction between restricted sim-
ple Lie algebras (simple Lie algebras in which (ad x)” is inner for every x)
and simple restricted Lie algebras (nonabelian restricted Lie algebras which
are simple as restricted Lie algebras, ie., which have no nonzero proper
ideals closed under the pth power map). Every restricted simple Lie algebra
is a simple restricted Lie algebra, but a simple restricted Lie algebra need
not be a simple Lie algebra. Indeed, if L is any simple Lie algebra and L
denotes the restricted subalgebra of Der L generated by ad L, then
[L,L]=L and L is a simple restricted Lie algebra. If U is any simple
restricted Lie algebra then [U, U] is simple and U=[U, U]. Thus
classification of the simple restricted Lie algebras is equivalent to
classification of simple Lic algebras, a task which is beyond the scope of
this paper.

We now briefly describe the Lie algebras arising in the statement of our
main theorem. For each finite-dimensional Lie algebra A over the complex
numbers C, let A, be the Z-span of a Chevalley basis of 4, and extend
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scalars to F: 4. = A, ® F. Dividing by the center 3(A ) (which is nonzero
when 4 = sl(n), p | n), we get a Lie algebra which is simple and restricted.
The simple Lie algebras obtained in this way are known as algebras of
classical type. (At prime characteristic, one includes the five exceptional
types among the classical-type algebras.) They thus correspond to the
irreducible root systems A4, (n>1), B,(n>=3), C, (n=22), D, (n=4), G,,
F,, E¢, E,, E;. The Lie algebras of classical type have been characterized
axiomatically by Mills and Seligman [MS57]. They are the simple algebras
which can be classified by extending the methods of Killing and Cartan,
and include all simple Lie algebras with nondegenerate Killing form. (More
generally, a simple L is of classical type if and only if it has a projective
representation with nondegenerate trace form [Blo62, Kap71].)

Aside from the classical algebras, four classes of restricted simple Lie
algebras are known, all generalizing the original p-dimensional example W,
of Witt (see [Zas39], [Cha4l]), and designated by W, (or W(m:1))
(m=1), S (or S(m: 1)) (m=3), H? (or H(m:1)?) (m even, >2),
and K (or K(m: 1)) (m odd, =3). These were discovered respectively
by Jacobson [Jac43], Frank [FraS4], Albert and Frank [AF54] and
Frank [Fra64].

Let B,, denote the commutative associative algebra of p-truncated
polynomials, with generators x,, .., x,, and relations x?=0 for i=1, .., m.
Then W, =Der B, ={> f.D,| fieB,}, where D,e W, is defined by
D;x;=é;,fori, j=1,.,mand S,, H,, K, are certain subalgebras of W,
which may be described briefly as follows. (More details are given in
Section 1.1). Consider the exterior algebra over B,, of differential forms in
dx,, .., dx,,. Let

ws=dx, A - Adx

m»

r
wy=3 dx; ndx,,,, m=2r

i=1

Ox=dx,  + Y, (x;,, dx;—x,dx; ), m=2r+1.
i=1

Define

S, ={DeW, | Dws=0),
H,={DeW, | Do, =0}, m=2r,

K,={DeW, | DwgeB,w!, m=2r+1,
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(Here the action of D on differential forms is extended from its action on
B, by requiring that D be a derivation of the exterior algebra satisfying
D(df}=d(Df), where df =Y (D, f)dx;, f € B,,.) Thus, for example, S,, =
{Xr, fiD;| ¥ D;f;=0}. For any Lie algebra 4, let A" denote the
mth derived algebra of A. Then SV, m=3, H?, m=2r>2, and K",
m=2r+12>3, are restricted simple, with dim S{"V=(m—1)(p™—1),
dim H? = p™ -2, and dim K= p” if pfm+3 and dim K'= p™ — 1 if
p | m+ 3. The restricted simple Lie algebras just described, of types W, S,
H, K, are called the restricted simple Lie algebras of Cartan rype. The
designation “Cartan type” refers to the fact that they are analogues over F,
obtained by replacing power series by p-truncated polynomials, of the four
classes of infinite simple Lie algebras over C used in the Cartan
classification of Lie pseudogroups [Car09]. For a useful description of the
Cartan-type algebras in terms of gradings and Cartan prolongations, see
the brief accounts in [Blo82, BW86] or the fuller accounts in [KS69,
Kac70, Kac74, Wil76].

We shall also need to give the notation for the known nonrestricted sim-
ple Lie algebras, since these will play a role in our proof even in the restric-
ted case. Replacing B,, above by the completed algebra U(m) of divided
powers (in m generators) (see Section 1.1 for a more precise description),
we obtain infinite-dimensional Lie algebras W(m), S(m), H(m), K(m). For
each m-tuple n= (n,, .., n,,) of positive integers, we obtain a “(p™, ..., p")-
truncated” Lie subalgebra W(m :n) of W(m) (of dimension p'!, where
|n|=n, + --- +n,,). Intersecting W(m :n) with S(m), H(m), K(m), respec-
tively, we obtain Lie algebras S(m:n), H(m:n), K(m:n). (If n=1=
(1, .., 1) these are the restricted algebras described above.) Finally, for an
automorphism @ of W(m), and for X =S, H, or K, we write X(m :n: @)=
®X(m) W(m :n). Then under suitable conditions on @, the Lie algebras
Sm:n:®)"Y  (m=3), Hm:n:®)? (m=2rz2), Km:n:d)"
(m=2r+12=3) are simple. These simple algebras, together with the
algebras W(m :n) (which are simple), are called the algebras of Cartan
type (also known as algebras of generalized Cartan type). All known non-
classical simple Lie algebras over F (which have been constructed by a
number of authors using a variety of techniques (see [ Wil-pre] for referen-
ces)) are isomorphic to algebras of Cartan type, and it is conjectured that
every nonclassical simple Lie algebra over F is of Cartan type. We remark
that X(m :n:id)= X(m :n) (where id denotes the identity automorphism
and X=S, H, or K).

We now describe the program begun by Kostrikin and Safarevi¢ [KS66,
KS697 to classify the simple L, and then give an outline of our proof. We
take the filtration of B,, obtained by giving each x, degree one, and take
the corresponding filtration of W(m : 1), with deg D, = —1 for all i. Inter-
secting this filtration with X(m:1)? (X=S, H, K) except for type K
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(where we give x,, degree 2 and D,, degree —2), we get a filtration of
X(m : 1)@, All of these filtrations are Lie algebra filtrations

L=L_,2L ,,,2-2L2 L 2L,,,=(0)

for some r, s, for which L, is a maximal subalgebra and for which the
associated graded Lie algebra G=3%:_ G, (G,=L,/L,,,) satisfies (in
addition to [G,, G;,] <G, for all i, j):

(1) G, is a restricted Lie algebra and is a direct sum of restricted
ideals each of which is classical simple, gl(x), sl(xn), or pgl(n) with p | n, or
abelian.

(2) The action of G, on G _, is restricted.

(3) Ifi<0, xeG,, and [x, G,]=(0), then x=0.
(4) Ifi=0, xeG,, and [x, G _,]1=(0), then x=0.
(5) The action of G, on G _, is irreducible.

(Actually, Gy =gl(m), sl(m), sp(2r), sp(2r)®F for L=W(m:1j,
S(m 1)V, HQ2r: 1), K(2r+1:1)"), respectively.) Filtrations for the
nonrestricted simple Lie algebras of Cartan type for which the
corresponding G has the above properties (1)-(5) are obtained similarly.

Now suppose L is any (finite-dimensional) simple Lie algebra over F and
let L, be a maximal subalgebra and L _| an ad Lg-invariant subspace con-
taining L, such that L /L, is ad Ly-irreducible. Define L; inductively
(following Cartan [Car09] and Weisfeiler [ Wei68] by

L_,.y=[L_,L J+L_, izl,
Li+1:{XELi|[X’L—l]gLi}’ l>0

Then we get a filtration of L, and the corresponding G satisfies properties
(4) and (5) above. A major result on simple Lie algebras, the main stages
of which were due to Kostrikin and Safarevic [KS69], Kac [Kac70,
Kac74], and Wilson [Wil76], is the Recognition Theorem for classical and
Cartan-type algebras, which states that if L has a maximal subalgebra L,
for which a corresponding graded G satisfies properties (1)-(3) above then
L is of classical or Cartan type.

The problem then, for L restricted, is how to find a maximal subalgebra
Ly such that the pair (L, L,) satisfies the hypotheses of the Recognition
Theorem. We will actually give two ways of finding such an L,. The first
way will be used in certain low rank algebras; this classification in turn will
enable us to find a suitable L, in the general rank case. To describe the
approach briefly, we shall first need to mention some concepts which will
be discussed more fully in the body of the paper. We recall that a torus in a
restricted Lie algebra A4 is a subalgebra T, necessarily abelian, such that
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ad, ¢ is semisimple for all re T, equivalently, 7 contains no nonzero
nilpotent element ¢ (where ¢ is nilpotent if L7} =0 for some ¢). The Cartan
subalgebras of A are the centralizers 3 ,(7) of the maximal tori 7. We call a
torus T standard if [3,(T), 3,(T)] is nil or, equivalently, if 3 (7)=T+1,
where [ is the largest nil ideal of 3,(7) (the nil radical of 3 ,(T)). For a
maximal torus 7, we have the Cartan decomposition 4=3,(T)+3 .. 4,
of A with respect to T (or 3,(7T)). If we I" (respectively, a, fe " with o, 8
independent) we write 4 =3",_, A,, (respectively, A= =3, ., A, . )
and A[a]=A4"/solv A (respectively, A[a, B1=A“P/solv A*#). The
algebra A[a] (respectively, A[a, f]) is called a rank one section (respec-
tively, rank two section) of A (with respect to 7).

Suppose that L is restricted simple. Then every torus in L and in every
section of L is standard. Our proof involves determining the possible
semisimple algebras which can occur as a rank one or rank two section of
L. To do this we are led to determine the restricted semisimple 4 with the
following property: every maximal torus of 4 is 1-dimensional (respec-
tively, 2-dimensional) and standard. The proof of the case with a 2-dimen-
sional maximal torus is particularly long, and parallels the proof in
[BW82] but with the considerable added complication that here the nil
radical I of 3 ,(7) may be nonzero. Finally, with a list of the possible rank
two sections in hand, we will construct the desired maximal subalgebra L,
of L; this construction of L, extends that given for the case /=(0) in
[Wil83].

We now briefly indicate the contents of the twelve sections of the paper.
Section 1 contains preliminaries, including details on Cartan-type algebras;
conjugacy of tori in these algebras; the Recognition Theorem; lifting of
maximal and standard tori; and Winter conjugates ¢*(7") of maximal tori
T, including discussion of the relation between the root spaces for T and
for e*(T). Section2 gives some detailed results about certain (not
necessarily restricted) simple Lie algebras S of toral rank 1, i.e., which have
a Cartan decomposition with a root a such that all roots are in Z,a. In
particular, a list is given of those S which are such that S contains no torus
of dimension >2.

Section 3 determines the restricted semisimple 4 containing a 1-dimen-
sional standard maximal torus but no tori of bigger dimension. These are
of three types: sl(2), W(1 :1), and certain algebras between H(2:1) and
H(2 :1)®. These are the possible rank one sections of a restricted simple L
(relative to a torus of maximal dimension) which we will need to consider
in the rest of the paper. Section 4 studies the analogous problem for the
rank 2 sections. It examines the restricted semisimple 4 for which there is a
2-dimensional torus 7T, and all 2-dimensional tori are maximal and stan-
dard. A list of possible cases for such A4 is given, and in most cases A4 is
closely related to certain specific small simple S, but in two cases only
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rather general structural properties are given; these are case (g), in which
for some simple S we have ScAc<DerS, T<S, and Tn(S+1) is
1-dimensional and nonrestricted (where [ is the nilradical of 3 (7)), and
case (h), in which A4 is “nearly simple,” i.e., for some simple S we have
ScAcDerSand A=S+1

Section 5 examines restricted algebras 4 with a standard maximal torus
T. For a a root of 4 with respect to 7, the spaces R,=
{xeAd,|[x,4_,]1<=I} and K, ={xe A, |a([x, 4_,])=(0)} are defined.
When T is 2-dimensional, a tight bound on dim A4,/R, is obtained. The
important notion of the root a being proper is introduced. This says that
K,=A, for some ieZ,—{0}. The distinction between proper and
improper roots may be seen in the p-dimensional Witt algebra W,. Here
there are two conjugacy classes (under Aut W) of maximal tori; one is
spanned by x, D, and the other is spanned by (x; + 1) D,. Any root with
respect to the first of these tori is proper, and any root with respect to the
second is improper. As our choice of name indicates, the first type of torus
is better for our purposes (essentially because it is contained in the
maximal subalgebra (W,),). A related characterization of « being proper is
given, namely, that « is proper if and only if T is contained in a com-
positionally classical subalgebra of codimension <2 in A (or A[a]),
where compositionally classical means that all composition factors are
abelian or simple of classical type.

Sections 6-9 again study restricted semisimple 4 which contain a
2-dimensional torus 7 and in which all 2-dimensional tori are maximal and
standard. Section 6 examines the effect of switching tori by a Winter con-
jugacy and introduces the notion of optimal torus, this being a T with the
maximal number of lines of proper roots, and of distinguished maximal
subalgebra, this being a maximal subalgebra containing the centralizer of
an optimal torus T and the spaces R, for all roots with respect to 7. Sec-
tions 7-9 examine (for 4 as in Section 6) the graded algebra G associated
to a filtration coming from a distinguished maximal subalgebra. In Sec-
tion 7 (the longest section in the paper), under the hypothesis that the cen-
ter 3(Gy) # (0), and hence 3(G,)= Fz for some z, it is proved that either
G, =(0) or G, =sl(2) @ Fz, and in the latter case that property (3) (of the
hypotheses of the Recognition Theorem) above is satisfied. In Section 8,
under the hypothesis that 3(G,)=(0), it is proved that either (a) 4 is one
of the algebras in case (h) (the “nearly simple” case) of Section 4 or (b) G,
is S;®S,, where S, =sl(2) or W(1:1); furthermore, if (b) holds and
G, #(0) then Gy =sl(2)®sl(2) and property (3) above holds. Section 9
uses Sections 7 and 8 to complete the analysis of cases (g) and (h) of Sec-
tion 4, thus giving in Theorem 9.1.1 a more explicit list of the restricted
semisimple A4 with all tori of maximal dimension 2-dimensional and stan-
dard.
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Section 10 shows that if L is restricted simple then it contains a torus 7,
of maximal dimension, such that all roots with respect to T are proper.
This uses switching of tori by Winter conjugacy to send an improper root
to a proper root while not simultaneously sending any proper root to an
improper root. It suffices to prove the corresponding property in the rank
two sections of L, these being among the semisimple algebras listed in
Theorem 9.1.1. The desired property is shown to hold except for certain
algebras in case (b) of that theorem, and a separate argument shows that
those algebras cannot occur as a rank 2 section of L.

Section 11 shows that if L is restricted simple, 7 is a torus of maximal
dimension, and all roots with respect to T are proper then more cases of
the semisimple algebras listed in Theorem 9.1.1 cannot occur as a rank 2
section of L.

The concluding Section, Section 12, shows how, for L restricted simple
but not classical, to construct a maximal subalgebra L, such that the
hypotheses of the Recognition Theorem are satisfied by the pair (L, L,). To
construct L,, we take a torus T, necessarily standard, of maximal dimen-
sion, with the property that all roots with respect to T are proper. For each
root a, L™ has a unique compositionally classical subalgebra U* of
maximal dimension, and we define Q(L)=Y, U". Using the list of
possible rank 2 sections from Sections 11, we prove that Q is a subalgebra
which is large in a certain sense involving the number of roots f in a root
string for which Lg # Q. It is shown that Q # L (otherwise L would be
classical). Then L, is taken to be a maximal subalgebra of L containing Q,
and we prove that the hypotheses of the Recognition Theorem hold, giving
our main result.

We are indebted to G. Seligman and H. Strade for many helpful com-
ments on an earlier version of this paper.

1. PRELIMINARIES

This section contains a number of definitions and results used
throughout the paper. Most of the main results of this section are proved
elsewhere and the proofs are not repeated here. Topics treated are:
definition of algebras of Cartan type (Section l.1); the Recognition
Theorem for algebras of classical or Cartan type (Section 1.2); Demuskin’s
conjugacy theorems for toral elements and for maximal tori in the restric-
ted Lie algebras of Cartan type (Section 1.3); the notations 4, A[X],
and ¥, (Section 1.4); definition and properties of standard tori (Sec-
tions 1.5 and 1.6); properties of tori of maximal dimension (Section 1.7);
properties of solvable algebras (Section 1.8); Winter’s exponential map
(Section 1.9); the Blattner-Dixmier theorem (Section 1.10); subalgebras of
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maximal dimension in W(1:1) and H(2:1)® (Section 1.11); and Schue’s
lemma on Cartan decompositions of simple Lie algebras (Section 1.12).
Throughout the entire paper F will denote an algebraically closed field of
characteristic p>7. We use the following notations: 3,(B) denotes the
centralizer of B in A4, 3(4) denotes the center of 4, N ,(B) denotes the
normalizer of B in A, Z denotes the ring of integers, N denotes the set of
natural numbers, Z, denotes Z/pZ, the prime field of F, and Z) denotes
the set of nonzero elements of Z,. Also, if B is a subalgebra of a restricted
Lie algebra 4, B denotes the restricted subalgebra of 4 generated by B.

1.1. We begin by describing the simple Lie algebras of Cartan type
over F.

Let 4(m) denote the monoid (under addition) of all m-tuples of non-
negative integers. For 1 <i<m let ¢; denote the m-tuple (9,4, ..., §,,,). For a,
p e A(m) define (5) = (51})--- (Gim)) and a! =TT, a(i)!. Forn=(ny, .., n,,),
an m-tuple of positive integers, let A(m : n) denote {ae A(m) | a(i) < p™ for
1 i< m} (where p is the characteristic of the field F under consideration).

We now define the completed free divided power algebra (m). Give the
polynomial algebra F[ X, .., X,,] its usual coalgebra structure with each
X, primitive. Then the dual space U(m)=F[X,, .., X,,]* is an infinite-
dimensional commutative associative algebra consisting of all formal sums
Y a,x®, where o ranges over A(m), a,€ F and x*(X?V... X"y =5 _, so
that multiplication is determined by

o+
x*xf = < ﬁ) x*Th
o

For n=(n,, .., n,) an m-tuple of positive integers, we let A(m : n) denote
the span of the x* with aeA(m:n). Then A(m:n) is a subalgebra
of A(m). Write 1 for the m-tuple (1,..,1). Note that A(m:1)x=
Flx, .., x,,1/(x* .., x%2). We will also denote this algebra by B,,.

For any m-tuple n of positive integers we may define a filtration of A(m)
by taking 2(m); to consist of all (possibly infinite) sums of elements a,x*
with a e A(m) and n,a(1)+ --- +n,0(m)> j. Furthermore, A(m) has a
topological (i.e., allowing infinite sums) grading W(m) =3 W(m),;, where
A(m) ; is the span of all x* with a € A(m) and n,a(1)+ --- +n,,a(m)=j.
Such a filtration gives 2(m) the structure of a topological algebra. Note
that any choice of the m-tuple n of positive integers gives the same
topology and also gives the same subspace 2(m),. A continuous linear
transformation from U(m) to WA(m) is determined by its effect on the x*
e A(m).

It is easy to see (cf. Lemmal of [Wil7la]) that there is a unique
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sequence of continuous mappings y+— y', reN, of U(m), into WA(m)
satisfying
x@=1 forall xeWU(m),;
(x*) = ((ra)!/(a!) r!) x™ for all 0 # a € A(m) and all re N;
(ax)" =a'x" forall aeF, xeU(m),, reN;
(x+p)7=3 xWytr=9 forall x, yeUA(m),, reN.
i=0

We call the mappings y — y' divided power mappings. This makes (m) a
divided power algebra (cf. [Blo85]).

A continuous automorphism ¢ of the associative algebra (m) is said to
be a divided power automorphism (also called an admissible automorphism)
if it preserves the divided power structure, i.c., if

(¢x)7 = (x") forall xeW(m),,reN.
For each i there is a continuous derivation D, of (m) with
D(x*)y=x*""% if ae A(m)and a(i)>0
and
D(x*)=0 if ae A(m)and o(i)=0.

We will frequently write x, for x* (Consequently x’*=x//j! for
1<j<p—1) The set {u;D,+ --- +u,D, |u eWUlm) (respectively,
u; € A(m:n))} (where (uD)v=u(Dv)) is a subalgebra of Der U(m), which
is denoted by W(m) (respectively, W(m :n)). The algebra W(m:n) is
simple and of dimension mp”, where n=n, + --- +n,,. It is restricted if
and only if n=1. W(m) is filtered by

W(m Z m)_[+nk k

and has a topological grading W(m)=73 W(m);;, where

Wim) = Y Wm)gjna D
k=1

Any subalgebra M = W(m) is filtered by M, = W(m); n M. Such a filtration
gives W(m) the structure of a topological algebra (and any m-tuple n of
positive integers gives the same topology).
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A continuous derivation D of U(m) is said to be a divided power
derivation (also called a special derivation) if

Dx"=x""YDx  forall xeWU(m),reN.

It is easily seen that W(m) is the set of all divided power derivations of
A(m). Furthermore (cf. [Kac74, Sect.52]), if & is a continuous
automorphism of W(m) then there is a divided power automophism ¢ of
A(m) such that

&D=¢ Dy~ forall De W(m).

We now define the algebra Q(m) of differential forms on the divided
power algebra (m), following [Kac74, Sect. 1.4]. Define

d: A(m) - Hom.,u,,,,(W(m), W(m))
by
du: D Du for ueW(m), De W(m).

Then Homy,,(W(m), U(m)) is a free W(m)-module with base
{dx,, .., dx,,} and for ueA(m)

du= ) (Du)dx;.

1

NSE

i

Define Q(m) to be the exterior algebra over U(m) on the U(m)-module
Homyg ,,,(W(m), A(m)).
Now W(m) acts on Homg,,(W(m), A(m)) by

Di=D<iA—4o(ad D) for AeHomyy,, (W(m), U(m)), De W(m).
In particular,
D(df)=d(Df) for De W(m), f e U(m).
It is easily seen that
D(ul)=(Du)Ad + u(DA)
for weW(m), Ae Homyy,,,(W(m), U(m)), D e W(m).

Then D extends to a derivation of (m) (so D(x A f)=Da A B+a A DB
and D(fa)=(Df)a+ f(Da) for all a, f e Q(m), f € N(m)). Furthermore, if
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¢ is a divided power automorphism of U(m) then ¢ acts on
Homyg,,, (W(m), A(m)) by

YA)=potod!
for 4 € Homy, (W(m), A(m)) (recall @~ 'E= ¢~ 'Ep). Clearly
P(ud)=d(u) §(4)  for ueWU(m), Ae Homyy,, (W(m), U(m)).
Then ¢ extends to an automorphism of 2(m). Note that, in particular,
g(df)=d(¢f) for [feU(m). (1.1.1)

We claim that if De W(m) and if ¢ is a divided power automorphism of
A(m) then

(®D)(A)=¢(D($~"'(1))) forall ieQ(m). (1.12)

Since both @D and ¢ Do¢ ! are derivations of 2(m) and since they agree
(by definition) on A(m), it suffices to show that they agree on
Homygy,,, (W(m), U(m)). Let 1€ Homyy,,, (W(m), A(m)). Then

$(D($'2))=¢°(D(¢p~'4)) @'
=¢o(Deo(p 'A)— (¢ 'A)cad D)o@~
=go(Dod todod—¢ 'ododoad D)o !
=@Doi—Lo(ad ®D) = (PD)(A),

proving (1.1.2).
Define wg, @, and w, € Q(m) by

ws=dx, A --- ANdx,,,

,
wy=Y dx;ndx;,, for m=2r,
i=1

and
w=dxy + Y, (X, dx,—x;dx; ) for m=2r+1.
i=1

Define subalgebras S(m), CS(m), H(m), CH(m), K(m) < W(m) by
S(m)={DeW(m)| D(ws)=0}  (m>3),
CS(m)={De W(m)| D(ws) € Fug}
=8(m)+ F(x,D;)  (m=3),



RESTRICTED SIMPLE LIE ALGEBRAS 127

H(m)={De W(m)| D(w,)=0} (m=2r=2),
CH(m)={De W(m)| D(wy)€ Fo,}
=Hm)+F(x,D+ --- +x,, D,,) (m=2r=2),

and

K(m)y={De W(m)| D(wy)eU(m) wy} (m=2r+1=3).

For any automorphism @ of W(m) and for X=W, S, H, or K, define

Xm:n:P)=>DX(m)n W(m :n).

(Of course W(m:n:@P)y=W(m:n) for all &.) Write X(m:n) for
X{(m:n:id). Direct computation (cf. [KS69, SF88]) shows that
X(m :n)P=Xm:n)? for X=S5, H, K except for X=H, m=2 and that
H(2:n)?=H(2:n)®.

Unless specified otherwise, we assume that the m-tuple used to define a
filtration or gradation is 1 unless we are considering one of the algebras
K(m) or K(m:n:®) and in that case we assume that the m-tuple is
(1,..,1,2). Then for X=3S, CS, H, CH, or K, X(m:n) is graded by
X(m:n);y=X(m:n)n W(m);,;. Note that the filtered algebra
X(m:n:@)is a filtered subalgebra of the filtered algebra W(m :n) and so
we may view the associated graded algebra gr(X(m :n:®)) as a graded
subalgebra of gr(W(m :n))= W(m : n).

HX=W,S, H or K, and

gr(X(m:n:®)2 X(m:n)? (1.1.3)

then X(m:n:®)? is simple (cf. [Kac74; Wil76, Corollary 2.5]). Such
algebras are called simple Lie algebras of Cartan type (or in some referen-
ces generalized Cartan type). Any graded subalgebra of X(m :n) (X =W, S,
CS, H, CH, or K) containing X(m :n)? is called a graded Lie algebra of
Cartan type.

ProrosiTioN 1.1.1 [Kac74, Theorem 2]. Let L be a restricted simple
Lie algebra of Cartan type. Then L is isomorphic to one of W(m : 1) (m=1),
S(m: 1)V (m=3), Hm:1)® (m=2r=2), K(m: 1)V (m=2r+1=3).

1.2. In this section we will state two important “recognition
theorems” which allow us to conclude that certain algebras are of classical
or Cartan type.

Let L be a classical simple Lie algebra (cf. [Sel67, Chap. II; BW82,

481/114/1.9
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Sect. 1.27]) with Cartan subalgebra H, root system [/, and base @. If
ael'u {0} write x=3 ;.4 ng(a)B. Then for any fe @, L is graded by

L[,] = Z La'
npla)=1

Call such a grading of L a standard grading. Define standard gradings of
the algebras pgl(n) with p | n similarly.

THEOREM 1.2.1 [Kac70, Theorem 3]. Let G be a finite-dimensional
graded Lie algebra over F. Assume that:

G, is a restricted Lie algebra and is a direct sum of
restricted ideals each of which is classical simple, gl(n),

sl(n), or pgl(n) with p | n, or abelian. (1.2.1)
The action of Gy, on G _, is restricted. (1.2.2)
Ifi<0, xeG,, and [x, G,]=(0), then x=0. (1.2.3)
Ifiz0, xeG,, and [x,G_,}=(0), then x=0. (1.24)
The action of Gy on G _, is irreducible. (1.2.5)

Then G is isomorphic, as a graded algebra, to a classical Lie algebra with a
standard grading, to pgl(n) with p | n and with a standard grading, or to a
graded Lie algebra of Cartan type.

Let L be a finite-dimensional simple Lie algebra over F and L, be a
maximal subalgebra of L. Then the adjoint action of L on itself induces a
representation of Ly on L/L,. Let L2 L | 2L, be such that L /L, is an
irreducible Ly-submodule of L/L,. Following Cartan [Car09] and
Weisfeiler [Wei68] we define a filtration of L by

L,_,=[L,L_\]1+L, for <0,

and
Li,,={xeL;|[x,L_]1sL;} for i=0.

We call this a filtration corresponding to the maximal subalgebra L,. Let
G=YG,, G;=L,/L,,,, be the associated graded algebra.
The following theorem contains results of [Kac74, Wil76].

THEOREM 1.2.2 (The Recognition Theorem). Let L be a finite-dimen-
sional simple Lie algebra over F with maximal subalgebra L,. Give L a
corresponding filtration and let G be the associated graded algebra. Suppose
G satisfies (1.2.1)-(1.2.3). Then L is of classical or of Cartan type.
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1.3. Let 4 be a restricted Lie algebra. We say an element 1€ 4 is
toral if t*=1.

Demuskin [Dem70, Dem72] has proved conjugacy theorems for toral
elements and for maximal tori in the restricted simple Lie algebras of
Cartan type. The following theorem combines some of these results and
also includes a strengthening of Demuskin’s result on conjugacy of toral
elements in K(m : 1)),

THEOREM 1.3.1 (Demuskin’s Conjugacy Theorem). (a) Let te W(m: 1),
t¢ Wim: 1)y, be a toral element. Then t is conjugate to (x, +1) D,.

(b) Let te W(m:1), be a toral element. Then t is conjugate to an
element in the Z,-span of {x, D,, .., x,, D, }.

(c) Let T< W(m:1) be a maximal torus. Then T is conjugate to T; =
span{(x, +1)D,, .., (x,+1)D;, x,,1 D, x,,D,} for some i,
O<ig<m. For any i, 3y, (T)=T,.

(d) Let teS(m: 1), m=3, t¢(S(m:1)1),, be a toral element.
Then t is conjugate to (x, + 1) D, —x, D,.

(e) Lette(S{m:1)"),, m=>=3, be a toral element. Then t is conjugate
to an element in the L ,-span of {x, D, —x;,, D;,, | 1<i<sm—1}.

(f) Let T=Sm: 1)V, m=3, be a maximal torus. Then T is
conjugate to T, S(m : 1)V for some i, 0 <i<m— 1 (where T, is as in (c)).

(8) Let teHm:1)?, m=2rz2, t¢(H(m:1)?),, be a toral
element. Then t is conjugate to (x, +1)D, —x,., D, .

(h) Let te (Hm:1)®)y, m=2r>2, be a toral element. Then t is
conjugate to an element in the Z,-span of {x,D,—x,,, D, ,|1<i<r}.

(i) Let TSH(m: )P, m=2r>2, be a maximal torus. Then T is
conjugate to T; n H(m : 1) for some i, 0<i<r (where T, is as in (c)).

(G) Let teKm: 1), t¢ (K(m:1)V) |, m=2r+1>3, be a toral
element. Then ¢ is conjugate to 2(x,, + 1) D, +>7 ' x; D,

(k) Let te(Km:1)M)_,, t¢(K(m:1)V),, m=2r+123, be a
toral element. Then t is conjugate to (x, +1)D, —x, ., D, , +x,,,D,,.

(1) Let te(K(m:1)V), m=2r+ 123, be a toral element. Then t is
conjugate to an element in the Z,-span of {x,D;, —x,,,D;,, |1<i<r}u
{2x,,D,, +Y7' x,D,}.

i=1

Proof. Reference [Dem70] contains proofs of (a) (Lemma 6), (c)
(Theorem 1 and Corollary 2), (d) (Lemma 8), and (f) (Theorem 2).
Reference [Dem72] contains proofs of (g} (Lemma 2) and (i) (Theorem 2).
Furthermore, (b) is proved at the beginning of the proof of Theorem 1 of
[Dem70], the proof of (e) is contained within the proof of Theorem 2 of
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[Dem70] and the proof of (h) is contained within the proof of Theorem 2
of [Dem72]. Actually, using Kreknin’s result [Kre71] that (X(m : n)®), is
invariant under Aut(X(m :n)®) (for X=W, S, H, K), it is easy to deduce
(b) from (c), for the toral element te W(m:1), can be imbedded in a
maximal torus of W(m:1) contained in W(m:1),). Part (e} follows
similarly from (f) and part (h) follows similarly from (i).

The proofs of (j), (k), (1) require computations in K(m :1) (m=2r+1).
Accordingly, we recall (cf. [KS69, Sect.7.1; SF88, Sect.1V.5]) that
Km:1)={2(f)| feU(m:1)}, where

r 2r
gk(f)=z Dy, f+x,D,f)D;+ Z (=D, ,f+x:D,,f)D,
i=1

i=r+1
2r
+<2f—z x,-D,.f)Dm, (1.3.1)
i=1
and that

(91, 941 =2 (D) (27~ 3 xD.1)

i=1

~(0.1) (26~ % xiDie)

— % (DD )= (D /DD ) (132)

Now assume that te K(m : 1)), t¢ (K(m : 1)V) _,, is a toral element. By
Theorems 1 and 2 of [Wil75] we may assume that t= Zx(1 + x2'f),
where f € F[xy, .., X,,_1/(x%, .., x2 _ ). Then Jacobson’s formula for pth
powers ([Jac37]; cf. [Jac62; BW82, Sect. 1.1]) shows that

p—1
17 =(Zx(1)+ Dilxt, ) = _Z Sis

i=1
where is, is the coefficient of A'~! in
(ad(Dr(1) + A Dp(x57 INP ™! Dl x5 f).

Using (1.3.2) we see that for i>2 we have s, = 9x(g,), where g, ex,, B,,
(recall that B, =F[x,,..,x,,]1/(x% .., x2)), and that s, =2(—f).
Since t” =1 this implies f= —1. Thus there is only one conjugacy class
of toral elements in K(m:1)" outside (K(m:1)")_,. Since
2x,, +1)D,, + 37" x; D; = Di(x,, +1) is such an element we have
proved (j).
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Next assume that te(K(m:1)")_,, t¢(K(m:1)"),, is a toral
element. Again by Theorems 1 and 2 of [Wil75] we may assume that
t=D(x +x2.1f), where [feF[xy,..X,, X, 25X, 1/(x5, ., X7,
x?, 5, .., x2 ). Then, as above, Jacobson’s formula for pth powers gives 1" =
>»-}w,;, where (using (1.3.2)) for some g, .., g, ,€x,,,B, we have
w, =2 (—f+g,) and w,=9(g,) for i=2. Since t”=1 this implies
f=—x,;. Thus there is only one conjugacy class of toral elements in
(K(m: 1)) _, outside (K(m:1)"),. Since (x, +1)D, —x,,, D, +
X, 41D,y =% ((x, + 1)x,,,) is such an element we have proved (k).

Finally, assume that te (K(m : 1)), is a toral element. Since K(m : 1)'"
is graded we may write 1=3 ., f,;, where 1[;; € (K(m : 1)) ;. Clearly
707 = froy- We claim that ¢ is conjugate to 1y. To prove this observe that
by Theorem 1 of [Wil75] we may assume [f4q, t{;;]=0 for all j>0 and
so by Jacobson’s formula for pth powers t* =10y + (250 ;) This
clearly implies ¢, =0 for j>0. Then (1) follows from Theorem 2 of
[Wil75]. 1

COROLLARY 1.3.2. Let M be a restricted subalgebra of W(2 : 1) and T be
a two-dimensional torus in M. Then 3,(T)=T.

Proof. This is immediate from Theorem 1.3.1(c). ||

1.4. We recall some notation from [Wil83]. Let T be a maximal
torus in a restricted Lie algebra 4 and let I'=1(4, T) denote the set of
roots of 4 with respect to T so that

A=3,T)+ ) A4,

vel

is the root space decomposition. Let 4= A4(4, T) be the additive group
generated by I'(4,T). For X< 4 let ZX denote the subgroup of 4
generated by X. Define

AP= % A, (1.4.1)
xreZX
and
A[X] = A"solv(4'V), (1.4.2)

where solv B denotes the solvable radical of B. Note that 4X) is a restricted
subalgebra of 4 and hence A[ X] is restricted. Let

W 4D S A[X]
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denote the canonical epimorphism (which is a homomorphism of restricted
Lie algebras). We write A, A[a], ¥,, A“P, A[a, B], ¥,; in place of
ACD AL {a}], iy, APD AL {a, B}, ¥ (up), respectively.

1.5.

DerFINITION 1.5.1. Let A be a restricted Lie algebra. A maximal torus
T< A is said to be standard (in A) if 3 ,(7T) contains a nil ideal I such that

3 (D)=T+1

LemMMAa 1.5.2. The following are equivalent:

(a) T is standard in A.
(b) The set of nilpotent elements in 3 (T) forms a subalgebra.

(©) [34T),34(T)] is nil.

Proof. Clearly (a) implies (c) and (b) implies (a). Thus it suffices to
prove that (c) implies (b). Let D=1[3,(7), 3..(7T)]. Assume (c) holds. By
(c), D is a restricted nil ideal of 3 (7). It follows that x € 3 ,(T) is nilpotent
if and only if (x + D)€ 3,(T)/D is nilpotent. Since 3,(T)/D is abelian it is
clear that the set of nilpotent elements of 3 ,(T) forms a subalgebra, so (b)
holds. |

Remark 1.53. 1If A is a restricted simple Lie algebra then any maximal
torus T< A4 is standard, for 3,(7) is a Cartan subalgebra of 4 (by [Sel67,
Thm. V.7.3]) and so has the required structure by Theorem 2.1 of [Wil77].

Remark 1.54. There exist pairs (A4, T) such that A is a restricted
semisimple Lie algebra, 7 is a maximal torus in 4, and T is not standard.
We give two examples, each involving a type of algebra that will occur
frequently in the sequel.

For the first example let

A= (sl(2)® F[x1/(x")) + F(8/0x).

This is semisimple (by Theorem 9.3 of [Blo69]; cf. Theorem 1.16.1 of
[BW82]). Let sl(2) have the usual basis {e, f, #}. Then T=F(h®1) is a
maximal torus in A4,

34(T) = (h® (F[x1/(x"))) + F(0/0x),

and [0/0x, h®x]=h® 1 is not nilpotent. Hence (see Lemma 1.5.2) T is
not standard. (The adjoint representation of the algebra 3,(7) on
e® (F[x]/(x?)) is isomorphic to the example given by Seligman (p. 97 of
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[Sel67]) of a representation of a nilpotent Lie algebra for which the
weights are not linear.)

For the second example let A= W(1:2) and T=F(x, D,). Then T'is a
maximal torus in 4, and 3,(7) contains D? and x»*Y% D,. Since
[D%, xP*Y D T=x, D, we see from Lemma 1.5.2 that T is not standard.

Remark 1.55. If T is a standard maximal torus in a restricted Lie
algebra A, o is a root of 4 with respect to the Cartan subalgebra 3,(7),
and 3,7T)= T+ 1, where I is the nil radical of 3,(7T), then «e€3,(7)* and
a(I)= (0). Therefore, identifying T* with the subset {ye3 (T)*|y(])=
(0)} we see that I'(T), the set of roots with respect to 3,(T), can be
regarded as a subset of T*.

1.6. We now investigate some functorial properties of standard
maximal tori.

LEMMA 1.6.1. Let B: A — B be a surjective homomorphism of restricted
Lie algebras. Let T be a maximal torus in A.

(a) PB(T) is a maximal torus in B.

(b)  35(B(T)) = B(3.4(T)).
(¢) If T is standard in A then B(T) is standard in B.

Proof. Part (a) is contained in Winter’s Theorem 2.16 of [Win69]. For
(b) let C={xeA|p(x)e35(B(T))}. Then B([C, T])=[B(C), B(T)] = (0)
so [C,T]<C. Thus C=3% C,. Now if y #0 then B(C,)= ([ C,, T])=(0)
and so C, Sker f. Hence C <3,(T)+ ker . Since f is surjective this gives
38(B(T)) = B(Cy=P(3.(T)), proving (b). Finally, 34(B(T))=pG3E.(T))=
B(T+ Iy=B(T)+ B(I). Now, as B(I} is a nil ideal, B(T) is standard and so
(c) holds. |

LemMMA 1.6.2. Let A2 B be restricted Lie algebras. Let T be a standard
maximal torus in A and T < B. Then T is a standard maximal torus in B.

Proof. The condition of Lemma 1.5.2(c) holds. |

1.7.1. We now investigate the relation between tori of maximal
dimension in 4 and in a section A[ X].

LEMMA 1.7.1. Let B: A — B be a surjective homomorphism of restricted
Lie algebras with kernel K. Let S be a maximal torus in K and U be a
maximal torus in B. Then there is a maximal torus V in A such that
B(V)=U and dim V =dim S+ dim U.

Proof. Take V to be a maximal torus of g~ '(U) which contains S.
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Then B(V) is a maximal torus in U (by Lemma 1.6.1(a)) so B(¥)=U. Also
VN K is a torus in K containing the maximal torus S, so ¥n K=S. Now
dim V=dim(V n K)+ dim B(¥)=dim S+dim U. Since V is a maximal
torus in 4 (by Theorem 2.16 of [Win69]) the lemma is proved. |

LemMMma 1.7.2. Let : A— B be a surjective homomorphism of restricted
Lie algebras.

(a) If Vis a torus of maximal dimension in A, then B(V) is a torus of
maximal dimension in B.

(b) If U is a torus of maximal dimension in B, then there is a torus V
of maximal dimension in A such that p(V)=U.

Proof. Denote ker f by K. Let V' be as in (a) and suppose that U
is a maximal torus in B with dim U>dim (V). Then by Lemma 1.7.1
there is a torus V' in A such that dim V' zdim(}V n K)+dim U >
dim(¥V n K)+dim g(V)=dim V, contradicting the maximality of dim V.
Thus (a) holds.

Now let U be as in (b). Let S be a torus of maximal dimension in K. Let
V be the maximal torus of 4 given by Lemma 1.7.1. If V" is a torus in 4
with dim V' >dim V, then either dim(V’' nK)>dim(}V nK)=dim §,
contradicting the maximality of dim S, or dim S(V”)>dim B(¥)=dim U,
contradicting the maximality of dim U. Thus (b) holds. |

COROLLARY 1.7.3.  Let T be a torus of maximal dimension in a restricted
Lie algebra A and A[ X] be a section of A (with respect to T). Let U be a
torus of maximal dimension in A[X]. Then there is a torus V of maximal
dimension in A such that V< A and ¥, (V)= U.

Proof. By Lemma 1.7.2(b) there is a torus ' of maximal dimension in
A such that ¥, (¥V)=U. Since T is of maximal dimension in 4 and
T< A® (by definition), T is of maximal dimension in A and so
dim T=dim V. Thus V is of maximal dimension in 4 and we are done. |

PrOPOSITION 1.7.4. Let T be a torus of maximal dimension in a restricted
simple Lie algebra L and L[ X] be a section on L (with respect to T). Let U
be a torus of maximal dimension in L[ X]. Then U is standard in L[ X]. In
particular W (T) is standard and of maximal dimension in L[ X].

Proof. By Corollary 1.7.3, U= ¥,(V), where V is a torus of maximal
dimension (hence a maximal torus) in L. By Remark 1.5.3, V'is standard in
L. By Lemmas 1.6.1(c) and 1.6.2, U is standard in L[ X]. Since Y. (T)is of
maximal dimension in L[X] by Lemma 1.7.2, the last remark holds. |
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1.8. The following lemmas will be useful in the sequel.

Lemma 1.8.1. Let T be a maximal torus in a restricted Lie algebra A. If
ael (A, T) and xe A, then x?€3,(T) and a(x?)=0.

Proof. Since [x,x?}=0 and (ad(x?)—a(x”))"x=0 for sufficiently
large n, we have the result. |

LeMMA 1.82. Let A be a restricted Lie algebra, S an ideal in A, and J a
restricted nil subalgebra of A such that A= S+ J. Then every semisimple
element of A is contained in S.

Proof. Let xe A, x=s+m, s€ 8, meJ. By Jacobson’s formula for pth
powers (cf. [BW82, Sect. 1.1]), x*”"=m*" mod § for any n>0. As J is nil
this implies x”" €& for sufficiently large », so if x is semisimple then
xeS |

LeMMA 1.83. Let Y be a Lie algebra with root space decomposition
Yaeroio; Yoo Let M be a solvable ideal in Y. Then for any ael,
ao([Y,, M_,1)=(0).

Proof. Suppose a([V,, M _,1)#(0). Then Y, =M so a([M,, M _,])
#(0). Now if M,, M_,cM™ then [M, M JcsM"*V Since
o[M, M_1)#0), M,,=[[M,,M_, 1, M, JsoM, M_,cM"*"
Thus by induction M,, M _, = M for all n. As M is solvable this implies
M,=M_,=(0), a contradiction. |

LEMMA 1.84. Let M be a solvable restricted Lie algebra containing a
maximal torus Fr+ Fz, where r” =r is not central and z is central. Assume
that 3, (Fr + Fz)=Fr+ Fz + I, where I is a nil ideal in 3,,(Fr+ Fz). Define
o, Be(Fr+Fz)* by oafr)=1, a(z)=0, B(r)=0, B(z)=1. Suppose
(M, M_,1Y is not nil for some i. Then if V is an irreducible restricted
M-module with zV #(0), V has p weights.

Proof. As M is solvable there is an integer m and a restricted sub-
algebra M, of M such that dim V= p™, dim M/M, =m and V contains a
one-dimensional M -submodule Fv (cf. Theorem 1.13.1 of [BW82]).

Since z is central in M and V is an irreducible M-module we see that z
acts as a nonzero scalar on V. Since M is solvable, Lemma 1.8.3 shows
a(lM,, M ,1)=(0). Therefore [M,, M_,] (which is not nil by
hypothesis) contains z+n for some nilpotent ne M. Thus (M, M_,]
cannot annihilate V.

Suppose re M,. Then v is a weight vector, say ve V, EM=Fz+1+M,
then V=V, and so M, annihilates V. Hence [M,,, M _ ] annihilates V.
But we have seen in the previous paragraph that this is impossible. Hence
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there is some root # and some root vector ye M, such that y¢ M,. Then
{yv|0<j<p—1} is linearly independent, so V' has weights y+ jy,
0< j< p—1. Thus V has p weights.

Suppose r¢ M,. We may write v=v,+0,,,+ --- +0,, ., Where
v, € V,. Then since {r’v|0<j< p—1} is linearly independent we see that
{v,, ,10<j<p—1}is a linearly independent set in ¥ and hence that V
has p weights. |

1.9. In this section we recall some properties of Winter’s exponen-
tial maps E* and ¢* [Win69] and discuss the relation between root spaces
for T and e*(T).

We assume throughout this section that M is a finite-dimensional
restricted Lie algebra and that every torus of maximal dimension in M is
standard.

Let T be a torus of maximal dimension in M, ¢ € T*, and xe M. Define

p—1
E*= Y (adx)/il
i=0
Then EX(T)= {t—a(t)x | t€ T} is an abelian subalgebra of M. Therefore
E*(T) contains a unique maximal torus which we denote by e*(T). Note
that E*|, is injective. By Theorem 3.4(1) of [Win69], dim e*(T)=dim 7T,
so ¢*(T) is a torus of maximal dimension in M and hence is standard. Let
I’ denote the nil radical of 3,,(e*(T)), so that

sue™(T))=e(T)DT. (1.9.1)
Lemma 19.1. (a) 3,,(e(T))= EX(TY® I, a direct sum of subspaces.

(b) Every Ae EX(T)* has a unique extension to an element of
3 (T))* (again denoted 1) which vanishes on I'.

Proof. Since EX(T) is abelian so is E¥(T). Thus EX(T) € 3,(e*(T)). For
an arbitrary element ¢ —aft)x € EX(T) we have

(t—a(t)x)”" =t — (a(t))”" (x + x7 + --- +x7)
= —(a(t)* x mod 3,,(7).

Thus (1 —a(t))x)”" =0 implies a(¢t)=0 and so t —a(t)x=teT. Since T'is a
torus this implies ¢ = 0. Thus E*(T) contains no nonzero nilpotent elements
and so EX(T)nI=(0). Then dim(EX(T)+I')=dim E*(T)+dim/ =
dim e*(T) +dim I’ = dim 3,,(e™(T)) and so EX(T) + I' = 3,,(e*(T)), proving
(a). Part (b) is immediate from (a). §

DerFINITION 1.9.2. Pick ¢ e Hom,(F, F) such that &(u)” —&(u)=u for
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all ueF. (As noted in [Wil83, Sect.4.3] such a ¢ exists.) Let aeT*,
xeM,. For Be T* define §, €3,(e*(T))* by B,.], =(0) (where I' is as in
(19.1)) and B(E*t)=P(t)—E(B(x")) a(t) for te T. (By Lemma 1.9.1 there
is a unique f, € 3,,(e*(T))* with these properties.)

PROPOSITION 1.9.3. Let M be as above. Let a be a root with respect to T,
xeM,. Then:

(@) 3m(e*(T)) is a Cartan subalgebra of M.
(b) IfBeT*theny .z, My, =% ez, Mgy ju),-
(c) If BeT* then dim My =dim M.
(d) If BeT* then My =3 7-) (ad x)' M.
() A(M, e (T))={B.|Bed(M, T)}
Proof. Since ¢*(T) is a maximal torus, 3,(e*(T)) is a Cartan sub-
algebra, proving (a).

In proving (b) we will first show that Yiez, Mpr s €Xjez, Mgy ),
For this it is enough to show

MgS Y My, ). (1.9.2)

JeZ,
To establish (1.9.2) it is sufficient to show that if

U)= ] (@d(E*t)— (B+ jo) (E1))

JeZ,
then U(1)*™ ¥M, = (0) for all 1€ T. Then

U)= T1 ((ad 1) —a(e)(ad x) — B(e) + E(B(x")) (1) — jal1))
= ((ad 1) —a(z)(ad x) — B(1) + £(B(x")) a(2))”
—a(r)”~" ((ad 1) — a(t)(ad x) — B() + E(B(x")) a(1))
= (ad(¢”) — p(¢7)) —a(t)? " (ad 1 — B(1))
—a(1)” (ad(x”) — (x7))

(where we wuse Jacobson’s formula for pth powers to compute
((ad 1) — a(r)(ad x))? = ad(z”) — a(2)” (ad x) — «(¢)? (ad(x*?)) and also use
the fact that &(B(x?))” — E(B(xP))=B(x?)). Thus (1.9.2) holds and so
Yiez,Mpi jn ez, Mg ju,-

To prove the reverse inclusion introduce an equivalence relation ~ on
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T*byu~vifandonlyif pev+Z,a Write N, =3, M, =3, ., M,
and N, =3, M, =%,c2, M x, We have shown Ny < N, and must
show Ng S Ng. Let yeNy . Then y=3,.6 v, where © is a subset of
A(M, Ty such that fe @&, and that if 6,,6,€@ and 6, ~6, then ¢, =0,
and where y, € N,. But since Ny =N, we have y,e N, . If B, =y, for
some B,yeT* then f—y=E&((B—y)(x”))a and so (since a(x?)=0) we
have (B—7)(x”)=0 and f=7y. Therefore 3,  4a.y M, is direct and so
2oeo No, is direct. Therefore y = y; € Ny, as required. Thus (b) holds.

Now fix 7€ T satisfying t” =t and a(¢) =1 and let k€ Z be large enough
so that

(ad(E*t) — (B + jo) E*))" (M, 1) = (0)
for all jeZ,. Then M, = U'(N,), where

k

f[ (ad(E*1)— (B+ ja) (E*D))".

In partlcular M, DU(Mﬁ) and so dim M, >dim U(M,,) Now, smce
(E*t )"’ =t—x— x” ... —x” since B(t)eZ,, and since é(u)” =
utu’+ o +u” +é( ) for allueF, we see that

U’=pl;[] ((ad )~ (ad x) — (ad x?)— --- —(ad xp“)

—B() + B(xP) + -+ + B(x") + E(B(x”)) — j). (19.3)
Let t denote the projection of N onto M. Then
p—1

U |y, =[] (— Y ((ad x”)— B(x*)) + é(ﬁ(x"))—j)l

=1 My

Now (ad x”')— B(x*) is nilpotent on Mg for all / and &(B(x7)) ¢ Z (for if
E(B(x"))e Z) then B(x")=E&(B(x"))” — &(B(x”"))=0 and so £(B(x”))=0, a
contradiction). Thus tU’|,,, is invertible. Therefore dim U'(M;)=dim M,
and so dim M, >dim M;. Thus, in view of (b), (c) holds (and
(e) is immediate from (c)). Furthermore, M, = U'(Mj) and so (19.3)

gives (d). |

1.10. Let L be a Lie algebra over F and K be an ideal. If V' is a
K-module with corresponding representation ¢ then the stabilizer
Stab(V, L) of V in L is defined by

Stab(¥V, L)= {xe L | there exists neHom/V, V) such that
o[x, y]=1[n,0y] for all ye K}.
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This is a subalgebra of L containing K. If L is restricted then so is
Stab(V, L).

At characteristic 0 (over an algebraically closed field) Blattner [Bla69 ]
has shown that if V is irreducible and if W is an irreducible module for
H =Stab(V, L), which as a K-module is a direct sum of copies of V, then
the induced L-module UL® ., W is irreducible; Dixmier [Dix71] has
used this result to show that every irreducible L-module containing an
irreducible K-submodule is isomorphic to such an induced module. As
remarked in [Blo74], the Blattner-Dixmier result goes through for restric-
ted Lie algebras at prime characteristic when the enveloping algebras UL
and UH are replaced by the restricted enveloping algebras uL and uH.

If H is a restricted subalgebra of a restricted Lie algebra L, and if Wis a
restricted H-module, then the induced module uL®,,, W is a restricted
L-module, of dimension p"(dim W), where n is the codimension of H in L.
The proof of the restricted version of the Blattner—Dixmier result is essen-
tially unchanged from that at characteristic 0, using (in the analogue of the
Blattner proof) the fact that p-truncated standard monomials give a basis
of uL. The precise result we shall use is as follows.

LemMa 1.10.1. Let L be a restricted Lie algebra over an algebraically
closed field of characteristic p, K a restricted ideal in L, M an irreducible
restricted L-module, V' an irreducible K-submodule of M, H = Stab(V, L),
and V the sum of all K-submodules of M which are K-isomorphic to V. Then
V is an irreducible H-submodule of M, and M is isomorphic to the irreducible
L-module uL® ,,; V.

CorOLLARY 1.10.2. dim M is divisible by p", where n is the codimension
of H in L.

1.11. The following result is proved by a special case of an
argument due to Kreknin [Kre717].

Lemma 1111, (a) W(1 :1) contains a unique subalgebra of codimension
1. This subalgebra is W(1 :1),. Furthermore, any subalgebra of codimension
2 in W(1:1) is contained in a subalgebra of codimension 1.

(b) H(2:1)® contains a unique proper subalgebra of codimension
<2. This subalgebra is (H(2 : 1)), and is of codimension 2.

Proof. Let A denote W(I:1) in case (a) and H(2:1)? in case (b).
Since A, clearly has the asserted properties it is sufficient to prove that if M
is a subalgebra of codimension <2 in 4 and M & 4, then M = A. We may
assume (replacing M by gr M) that M is graded. We write M =3 M,,;.
Thus M _,; #(0). Since codim M <2 we haveM =4, for some i
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i=12,3,4. Direct computation shows in either case that if 0#£xeA; |
then [x, A;ql=A;;; for all i, 0<i<p—3, and that A {1+ A+
Ariy+ Ap2q generates A. Thus M ; #(0) and M,y =A;fori=23, or
4 implies M = A, as required.

1.12. The following lemma due to Schue [Sch69] will be used
repeatedly to derive information on the structure of simple Lie algebras.

Lemma 1.12.1 (Schue’s Lemma). Let L be a simple Lie algebra, H be a
nilpotent subalgebra of Der L, and L=3 ., L, be the weight space decom-
position of L with respect to H. Let xe 3,(H) and I' = {ye ' | y(x)#0}. If
I'#J, then L=% . L, +% ;e [L,,Ls]. In particular, if H is a
Cartan subalgebra of L, then H=3% , - [L,,L ]

Proof. One checks that J=3 ., L,+3 ;. [L,, L;] is invariant
under ad L, for every a e I". Thus, as /" # ¢, J is a nonzero ideal in L, so
J=L. |

2. SIMPLE LIE ALGEBRAS OF TORAL RANK ONE

We will require a number of detailed results about certain of the simple
Lie algebras of toral rank one. By [Wil78] (which uses [Kap58]) a simple
Lie algebra has toral rank one if and only if it is isomorphic to sl(2), some
W(1 :n), or some H(2:n:®)?. For completeness we develop the theory
of the algebras H(2 :n: ®)'? from the beginning, even though our treat-
ment is closely parallel to the special case m=2 of the treatment of
H(m :n)® by Kostrikin and Safarevi¢ [KS69, Sect. 1.6.1] (and that treat-
ment is analogous to the well-known characteristic zero case).

21. Let w = dx; A dx,. Recall (Sectionl.l) that H(2) =
{De W(2)| Dw=0} and

H(2:n:®)=®H(2)n W(2:n). (2.1.1)

DEerINITION 2.1.1. Let @ be a continuous automorphism of W(2) and ¢
be the unique divided automorphism of 21(2) such that &D = ¢D¢ ' for all
D e W(2). Define

J(@)=D($(x,)) D1(¢(x)) — D ($(x2)) D2(¢(x1)).
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Note that (see (1.1.1))

g =@(dx, A dx,)=d(¢(x,)) A d(¢(x,))
= (Dy(¢(xy)) dx, + Do(¢(x,)) dx;)
A (D (¢(x,)) dx, + Dy(¢(x,)) dx;)
and so
b= J(®) . (2.1.2)
Therefore J(®) is invertible (in fact J(®) ' =¢(J(® "))

DEFINITION 2.1.2. Let aeU(2) be invertible. Set a,=a' D;a for
i=1,2. For feA(2) define

Gf)=((Dy+a,) f) D, ~((D, +a,) f)D,.
Note that

(D, +a)f=a"'Dfaf) for i=12. (2.1.3)

Lemma 2.1.3. Let ®eAut W(2), a=J(P). Then 2, is a linear map of
A(2) onto PH(2) with kernel Fa~'.

Proof. ®H(2)=®{DeW(2)|Dw=0}={$Dp 'e W(2)| Dw=0} =
{EeW(2)|¢ 'Egw=0}={Ee W(2)| Epw=0}. By (2.1.2) we have

DH(2)={Eec W(2)| E(J(®)w)=0}. (2.14)

Write E=g,D,+g,D,. Then E(aw)=(Ea)w+a(Ew)=(g, D,a+
g: D,a)o+a(D, g, + D, g)o = (D(ag,) + D,(ag,))w. Thus

®H(2)={g, D, + g, D, e W(2) | D\(ag,)+ Dy(ag,)=0}. (2.1.5)

Now it is well known (cf. [Wil76, Lemma 1.2]) that if f;, f, € U(2) satisfy
D, f, +D,f, =0 then there exists fe¥(2) such that /i, =D, f, f,=
—D, f. Thus (as a is invertible) E= g, D, + g, D, belongs to @®H(2) if and
only if there exists some ge (2) such that ag, = D,(ag), ag, = — D (ag).
In view of (2.1.3) this is equivalent to E = Z,(g). Thus 2, (which is clearly
linear) maps A(2) onto ®H(2). Since Z,(g) =0 if and only if D (ag)=0 for
i=1, 2, we see that Z,(g)=0 if and only if ag € F, as required. ||

LEMMA 214 Let D=f1 Dl +f2 D2, E=g1 D| +g2 D2€¢H(2), and
a=J(®). Then

[D,E1=2,g8. /> — g /1)
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Proof. We have

[D.El=(fi1D g +/.D,8,—g D, fi—g. D, f1)D,
+(fiDg,+/f;D,8:—2. D, f,— g, D, f5) D,.
As D, E€ ®H(2) we see from (2.1.3) and (2.1.5) that

D fi==D,fy—a fi—a [,
Dyfo==Dfi—a fi—a [,
D gi=—-D;g —a g —ag,
D,g,=—D,g —a,8 —a8.

Making these substitutions in the expression for [ D, £7] gives

(fil(=Dyg,—a,g—a:8)+ faD,g, —g(—Dy fr —a, fy —as f5)
—&D, f)D+(fiDig+ /(=D g —a g1 —axg,)
—&1 D f;—8(-D, fi—a,fi —a, )} D,
=928/ — & )

as required. |

COROLLARY 2.1.5.
[(Z.f), 2.(8)]1=2.((D, +ay) g(D; +ay) f— (D, +a,) f(D; +a,)g)

Let y(n)=(p"' — 1)e, + (p™— 1)¢,. Let ¢(y(n)} be the automorphism of
the divided power algebra 2(2) defined by #(y(n))x, =x, + x*"* and
#(y(n))x; = x,. Define @(y(n)) E = ¢(y(n)) E(¢(7(n))) ' for E€ W(2). Then
@(y(n)) € Aut W(2).

Recall (cf. [Wil69]) that if yeA(2), then exp y is defined to be
Y%, ¥V Let 5(n) be the automorphism of the divided power algebra (2)
defined by &(n)x, =x, +x,(exp(x”"*)—1) and d(n)x, =x,. Define
AM)E=456(n) E(6(n)) ! for Ee W(2). Then A(n)e Aut W(2). Note that the
automorphism 4(n) is the same as the automorphism &(1) of [Wil80] (cf.
[BWS82, Sect.1.8]). Since it is never necessary to consider the
automorphisms @(i) for i # 1, we favor the simpler notation here.

Note that J(@(y(n))) =1 + x"™ and J(A(n)) = exp(x”"'*).

When n is clear from context we may write @(y) for @(y(n)) and 4 for
A(n). In particular, we will write H(2 :n: &(y)) for H(2 :n: &(y(n)})) and
H(2:n:4)for H2:n: A(n)).

Recall ([Wil80]; cf. [BW82, Sect.1.8]) that any simple algebra
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HQ2:m:¥)?® is isomorphic to some H(2:n:®)?, where &=1,
® =d(y(n)), or d=4(n) and where if m=(m,;, m,) then m=m or
n=(m,, m,).

Recall from Section 1.1 that the algebras H(2 : n: @) are filtered.

Notation 2.1.6. For any @ we write &, for Z,,. In addition, we write
9 for D, Dy, for %@Mn)), (or, if m is clear from context, just 2,), and
D(n) 0T Dy 4(ay) (01, if 0 is clear from context, just Z,).

Note that if @€ Aut W(2) and a=J(P) then

2,(U(2),) € (PH(2)), _». (2.1.6)

LemMa 2.1.7. H(2:n:®), is a restricted subalgebra of W(2)

Proof. Let EcH(2:n:®),. Then by (2.14), E(J(®)w)=0 and so
EP(J(D)w)=0. Since E?e W(2),, (2.1.4) shows that E”e(PH(2)),. As
EcH2:n:®),<W(2:n) we have EU2:n)cA(2:n) and so
(EF)UAR2:n)<U(2 :n). Then E”Pe W(2:n) so EPe H2:n:®D),. |

ProPosITION 2.1.8. (a) Let M= H(2 :n). Then

(i) 2(f)=(D,f)D,— (D, f)D,. In particular, P(x,)= —D,,
D(xy))=D,, D(x""*) = —x7" "D D, and P(xF*2)=x"""12 D,
(il) M has basis {D(x |aeA(2 n), a#0} U {D(x")|i=1,2}.

(iti) M"Y has basis {2(x*) | ae A(2:n), a #0}.
(iv) M has basis {D(x*)| ae A(2:n), a#0, y(n)].
(v) M%) is a simple Lie algebra.
(vi) M@ has basis {ad 2(x*)|acA(2:n), a#0, ym)}u
{(ad D) |i=1,2, 1< j<n}.
(vii)) Der(M®) has basis {ad 2(x*)|aeA(2:n), a#0}u

{ad 2(x"")|i=1,2} v {{ad D))" |i=1,2, 1 < j<n;} U {ad(x,D,+x,D,)}.
(b) Let M=H(2:n:®(y)). Then:

() 2,(f)=(D+x"" ") f)D,~((D,+x""'"*) f) Dy. In par-
ticular 2,(x,) = — (1 =x"™) D,, Z,(x;)= (1 —x"™) D, Z,(x”"(1 — x7™))
= —x(P - Da D,, and ng(xp"zf:z(l _Xv(n))) = x(P2— e D,.

(i) M has basis {2,(x*)|aeA2:n), a#0}uU {9, (x?"i(1 —
) [i=1,2}.

(iii) MY has basis {Z,(x*) | ae A2 :n), a #0}.
(iv) M is a simple Lie algebra.

(v) Der(MM)=MD has basis {ad 2,(x*)|a€A(2:n), a#0}
{ad Z,(x""(1 —x*™))|i=1,2} U {(ad Z(x)”|1<j<n} v
{(ad -@y(xz))p'l 1<j<”1}~

481/114/1-10
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(c) Let M=H(2:n:A4). Then:

(1) 24/)=(D,f)D; —((D, +x"" V) fyD,. In particular
Dy(x,)=—D, and D,(x,)=D, —x'?" "Vt p,

(ii) M has basis {D,(x*) | a€ A(2:n)}.

(iii) M is a simple Lie algebra.

(iv) Der M = M has basis {ad D,(x*)|a e A(2:n)} U
{(ad Z,4(x,)7 | 1< j<ny} U {(ad Dy(x))” 1 1< j<n} U {ad(x, D, +
x, D)}

Proof. Let M= H(2:n:®), where @ is one of 1, (y), 4. Let a=J(P),
so a=1, 1+x"™, exp(x”"®). Part (i) of (a), (b), and (c) follows
immediately from Definition 2.1.2.

Our first goal is to determine {f € W(2)| Z,(f)e H(2 :n: ®)}. Denote
this space by U(®). In view of Lemma 2.1.3, U(®) = {f e U2} | D,(f )€
W(2:n)} and, by (213), U@)={feU2)|a 'Dfaf)eN2:n),
i=1,2}. If aeU(2:n), as happens if ®=17 or &= P(y(n)), then U(P)=
{a /| D, feA2:n), i=1,2}. It is clear that {feU(2)| D, feU(2:n),
i=1,2} has basis {x*|aeAd(2:n)}u {x”|i=1,2}. This and the fact
that ker 2, = Fa~' (by Lemma 2.1.3) prove part (ii) of (a) and (b).

Now suppose @ = 4(n) so a=exp(x”"*). Since a, =a ' D,a=x"?
and a,=a 'D,a=0 both belong to A(2:m) it is clear that
A2 :m)c U(D). Also a—'=exp(—x"""')e U(P). We claim that U(®)=
A(2:n)+ Fa~'. To see this let f =3 f,x*e U(P). By adding an element of
A(2:n)+ Fa ' we may assume f, =0 if ae AQ2:n)yu {p™e,}. We will
show that f =0. Since f € U(®) and D,a=0, a ' Dy(af)=D, fe A2 :n)
and so f, =0 unless a(2)=0 or a=re, + p™e,, 0<r<(p" —1). Thus f =
fi+xP%2f, where fy =30 m gx™and fo =Y o<, < m 1y, x € U2 1 m),
with the g, and h,eF. Then a 'D,(af)=(D, +a,)(f, +x7"f,)€
A2:n). Thus (D, +a,)f,=0 and (D,+a,)fieA(2:n). Now
Dy +a)) fi=%,-mgx""€U2:n) for some g/eF and so
(D, +a,) f, =0. But then for i=1,2, 0=(D, +a,) f;=a ' D,(af;). Since
D,(af,)=0 we have af,eF, fieFa~' Since f; is not invertible and
1> € U2 :n), we conclude in each case that f; =0. Thus /=0 as claimed.
Hence U(®)=UA(2:n)+ Fa~'. In view of Lemma 2.1.3, this proves part
(ii) of (c).

We now prove the remaining parts of (a). Let M=H(2:n). It
follows from Lemma 2.1.4 that MV < {2(f)|feWU(2:n)} and from
Corollary 2.1.5 that

[2(x)), 2(f)]1=—=2(D,f),  [D(x2), 2(/)]1=2(D,f), (2.1.7)
[2(x"7%2), D(x*)] = (2(1) —(2)) D(x*), (2.1.8)

" — 1)

and
[D(x77%2), D(xP"1)] = D(x"™). (2.1.9)
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Then part (iii) of (a) follows from (2.1.7) and (2.1.9). Corollary 2.1.5 also
shows that for «, fe 4(2 :n)

[9(x*), F(x")] = {(“’H‘ B _£2>} P(xxrh-am)

o—&,

This, together with the fact that in F

(” A_1>+<”A'1)=(”,)=o for 0< j< p*
J j—1 J

gives [2(x*), 2(x#)]1=0 whenever a+ f—¢, —¢, =y(n). Together with
(2.1.7) this proves part (iv) of (a). Then (2.1.7) and (2.1.8) show that
M =M, Since it is known (e.g, [Wil76, Corollary 2.5]) that M(™ is
simple, we have that M® is simple, proving (v) of (a).

Since Lemma 2.1.7 shows that M, is restricted, we have that
(P(x*))?eM for all aeA(2:m), a(l)+a(2)=2. Now, as Z(xY)e
Miaiysa@) - 210 (D)€ Mpra) 4 a2y-27- But, by (i1) and (iv) of (a),
M,y = M) unless j=p™ —2, p™ —2, or p™ + p™ —4. Since none of these
numbers is a multiple of p, (M‘?), is restricted and part (vi) of (a) follows.

Since (x; D, +x, D;)wo=2w we have x; D, +x;D, €Ny, (H(2)).
Hence ad(x; D, + x, D,)eDer H(2 :n)®. Part (vii) of (a) now follows
from the fact that the given set of derivations of M‘® is linearly indepen-
dent and that by [Blo58a, Theorem 14; BW82, Lemma 1.8.3b],
dim(Der MY/MPY=n, +n, +2. (Cf also [Cel70, p.127], where the
degree derivation x, D, + x, D, is omitted.)

Next we prove the remaining parts of (b). Let M= H{2 :n: ®{y)) (so
that a=1+x""). It follows from Lemma214 that MV c
{2,(/)| feUQ2:n)}. Also Corollary 2.1.5 shows that [Z,(x,), Z,(x,)] =
21 —x"))=-2,(1-2x") = —Z(a ' —x"™)=2,(x"™). Thus
2,(x'")e MV, As Corollary 2.1.5 also shows that if f € (2); (and thus by
(2.1.6), 2(f)e M, , and 9D, f)e M; ,) then

[gy(xl)a gy(f)] = _@y(DZf),
[2,(x:), 2()]1=2,/(D,f}) modM,_,, (2.1.10)

it follows that part (iii) of (b) holds and that M@ =MY. Then
MM = M) is simple (by Corollary 2.5 of [Wil76]) and so part (iv) of (b)
holds. By [BW82, Lemma 1.8.3(a); Blo58a, Theorem 14; JJac75, p. 78],
we see that dim(Der MV/M©V)=dim(MD/M")=n, +n, so that
Der MY =M. Furthermore, the set
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(ad @,(x""(1 — x"™)) | i=1,2}
v {(ad 2,(x,))” | 1< j<n,}
u{(ad 2,(x,))" | 1<j<n,}

of n, +n, derivations is linearly independent modulo inner derivations.
Thus part (v) of (b) holds.

Finally, we prove the remaining parts of (c). Let M=H(2:n:4). By
Corollary 2.1.5,

[Z2,(x,), @A(X(""Z* l)sz)] =2 @A(x“n))-
If £ € A(2), then (as Z,(f)eM; , and 2,(D; f)e M,;_; by (2.1.6))

[Da(x,), 2,(f)]= —D4(D, f) mod MjfZ’
[D4(x,), 24(f)]=D4D, f) mod M;_,.
These results show that M =M. Then, by Corollary 2.5 of [Wil76],
M = M) is simple, proving part (iii) of (c). Since (x; D, + x, D,) J(4)=0
and therefore (x, D, + x, D,)}(J(4)w)=2J(4)w, we have x, D +x, D, €
Nyw2.ay(4H(2)). Hence ad(x, D| +x, D,)e Der H(2 :n: 4).
Now it is known [BW82, Proposition 1.8.5(c); Blo58b, Corollary 2] that
dim(Der M/M)=dim(M/M)=n, +n, — 1. Since the set
{(ad 24(x))" 1 1< j<ny} U {(ad 24(x))” | 1< j<n,}
v {ad(x, D, + x, D,)}
of n, +n, — 1 derivations is linearly independent modulo inner derivations,
we see that part (iv) of (c) holds. |
The special case H(2:1) is of particular interest. The following two
results, which deal with this case, are proved by direct computation.

CoROLLARY 2.19. HQ2:1)*® is a restricted ideal in H(2:1) and
HQ2:1)/HQ2:1)® is nil. Furthermore, H(2:1)=(Der(H(2:1)®))®
is a vrestricted ideal in Der(H(2:1)*) and Der(H(2:1)?)=
(Der(H(2 : 1))V 4+ F(x, D, + x, D,). The element x, D, + x, D, is toral.

CoroLLARY 2.1.10. H(2:1) has basis
{D(xix4)10<i, j<p—1,G, )#(0,0)} v {x5- ' D, xt ' D,}
and H(2 : 1)® has basis
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with multiplication given by
[2(x{x%), D(xix}y)] = (jk —il) D(x{+F~ x4y,
or, equivalently,
[2((x, + 1) x4), 2((xy + 1) x5)]
=(jk—il) D((x; + 1) H*- 1 xivi-1,

Let T=F%((x, +1)x,), a maximal torus in H(2:1)®). Let ae T* be
defined by a(Z((x, + 1)x,))=1. Write

Viy=span{2((x, + 1)/ x5) | IS j<p—1}

(so that V,, cV,, ,=---cV,,=H2:1),). Let I denote the nil

radical of 34.1y»(T).

LemMa 2.1.11.

(@) [2((x, +1)*x3), 2((x, + 1) x4)]=2i D((x, + 1)/ xi* 1),
(b) The only nonzero ad I-invariant subspaces of H(2:1), (ieZ})
are the V., (0<I< p—1).

©) Wi VaslEVivatons-1-

Proof. Parts (a) and (c) follow from Corollary 2.1.10 and (b) follows
from (a). |

2.2. We now prove the existence of certain tori in the algebras S,
where S= W(1:n) or H(2:n: )"

LeMMA 2.2.1.  Let G be an elementary abelian group of order p" and let S
be a subset of G which generates G. Let M be a vector space with basis
{u,|aeS}. Set u,=0 if y¢S. Suppose that there is some function
f: Sx 8 — F such that the product

Lug, ugl= fla, Blu,, 5  forall a,feS (2.2.1)

gives M the structure of a Lie algebra. Then Der M contains an n-dimen-
sional torus.

Proof. We may assume that G=(Z/pZ)". For 1<i<nlet 6;: G- F
denote the projection onto the ith coordinate. Define E; € End M by

Ei(uoz) = ai(a)ua

for all ae S. It is immediate from (2.2.1) that E, e Der M. Clearly the E,
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span a torus in Der M, and hence it remains only to prove that the E; are
linearly independent. But as S generates G this follows immediately from
the linear independence of the a,. |

COROLLARY 22.2. (a) Let A be an Albert—Zassenhaus algebra of dimen-
sion p". Then Der A contains a torus of dimension n.
(b) Let A be a simple algebra 2(G, o, ) of Block with |G| = p" and
G=G, or G,. Then Der A contains a torus of dimension n.

Proof. An Albert-Zassenhaus algebra (cf. [Sel67, p. 109]) of dimension
p" has basis {u, | xe G}, where G is an elementary abelian group of order
p" and multiplication is given by (2.2.1) for an appropriate f. Thus part (a)
follows from the lemma.

The algebra £(G, 4, f) of Block [Blo58a] with |G| = p" and G=G, or
G, has basis {v,|aeS}, where G is an elementary abelian group,
S=G— {0} or G, and multiplication is given by

[v,, vp]= gl B)vy g
for some g: $x .S — F and some J € G. Setting u, =v,, ; we see that

[uw uﬂ] = g(a+59 ﬁ+6)ua+ﬁ

so that (b) follows from the lemma. J

COROLLARY 223. (a) If S= W(1 :n) (where n=(n)) then S contains a

torus of dimension n.

(b) If S=H(2:n)® (where n=(n,, n,)) then S contains a torus of
dimension n, +n, — 1.

(c) If S=HQ:n:®(y))V (where n=(n,,n,)) then S contains a
torus of dimension ny + n,.

(dy If S=H(2:n:4) (where n=(n,, n,)) then S contains a torus of
dimension n,; + n,.

Proof. Let S=W(1:n). Then S is an Albert—Zassenhaus algebra of
dimension p” (by [BIO79, Corollary 5.1]). Since Der S=S5 (by [Wil7la,
Lemma 4]), Corollary 2.2.2(a) proves part (a).

Now let S= H(2:n)?. By (vi) and (vii) of Proposition 2.1.8(a) we see
that (Der S)/S is spanned by the cosets of ad 2(x*™), ad 2(x”"*),
ad 2(x”™2), and ad(x; D, +x, D,). Clearly the cosets of ad 2(x"™),
ad 2(x”"*), and ad 2(x”™*) span a nil ideal in (Der S)/S and so any torus
of Der S is contained in S+ F(ad(x, D, + x, D,)). Thus to prove part (b)
it is sufficient to show that Der S contains a torus of dimension n; + n,.
Since by [BW82, Lemma 1.8.3(b)] S is isomorphic to a Block algebra
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(G, 9, f) with |G|=p"*™ and G=G,, part (b) follows from
Corollary 2.2.2(b).

Next let S= H(2:n:®(y))"). Then = Der S by Proposition 2.1.8(b)(v)
and § is isomorphic to a Block algebra £(G, J, /) with |G| =p™*" and
G=G, by [BW82, Lemma 1.8.3(a)]. Thus part (c) follows from
Corollary 2.2.2(b).

Finally, let S=H(2:n:4). Then §=Der S by Proposition 2.1.8(c)(iv)
and S is isomorphic to an Albert-Zassenhaus algebra of dimension
pm+t"” by [BIO79, Corollary5.1]. Thus part (d) follows from
Corollary 2.2.2(a). 1

COROLLARY 2.24. Let ScA<DerS, where A is a restricted Lie
algebra and S is a simple Lie algebra. Suppose that A contains no tori of
dimension greater than one. Then either A=S=3l(2), A=S=W(1:1) or
S=HQ2:1)? and H2:1)P <A< H2 :1)=(Der(H((2 : 1))

Proof. Since S < 4 we see that S has toral rank one. Since by [Wil78],
a simple Lie algebra of toral rank one is one of sl(2), W(l:n), or
H(2:n:®)?), the result is immediate from Corollary 2.2.3. |

COROLLARY 2.2.5. (a) Let S be a simple Lie algebra of toral rank one
such that dim §/S>1 and S contains no tori of dimension greater than two.
Then S is one of W(1:2), H2:(2,1)%, H2:1:D(y))V), H2:1:4).

(b) Let S be a simple Lie algebra of toral rank one such that
dim §/S>2 and S contains no tori of dimension greater than two. Then
S=HQ2:1:d(y))".

Proof. By Corollary 2.2.3, the only simple Lie algebras of toral rank
one with no tori of dimension greater than two are s[(2), W(1:1),
W(l:2), H2:1)®, H2:(2,1)?%, H2:1:d(y))V, and H(2:1:4).
Since sl(2), W(1:1) and H(2:1)® are restricted, part (a) holds. Since
dim §/S=1 for S=W(1:2) (by [Ree59, Corollary 1.2] or [Wil7la,
Lemma 47), or for H(2:(2,1))® or H(2:1:4) (by Proposition 1.8.5 of
[BW821) part (b) hoids. |}

3. DETERMINATION OF RANK ONE SEMISIMPLES

31. In Section3 we study certain restricted semisimple Lie
algebras 4 containing a one-dimensional maximal torus. Since we are only
interested in such algebras when they appear as a rank one section of a
simple Lie algebra L with respect to a torus of maximal dimension, we may
add any hypotheses which are inherited by such algebras. Thus (see
Proposition 1.7.4) we assume that A contains no tori of dimension greater
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than 1 and that 4 does contain a one-dimensional standard torus. For an
analysis of the not necessarily restricted case see [ BO-pre].

THEOREM 3.1.1. Let A be a finite-dimensional restricted semisimple Lie
algebra over F containing a one-dimensional maximal torus T which is
standard. Assume that A contains no tori of dimension greater than one. Then
one of the following occurs:

(a) A is isomorphic to sl(2).
(b) A is isomorphic to W(1:1).

(c) A is isomorphic to a subalgebra of H(2 :1)= (Der(H(2:1)®))"
containing H(2: 1),

Furthermore, in case (a), T is conjugate to F(} _9); in case (b), T
is conjugate to F(x,D,) or F((x,+1)D)); and in case (c), T is
conjugate (under an automorphism of H(2:1) which need not leave A
invariant) to F(x, D, —x, D,)=F(9D(x,x,)) or F((x; +1)D, —x, D,;)=
F(2((x, + 1)x3)).

We first prove a preliminary lemma (which will also be used in
Section 4).

LEMMA 3.1.2. Let A be a restricted semisimple algebra containing a torus
T of maximal dimension which is standard. Let I denote the nil radical of
3.4(T). Suppose that S® B, = A< Der(S® B,), where S is a simple Lie
algebra and n>0, and that T< (Der S)® B,,. Then 354 5(T) &1

Proof. Let M denote the nil ideal S® (x,B,+ --- +x,B,) in S®B,,.
Then (S® B,)/M = S so M is a maximal ideal of S® B,. Thus the A-ideal
generated by M (which is 32 ; (ad 4)’ M)) must equal M or S® B,. Since
M is nil and A4 is semisimple it cannot equal M. Thus 3" , (ad 4)’ M =
S®B,. Now (DerS)®B, is an ideal in Der(S®B,) so, since
T< (Der S)® B,, we have A< (Der S)® B, +3,(7T). As M is invariant
under (Der S)® B, we see (by the Poincaré-Birkhoff-Witt theorem or
by induction) that S®B,=3,(ad3,(T)Y M and s0 35g5,(T)=

2o (ad 34(T)) 305(T). Now (ad 3.(T))’ 3,(T) <1 for all j>0 because T
is standard (see Lemma 1.52) and 3,(7)<[7 since M is nil. Thus
ises(TNE 1

Proof of Theorem 3.1.1. We show first that if 4 satisfies the hypotheses
of Theorem 3.3.1 then S< 4 < Der S, where S is a simple Lie algebra of
toral rank one. Let 3,(7)= T+ I, where [ is nil.

By Theorem 9.3 of [Blo69]

Y Si®Bn,§A§Der<Z S,®B,,,)

i=1 i=1
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for some r>1, n,, .., n, 20, where each S, is a simple Lie algebra. Let J;
denote the restricted ideal generated by S, ®B,. If TnJ,=(0), the
Engel-Jacobson theorem (cf. Section 1.10 of .[BW82]) shows that J; is
nilpotent, contradicting the simplicity of S,. Thus, as dim 7=1, T< J,. As
the sum of the J; is direct (since J; annihilates S; ® B,, for all j 5 i) we have
r=1. We simplify notation by writing S for §,, J for J,, and = for n,.

Suppose n>0. By Lemma 3.1.2 we have 355 (7)S/ and so
3sen(T)S L Let A=Y "_[ A, be the root space decomposition of 4 with
respect to 7. If xe A,,, i #0, then by Lemma 1.8.1, a(x?)=0 so x” € I. Thus
3AT) S350, (T)+ =1 Since T=J and so T<3,(7), this is impossible.
Hence n=0.

Thus S< A4 < Der S, where S is simple. Then Corollary 2.2.4 shows that
one of (a), (b), (c) holds.

It remains to establish our assertions about 7. In case (a) this is well
known. In case (b) it is Demuskin’s conjugacy theorem (Theorem 1.3.1(c))
for W(1:1). Now assume that case (c) holds. By Corollary2.1.9,
T<H(2:1)®. By Demudkin’s conjugacy theorem for H(2:1)?®
(Theorem 1.3.1(i)), T is conjugate by an automorphism of H(2:1)? to
F(x, D, —x,D,) or to F((x, +1) D, — x, D,). Since any automorphism of
H(2:1)?® extends to an automophism of (Der(H(2: 1)®))" we have the
result. |

3.2. The following lemma gives a way of recognizing simple Lie
algebras of toral rank one.

LemMa 3.2.1. Let N be a restricted Lie algebra and P be a nonnilpotent
subalgebra of N such that N= P. Suppose T is a two-dimensional standard
maximal torus of N such that 3,(T) is nil. Then there is some 0 #aec T* and
some xe€ P, such that x is not nil. Furthermore, x*=u,+u, for some
0+#u, € T and some nilpotent u,, 3p(u,) is a Cartan subalgebra of P, and P
has toral rank one with respect to 3p(u,).

Proof. Since P is an ideal in N, P is (ad T)-invariant. If x is nil for every
xeP,, 0#aeT* then as 3,(7) is nil, the Engel-Jacobson theorem
(cf. [BWS82, Corollary 1.10.2]) implies that P is nilpotent. Since this
contradicts our hypotheses, we have that there is some 0#ae T* and
some x € P, such that x is not nil.

Then u=x"e€3,(T). Let u=u, +u,, where u, is semisimple and u, is
nilpotent, be the Jordan—Chevalley—Seligman decomposition of u into its
semisimple part »; and nilpotent part u,. Since u, is a p-polynomial in u,
u, € 34(T) and so, by the maximality of 7, u, € T. Since x is not nil, u, #0.
By Lemma 1.8.1, a(x”)=0 and so a(u,)=0.
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Since dim 7 =2 we have ker a = Fu, and

3P(us)=3P(T)+pi Pia'

i=1

If ye P, for 1 <i< p—1 then v= y” e 3,(T) has decomposition v =v, + v,
into semisimple and nilpotent parts. By Lemma 1.8.1, «(y”) =0 so a(v,)=0
and

(y"), =v, eker a= Fu,. (3.2.1)

Thus ad y is nilpotent on 3p(u,). Since 3,(7) is nil by hypothesis, the
Engel-Jacobson theorem shows that 3,.(u,) is nilpotent.
Now let y e Np(3p(1,)). We have (ad u,) ye3,(u,) and so (ad u,)? y =0.
But u, is semisimple and so y € 3,(x,). Thus 3,(u,) is a Cartan subalgebra.
Recall that T is standard in N. Let 3,(7T)= T+ I, where I is nil. Then as
3p(T) is nil we have that

3T <. (32.2)

Also a(u?)=oa{u;)? =0 and so u” € ker a = Fu,. Thus, by (3.2.1) and (3.2.2)
we see that V=3p(u,) + Fu, + I is a restricted Lie algebra containing 3 »(i,).
Since Fu, is a restricted ideal in V and V/Fu, is nil by (3.2.1), (3.2.2) and
the Engel-Jacobson theorem, we see that P has the toral rank one with
respect to 3p(1,). |

4. DETERMINATION OF RANK TwO SEMISIMPLES

In this section we study certain restricted semisimple Lie algebras A
containing a two-dimensional maximal torus. Since we are only interested
in such algebras when they appear as a rank two section with respect to a
torus of maximal dimension of a simple Lie algebra L, we may add any
hypotheses which are inherited by such algebras. Thus (see
Proposition 1.7.4) we assume that A4 contains no tori of dimension greater
than 2 and that all tori of dimension 2 are standard.

We do not obtain in the present section the classification of such
algebras up to isomorphism. Instead we stop with structural charac-
terizations of certain classes of algebras. This information is required in
Section 8. For two such classes (cases (g) and (h) in Theorem 4.1.1 below)
we will (using an induction on dimension which requires the results of
Section 5-8) obtain more complete results in Section 9. Thus our final
result on rank two semisimple algebras (Theorem 9.1.1) appears there.
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4.1. The main result of Section 4 is:

THEOREM 4.1.1. Let A be a finite-dimensional restricted semisimple Lie
algebra over F. Let T be a two-dimensional torus of A. Assume that all two-
dimensional tori in A are maximal and standard. Let 3,(T)=T + I, where I
is the nil radical of 3,(T). Then one of the following occurs:

(a) S, +S,cAc(DerS,)"+ (DerS,)", where S, S, are distinct
ideals in A and each is isomorphic to one of s1(2), W(1:1), H(2: 1)

(b) S®B,cA<Der(S®B,), n>0, and T ¢ (S®B,) for some
simple S. In this case S is one of sl(2), W(1:1), H2:1)®, and
T & (Der S)® B,,.

(c) ScAcDerS with dim(SnT)=1 for some simple S. In this
case S=HQ2:1)® and we may assume (replacing A by @A,
& e Aut(Der(H(2 : 1)®)) if necessary) that H(22:1)®? + F(x, D, + x, D,)
c A< Der(H(22:1)?).

(d) S®B,cA<Der(S®B,), T<(S®B,), and n>0 for some
simple S. In this case S=H(2:1:®(y))" and 355 5(T) S 1.

(¢) ScAcDerS, T<S, and dim(A4/(S+ 1)) =2 for some simple S.
In this case S=H(2:1:d(y))".

() ScAcDerS, T<S, and T (S+1) is one-dimensional and
restricted for some simple S. In this case S is one of W(1:2), H(2: (2, 1)),
H2:1:4).

(g) ScAcDerS, T<S, and T (S+ 1) is one-dimensional and non-
restricted for some simple S.

(h) S<AcDerS for some simple S and A=S+ 1.

The proof of Theorem 4.1.1 occupies the next five sections.

42. Let A satisfy the hypotheses of Theorem 4.1.1. By Block’s
theorem ([Blo69]; cf. [BWS82, Theorem 1.16.1])

Y Si®Bni§A§Der<Z Si®B,,i), (4.2.1)
i=1 i=1
where r > 1, n; >0, and the S, are simple Lie algebras.

Let J, denote the restricted ideal of 4 generated by S; ® B,,. The Engel-
Jacobson theorem shows that if TnJ,=(0) then J, is nil. As A4 is semi-
simple we have TnJ; # (0). As J, n (X4, J;) = (0) this shows that r<2.

Suppose r=2. Let A, denote the restriction of 4 to S;® 8B, i=1,2.
Then

S;®B, €A, cDer(S;®B,)
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and by Block’s theorem A, is semisimple. Now 7 maps to a torus of A4,
which is standard and of maximal dimension (by Lemmas 1.6.1 and 1.7.2)
and T J, # (0) is in the kernel of this mapping. Thus 4, contains a one-
dimensional standard maximal torus (and no tori of larger dimension) and
so Theorem 3.1.1shows that n, =0, that S, is one of sl(2), W(1:1),
H(2:1)?, and that S, =€ 4, < (Der §,)""). By symmetry 4, has the same
structure. Therefore if r > 1, (a) is satisfied.

43. We continue to assume that A4 satisfies the hypotheses of
Theorem 4.1.1. In addition we now assume that r=1 in (4.2.1). We drop
the subscript 1 and write

S®B, < A<Der(S® B,), (4.3.1)

where S is a simple Lie algebra and n>0. Note ([Blo69]; cf. [BW82,
Sect. 1.16]) that

Der S® B, =(Der S)® B, + F® (Der B,). (4.3.2)

Let J denote the restricted ideal of 4 generated by S® B,. We have that
JnT#(0).

Assume dim(J~T)=1. Then A4/J contains the nonzero torus
(T+J)J=T/(Jn T). Since A contains no tori of dimension greater than
two it follows from Lemma 1.7.1 that J contains no tori of dimension
greater than one. Since S® F< J we see that § contains no tori of dimen-
sion greater than one. Thus by Corollary 2.2.4, S is one of sl(2), W(1:1),
H2: 1),

If n=0 then J=5 and as T & J, T<Der S we have S#Der S. Thus
S=H(2:1)?®. Then Theorem 1.18.4 of [BW82] shows that (c) holds.

Now if n>0 we have S® B, < A = Der(S® B,), where S is one of sl(2),
W(l:1), H2:1)®. Note that, as S is restricted, J=S® B,=5® B,.
Suppose T< (Der S)® B,. Then by Lemma3.1.2 we have 3,(7)<],
contradicting Jn T#(0). Thus T & (Der S)® B, and so (b) holds in
this case.

44. We continue to assume that A satisfies the hypothesis of
Theorem 4.1.1 and (4.3.1). In addition we assume that n>0 and that T<J
(where J is the restricted subalgebra of A generated by S® B, ). We will
show that (d) holds in this case. Let M=S®(x,B,+ --- +x,B,).

Lemma 1.6.2 implies that 7 is a standard maximal torus in J. By
Lemma 3.1.2, 354 5,(7) is nil. By Lemma 3.2.1 (applied with N=J and P =
S® B,) we see that 3¢ 5.(#,) (for some 0#u, € T) is a Cartan subalgebra
of toral rank one in P. Then (35 5,(%,) + M)/M is a Cartan subalgebra of
toral rank one in P/M=S. Since T<J and 35g5(7T) is nil we have
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dim J/(S® B,)>2 and so dim §/S>2. Then Corollary 2.2.5(b) gives
S=H(2:1:®(y))"" and so (d) holds.

45. We continue to assume that A4 satisfies the hypotheses of
Theorem 4.1.1. In addition we assume that

ScA<DerS, (45.1)
where S is a simple Lie algebra, and that
T<S. (4.5.2)
Then if 0 #a e T* we have 4, < [T, A,] < [S, Der S]< S and so
A=S+T+1 (4.5.3)

Thus A/(S+ )= T/(T~(S+1)) has dimension <2. If dim 4/(S+1)=0
then part (h) of Theorem4.1.1 holds. We will consider the case
dim 4/(S+I)=2 in this section and the case dim 4/(S+7)=1 in Sec-
tion 4.6.

If dim A/(S + I) =2 then by the above remarks (S + I) n T=(0). Thus if
ueig(T), u=u,+u,, u,eT, u,el, then u, e(S+I)nT=(0), so u is
nilpotent. Then Lemma 3.2.1 (with N=S, P=S) shows that S has toral
rank one with respect to some Cartan subalgebra. Since 7< S we have that
dim(S/S) > 2. Then Corollary 2.2.5(b) shows that S= H(2:1: &(y))'" and
so (e) holds in this case.

4.6. We continue to assume that A4 satisfies the hypotheses of
Theorem 4.1.1 and that (4.5.1) and (4.5.2) hold. We now assume that
dim A/(S+I)=1. By the remarks following (4.52), A=S+T+1 and
dimTn(S+1)=1

If T (S+ 1) is nonrestricted then (g) of Theorem 4.1.1 holds.

Now suppose that TN (S + 1) is restricted. Then there exists ue34(7T)
with  Jordan-Chevalley-Seligman decomposition w=u, +u,, where
0s#u, =u’? such that u, spans Tn(S+17). Fix veT so that v”=v and
T=Fu,+ Fv. Let S=34(T)+ X047 S, be the root space decomposition
of S with respect to T. As u?=u,, v’ =v, we have that if « #0 then a(u,),
a(v)eZ, Define BeT* by PB(u,)=0, B(v)=1 Then j(u,)=
3(T)+2%-! Sy If xSy, i#0, and x”=y has Jordan-Chevalley-
Seligman decomposition y,+ y, then ye3q (7T) implies y,eT. By
Lemma 1.8.1 we have B(y,})=0. Thus y, € Fu, and the restriction of ad x to
3s(u,) is nilpotent. Let we3g(7) have Jordan—Chevalley-Seligman
decomposition w=w,+w,. Then w,e Tn(S+) and so we have
w, € Fu,=ker . Thus the restriction of adw to j34(u,) is nilpotent.
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Therefore, by the Engel-Jacobson theorem 34(u,) is nilpotent. Since ue S,
3s(u,) is equal to its own normalizer in S. Thus 34(u,) is a Cartan
subalgebra of S. We have seen that if xe S;;, i#0, then x”e Fu, + I and
that Fu, +I1<35(u,)+ 1 Thus 34(u,)+ 7 is a restricted Lie algebra and
(3s(u,) + I}/Fu, is nil. Thus Fu, spans a one-dimensional maximal torus
3s(u#,) and so S has toral rank one with respect to 35(u;).

Since T= 8 and T £ S, Corollary 2.2.5(a) applies and shows that S is
one of W(1:2), H2:(2,1))®, H2:1:®(y))"", H2 :1: 4). It remains to
show that S cannot be H(2:1:®(y))"). Suppose S=H(2:1:®(y))".
Corollary 1.3.2 shows that 34(7) is a torus and hence Corollary 4.74 of
[BWS82] shows S~ W(1:2) or H(2:1:4), a contradiction. Thus in this
case, S is one of the algebras listed in conclusion (f) of Theorem 4.1.1.

This completes the proof of Theorem 4.1.1. |

5. PROPER ROOTS

5.1. Throughout Section 5 we will assume that A4 is a finite-dimen-
sional restricted Lie algebra over F, T is a maximal torus in A, and
3.T)=T+1I, where I is a nil ideal of 3,(T) (so that T is standard in A).
Recall (Remark 1.5.5) that we identify T* with {ye3,(7)*|y(I)=(0)}.
Recall also (Section 1.4) that I'(4, T)={yeT*|y+#0, A, #0} and that
A(A, T) denotes the subgroup of T* generated by I'(4, T). Denote the rank
of A(A, T} by r(A4, T). We will usually write 4 for 4(4,T) and I for
I'(4,T).

DEFINITION 5.1.1. For ye I’ define
K(A)={xed,|y([x 4_,1)=(0)}

and

KOA) =341+ T Kol A).
=1

i=

DerINITION 5.1.2. For ye I, 6 e T* define
Mi(A)={xed,|([x, 4_,1)=(0)}
and

M (A)=3,T)+ 3. M(A).

yel

LEMMA 5.1.3. For e T*, M°(A) is a restricted subalgebra of A.



RESTRICTED SIMPLE LIE ALGEBRAS 157
Proof. Let xe M3(A), ye My(A), ze A_(,, 5 Then

8([[xy1z])=0(L[xz]»]) +&([x[yz]D) e d([A4 4, M}(A)])
+o([M3(4), 4 ,1)=(0).

Thus [M3(A4), M3(4)]sM;, ,(A) whenever o, Bel, a+p#0. Also
S(LL34(T), M3(A)], A_,1) = o[4_,, M(A)]) + 8([3.T) 3.(T)]) <
(0)+ 8(I) = (0). Thus [3,4(7T), M3(A)] < M?%(4) and so M°(A4) is a sub-
algebra. By Lemma 1.8.1, if xe 4, x€ 4, then x? €3 ,(T). Thus M°(4)is a
restricted subalgebra of 4. |

COROLLARY 5.14. K“"(A) is a restricted subalgebra of A.

Proof. As K, (4)=M?(A) we have that K"(4)=M"(A7). As 4V is a
restricted subalgebra of 4 we have the result. ||

DEerINITION 5.1.5. For ye I, define
R(A)={xed,|[x, 4 1<}

and

R(A)=3T)+ Y Ry(4).

yel

LEMMA 5.1.6. R(A) is a restricted subalgebra of A.
Proof. For a, eI we have

[4_(wsp). [Ru(A), Ry(A)JTS[A4_5, Ry(A)]+ [R,(A4), 4 _,]<1

Thus [R,(A), Ry(A)1=R,,4(A) whenever a, Bel, a+ p#0. Also for
ael we have

[4_,, [34(T), R(A)]]1=[A . R(A)]+ [3.(T), [4_, R(A)]]
cI+[3T), <1

Thus [34(7), R,(4)]=R,(A) and so R(A) is a subalgebra. If e 4 and
xe A, then by Lemma 1.8.1 we have x”e€3,(7T). Thus R(A4) is a restricted
subalgebra of A4, as required. ||

DerFmNITION 5.1.7. For ye I' define

RK(A)={xeK,(A)|[x,K_]1<I}
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and

RKV(A)=3(T)+ pil RK,(A).

i=1

Thus RK,(4)= R, (K" (4)) and RK?(4) = R(K"(4)).

COROLLARY 5.1.8. RK“(A) is a restricted subalgebra of A.
It is clear that 4, 2 K,(4)2 RK,(A)2R,(A4) for all ye I

5.2. It will be of interest to know the K,(A4) for the pairs (4, T)
occurring in Theorem 3.1.1.

LEMMA 52.1. (a) If A=5l(2), T is any maximal torus in A (necessarily
one-dimensional), and a e I', then K, (A)=(0).

(b If A=w({1:1), T=Fx,D,), and aeT* is defined by
a(x; D,)=1, then K, (A)=(0) for i=+1 and K, (A)=A4, for iel},
i# 1L

(¢) If A=W(1:1), T=F((x,+1)D,), and aeT* is defined by
a((x; +1) Dy)=1, then K, ,(A)=(0) for all ie Z}.

(d) If H2:1)P <A< HQ2:1), T=F2(x,x;)), and oaeT* s
defined by a(P(x,x,))=1, then K(A)=A,nA, has basis
{D(x*1x) | 2<i< p—2} U {D(x57")} so dim A,/K,(A)=2, K_,(4)=
A ,nA, has  basis {D(xixit)12<i<p-2}u{D(x5" 1)} so
dimAd /K (A)=2, K, (A)=A,, A, has basis {D(xi"2x4)]1<i<
p=31u{D(x,x57"), 2(x5 %)} so dim Ay/K,(4)=1, K_,(A4)=
A 5, A, has basis {D(xixit?) | 1<i<p—3}0u{D(x5"'x,), D(x5~?)}
so dim A_,,/K ,,(A)=1, and K, ,(A)=A,, if ieZ}), i# 1, +2. Finally,
T<[A, [A, I1] (where I is the nil radical of 3 7))

() IfHR:1D)P<cA<HQ2:1), T=F2((x, +1)x,)), and a € T* is
defined by a(D((x; +1)x,))=1, then K, (A)=A,nA, has basis
{D((x; +1Y  x5)|3<j<p—1} so dimA,/K,(4)=3 for ieZ}.
Finally, TS [A, [A4, I1] (where I is the nil radical of 3 ,(T)).

Proof. In cases (a)-(c) we have I=(0). Thus Lemma 2.2.3 of [BW82]
gives the result.

In cases (d) and (¢) note that T< H(2:1)®, which is an ideal in 4.
Then 4,, € H(2:1)® for all ie Z* and so we may assume without loss of
generality that 4= H(2:1)?.

For (d) we begin by observing (using Corollary 2.1.10) that (H(2:1)®),,
contains span({2(xi*/x4)|0<j<p—1—i} U {D(xix57*)]0<j<
i—1}) if i#0 and H(2:1)?), contains span {D(xix})|1<i<p—2}.
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Since by Proposition 2.1.8(a)(iv), H(2:1)® has basis {2(x{x4)]0<i,
j<p—1, (i, ) #(0,0), (p—1,p—1)}, we see that equality holds in each
case and that the indicated sets of elements are bases for the root spaces.

Since P(xi*ix4)e A, ,; > and D(x{x5 /)€ A, _;,,;_, (see (2.1.6))
we see that 4, € A4,, fori# +1, +2.

Since 4, Nn3,(T)<1 we see that 4, = K (4) whenever 4, 24,+4_,.
Thus A4,, = K,,(4) whenever i # + 1, +2. Furthermore, as 4 =4 _,, we see
that [4,nA4,,4_,1<3,T)nA, <1 so that K,(4)=24,n A, for all y.
Since

[2(x)), D(x,x0)] = —2 D(x,x,),
[2(x,), 2(x,)] =0,
[2(xix,), D(x,x3)] € 4,,
[2(xix,), D(x,)]= =2 D(x,x,),
and

[2(x1), 2(x3)] = —4 D(x,x,),

we see that K,(4)=A, N A, and that K (4) has the indicated basis for
y=+a, +2a Clearly 2(x3x3)el. Then —4 D(x,x,)=[2(x,), [D(x,),
D(x3x3)11€[4, [4,11] so TS [4, [4,1]].

For (e) we begin by observing (using Corollary 2.1.10) that (H(2 : 1)),
contains span{P((x; +1)'*/x4)|0<j<p—1} for i#0 and that
(H(2 : 1)), contains span{2((x, + 1)' x5) | 1 <i< p—2}. Since the given
sets are clearly linearly independent, we see that they are bases for the
indicated root spaces.

Since (H(2:1)®), is restricted (by Lemma 2.1.7) it contains the
semisimple part of each of its elements. As 7 is a maximal torus and T &
(H(2: 1)), we see that 3,(T)n (H(2:1)?), <=1 Thus (as A=A4_,) we
see that A,nA, =K, for all y. Since the cosets of 2((x,+1)),
D((x; + 1) x,), and 2((x, + 1)'*?* x2) form a basis for 4,,/4,, " A, and
direct computation shows that

[2((x, +1)'*7 x4), 2((x, + 1)P "+ x5)]
= D(—i(j+D(x, + D
=200, D((x, +1)x;) mod 7
for 0< j, /<2, we see that K,, has the indicated basis. Finally, it is clear

that 2((x, +1)*x})el and so —42((x, +1)x,)=[2(x,), [2(x,),
D((x, +1)*x2)]1]e[4, [4,1]1] Thus T<[4,[4,11]. 1

481/114/1-11
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5.3. We will now show that the calculations of Section 5.2 allow us
to determine dim A4, /K, for any finite-dimensional restricted Lie algebra A
containing a torus of maximal dimension which is standard.

LEMMA 5.3.1. Let A be a finite-dimensional restricted Lie algebra and T
be a standard torus in A. Then K%(A)2solv(4"). Furthermore,

K4(A[71) = (K,(4) + s0lv AD)(solv A7) = ¥,(K,,(4)),
where K, (A[y]) is taken with respect to the torus
¥Y.(T)=(T+solv A")/(solv Ay <= A[y].

Proof. Lemma 1.83 (with Y=A4", M=solv(4”)) gives K7(A4)=
solv(A4®). Now if 47 =solv A" the second assertion is trivially true (as
both sides are (0)). Thus we can assume A" # (solv A™) and so y vanishes
on TrsolvA®. Thus y induces a linear functional (again denoted y)
on (T+solv A7)/solv AV = T/(T (solv A7) by y(t+solv A7) =1y(z).
Then A[y], = (4,, + solv A7)/solv A”. For xe A, we have
x+solv AP e K, (A[y]) if and only if y([x + solv A, y + solv 47 ]) = (0)
for all yed ,. But since y([x + solvA™, y + solvA™]) =
y([x, y]+solv A7) =y([x, y]) this is equivalent to y([x, y])=0 for all
ye A _,; and hence to x € K;,. This completes the proof. ||

DEFINITION 53.2. Let yed, y#0. If A[y]=(0) we say 7y is solvable, if
Aly]=sl(2) we say y is classical, if A[y]= W(1:1) we say y is Wi, and if
HQ2: 1)< A[y]1< H(2:1) we say y is Hamiltonian.

LeMMA 5.3.3. Let A be a finite-dimensional restricted Lie algebra over F.
Let T be a torus of maximal dimension in A. Assume that T is standard.
Then any ye A, y #0, is either solvable, classical, Witt, or Hamiltonian.

Proof. As T is a torus of maximal dimension in 4, Lemma 1.7.2(a)
shows that ¥, (7T) is a torus of maximal dimension in A[y]. As T is
standard in 4, Lemma 1.6.1(c) shows this torus is standard. Since T
solv A’ o ker y | 7 this torus has dimension <1. Hence A[y] has no tori of
dimension >1. Thus by Theorem 3.1.1, if A[y]# (0) it must be sl(2),
W(l:1)orelse H2:1)P < A[y]< H(2:1), as required. |

LeMMa 5.3.4. Let A be a finite-dimensional restricted Lie algebra and T
be a torus of maximal dimension in A. Assume that T is standard. Let y € 4,
y#0. Then one of the following occurs:

(a) v is solvable and K, (A)= A, for all icZ}.
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(b) 7y is classical and there is some jeLY such that, for ieZL},
dim (A, /Ky(A) =1 if i= £, dim(4,,/Ky(4)=0 if i# +

(c) 'y is Witt, there is a surjective homomorphism ¢ of A" 10 W(1:1)
such that ¢(T) = F(x, D,), and there is some je L} such that for i€ Z}

. 1 if i=4}],
- K = . -

dim(a, K an=1{y

(d) v is Witt, there is a surjective homomorphism ¢ of AW 1o W(1:1)
such that (T)= F((x, + 1) D,), and dim(4,,/K,(4))=1 for all i€ L.

(e) y is Hamiltonian, there is a surjective homomorphism ¢ of AP to a
subalgebra of H(2 :1) containing H(2:1)® such that §(T)=F(2(x,x,)),
and there is some je L} such that for ie L}

2 if i=%j
dim(4,/K,(A)=<1 if i=+2j,
0 if i#tj, £2)

(f) y is Hamiltonian, there is a surjective homomorphism ¢ of A" to a
subalgebra of H(2:1) containing H(2:1)® such that ¢(T)=
F(2((x, +1)x,)), and dim(A4,,/K,(A))=3 for all ie Z}.

Proof. By Lemma 5.3.3, y is either solvable, classical, Witt, or
Hamiltonian. If y is solvable, Lemma 5.3.1 shows that 4% =K")(4),
proving (a). If y is classical, Lemma 5.3.1 and Lemma 5.2.1(a) give (b). If y
is Witt then there is a surjective homomorphism ¢ of 4% to W(1 :1). Then
Y(T) is a maximal torus in W(1:1), so by Theorem 1.3.1(a, b) there is an
automorphism 1 of W(1 :1) such that ©y(T)= F(x, D,) or F((x, +1) D).
Setting ¢ = ¢ and using Lemmas 5.2.1(b, ¢) and 5.3.1 gives (c) and (d). If y
is Hamiltonian then there is a surjective homomorphism ¢ of 4%’ onto a
subalgebra B of H(2:1) containing H(2:1)®. Then y(T) is a maximal
torus of B. Since H(2:1)/HQ2:1)® is nil ¢(T)cH(2:1)®. By
Theorem 1.3.1(g, h) there is an automorphism t of H(2:1)® such that
wW(T)= F(2(x,x,)) or F(2((x, +1)x,)). Since every automorphism of
H(2:1)® extends to an automorphism of H(2:1) (since H(2:1)=
(Der(H(2 :1)?)M) we may view t as an isomorphism of B to tB, a sub-
algebra of H(2:1) containing H(2:1)®. Then setting ¢ =1y and using
Lemmas 5.2.1(d, €) and 5.3.1 gives (e) and (f). |

DEFINITION 5.3.5. A Lie algebra A is said to be compositionally classical
if every composition factor of A is abelian or classical simple.
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LEMMA 5.3.6. Let A be a finite-dimensional restricted Lie algebra. Let T
be a torus of maximal dimension in A. Assume that T is standard. Let
aeA(A, T). Then:

(a) If a is Witt, A contains a unique compositionally classical sub-
algebra of codimension 1 and any compositionally classical subalgebra of
codimension 2 is contained in the compositionally classical subalgebra of
codimension 1.

(b) If « is Hamiltonian, A contains a unique compositionally
classical subalgebra of codimension 2 and no such subalgebra of codimension
one.

Proof. Suppose a is Witt and that M is a compositionally classical sub-
algebra of codimension <2 in 4. Then ¥,(M) is a compositionally
classical (hence proper) subalgebra of codimension <2 in A[a] = W(1:1).
By Lemma 1.11.1(a), ¥, (M)= W(1:1),and so M = ¥_{(W(1:1),). Since
Y 1(W(1:1),) is compositionally classical and has codimension 1 in 4,
this proves (a).

Next suppose that H(2:1)¥<Qc H(2:1) and that M is a com-
positionally classical subalgebra of codimension <2 in Q. Then
M H(2:1)? is a compositionally classical (hence proper) subalgebra of
codimension <2 in H(2:1)®. Then by Lemma 1.11.1(b) we have M n
H2:1)P=(H(2:1)?)y. Thus M Nyeq,(H2:1)P))=H(2:1),.
Thus M= QN H(2: 1), and so (since dim Q/(Qn H(2:1)y)=2) M =Qn
H(2 :1), has codimension two in Q.

Now, suppose that « is Hamiltonian and that M is a compositionally
classical subalgebra of codimension <2 in 4. Then ¥,(M) is a com-
positionally classical subalgebra of 4A[a] and H(2:1)®?c A[a] < H(2:1).
By the result of the previous paragraph, ¥, (M)=A[a]n H(2:1),.
Therefore M < ¥ !(A[a]n H(2:1),) and, since this subalgebra has
codimension 2 in 4®), equality holds. Thus (b) holds. |

54. Having obtained bounds for dim(4,/K,(4)) we now seek
bounds for dim(X,(4)/RK,(A4)) and dim(RK,(A4)/R,(A4)).
From now on we will usually write X, for K, (4), RK, for RK,(A), R, for
R,(A), and M? for M3(A).

LEMMA 54.1. dim(4,/K,)=dim(A4_,/K_,).

Proof. The map of A,xA , —F given by (x, y)—y([x, y]) is a
bilinear form. Since, by definition of K,, A%, = K,, we have the result. ||

LEMMA 542, LetO#yeAd. Then

dim(RK,/R,) < (dim(4,/K,))((dim T) —1).
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In particular, if A, =K, then RK, =R, and if y is non-Hamiltonian then
dim(RK,/R,) < d1m T)—l

Proof. As [RK,, K_,]=Iand RK, € K, (Definition 5.1.7) we see that
ad induces a map of RK, into Hom(4 ,,/K»y, T'), where T'=kery|, =
(kery)/I. The kernel of this map is R, giving dim(RK,/R,)<
(dim(4,/K,))((dim T)— 1). The final assertion follows by noting that if y is
non-Hamiltonian then dim(4,/K,)<1. |

5.5. Obtaining a bound for dim(K,(4)/RK,(A4)) is much harder.
Let B be a restricted Lie algebra over F and let ¢ be a derivation of B
satisfying e” =e. Define ae (Fe)* by a(e)=1. Let B=37?_} B, be the
decomposition of B with respect to the torus Fe. Assume B, = Fz+J,
where z=z” is central in B and J is a nil ideal in B,. Then Fe+ Fz is a
standard maximal torus in Fe+ B. Let n, =dim(B,, /R, (Fe+ B)) (where
R, (Fe + B) is taken with respect to the torus Fe + Fz).

PROPOSITION 5.5.1. Let B and e be as above. Let W # (0) be a restricted
B-module with zW = W. Then:

(a) dim W= p™, where m=max{[(n, +1)/2] | ieZ}};
(b) if W is an (Fe+ B)-module and if 3, z+ n; > 2 then dim W > p>.

Proof. In proving (a) we may assume that W is irreducible. By the
Engel-Jacobson theorem, B is nilpotent (as (ad By) is nil and hence every
x€ B,,, ie Z* is ad-nilpotent), hence solvable. Then (cf. Theorem 1.13.1 of
[BWS82]) B contains a restricted subalgebra B, such that W contains a
one-dimensional B,-submodule W,, and dim W= p'##1 For ieZ,, let
B, =B, nB,. Then B'=3% ., B, is an e-invariant subalgebra of B. Now
as B, and hence B, has a one-dimensional module W, < W and as z acts
as a nonzero scalar on W, hence on W,, we must have [ B, , B" , 1< J for
ie Z}. Define f;:B;, xB_,, » F by [x, y]€ fi(x, y)z+J. Then rank f, =n;
and rank f(B,xB_,)=(0), so by Lemma251 of [BWS2],
dim(B,,/B.,) +dim(B_,,/B"_,,)=n;. But B,/B,, = (B, + B,)/B, and so
dim(B,,/B,,)<[B:B,). Thus 2[B:B,1=n, so [B:B,]1=[(n; +1)/2],
proving (a).

In proving (b) we may assume that W is irreducible as an
(Fe + B)-module. Since Fe + B is solvable, dim W = p* for some k >0 (cf.
[{BW82, Theorem 1.13.1]). We may assume k< 1. If W, is a B-submodule
of W then dim W, = p (by (a), as some n;>0) and so W, =W and
dim W= p. Thus, we may again assume that W is irreducible as a
B-module. Let D={beB|b-W=(0)}. Then D is an ideal in Fe+ B. If
xeD, and ye B_,, then [x, y]€ Dy; say [x, y]=az+ b, aeF, beJ. Then
blyw = —az|, is not nil unless a=0. Hence [x, y]eJ. Therefore
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D, =R, (Fe+ B) so dim((B/D),,/R,,((Fe+ B)/D))=n;. Thus if we have
the result for B/D, which acts faithfully on W, we have it for B. Thus we
may assume that D = (0) and hence that 3(B)= Fz. Now let B, be as in the
proof of (a). Since dim W=p, [B: B,]=1. Now as some n, #0 there is
some ie‘Z;,“, x€ B, xeBj,. Then ¥, (x/-W,) is a B-submodule of W,
hence = W. Since dim W= p and dim W, =1, we have x?~'. W, #(0). If
J#0, then since B acts faithfully on W, we have dim W, > 1 for some /
But then, as dim W= p, W,,, = (0) for some m. Since x- W, = W, ,, we
see that x” ' =0, contradicting x”~'. W# (0). Thus J=(0). But then we
have the hypotheses of Proposition 2.5.2(b) of [BW82] and so that result
gives the desired conclusion. |

We can now bound the dimension of K,/RK,. In fact, we obtain a
stronger result.

PROPOSITION 5.5.2. Let A be a finite-dimensional restricted Lie algebra
over F containing a torus of maximal dimension T which is two-dimensonal
and standard (so 3 ,(T)= T+ I, I a nil ideal in 3 ,(T)). Assume A < Der S for
some simple Lie algebra S and A= S+ 1. Then for any 0#yed we have
>ie Z~d1m( »/RK,)<2 and dim(K,/RK,)< 1. Also, dim(K,/RK,))=1 if
and only zfdlm(K JRK _)=1.

Proof. For 0#yed set n,=dim K,/RK,. Choose e 4 so that n, is
maximal. Since 4 is semisimple, 3(4)=(0), and so for every 7e T there is
some yel such that y(1)#0. Thus I' & Za. Then by Schue’s lemma
(Lemma 1.12.1) we have 35(T)=2,cr ,¢z. [4,,4_,]. Since a(T) # (0),
a(I)=(0), and T<35(T)+1 there exists fel, B¢Za such that
a([Ag, A_5])#(0). Thus Az# M3,

Let W= (Xcz,4p+ i)/ 2icz,M5.;,) Then W#(0) and W is a restricted
K*-module (for K,,=M? and M* is a subalgebra by Lemma 5.1.3).
Now dim W=3%, 7 dim(4,, /M5, ). But dim(4g, /M3, ) <
dim(Aﬂ+ia/Rﬁ+ia) = dim(Aﬂ+ia/Kﬂ+ia) + dim(Kﬁ+ia/RKﬂ+ia) +
dim(RKﬂ+ia/Rﬂ+ia) < 6+ n, (aS dim(RKﬂ+ia/RB+ia) < (dlm(Aﬂ+ ioz/Kﬁ+ia))
(dim T—1) by Lemma 5.4.2 and dim(A4;, /K, ) <3 by Lemma 5.3.4).
Thus dim W< p(6+n,).

Therc exists teT such that w(t)=1, B(¢t)=0. Let B=kera+ 7+
erZ ws e=adr If xeK,, ieZ}, then x’ekera+/1 Thus B is a
restricted subalgebra of 4 and so the hypotheses of Proposition 5.5.1 are
satisfied. Furthermore, B,,= K, and R, (Fe + B)= RK,,. Thus n;=n,, for
1 <i<p—1. Hence dim W pl™=+12) and so p(6 +n,) = pt=+ 121 Since
p>7 this implies n,<2 Then dim W<8p<p® (as p>7). So by
Proposition 5.5.1(b) we have Y, z3Mia S 2.

Now for ye I, ker y is a one- -dimensional subspace of T. Let ker y = Fz,,.
Then define f,: K,xK _, - F by [x, y]ef,(x,y) z,+ 1 Then with respect
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to f, we have K'=RK_,, K' =RK, Thus n,=dimK,/RK, =
dim K,/K*+ =dim K_, /K =dim K_,/RK_,=n_,. Thus 2n,=n,+n_,<
e z3 Mix < 2 and so n,<1 and hence n,<1 for all 0#ye 4. Therefore
Z,-Ez;niy <2 for all 0#ye 4 since, if some n,, #0, we may take a=1iy. |
COROLLARY 5.5.3. Let A and T be as in Proposition 5.52. If 0#£ye I is
non-Hamiltonian then dim A,/R,<3 and in any case dim 4,/R,<7.

Proof. This follows from Lemma 534, Lemma 542, and Propo-
sition 5.5.2.

5.6. We now introduce two important sets of roots.
DeriNITION 5.6.1.  Let
A4p,={0#y€d|A,=K, for some ieZ, 1<i<p—1}.

Let I'p=1InA4dp. Call the elements of I, proper roots.

Let ieZ¥. Clearly ye 4, if and only if iyed, and so Zynd,= & or
Z7y. Thus 4, is the disjoint union of the sets Z Y7y, ye 4,. Hence |4, is a
multiple of p — 1.

DEFINITION 5.6.2. n(A, T)=|4,|/(p—1).

LeMMA 5.6.3. Let 0#£ye A. Then:

(a) yedpif and only if either vy is solvable, v is classical, y is Witt and
there is a surjective homomorphism ¢ of A®) to W(1 :1) such that §(T)=
F(x,D,), or y is Hamiltonian and there is a surjective homomorphism of A"
to a subalgebra of H(2 : 1) containing H(2 : 1)@ such that ¢(T)=D(x,x,).

(b) yé¢dp if and only if either y is Witt and there is a surjective
homomorphism ¢ of AY to W(1 :1) such that $(T)=F((x;+1)D,) or y is
Hamiltonian and there is a surjective homomorphism ¢ of AY to a sub-
algebra of H(2 : 1) containing H(2 : 1) such that ¢(T)= D2((x,; + 1) x,).

Proof. This is immediate from Lemma 5.3.4.

COROLLARY 5.64. Let A be a restricted Lie algebra, T be a torus of
maximal dimension in A which is standard, and o€ A(A, T). Then the
Sfollowing are equivalent:

(a) « is proper.

(b) T is contained in a compositionally classical subalgebra of
codimension <2 in A™.
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(c) W,T is contained in a compositionally classical subalgebra of
codimension <2 in A[a].

Proof. Since a subalgebra of A* is compositionally classical of
codimension <2 if and only if its image in 4[«] has the same property, (b)
and (c) are equivalent. We will show that (a) and (c) are equivalent.

Suppose o is proper. If « is solvable or classical then A[a] is
compositionally classical so (c) holds. If « is Witt or Hamiltonian then
Lemma 5.6.3(a) shows that ¥, T< A[«],, so (c) holds.

Now suppose a is improper. Then by Lemma 5.6.3(b), « is Witt or
Hamiltonian and ¥, T & A[A],. But by Lemma 1.11.1, any proper sub-
algebra of codimension <2 in A[a] is contained in A[a],. Hence (c)
cannot hold. |

DEFINITION 5.6.5. Let I'p.={yel|K,#RK,} (={yerll|[K,, K ,]
& I}). Call the elements of I'; exceptional roots.
It is clear that Proposition 5.5.2 implies:

COROLLARY 5.6.6. Let A and T be as in Proposition 55.2. Then
IFe=—~Tgand |Zyn '] =0 or 2 for any 0#ye 4.

DEFINITION 5.6.7. Let I'x={yel'|A,#R,} and I'y={yel'|A,#K,}.

LEMMA 5.6.8. Let A and T be as in Proposition 5.5.2.

(@) Tr=TxuTl,.
(b) I'r=—Tk.

Proof. Lemma 5.4.2 gives (a). Part (b) then follows since I'x= —1
(by Lemma 5.4.1) and I'.= — I, (by Corollary 5.6.6). |

LEMMA 5.6.9. Let A and T be as in Proposition 5.5.2. If y is proper then
dim 4,/R, <5.

Proof. This follows from Lemma 5.3.4, Lemma 54.2, and Propo-
sition 5.5.2. |

5.7. We will obtain some bounds on | I';|. Throughout this section
we will impose the following hypothesis on A:

A is a finite-dimensional restricted Lie algebra over F contain-
ing a torus T of maximal dimension which is two-dimensional
and standard (3 ,,(T) = T + I). Furthermore, there is some simple
algebra S such that Sc A< DerSand A=S+1 (5.7.1)
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LemMa 5.7.1.  Assume (5.7.1) holds. Then:

(a) Ifyedpthen |I'ynZy|=0,2,0rd,and |I'xnZ,=0,2,4,o0r6.
Furthermore, if | I'xNZL.,| =4 then y is Hamiltonian and there is some je L}
such that I'ynZ,={ jy, +2jy}.

(0) if Belryed—2h, and P([A.A_1)#A(0) then +y+
VA R=y oy

(¢) IfB,yelg, B# +ythen +B+ZycTand +y+Zfc Ty

Proof. If yeAdp then by Lemma 5.3.4 we have |[['ynZy|=0,2, or 4.
Furthermore, | Iy~ Zy| =4 implies that vy is Hamiltonian and /'y nZy =
{+jy, +2y}. Then Corollary 5.6.6 and Lemma 5.6.8(a) show that
|I'ynZy| =0, 2, 4, or 6, proving (a).

Suppose the hypotheses of (b) hold. Let W=3, A, p/ME L.
As P([4,,4 1)#(0), A,#M? and so W#(0). As M! , 2
R, dim(4,, z/ME o) < dim(4,, 4/R,, ). By Corollary 5.5.3,
dim(4, , 4/R, . s) <7 and so (as p>7) dim W <p> Now W is a module
for K'¥ (as K;;= M’ and M” is a subalgebra by Lemma 5.1.3).

Since fe I, there exist 0#te T, xe Ky, ye K4 such that [x, y]let+1
and B(¢t)=0. Then y(1)#0 and [x, y] does not annihilate any nonzero
element of any irreducible K'®-constituent of W. Therefore W has no
irreducible K'®-constituents of dimension one. But as B(Zicz [Kips
K _41)=1(0), Lemma 1.8.1 and the Engel-Jacobson theorem show that
Yiez;Kip+Xicz:[Kip, K 4] is nilpotent. Therefore K® is solvable.
Hence every irreducible constituent of W has dimension p- Let W, be such
a constituent. Then by Theorem 1.13.1 of [BW82], B contains a sub-
algebra B, of codimension 1 and W, contains a one-dimensional B,-
module W,. Let ue B, u¢ B,. Then 3 ;. , u’- W, is a B-submodule of W,
hence is equal to W,. Thus u” ' #0. Now if K;+ K ,< B, then x and y
act on the one-dimensional space W, so [x, y] annihilates W,, which we
have seen is impossible. Thus we may find ue B, u¢ B, satisfying
u?~'#0. But u”~ ' #0 implies W, has p nonzero weight spaces and hence
that A, z/M!_,#0 for all ieZ, As M! ,2R, , , this implies
y+ZB< Iy As I'p=—T, (by Lemma 5.6.8(b)), (b) follows.

Finally, (c) follows from (b) since e I'; implies y([ Ky, K_;])# (0) and
ye Iy implies f([K,, K 1) #(0). §

LemMma 5.7.2. Assume (5.7.1) holds. Suppose B, yel'g, B# +7y. Then
either Ap<ZBOZy— {0} or 4,24~ (ZB U Zy).

Proof. Suppose ned—(ZBUZy), n¢Adp. Then Z}n<I'y. Thus for
ieZ} we have [A,,A4 ;] ¢ I Since ker fnkery=1, Lemma 5.7.1(b)
shows that for every ie Z) either +in+ZB <=1y or tin+Zy<S g As
p > 7 we may assume (interchanging § and y if necessary) that in + Zf < I',
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for at least six (eight if p>13), ieZY. But then if t¢ 4 —(ZBUZy) it is
clear that |Zt ~I'g] 26. (Thus the proof is complete if p>13.) Now if
1€d, then |ZtnTgx| <4 by Lemma5.7.1(a). Since I'x=I,u [l this
implies jt e I'; for some je Z;. Thus if the conclusion of the lemma fails to
hold we may (replacing jr by t) find three roots f, vy, 1€ l; which are
pairwise linearly independent with € I',. Note that, as n¢ 4,, telp, we
have n¢ Zp U Zyu Zt. Now as ie Z) implies [4,,, A _, ] £ I we see that
no two of B, y,  vanish on [4,,, A ;] and hence that for each ie Z}, two
of the sets +in+ Zf, +in+ Zy, +in+ Zz are contained in I";. Thus of the
15 sets +in+ 28, +in+Zy, +in+Zzt, 1 <i<5, at least 10 are contained
in I'. Therefore for u=one of B, y, 7 there are four values of i for which
+in+Zucs Ty If p=p or y this implies that |ZznI'z| =8 and hence
(using Lemma 5.7.1(a)) that t¢ /", a contradiction. Thus we must have
u=1 and so there are four values of i for which +in+ Zt< I';. Thus if
v¢ A—Zt we have |ZvnI'x|>8 and hence v¢ 4,. Thus 4,=7Z7— {0}.
Then, as te A, there are at least four values of i such that it¢ I'x. Let a
and b be two of these values. Let t=If + my. Consider ¢ = alf + bmy. Since
a#bwehave ¢ Zt and so 6 ¢ A,. Hence 6 e I'. Since [A;, A_s1 & I, we
see by Lemma 5.7.1(b) that either 6 + Z < I'g or 6 + Zy < I',. But the first
of these implies bif +bmy=>bte g, a contradiction, and the second
implies alf + amy = at € 'y, again a contradiction. Thus t¢ 4., proving
the lemma. |

COROLLARY 5.7.3. Assume (5.7.1) holds. Suppose B, yve 'y, B# +y. If
ApSZBUZLy— {0}, then Ap=1}p, Ap=1}y, or Ap= .

Proof. If not, B, yed, (for pyed, implies Z¥u<=4,) and so by
Lemma 5.7.1(a) (as p > 7) we may find 0 <, j <p such that i}, jy¢ I'z. But
then Lemma 5.7.1(b) implies that B([A;.s, A_i5_;1)=7([4ip+)
A_y 1)=1(0), so that [A;,,, A_; ;1< Thus if+jy¢I'; and so
if + jy € 4, contradicting 4, ZBUZy— {0}. |

COROLLARY 5.7.4. Assume (5.7.1) holds. If o, B, yelI'y are pairwise
linearly independent, then A,= @ or Ap=4—{0}.

Proof. Suppose ne 4,. Then n belongs to at most one of Za, Z8, Zy.
Hence we may assume n¢ZBUZy and so by LemmaS5.7.2, 4,2
A4—{ZB U Zy}. This, of course, implies 4, &€ ZaUZB and 4, &£ Za v Zy
s0 4p24—{ZaUZB} and 4,24 — {Za UZy}. Thus 4,=4—{0}. |

LEMMA 5.7.5. Assume (5.7.1) holds. Suppose B, yeI'p, B# ty. Then
Adp#4—{0}.

Proof. Suppose Ap=A4-—{0}. By Lemma 5.7.1(c), we have +f+
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Zycl'y and +y+Zpcrly. In particular, +(f+2y), F(B+3y),
+3(B+2y)= (v +14B), £3(B+3y)=1(y+iB)e k. Thus (as p>7) we
have four multiples of §+ 3y contained in I'p with these multiples not
being of the form +j(f + 3y), +2j(f+ 3y) for any j. Thus we have (by
Lemma 5.7.1(a)) eIy, where =+ 3y or =4(8+ 3y).

Suppose d=f+3y. Then by Lemma5.7.1(c), +(B+3y)+ZBcT,
and so [I'p contains +3(f+2y)=+((f+3y)+1iB). Thus +i(B+2y),
+(B+2y), £3(B+2y)e Tk Since +4, +1, +3 are distinct elements of Z
and since j, 2je {4, +1, +3} implies j= +1, 2j= +1, we see from Lem-
ma 5.7.1(a) that +3(f+2y)e x. Then by Lemma 5.7.1(c), +3(8+4y)=
TGEB+2)+y)e 23(B+2y)+ZySTg. Also +(B+dy)e +f+Zyc Ty,
tiB+4y)=t(y+ifle ty+ZB=Tr and +3(B+4y)=£((B+3y)—
iB)e £(B+3y)+ZB =TIy Thus I'y contains j(f + 4y) whenever je { +1,
+3 t1, 3} Since +3, 3, £1, +3 are distinct elements of Z¥ we have
[N Z(f +4y)| = 8. Since ff+ 4y € 4, this contradicts Lemma 5.7.1(a).

Suppose & =14(f+ 3y). Then by Lemma 5.7.1(c), +i(f+3y)+Zyc= T,
and so +3(B+2y) = +(J(B+37)—%) € £i(B+3y)+Zy S I'x. Thus
+1(B+2y), +4B+2y), +(B+2y)elg. Since +1, +1 +1 are distinct
elements of Z* and since j, 2je { +4, +3, £ 1} implies j= +3, 2j= +1, we
see from Lemma 5.7.1(a) that +3i(f+2y)eI'y. Then by Lemma 5.7.1(c),
TB+dy)= £ GB+2y)—B)e £3(B+29)+ ZF S Ti. Also +(f+4y)e
TB+ZysTy, 23(B+4)=t(y+if)e ty+ZB<Tpand £{(f+4y)=
T3B+3)+i)e £UB+3y)+ZycsTr. Thus 'y contains j(f+4y)
whenever je {+§ +3 +1 *1}. Since +1, +31 +1 +1 are distinct
elements of Z* we have |I'xnZ(f+4y)|>8. Since f+4yed, this
contradicts Lemma 5.7.1(a), completing the proof of the lemma. |

We now state our main result on /':

PROPOSITION 5.7.6. Assume (5.7.1) holds. If n(A, T)=?2 then |I';| =0
or 2. If n(A, Ty=1 then || =0, 2, or 4.

Proof. 1f B, yerly, B# +y, then by Corollary 5.6.6, § and y are linearly
independent. Thus Corollary 5.7.4 and Lemma 5.7.5 show that || >4
implies n(A4, T)=0. Lemma 5.7.2 and Corollary 5.7.3 show that if | '] =4
then n(4, T)< 1 or n(A4, T) 2 p— 1. Suppose that n(4, T)=p—1and I'g=
{8, v}, B#\+y. Pick ieZ}, i#+1, +2, +1 (which is possible as
p>T7). Then +(B+iy)e 4, (by Lemma 5.7.2). Now let j=i""in Z*. Then
t(B+iy)etB+Zy=lr and +jB+iy)=+(y+jB)e £y +ZBS k.
But then, since Z(B+iy)nTI'y=F and I'rnZ(B+iy)2{L(B+iy),
+j(f+ i)}, a set with four elements (as i# +1 so j# +1), we must
have, by Lemma 5.7.1(a), that j= 12 or j= +1. Since j=i"' this implies
ie{+4 +2}. But this contradicts our choice of i and so completes the
proof of the proposition. |}
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5.8. We will now study the Cartan decompositions of the algebras
W(2:1), S(3:1), H(4:1), K(3:1). Our results will be used in Sections 7,
9, 10, and 11.

Let 4 be a restricted Lie algebra satisfying B’ < 4 < B, where B is
one of W(2:1), S(3:1), H(4:1), K(3:1). Assume every two-dimensional
torus in A is standard. Then 4A=B'"". If B=W(2:1) or K(3:1) this
is vacuous as B=B". Suppose B=S(3:1) and B’g A< B. Then
(as B/B'Y is spanned by the cosets of x4~ 'x5 'D;, x% 'x§7'D,,
x5 'x6=1D; (cf. [KS69, Section I.5.1; SF88, Section I1V.3])) A4
contains | y=a,(x,+ 1)7 7 (x3+ 1)? 7' D+ ay(x; +1)7 x5+ 1)7 ' D, +
as(x,+1)? " '(x,+1)7" ' D, for some a,, a,, a; not all zero. Let T’ denote
the two-dimensional torus spanned by {r,=(x,+1)D —(x,+1) D>,
t,=(x,+1)Dy—(x3+ 1) D;}. Direct computation shows that if u=
(x;+1)? (x,+1)D, —(x, +1)(x,+1)> D, then uez,(T') and [u, y]=
—(a, +a,)(x;+1)? " "t,.Since ((x;+ 1)?~'1,)? = t% =1, this element is nil
only if a,+a,=0. Thus T’ standard implies a, +a,=0 and, similarly,
a,+ay=a;+a,=0. This implies a, = a, = a; =0 contradicting the choice
of y. Thus A=B'"" when B=S(3:1). Similarly B=H(4:1) implies
A=B"

Let o be a root of A4 with respect to a maximal torus 7. Then ker a is a
one-dimensional restricted subalgebra of T and hence has the form Ft,,
where

O0#t,=tF, a(z,)=0. (5.8.1)

Note that r, is unique up to multiplication by elements of Z}. By
Demuskin’s conjugacy theorem (Theorem 1.3.1) there are, up to conjugacy,
only a few possibilities for 7,. We will examine each of these possibilities.

LemMMA 58.1. Let U be one of W(2:1), SG: 1)V, H(4: 1)V, K(3:1).
Let a be a root of U with respect to a maximal torus T. Let t, be as in
(5.8.1). Assume that U™ & U,. Then there exists a semisimple subalgebra
Mc U™ such that

U™ = M + (solv(U™))

and

(U)o = Mg+ (solv(U™)),.

Furthermore, solv(UY< Uy+ Fr,, M is given (up to isomorphism) by
Table 5.8.1 and dim M/My=1 if M=W(:1), dmM/M,=2 if
M=HQ2:1)™.
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TABLE 58.1
U t, M
Wi2:1) any f, W(l:1)
SG: WM 1,¢ Uq H(Q2: 1)
S(3: 1) t,e Uy wil:1)
H(4: 1) any £, H2: 1)
K(3:1) 1,¢U_, HQ2: 1)
K3:1) elU_, W(l:1)

Proof. We write ¢ in place of 7,.
Suppose U=W(2:1) and t¢ U,. Then by Theorem 1.3.1(a) we may
assume that 1= (x,+ 1) D,. Then

U =span{x}D,|0<i<p—1}+span{(x,+ 1) x,D, | 0<i<p—1}.

Direct computation shows that the first summand is a subalgebra
isomorphic to W(1 : 1) and the second summand is an abelian ideal, hence
solv(U™). Denoting the first summand by M, we see that dim M/M =1
and the lemma holds in this case.

Now suppose that U= W(2 :1) and ¢ € U,. Then by Theorem 1.3.1(b) we
may assume that e span{x, D, x,D,}. Since U* & U, we see that (ad ¢)
annihilates some linear combination of D, and D,. Hence we may assume
that t=x,D,. Then

U™ =span{x,D,|0<i<p—1}+span{x,x{D |0<i<p—1}.

Direct computation shows that the first summand is a subalgebra
isomorphic to W(1 : 1) and the second summand is an abelian ideal, hence
solv(U'™). Denoting the first summand by M, we see that dim M/M,=1
and the lemma holds in this case.

Now suppose that U=S(3:1}""" and t¢ U,. Then by Theorem 1.3.1(d})
we may assume that t=(x,+1) D, —x,D,. Recall ([Fra54]; cf. [KS69,
Sect. 1.5.1; [SF88, Sect. IV.3]) that S(3:1)"V is spanned by

{Z(NN<i<j<3, feUB: 1)},

where Z,(f)=D(f)D,— D/ f ) D;. Then, since direct computation shows
that

(6, Dy((x, + 1) x5x5)] = (a— 3, — b+ 0+ 6,5) Dy((x, + 1) x5x5)
and that

@12(D3f)+931(D2f)+@23(D1f)=0,
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we see that
U =span{Zy((x, + 1) ' xix))I0<i, j<p—1, (i, /) # (0, 0)}
+span({2,,((x, + 1) xx{)|i>0,j >0}
U{Di5(x5 ' x4) | j>01}).

Direct computation shows that the first summand is a subalgebra, which
we denote by M, and that the map

@23(()‘:1 + l)iil x§x§)H9(xix£)s 0< l,]<P_ 1’ (l’j) 7& (Oa O)

extends linearly to an isomorphism from M to H(2:1)"V. Note that
dim M/M,=2. Direct computation also shows that the second summand is
an abelian ideal, hence solv(U™), and that the lemma holds in this case.

Now suppose that U= S(3:1)" and te U,. Then by Theorem 1.3.1(¢)
we may assume that respan{x,D,—x,D,, x,D,—x3D,}. Since
U™ & U, we see that (adt) annihilates some linear combination of
D,, D,, and D;. Hence we may assume that t=x,D, — x,D,. Then

U™ =span {Z;(x, x{)|0<j<p—1}
+span({Z,(xixix))0<i<p—1,0<j<p—1}
U{ DXt xix ) 1 <i<p—2,0<j<p—1)
UA{Z(x5 )0 j<p~1}
UA{Dos(xf ' x{)0<j<p~1})

Direct computation shows that the first summand is a subalgebra, which
we denote by M, and that the map

Dy3(x,x{) > —x{D,, 0<j<p-—-1
extends linearly to an isomorphism from M to W(1:1). Note that
dim M/M = 1. Direct computation also shows that the second summand is
a solvable ideal, hence solv(U'®), and that the lemma holds in this case.

Now suppose that U= H(4 : 1)), Recall ([AF547]; cf. [KS69, Sect. [.6.1;
SF88, Sect. IV.4]) that H(4 : 1)!!) has basis

{(D(xextxsx)0<a, b,c,d<p—1,(a b, c d)
5"‘2(0505050)7(p-—l’p_17p—_1’p_1)}’
where 2(f)=—(D3f) D~ (Dsf) D+ (Df) D3+ (D,f) D, for
feA(4:1). Recall also that multiplication is given by

[97). 2()1=2 L (DAND226)~ (Dr2 NP2
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If t ¢ U, then by Theorem 1.3.1(g) we may assume that t=2((x, + 1) x5).
If te U, then by Theorem 1.3.1(h) we may assume that tespan{2(x,x;),
D(x,x,)}. Since U™ & U, we see that ¢ centralizes some linear com-
bination of D, D,, D, and D,. Thus we may assume ¢ = %(x,x,). Hence,
in either case (te U, or not) we may assume ¢ = 2(yx,), where y=x, or
x,+ 1. Since

(1, 2(y*x5x5x§)] = (c — a) D(y“x5x5x5)
we have that

U™ =span{2(x5x4)|0< b, d<p—1,(b,d)#(0,0)}
+span{P(y*x3x5x§)|0<a, b,d<p—1,a#0, (a, b, d)

The first summand (which we denote by M) is clearly a subalgebra
isomorphic to H(2:1)"". Note that dim M/M,=2. Direct computation
shows that the second summand is a solvable ideal, hence is solv(U'®), and
thus the lemma holds in this case.

Now suppose U=K(3:1). Recall (cf. (1.3.1) and (1.3.2)) that K(3:1)=
{2 f)] feA3 : 1)}, where

D )=(Dyf+x,D:f)D,— (D, f—x,D; ) D,
+(2f=x,D, f—x,D,f) D5,

and that

[2x(f), Zx(g)]
=QK{(2f—xlle—xzsz)(D3g)—(2g—x1D1 g—x,D,8)D, f)
— (D f)D,g)+ (D, f)D;g)}. (58.2)

Suppose ¢ U_,. Then, by Theorem 1.3.1(j) we may assume that
t=Px(x5+1). Then from (5.8.2) we get

[, Da(x§x5(x3+ 1)) =(a+ b +2¢ —2) De(x9x5(x3 + 1)°).

Thus

U™ = span { @y (x{x3(x; + 1)@~ 02)|

0<a,b<p—1,(a,b)#(0,0)} + Ft.
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Using (5.8.2) we see that the first summand is a subalgebra (which we
denote by M) and that the map

Drl(xix5(x5 + 1) C 4= s —P(x§xh),
0<a,b<p—1,(a, b)#(0,0),
extends linearly to an isomorphism of M onto H(2:1)"). Note that
dim M/M,=2. The second summand is, of course, central and hence is
solv(U"). Thus the lemma holds in this case.
Now suppose U=K(3:1) and reU_,, t¢U, In this case

Theorem 1.3.1(k) shows that we may assume =% ((x,+ 1) x,). Then
(5.8.2) gives

L6, De((xy + 1) X5(x5 — X, x5) )] = (@—b) Del(x, + 1) x5(x53— x,x5)°).
Thus
U™ =span {Z((x; — x,x,))0<c<p—1}
+ span { Dg((x, + 1)* x4(x3 — x,x,)°)|
I1<a<p—-1,0<c<p—1}.
As a special case of (5.8.2) we see that

[ Dy + 1) x8(x3 — x1X5)%), Dl (1 + 1) x5(x3 — x, x,)%)]
=2(bc—ad—b+d) Dil(x, + 1) x5 (x3—x,x,)" 747 1),

From this we see that in our expression for U™ the first summand (which
we denote by M) is a subalgebra and that the map

.@K((xg,—xlxz)b)b—»Zx’l’Dl, 0<b<sp—1,

extends linearly to an isomorphism from M to W(1:1). Note that
dim M/M,=1. We also see that the second summand is a solvable ideal,
hence solv(U), and that the lemma holds in this case.

Now suppose U=K(3:1) and t€U,. In this case Theorem 1.3.1(1)
shows that we may assume ¢espan{Zg(x,x,), Dx(x,;x,—x,)}. Since
U™ & U, we see that (ad r) annihilates a linear combination of Z(1),
Dr(x,), Dy(x,). Hence we may assume ¢ is one of Zi(x,x,), Dx(x{x;, — x3),
Di(x,x,+ x3). Since the last two elements are conjugate (by the
automorphism of K(3:1) obtained by interchanging x, and x, and
replacing x; by —x;), we may assume ¢ = Z(x,;x,) or Zi{x,x,—x3). In
the first case we use (5.8.2) to see that

L1, Di(x§x5x5)] = (a— b) Drlx§x5x5).
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Therefore

U™ = span{Z(x5)|0<c<p—1}

+span{Zx(x{xsxs)| 1 <a<p—-1,0<c<p—1}

The first summand, which we denote by M, is clearly a subalgebra
isomorphic to W(1 :1). Note that dim M/M,=1. The second summand is
a solvable ideal, hence solv(U™®), and the lemma holds in this case. In the
second case we use (5.8.2) to see that

(£, Dal(x{x5x5)]=2(1 — b — ) Dl x{x3x5).

Hence
U™ =span{Zx(x{x,)|0<a<p—1}
+span({ Zx(x{(x; — x,x;))|0<a<p—1}
UADilx§x3x5 1 -0)[0<a<p—1,2<b<p—1}).
Using (5.8.2) we see that the first summand (which we denote by M) is a
subalgebra isomorphic to W(1 :1). Note that dim M/M,=1. The second
summand is a solvable ideal, hence is solv(U®), and the lemma holds in

this case.
We have now considered all cases, so the lemma is proved. |

LEMMA 5.82. Let A= B") where B is one of W(2:1), S(3:1), H(4 : 1),
K(3:1). Let a be a root of A with respect to a maximal torus T.
(a) solv A <solv B® and B[a]?' < A[a] < B[a].

(b) The type of o (solvable, classical, Witt, or Hamiltonian) as a root
of A is the same as the type of o as a root of B.

(c)
(d) A< A, if and only if « is solvable or classical.
(¢) solvA®cA,+T.
f) If o is Witt or Hamiltonian then ¥ (AN A,)=A4[a], (ie.,
W 1), if ais Witt or Ala}nH(2 : 1), if a is Hamiltonian).

(g) o is proper if and only if T=(Tn Ay) +ker a.

(h) A4(A, T)=A4x(A,T) if and only if TS A,.

o is proper as a root of A if and only if it is proper as a root of B.

—

Proof. Since B2 A™ 2 (B™)? we have, taking images under the
quotient map ¥,: B — B[a], that

B[a]2(A™ + solv B®)/(solv B®) 2 (B[«])®.

481/114/1-12
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Now B[a] is either (0), sl(2), W(1:1) or else H(2:1)*cB[a]lc
H(2:1). In any case, all subalgebras contained between B[a] and
(B[«])® are semisimple. In particular, (A4 + solv B®)/(solv B®) =
A®/(A™ A solv B™) is semisimple and so solv 4A® < solv B and A[«]
(A + solv B™)/(solv B*)< B[«]. This proves (a) and (b) follows
immediately. Since B= B> +3,(T) we see that B, =4, for all ieZ*.
Hence (c¢) holds.

Now B, is compositionally classical, so A, is also. Thus if 4™ < 4, we
see that « is solvable or classical. This proves one implication in (d). For
the remaining implication in (d) and for (e)-(g), we may assume, in view of
(a)~(c), that 4 = B. Then (d)-(f) are given by Lemma 5.8.1. To prove (g),
first assume that « is solvable or classical. Then o is proper and, by (d),
T=Tn Ay Thus (g) holds in this case. If « is Witt or Hamiltonian we see
from Lemma 5.6.3 that o is a proper root of A[a] if and only if
YAT)< A[a],. But a is a proper root of A[«] if and only if « is a proper
root of A. Also ¥ (T)< A[a], if and only if T< T~ A, + ker « (by (f) and
Lemma 5.8.1) Hence (g) holds. Since (h) i1s immediate from (g), the lemma
is proved. |

COROLLARY 5.8.3. Let A=BY where B is one of W(2:1), S(3:1),
H(4:1), K(3:1). Let T be a two-dimensional torus in A such that all roots
with respect to T are proper. Then:

(a) (solv A™)<c A, for all ae A(T).
(b) If xeA,n A, then x* is nil.

Proof. Part (a) follows from (e) and (h) of Lemma 5.8.2. Since A4, is a
nil ideal in A, and A4,/A4, is classical (so y?” =0 for every root vector y in
Ay/A,), (b) holds. |1

COROLLARY 5.8.4. Suppose A= B"Y) where B is one of W(2:1), S(3:1),
H(4:1), K(3:1). Let a be a root of A with respect to a maximal torus T
(necessarily two-dimensional). Let o€ A(T), a¢ Ap(T). Let xe A, be such
that o € A p(e*(T)). Then | Ap(e*(T))| > | 4(T)|.

Proof. Assume |Ap(e*(T))| <}A4p(T)|. As a 1s improper, T# T'n A, by
Lemma 5.8.2(g). Since a, € 4,p(e™(T)) we have |A4,(T)| #0. Thus there is
some fedp(T) and so T=Tn Ay+ker B (by Lemma 5.8.2(g)). Hence
T Ay#(0), so dim T A,=1. As a is improper, T+# T Ay + ker a, so
ker a=Tn A,. Now ker a,=kera and so e*(T)=e*(T)n Ay +kera,=
e (T)nAdg+kera=e(T)NnAg+ T Ay. Thus e (T)< A, and so
Ap(e*(T))=4(e*(T)) by Lemma 5.8.2(h). But since | 4 .(e*(T))| < |4 (T)|,
this implies 4 p(T) = A(T), contradicting the choice of a. ||
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LEMMA 5.8.5. Let A= B, where B is one of W(2:1), S(3:1), H(4:1),
K(3:1). Let xe A(A, T), where T is a maximal torus, and assume 3 ,(T)=
T+ 1, where I is a nil ideal in 3,T). Then if x, ye A,n A, we have
(adx)" " 'yel

Proof. Since 3(T)n A, <1 it is sufficient to show that (ad(x+ 4,))” '
(y+A4,)=0in Ay/4,. To see this note that dim 4,/4, <p (as 4,/4, =
gl(2), sl(3), or sp(4)). But since a(x”)=0 (Lemma 1.8.1) we have (ad x)"
y=0 for some n and so (ad(x+ A4,))" (y+4,)=0 for some n. Thus
(ad(x + A4)) ™ 440 (y 4+ 4,)=0 50 (ad(x+4,))” ' (y+4,)=0. |

LemMMA 586. Let H2:1)PcA<Der HQ2:1) and let T be a two-
dimensional torus in A. Let € A(T), a¢ Ap(T). Let xe A, be such that
€ Ap(e*(T)). Then |4 p(e*(T))| >[4 (T)|.

Proof. Corollary 2.1.9 shows that Der H2:1)=H(2:1)+ F(x, D, +
x,D,) so Corollary 1.3.2 shows that 3 ,(T) = T. Thus this result is a special
case of Proposition 4.9 of [Wil83]. However, this lemma has a direct proof
which avoids the involved arguments occurring in [Wil83]. We give that
proof here.

By [BW82, Theorem 1.18.4] we see that T is conjugate to the span of
{y.D,, y,D,}, where the pair (y,,y,) is one of (x,x,), (x;+1, x;),
(x;+1, x,+1). In the first case T< W(2:1), and so Lemma 5.8.2(h)
shows A (W(2:1), T)=A(W(2:1),T) and hence Ap(4, T)=4(A,T),
contradicting the assumption that o¢ A,(4, T). Thus we may assume
yi=x,+ 1. Define a,, a, # T* by a(y;D;)=9;.

Suppose y,=x, and f¢Za,. Then x,D,¢ker fso TnAg+kerf=T
and hence (by Lemma 5.8.2(g)) fedp(W(2:1), T)c4,(4, T). Thus
aeZa, and x,D,ce’(T). Furthermore, f.(x,D,)=p(x,D,)#0 so
x,D,¢ker B,. Thus eX(T)n Ay+ker f,=¢"(T) and so f.edp(W(2:1),
eX(T)) = d(A4, e*(T)) for all p¢Za,. Since aeZa; we have Z(x,), S
Ap(A, eX(T)) and so Ap(A4, e*(T) = A(A, e*(T)). Thus our result holds in
this case.

Finally, suppose y,=x,+1. Then direct computation (using
Corollary 2.1.10) shows that 2( y{ y4) spans A 1ya 4 (j— 1)a»> that &, + a5 is
solvable, and that if k # [ then ke, + la, is improper and Witt. Then a, is a
proper Witt root of 4 with respect to ¢*(7). Hence e*(T) cannot be
conjugate to span{(x;+1) D,, (x,+1) D,} and so |44, eX(T))| >
| 4(A, T)| in this case. Thus the lemma is proved. |
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6. DISTINGUISHED MAXIMAL SUBALGEBRAS

Let A be a finite-dimensional restricted semisimple Lie algebra over F.
Throughout this section we assume that every two-dimensional torus in A4
is maximal and standard, that S< 4 < Der S for some simple Lie algebra
S, and that for any two-dimensional torus 7 in A we have 4 =S+ I (where
[ is the nil radical of 3,(7)) and so (see Lemma 1.8.2) T< 5. We wish to
find a maximal subalgebra 4,= A4 such that if A=4_,2---24_,2
Ay24,2---is a corresponding filtration we will be able to apply the
Recognition Theorem (Theorem 1.2.2) to S.

To find a suitable 4, we will impose several conditions. First we require
that 4, contain 3,(7) for some two-dimensional torus T< A. This
requirement implies that when we form a corresponding filtration and the
associated graded algebra G=73 G,, we may identify 7 with a maximal
torus of G which is contained in G,. Thus each G, has a decomposition
into weight spaces with respect to 7. In Section 6.1 we develop the
necessary notation to deal with this situation.

As in [BW82] it turns out that not every two-dimensional torus is
suitable for our purposes. In Section 6.2 we define a class of maximal tori
which we call optimal tori of A and study some of their properties.

In Section 6.3 we introduce the maximal subalgebras which we will use
for our A,. We call these distinguished maximal subalgebras. These are
certain maximal subalgebras containing 3,(7) for an optimal maximal
torus T.

6.1. Let T be a two-dimensional torus of 4 and let 4, be a
maximal subalgebra of A containing 3 (7). Then each A4; is ad T-invarnant
and so has a weight space decomposition 4,=3, ., 4, ,. Since 4, is a nil
subalgebra of A4 (as (ad 4,)" A=(ad 4,)" A_,<A,,_.=(0) for suf-
ficiently large m) we have T 4, =(0). Thus the map T (T+ 4,)/4,,
t—t+ A, is an isomorphism of 7" onto a two-dimensional torus of G,.
Since the quotient map 4, — Ay/4, =G, is a surjective homomorphism of
restricted Lie algebras we have that the image of T in G, (which we again
denote by T) is standard and of maximal dimension (Lemmas 1.6.1(c) and
1.7.2).

Now each G, is a Gy-module (via the adjoint representation). Hence G,
has a weight space decomposition G,=3, . -G, , with respect to T. Let
I={yeT*|G,,#0)}. LetI' =U,.0ym(y)=dimG, ,,and m_(y)=
3 <o mdy). From our identification of T with a torus of G, it is clear that
G,,=(A,,+A4,,,)/A,,, and that I ={yel'u{0}|4, &£ 4,,,}=
{relru{0}|4,,#4,,,,}

LemMa 6.1.1. (a) m_(0)=0.



RESTRICTED SIMPLE LIE ALGEBRAS 179

(b) If Ag2R(A) then I' _ < I

(c) If Ag2 R(A) and ye Ap then |I' _ nZy| <6 and if, in addition, vy
is non-Hamiltonian, then |I' _ nZy| <4.

(d) I,f 0#'}’6[’, m—(}’)=m—(—?)=0, and [:GO,yaGO,fy:IE
(I+A,)/A, then y¢ T p and so ye A p.

Proof. Part (a) follows from the assumption that 3,(7T)< 4,. For (b)
observe that yel _ implies 4, & A, and so A, & R(A). Thus (see
Definition 5.6.7) yel's. Then Lemma 5.7.1(a) gives (c). Finally, the
hypotheses of (d) show that 4,, 4_,c4,, and [4,,4 _,J=I+A4,, so

[4,,4 ,1<Iand hence A,=R,(A),s0y¢lz. |
6.2.

DerINITION 6.2.1. Let M be a restricted Lie algebra over F. We say a
torus 7<= M is an optimal torus if T is a torus of maximal dimension in M,
T is standard, and if for any standard torus T, < M with dim T=dim T,
we have n(M, T)=n(M, T)).

We now derive some properties of optimal tori. We use the results of
Section 1.9 on Winter’s exponential maps.

LeMMA 6.2.2. Let T be a two-dimensional torus of A, 0#aed—A4,, and
C be a subspace of A, such that either A, = C+ K, or else o is Hamiltonian,
[C,I]<=C, and dim A,/(C+ K,)=1. Then there is some xe C such that
o, €A4p(A, eX(T)).

Proof. By Lemma 5.6.3(b) either a is Witt and there is a surjective
homomorphism ¢ of 4™ to W(1 :1) such that ¢(T)=F((x, +1) D,) or a
is Hamiltonian and there is a surjective homomorphism ¢ of 4™ to a sub-
algebra of H(2:1) containing H(2 :1)™® such that ¢(T) = 2((x, + 1) x,).

Suppose first that o is Witt. Let 7€ T satisfy ¢(¢)=(x,+1)D,. As 4, =
C+K, and ¢(K,)=(0) (by Lemmas 5.3.1 and 5.2.1(c)) we have ¢(C)=
F((x,+1)*2*!' D). Let xe C satisfy ¢(x)=a(t) ! (x; +1)*@*' D,. Then
EXt=t—a(t)x and $(E t)=(x,+1) D, —(x;+1)**! D, e W(:1),.
Since ¢(E*t) is not nil (being congruent to —a(z) x, D, mod W(1:1),), its
semisimple part spans ¢(e*(T)). As W(1:1), is restricted this implies
#(e*(T))c W(1:1),. But by Theorem 1.3.1(c), any maximal torus of
W(l:1) contained in W(1:1), has the form t(Fx,D,) for some
reAut W(1:1). Then 1t '¢(e*(T))=Fx,D, so by Lemma 5.6.3(a),
o, €dp(A, eX(T)).

Now suppose a is Hamiltonian. Let re T satisfy ¢(t) = 2((x,+1) x,) =
(x;+1) D;—x,D,. Then we have ¢(K,) =span{D((x, + 1)+ x§) |3
j<p—1} (by Lemmas 5.2.1(¢) and 5.3.1) and ¢(4,) = span{D((x, + 1) +/
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x4)|10<j<p—1}. As either 4,=C+K, or else [C, I1=C and
dim 4,/(C+K,)=1, we see that ¢(C+K,) is an (ad ¢(I))-invariant
subspace of codimension <1 in ¢(4,). By Lemma2.1.11, the only
(ad ¢(I))-invariant subspaces of ¢(A4,) are span{PD((x;+ 1)+ xj)|
i<jgp—1} for i=0,.,p—1. Therefore ¢(C+K,) contains
span{2((x, + 1) */x§) | 1<j<p—1} and so there is an element xe C
such that

$(x) = (1)~ (9((x1 PO )+ S d (x4 DO X%))

j=3
for some d,, ..,d, ;€F. Then E*t=1t—a(t) x and

HME*t)=(x,+1)D, —x, D, — (x, + 1) +!
+(a(t)+ 1)(x; + 1) x, D,

p—1
—'Y dD((x, + 17O x3)

j=3

e (H2:1)®),.

Since @(E*t) is not nil (being congruent to —o(t)(x,D,—x,D,) mod
(H(2:1)?),), its semisimple part spans ¢(e*(T)). As (H(2:1)?), is
restricted (Lemma 2.1.7) and ¢ is a homomorphism of restricted Lie
algebras, ¢(E*t)=¢(E*t)= (H(2:1)?), and so ¢(e*(T))< (H(2:1)?),.
By Theorem 1.3.1(h), any maximal torus of H(2:1)? contained in
(H(2 :1)®), has the form ©(2(x,x,)) for some automorphism 7. Then
17 '¢(e*(T)) = D(x,x,), so by Lemma 5.6.3(a), a, € 4,(4, e*(T)). |

COROLLARY 6.2.3. If T is an optimal torus of A then n(4, T)=1. 1

6.3. We now introduce the maximal subalgebras we will use in the
sequel.

DEerINITION 6.3.1. Let T be an optimal torus of 4. A maximal sub-
algebra A, of A4 which contains R(A) (with respect to T) is called a
distinguished maximal subalgebra (associated with T).

LEMMA 6.3.2. Let A, be a distinguished maximal subalgebra of A. Then
|I_|<p*—p+6.

Proof. This follows from Lemma 6.1.1(c) and Corollary 6.2.3. |
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LEMMA 6.3.3. Let A, be a distinguished maximal subalgebra of A. Then
m (0)=0 and m_(y)<7 for all yeT*. Furthermore, if 7y is non-
Hanmiltonian then m _(y)< 3 and if y is proper then m_(y)<5.

Proof. The first claim is a restatement of Lemma 6.1.1(a), the second
follows from Corollary 5.5.3 (as 4,2 R,(4)), and the third follows from
Lemma 5.69. |

6.4. Winter's map e* allows us to prove certain properties of
distinguished maximal subalgebras.

LEMMA 64.1. Let A, be a distinguished maximal subalgebra of A
associated with T, A=A ,2---2A4_24,2A4,2--a corresponding
filtration. Suppose 0#ae€Ad—A4, and C is a subspace of A, such that
[C,A,]1= A® + A,. Then:

(a) C+K,#4,,
(b) if o is Hamiltonian and [C, I} < C then dim 4,/(C + K,) > 2.

Proof. If C+K,=A, or if o is Hamiltonian, [C,I]<C, and
dim A4,/(C+ K,)< 1, then Lemma 6.2.2 shows that there exists x e C such
that a, € 4 (A, e*(T)). We claim that if f € 4 (4, T) then f, € 4,(A, e*(T)).
This implies n(A4, e*(T))>n(A, T) and so contradicts the optimality of T.
To establish the claim note that (by Lemmas 5.6.8 and 5.7.1(a) and the fact
that p>7) A, =R, for some ieZy. By change of notation we may
assume that i=1. Then, as A,2R(A4), we have A, 5= 4, Now by
Proposition 1.9.3(d),

4.,2'S (adx) A,
j=0
But (ad x) 4o < [C, 4] =A™+ A4, and

(ad x)(A® + A,) =[x, AT+ [x, 4,14+ [x, 4,14 + 4,.
Thus if j>1 (adx)/ 4, ,S A+ 4, and (ad x)’ 4.5, A4, . Hence if

1<j<p—1wehave (adx)’ 4,,S (A +A4,)n(A1p,;) S A4,. Hence (as
A, is ad T-invariant since T< A4,)

p—1
Aiﬁxg z (adx)’AiﬂEAiﬁ+Al
j=0
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Then

[Ag,A_gls[Ap+ A, A_g+A4,]
S[Ag, A_gl+A,=[Rg, R_g]+A, &1+ A4,,

a nil subalgebra of 4,. Thus [4,,A4 ; ]isnilso A, =R, and hence
B.edp(A, e*(T)), as required. ||

COROLLARY 6.4.2. Let A, be a distinguished maximal subalgebra
of A, A=A_,2---2A4_2A,2A4,2---a corresponding filtration. Let
aed—Ap. Then:

(a) Al.m+Kaz?éAaa
(b) if « is Hamiltonian dim A,/(A, ,+ K.} =2,
(c) if I'nSZawZp for some Be A then A, ,+ K, #A4,,

d) if To<ZaLZB for some fed and o is Hamiltonian then
dim 4,/(4, .+ K,)=2.

Proof. Parts (a) and (b) follow from Lemma 6.4.1 by setting C=4, ,.
If the hypothesis for (c) or (d) holds then

(Ao AO]E(AM+A1 + ) Aw+a>ﬁAo§A(°’)+A1,

iel
so taking C= 4, , and applying Lemma 6.4.1 gives the result. |}

LEMMA 64.3. Let A, be a distinguished maximal subalgebra of A
associated with T. Let A=A_,2---2A_24,24,2--- be a
corresponding filtration and G =7 G, be the associated graded algebra. Sup-
pose o€ A(A, T), x€ Ay, If Bedp(A,T) and B, Ap(Gy, €*(T)) then
B.€dp(A, eX(T)).

Proof. Suppose first that g is non-Hamiltonian. Since f e 4,(A4, T) and
A, is a distinguished maximal subalgebra, we have 4, < 4, for all but at
most four values of i (by Lemmas 6.1.1(b) and 5.7.1(a)). Thus 4,5 < A, for
all but at most four values of i Since f,e4,(G,, e*(T)) we have
B.([Ao s, Ao _ig.1)=1(0) for all but at most four values of i Hence
B ([Ayp,. A_;3p1)#(0) for at most eight values of i and (as p>7)
B[ A, A_;sp1)=(0) for some ieZy. Thus B,e4,(4, e (T)) If B, is
non-Hamiltonian a similar argument gives the result.

Now suppose that B is Hamiltonian and that B, is Hamiltonian.
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Since fe 4p(A, T) and A, is a distinguished maximal subalgebra, we have
A;s < A, for all but at most six values of i and these values are symmetric
about 0 (by Lemmas 5.6.8(b), 5.7.1(a), and 6.1.1(b)). Then for some ie Z}
we have 4,5, A_ ;S Ay and hence A5, A_;5 = Ay. Then dim( 4,5 /K5 )=
dim(Gg, ;5 /Kip(Go))<3 (by Lemmas5.6.3(a) and 5.2.1(d)) so f,e
A p(A, e¥(T)) (by Lemmas 5.6.3(b) and 5.2.1(¢)). |}

LEMMA 644, Let A, be a distinguished maximal subalgebra of A
associated with T. Let A=A_,2.---2A,2A4,2---be a corresponding
filtration and G=3 G, be the associated graded algebra. Suppose
aed(A, T), addp(A,T), and a([A¢gnA,, AqnA_,1)#(0). Then,
replacing a by —ao if necessary, there exists xe AynA, such that
o, €dp(A, e*(T)).

Proof. We will apply Lemma 6.2.2 to the root a (with C=A4,n A4,) or
the root —a (with C=4 _,n A,). If a is non-Hamiltonian the hypothesis
(together with Lemma 5.2.1) implies A,=K,+(A,nAy). If a is
Hamiltonian then (noting that I 4, and so [A,Nn Ay, I]1SA,NnAy)
either dim A4,/((A,NnAy)+K,)<1 or dimA_,/((A_,nAy)+K_,)<1
(for we set U,,=(A4,,nA4,)+K,, and then by Lemmas 2.1.11(b) and
5.2.1(e) we see that if dim U,,/K,,<1 we have a([U,, U_,])=(0)).
Hence Lemma 6.2.2 gives the result. |

6.5. Using e* we can prove the following lemma on faithful restric-
ted modules for the algebras S(3:1)"), H(4: 1), K(3:1).

LEMMA 6.5.1. Let A be one of S(3: 1)V, H(4:1)V), K(3:1). Let V be a
faithful restricted A-module and T be a maximal torus in A. Then V has
p* — 1 nonzero weights with respect to T.

Proof. Give V the structure of an abelian restricted Lie algebra by
setting v¥ =0 for all ve V. Let 4 + V denote the split null extension of 4 by
V. Then T is a maximal torus in A + V. Proposition 1.9.3(c) applied to 4
and to 4 + V shows that if x is any root vector for 7 in A then the number
of nonzero weights of 4 on V with respect to T is the same as the number
of nonzero weights of 4 on V with respect to e*(T). Thus, in view of
Lemma 6.2.2, Corollary 5.8.4, and Lemma 5.8.2(h), we may assume T < A,.

Suppose T has basis {t,, t,}, where t? =1, for i=1, 2. Suppose further
that there exist nonzero roots f,, f, such that f,(¢;)=0 if i#, and root
vectors E; ;, 1<i, j<2, such that E, ;e Ay and (ad E, ,)*~' E,, is con-
gruent to a nonzero multiple of #;_, mod / for i=1,2. Then if v is any
weight of 4 on V with respect to T such that v(z;_;)#0, we see that
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(ad E; )P ' E, ,isnonzeroon V,. As E, , E; ,€ Ay, we see that v+ jB, is a
weight for all j, 0<j<p-—1. Then Lemma 4.6.3 of [BW82] proves our
assertion.

If A=53:1)" we may take t,=x,D,—x,D,, t,=x,D,—x;D;,
E =D, E, =D, E ,=x{"'%D,—x{"'x3D;, and E,,=
X, x87'Dy—x,x8"'D,. f A=H(4:1)" we may take t,=2(x,x;),
1L,=9(x,x4), Ey =Dy, E; =D,, E,,=2(x{ 'x,x4), and E,,=
D(x, x5 'x;). Finally, if A=K(3:1) we may take t, =Dy (x,%x,—X;),
L=9x x4 x3), E\ y=Dx(x)), E3 1 =Dk(x;), E; 3=De(x4 ' x;), and
Ey 2=Dx(x{ ' x3). |

7. DETERMINATION OF G TF 3(G,) # (0)

Throughout this section we assume that A is a finite-dimensional restric-
ted semisimple Lie algebra over F which satisfies the conditions of
Theorem 4.1.1(h). That is, we assume:

A is finite-dimensional, restricted, and semisimple over F.
All two-dimensional tori in 4 are maximal and standard.

T is a two-dimensional optimal torus in 4 and 3,(T)=T+1,
where [ is the nil radical of 3 (7). (7.0.1)

S< A< Der S for some simple Lie algebra S.

A=S+1 (and so, by Lemma 1.8.2, T< §5).

We let 4, be a distinguished maximal subalgebra of 4 associated with T
andlet A=4_,2---2A4_,2A4,2A4,2---be a filtration of A constructed
as in Section 1.2. Let G=3,., , G, be the associated graded algebra.
Recall (Section 6.1) that we can and do identity T with its image, a two-
dimensional standard torus, in G,. We write I(G,) for the nil radical of
36o(T) 80 36,(T)=T+I(G,). We have the weight space decompositions
A=, croomdi,and G,=%, G, , of A4, and G, with respect to T.

We will also assume throughout this section that

3(Go) # (0). (7.0.2)

As the action of Gy, on G _, is faithful and irreducible, dim(3(G,))=1
and 3(G,) is a torus. Let {1, z} be a basis for T such that t” =¢, z” = z, and
Fz =3(G,). Furthermore, if G,= [G,, G,] + Fz (as a sum of restricted Lie
algebras) take

teTn[G,y, Gyl (7.0.3)
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Define ye T* by y(¢)=1, y(z) =0, Note that /', < Zy. Note also that ad z
acts on G_, as an element of Z}. (It acts as an element of Z, since z” =z
and is nonzero since G, acts faithfully on G _,.) Replacing z by a scalar
multiple if necessary we may assume ad z acts as multiplication by —1 on
G _,. Then a simple induction argument shows that ad z acts as mul-
tiplication by i on G, for all ieZ. Hence I, {Ae T*|A(z)=i}. Define
deT* by

5(1)=0, &(z)=—1. (7.0.4)
Then I';€ {—i6+jy | jeZ,}. Thus by Lemma 6.3.3 we have
dim G_, < 7p. (7.0.5)

We use the main result of [BW82] repeatedly in this and later sections;
whenever we can show 3 ,(7)= T we are in the situation of [BW82] and so
are done. We note that there is an error in Corollary 4.12.1(a) of [BW82].
The correct conclusion is: “If V' is a restricted 4-module with SV +# (0) then
V has at least p>—2 weights.” Corollary 4.12.1(a) is used four times in
[BW82]. For one of these applications [BW82, Sect. 6.2, the corrected
version given above suffices. The remaining three applications are in
Lemma 5.5.1 (step(5)), Lemma5.6.1 (step(8)), and Lemma5.7.1
(step (3)). In this Section there are generalizations of each of these lemmas
(Lemmas 7.6.1, 7.7.1, and 7.8.1, respectively). We prove each of these
lemmas without use of the corresponding result from [BW82], so that the
proofs given here fill the gap in [BWS82]. (In fact, the proof of
Lemma 7.8.1 we give here is substantially simpler than the proof of the
corresponding Lemma 5.7.1 of [BW82].)

7.1. Following Weisfeiler ([Wei781; cf. [BW82, Sect. 1.5]), if
G=73 G, is any graded Lie algebra we define M(G) to be the sum of all
ideals of G contained in G_ =Y, _, G,, hence the unique maximal ideal of
G contained in G _. We also denote by G’ the subalgebra of G generated by
S.<1G;. Note that G’ is a graded subalgebra of G. We define
N(G)= M(G’).

Note (using the Poincaré-Birkhoff-Witt theorem) that if xe G,, i<0,
and [x, G;] = (0) then the ideal of G’ generated by x is contained in G _ .
Thus N(G)=(0) is equivalent to the condition

If xeG,, i<0, and [x, G,]=(0) then x=0. (7.1.1)

Comparing (7.1.1) with the hypothesis (1.2.3) of the Recognition Theorem
shows why we are interested in establishing N(G) = (0).
Section 7 is devoted to the proof of the following result.
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ProposiTION 7.1.1.  If A4 satisfies (7.0.1) and (7.0.2) then either G, = (0)
or Go=sl(2)® Fz (as restricted Lie algebras), N(G)=(0), and G, acts
Jfaithfully on G,.

7.2. Since zesolvG, we have that Gy/solv G, is a restricted
semisimple Lie algebra in which every torus has dimension <1 and all tori
of dimension 1 are standard. If there are no nonzero tori then G,/solv G, is
nil, hence (0). If there are nonzero tori in Gy/solv G, then Theorem 3.1.1
shows that G/solv G,~sl(2), Gy/solv Go= W(1:1), or Gy/solv Go= M,
where H2:1)YcMc H(2:1).

We will show that I(G,) = (0). We begin by considering 1(G,) nsolv G,.

LemMa 7.2.1. Let M be a restricted Lie algebra satisfying H(2:1)® <
Mc H(2:1) and V be a nonzero restricted M-module. Let U be a maximal
torus in M. Then Vi # (0) (where V, is the O-weight space of V with respect
to U).

Proof. Since H(2:1)/H(2:1)® is nil (Corollary 2.1.9) we have Uc
H(2:1)®. Then by Theorem 1.3.1(i) we may assume that U is spanned by
P((x,+a)x,), where a=0 or 1. Then (by Corollary 2.1.5) 2(x,+a)
and 2((x,+a)”"' x£~2) both belong to (H(2:1)®), (the 1-cigenspace
for ad 2((x,+a) x,)) and (ad 2(x,+a))” ? D((x,+a)" "' xz-2)=
—9((x,+a)”" ') is a nonzero element of H(2:1)?. Thus the ideal
generated by [M,, [M,, .., [M,,M,]---1] (p—1 factors) contains U. If
UV =(0) then V,=V #(0). Hence we may assume UV # (0) and so [M,,
[M,,..[M,, M1 11V #(0). Therefore [M,, [M,, .. [M,, M,]---1]
V;#(0) for some i. Thus we have M7~ 'V,;#0 and hence V,,+#(0) for
0<j<p—1 In particular, Vo=V, ,_,,#(0), as required. ||

COROLLARY 7.2.2. If I(G,)+#(0) and solv Gy #3(Gy) then I(G,) N
solv G, # (0).

Proof. If G,=solv G, the result is vacuous. If G,/solv G,=sl(2) or
W(1:1) then, since [/G,) maps into the nil radical of
3(Gossolv o)l T +50lv Gy/solv G,) and since all tori in sl(2) or W(1:1) are
self-centralizing, we see that 1(G,) < solv G, giving the result. Finally, sup-
pose Go/solv Go= M, H(2:1)P < M < H(2: 1), and solv G, # 3(G,). Then
V =solv Gy/([solv Gy, solvG,]+3(G,)) is a nonzero M-module. By
Lemma 7.2.1 we have (0) # V. Thus (solv Gy), # 3(G,). Since (solv Gy)o =
({(Gy) nsolv Gy) +3(G,) we have I(Gy) nsolv G, # (0). |

LEMMA 7.2.3. Let W be an irreducible solv Gy-submodule of G _,. Then
either dim W =1 or else solv Gy acts faithfully on W and dim W = p.
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Proof. We have observed (7.0.5) that dim G_, <7p<p® Thus (cf.
Theorem 1.13.1 of [BW82]) dim W=1 or p. If dim W=p then (by
Lemma 1.10.1) Stab(W, G,) =G, (for dim G_, > peodm Sabl¥. Go)(dim W))
and G, is the sum of all solv Gy-submodules of G _, which are isomorphic
to W as solv G,-modules. As G is a faithful G,-module this implies W is
a faithful solv G,-module. ||

LemMma 7.24. Let M be a solvable subalgebra of G, which contains T.
Then I(G,) ~ M annihilates any irreducible M-submodule of G _, of dimen-
sion p.

Proof. Let W be a p-dimensional irreducible M-submodule of G_;.
Suppose (I(Gy) M) W#(0). Then for some ie Z, we have (I(Gy) N M)
Ws ., #(0). Since I(G,) is nil, dim W5, , > 1. Thus as dim W =p we have
W, =(0) for some je Z,. Then Lemma 1.8.4 shows that [M,, M _, ] is
nil for all /e Z}. Hence [(Go) "M +3,.z; M, is a nil ideal in M and so
annihilates W, contradicting (/(G,)n M) W#(0). |}

COROLLARY 7.2.5. If I(Gy)#(0) and W is an irreducible solv G
submodule of G _ | then dim W= 1.

Proof. 1f dim W # 1 then Lemma 7.2.3 shows that solv G, acts faithfully
on W and dim W=p. We may assume W is T-invariant, for as dim
G _,<p? Stab(W, Gy)=G, and so G _, is a direct sum of solv G,-modules
isomorphic to to W. Thus every irreducible solv G,-module of G | is
isomorphic to W. Now T +solv G, is solvable so any irreducible T+
solv Gy-submodule of G _; must have dimension <p. Since such a module
must contain an irreducible solv G,-submodule, it must be irreducible as a
solv Gy-module. Also solv Gy #3(Gy) (as solv G, acts irreducibly on W
and dim W>1). Thus Corollary 7.2.2 shows I(G,)nsolv G,+#(0). But
Lemma 7.24 (with M=T+solvG,) implies that I(G,)nsolv G,
annihilates W, a contradiction. ||

LeMMma 7.2.6. If I(G,) # (0) then solv G, =3(G,).

Ptoof. By Corollary 7.2.5, G_, contains a one-dimensional solv G-
module W. Then codim Stab(W, G,)=0 or 1. If codim Stab(W, G,)=0
then G _; is a direct sum of copies of W as a solv Gy-module. Thus solv G,
acts on G_; by scalars and since G _, is a faithful G,-module, we have
solv G,=3(G,), as required. Therefore it remains to show that codim
Stab(W, G4) =1 cannot occur.

Let ¥V be the sum of all (solv G,)-submodules of G_, which are
isomorphic to W. Then, by the Blattner—Dixmier theorem (Lemma 1.10.1),
V- i1s an irreducible Stab(W, Gy)-module and dim G_,=
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peodim Sab(W. Gol(dim ). If codim Stab(W, G,)=1 then by (7.0.5) we
have dim V'<7. Also as Stab(W, G,)=2solvG, we have that
Stab(W, Gy)/solv G, is a subalgebra of codimension 1 in Gy/solv G,. If
Go/solv Go=(0) this is impossible. If G,/solv G,=sl(2) it implies that
Stab(W, G,)/solv G, is two-dimensional, hence solvable, so that
Stab(W, G,) is solvable. If G,/solv G, = W(1:1) then, as W(1:1), is the
unique subalgebra of codimension one in W(1:1) (by Lemma 1.11.1), we
have that Stab(W, G,)/solv G, = W(1 : 1), is solvable, so that Stab(W, G,)
is solvable. But in either of these cases, V, being an irreducible
Stab(W, Gy)-module, has dimension p" for some r. Since p?>
dim G _, = peodimSab(W. Go)(dim V) =p(dim V) we have V=W and
dim G _,=p. As I(Gy)#(0) and G | is a faithful G,-module, we have
dimG_, s5,,>1 for some i and therefore G_, ;,;,=(0) for some j.
However, for any leZ}, M =T+ G, ,, +solv(G,) is a solvable subalgebra
of G,. Since G, ;,,=(0), Lemmal84 shows that [G,,,
Solv(Gy) _,,1 = I(Gy). Thus I(Gy)+ %, z solv(G,),, is a nil ideal in G,
therefore (0). Hence in this case solv(G,)=Fz. Finally, suppose
HQ2:1)Y < Gy/solv(Gy) = H(2:1). Since Stab(W, G,)/solv(G,) has
codimension one in G,/solv G, and since H(2:1)® has no proper sub-
algebra of codimension <2 (Lemma 1.11.1(b)), we see that H(2:1)? <
Stab(W, G,)/solv(G,). Thus there exists some xel(G,) such that
x ¢ Stab(W, G,) (for since H(2:1)/H(2:1)* is nil, T < Stab(W, G,) and
I(Gy) + Stab(W, Gy) = G,). Let U = {ue Stab(W, Go)|uV = (0)}. Then U is
an ideal in Stab(W, G,) and

dim(Stab(W, G,)/solv G,)/((U + solv Gy)/solv G,)
= dim Stab( W, G,)/(U + solv G,) < dim Stab(W, G,)/U
<(dim V)*< 72 < p?—2.

Thus H(2: 1), being a simple ideal in Stab(W, G,)/solv G, is contained
in  (U+solv Gy)/solv G,.  Furthermore,  (Stab(W, G,)/solv G,)* <
(Go/solv Go)? = H(2 : 1) = (U + solv G,)/solv G,,. Therefore Stab( W, G,)/
(U +solv G,) is solvable. Since (U +solv G,)/U =solv Gy/(Unsolv Gy) is
solvable it follows that Stab(W, G,)/U is solvable. Then as V is an
irreducible module for Stab(W, G,)/U, we have dim V' =p" for some r.
Since 7p2dim G_,=p(dim V) this implies r=0 and so W=V. Since
dim W=1 and W is Stab(W, G,)-invariant, hence T-invariant, W is con-
tained in a single weight space. Then G_ = W+ xW + ---+x7 "W is also
contained in a single weight space (as x € I(G,)). Since G, has nonzero root
spaces and G_, is a faithful Gy module, this is absurd. Thus
codim Stab(W, G,) =1 is impossible and the lemma is proved. }
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LeEmma 727. Let M be a restricted Lie algebra with one-dimensional
center Fz, where z? = z. Suppose H(2: 1) c M/Fz< H(2:1). Let T be a
two-dimensional standard torus in M. Write 3,,(T)=T + (M), where I(M)
is nil. If V is a faithful irreducible restricted M-module then dim V ;> 7 for
some e T*.

Proof. Suppose dim V, <7 for all weights 4 (and so dim V< 7p <p?).
Let M;={xeM|x+FzeH(2:1),;}. By Theorem 1.3.1(g), if T £ M, we
may assume that T/Fz is spanned by 2((x,+ 1) x;). Then taking pe T*
and xe M, so that x+ Fz/Fz= —%(x,), we see (recall Section 1.9) that
EX(T)c M, and so (since Lemma 2.1.7 shows that M, is restricted)
e*(T)= M,. Give V the structure of an abelian restricted Lie algebra by
setting y” =0 for all ye V. By applying Proposition 1.9.3(c) to M and to
M + V (the split null extension) we see that dim V', =dim V, for all Ae T*
Thus it is sufficient to prove the lemma under the additional assumption
that T< M. Note that this implies /(M) < M,.

Let J=M,+ T, let U be an irreducible M,-constituent of V, and let W
be an irreducible J-submodule of U. Since J is solvable, dim W =p” for
some n (cf. [BW82, Theorem 1.13.1], hence dim W =1 or p. If dim W=p
then [J, J] is not a nil ideal in J. It follows that either there is some xe J,,
A #0, with x” not nil or that [J;, J,] is not nil for some 4 #0. Either of
these implies that W has p weights (in the second case use Lemma 1.8.4).
Since dim W=p this implies that dim W,=1 for all 2 and so
(M) W=(0). Since dim U<p? we have Stab(W, M,)=M, and so
I(M) U= (0) when dim W=p. If dim W =1 then

((ad x)' [(M)) W = (0) (7.2.1)

for any root vector xe My, and 0<i<p—1. Since dim U<p® we have
U=W4+xW+---+x? "W, where W is the sum of all J-submodules of U
isomorphic to W and xe M, is some root vector. In view of (7.2.1) this
shows (M) U= (0) when dim W= 1. Thus, in any case /(M) U=(0).

Now let U be an irreducible M -submodule of ¥ and define U'~? =
U-"=(0), UY=U,and U?=MU""" + U"Y Y for i >0. Then we see by
induction that (M) U< U"~" for all i>0. Thus ((ad (M))" > M)
U?~% = (0). Now as we may assume T< M,, Theorem 1.3.1(h) shows
that we may assume that T/Fz is spanned by 2(x,x,). Then 2(x3x3)e
(I(M) + Fz)/Fz and so, since (ad 2(x3x2))” "% 2(x,)#0, we see that
(ad I(M))P "2 M#(0). As V is a faithful M-module this implies
((ad IM))? 2M)V#(0) and so V#UY" Y. As p>7 this implies
v+ U,

Therefore, as dim V < 7p some U)/U%~!) has dimension <p. Then (as
M, is solvable) any irreducible J-submodule of U/U"~" is one-dimen-
sional and hence is annihilated by [J,J] and by I(M). Since [J,J]=
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[T,M,]and M,=[T, M,]+ I(M) we see that M, annihilates U/U"+ D
and hence is nil. Thus M, is a nil ideal in M, and so M, annihilates U.
Recall that we may assume I(M)< M, . Therefore [ M, I(M)] annihilates
U. Then, by induction on i, IM)UP<U""? for all i>0. Thus
((ad I(M))?~2 M) U? % =(0). Since p > 7 this implies V' U"'%. But if x,
y are root vectors in M satisfying x + Fz = 2(x?), y+ Fz=9(x32), then
Fx + Fy+ F[x, y] is a subalgebra of M isomorphic to sl(2). Choosing a so
that [[x, y], x]=2ax, we see that each nonzero U)/U"Y~" must contain
an eigenvector for [x, y] belonging to 0 or to a. This implies that some
weight space of V has dimension >8 and so contradicts our assumption
that dim V, <7 for all A. Thus the lemma is proved. |

CoroLLARY 7.2.8. I(Gy)=(0).

Proof. 1f 1(Gy)# (0), Corollary 7.2.6 shows solv(G,)= Fz. Thus if
I(Gy)# (0), I(Gy) +s0lv(Gy)/solv (G)#(0) so H2:1)PcGy/Fzc
H(2:1). Since dim G_, , <7 for all 4, this contradicts Lemma 7.2.7. |}

7.3. We now prove some preliminary results dealing with the cases
G _,+1)2=(0)and G_,=(0).

Lemva 7.3.1. If G_(,41y2=(0) then [G_,, G,]1=G,.

Proof. The proof (as well as the statement) of this lemma is identical to
that of Lemma 5.3.2 of [BW82]. |

LEMMA 7.3.2. If G _(,, 1y, = (0) then every root of A with respect to T is
non-Hamiltonian.

Proof. Since G _(,,,,=(0) (and so G _,=(0)) we have 4"’ 4, and
so (as 4= Z,) Ag=A" + A4,. Then Go= (A" + A4,)/4, = AV/(AV " 4,).
By Corollary 7.2.8, 1(G,)=(0) and so I(4?/(4"'~ A4,))=(0) and hence
I(A7/solv AV) = (0). Thus A"/solv A" = (0), sl(2), or W(1:1) and so y
is not Hamiltonian.

Now let ael”, a¢ Zy. Then A[a] = A"/solv A contains the maximal
torus ¥ (T) (recall ¥, from Section 1.4). Furthermore, ¥,(7T) is standard
$0 3ara){ PaulT)) = P(T)+ I{A[«]), where I(A[a]), the nil radical of
3ar)(Pa(T)), equals ¥, (I). Suppose I(A[a])# (0). Then Lemma 5.2.1
shows that Y (T)< [4[«], [A[2], ¥.(I)]]. But as A, is a distinguished
maximal subalgebra we have I < 4,. However, I(G,)=(0) by Lemma 7.2.8
and so /= A,. Then as I=3,(z) we have /€4, and A=4_,_,, s0
[4,[A4,1]11< A,. Therefore ¥ (T)< ¥,(4,). But 4, is nil and so ¥,(T) is
nil, a contradiction. Thus I(4[a])=(0) and so a is non-Hamiltonian, as
required. |
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Lemma 7.33. If G_,=(0) then ye d,.

Proof. Since G_,=(0) implies A=A4_,,, we have A,=4,,.
Corollary 6.4.2(¢) then gives the result. |}

7.4. We now prove an important special case of Proposition 7.1.1.

Lemma 741, If G _;=(0), G, #(0), and |I'_,|<1, then G,=
s1(2) @ Fz (as restricted Lie algebras).

The proof has several steps:

(1) Fori jeZ,,

Proof. Since I''=( for 1< —2 we have that if tel and 1¢(I"_,u
I'_,uTl,) then 4, A,. Since i +jye I, only if —i=/ (mod p), we have
the result. |

i#0,1,2, we have A5, ;, S A4,.

(2) Letiel_,and 0#xeG_, ;. Then for all but at most two tel"_,
we have G_, . < [x, Gyl

Proof. Let ceA_, ; satisfy x=c+ A,. As c¢ A4, and A, is a dis-
tinguished maximal subalgebra, we have c¢ R; and hence there exists
deA_, with [¢,d]¢1 By (1) we have A_, < A, so de 4,. Now for any
eeA_, . wehave [[¢,d],e]let([c,d])e+ [ e]=1([c, d]) e+ Ay. Also
[{e, d], el=[lc, €], d]l+[c, [d, e]]. Since |I'_,|<1 we have
[c,e]¢ A _, for at most one value of 7 (independent of e). Since [c, d] ¢ [
and since I'_, <=6+ Zy, ©([c, d])=0 for at most one value of 1. Thus
except for at most two values of 7, we have eet([c, d]) ' [¢, [d, e]]+
Ay<S[ec, Aol + Ay, and hence G_, . < [x, Go]. |

(3) We may assume dimG_,=2p— 1.

Proof. 1f dim G _, < p then for some j (with the notation of Section 6.1),
m_,(8)#m_(6+jy). Then by Corollary 5.2.5 of [BW82] (which applies
here as 1{G,) = (0)) we have G, = sl(2) ® Fz (in which case we are done) or
W(l:1)@ Fz. In the latter case, G_,, being a nontrivial irreducible
W(1:1)-module, must have at least p—1 weights (cf. Theoem 1.15.2 of
[BWS2]). 1

4y dimG_, ,<3forall zel'_,. Hence dim G, < 3p.
Proof. By Lemma 7.3.2, 7 is non-Hamiltonian. Then by Lemma 6.3.3,

m_(1)<3 and so dim G _, ,<3. Since I' =6+ Z,y we have [I"_|<p,
giving the final result. |}

(5) There is a solvable restricted subalgebra Q, G,=20=7T, with
dim G,/Q < 1. If G, is solvable we take G, = Q.

481/114/1-13
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Proof. This follows from Proposition 1.7 of [Wil83] applied to the
restricted Lie algebra G, = G§” (which contains toral Cartan subalgebra T
by Corollary 7.2.8). |}

(6) We may assume that G _, is an irreducible Q-module of dimen-
sion p.

Proof. Let V<G_, be an irreducible Q-submodule. Then
(cf. Theorem 1.13.1 of [BW827]) dim V is a power of p, hence by (4) is 1 or
p. Now as T< Q we can find O# xe V, for some Ael"_,. Then by (2) we
have G_, .=[x,Gy] for all but at most two values of . Since
dim G_, .<3 by (4) this gives dimG_, <6+dim[x, G,]. As Q has
codimension <1 in G, we have dim[x, G;] <1 +dim V. Thus dim G _, <
7+ dim V. By (3) this givesdim V2 p—~8>1 (as p>7) so dim V=p. Thus
dim G_,<2p. If G_,# V then dim G_, > p and so for some 1, nel'_, we
have dim G_, ,#dim G_, ,. But then Corollary 5.2.5 of [BW82] shows
that either Gy=sl(2)® Fz (in which case we are done) or G,=
W(l1:1)® Fz. But if Go= W(1:1}@® Fz then, since the largest irreducible
restricted W(1:1)-module has dimension p (cf. Theorem 1.15.2 of
[BW82]) and since G , is an irreducible Gy-module, dim G ,>p is
impossible. |

(1) Q,=Fz+%7 ' Q,; is a nilpotent ideal of Q. For some ieZ} and
some 0#beQ,,, B=Fb+ Fz is a two-dimensional restricted abelian ideal
of Q and [b, Q,] S Fz

Proof. Since Q is solvable, T [Q, Q] < Fz (for otherwise Q contains a
copy of si(2)). Hence [Q, Q1< Q,, so @, 1s an ideal. By the Engel-
Jacobson theorem (Theorem 1.10.1 of [BW827), O, is nilpotent. Therefore
{xeQ,|[x,Q,]=Fz} 2 Fz. This set is clearly (ad t)-invariant, hence
contains an element 0#be Q,, for some ie Z*. Since [b”, b] =0, we have
b? e Fz. Thus Fb + Fz has the required properties. ||

(8) Let W=G _, be an irreducible B-module, necessarily one-dimen-
sional, say W=Fw. Then Stab(W,Q) has codimensionl in 0,
t¢ Stab(W, Q), and W is invariant under Stab(W, Q). We may therefore
assume that b? =z.

Proof. Since W is one-dimensional and z is central, Stab(W, Q)= {x¢€
Q|[x,b]-W=(0)}. By Lemma 1.10.1, dim G l—pdim‘Q/s"“"W D)(dim W).
Now G _, = W is impossible since Fb + Fz acts on W as scalars but G_, is
a faithful G,-module. Hence we must have that dim(Q/Stab(W, Q))=1 and
W = W so that W is invariant under Stab(W, Q). Thus if ¢ € Stab(W, Q) we
have W<G_,; for some Ael ;. Now by (2) and (4) we have
dim G_,<6+dim[W, G,]. Since dim(G,/Stab(W, Q))<2 we see that
dim[ W, G;] <3. Hence dim G _, <9, contradicting (6) {as p>7). Thus
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1¢Stab(W, Q) and so ib-W=_[1,b]-W#(0) so b-W##(0) and hence
b7 - W #(0). Since b” € Fz this implies that 57 is a nonzero multiple of z.
Replacing b by some scalar multiple of b we can assume b”=2z. |

(9) G, is not solvable.

Proof. 1f G, is solvable, then G,=Q and Q, is a ideal in G,. Then
{xeG_,|[x,G,1=Q,} is a Gy-invariant subspace of G_,, hence (0) or
G _,.By Lemma 7.3.1, it cannot be G _,. Thus there exists some e € G, such
that [w, e]¢ Q,. Replacing e by a scalar multiple, we may assume [w, e] €
t+Q,. Now let be Q,, be as in (7). Then b-we Fw and so [b, [w,e]]=
[w,e,] for some e, €G,. But [b, [w,e]le[b, t]1+[b Q]S —ib+Fz
Since —z acts as the identity on G _, it is clear that for any Ael |,
0#xeG_,;, and pueF we have (ad(—ib+uz))G_ +Fx>2
span{(ad(—ib+uz))’ x |0<j<p—1} = span{(ad b)/ x|0<j<p—1} =
G , (since b” = z). Thus dim([—-ib+puz, G ;])=p—1 and so
p—1<dim[[w,e;],G_] < dim[[w, G _,],e;]+dim[w, [e,,G_,]] <
dim[G _,, e,] +dim[w, Gy]<dim G_,+dim[w, Q]1<5 (as |I"_,|<1 by
hypothesis, so if G _,# (0) then dim G_,=dim G _, ; for some AeI"_, and
dim G _, ; <3 by Lemma 6.3.3 (as 4 is non-Hamiltonian by Lemma 7.3.2)).
Thus p <6, a contradiction. ||

(10) 3c,(b) is an abelian subalgebra of codimension <3 in G,.
Consequently, Gy/solv G, 2 W(1:1) and so we may assume G_,=(0)
and G,/solv G, = sl(2).

Proof. Since [b, Q,] < Fz we see that 3, (h) has codimension <1
in Q,. Since dim G,/Q, =2 we have that 3.(h) has codimension <3
in Gy. As b? =z, —ad z|_, is the identity, and dim G | =p we see that
ad b|;_, is a cyclic transformation of G ;. Thus (cf. [Jac53, Corollary
to Theorem 3.17]) the centralizer of ad b|,_ , in End G _, consists of
polynomials in ad b|;_, and so is abelian. Thus (34,(b) + solv G,)/solv G, is
an abelian subalgebra of codimension <3 in G /solv G,. As b is a root vec-
tor this subalgebra is ad T-invariant. But there exists no such subalgebra if
Go/solv Gy = W(l : 1) since otherwise, as y is proper by Lemma 7.3.3, we
may assume (7T +solv Gy)/solv G,= F(xD) and we have [x'D, x’D]=
(j—i)yx"*7~' D0 whenever 0<i#j<(p+1)/2. Since we may assume
that G, # sl(2)@® Fz (for in that case we are done), Corollary 5.2.5 of
[BW82] shows that |/_,| is a multiple of p. As |I"_,| <1 by hypothesis
we have I’ ,= ¢ and so G_,=(0). 1

(11) There exist 1eT*, eeG,,, f€G,y . such that e+solv(Gy),
f+s0lv(G,), and t+solv(Gy) span Ggy/solv(G,), that Q=Fr+ Ff+
solv(G,), and that there exists ¢ € G, such that [w, c]Jee+ Q.

Proof. Since Gy/solv(G,) = sl(2) and since T< Q, we may choose such
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e and f. Since {xe G_,|[x, G,] = Q} is a Q-invariant subspace of G_,, by
(6) itis (0) or G_,. By Lemma 7.3.1 it is not G _,. This gives the result. |}

(12) There is some ¢, € G, such that [[[w, ¢,], f1, bleb+ Fz.

Proof. Let ¢ be as in (11). Then [[w, c], f1e[e, f1+ Ff+solv(G,).
Now [e, fleat+ Fz for some O0#aecF. Thus [[w,c], flear+ Ff+
solv(G,). Since Ff+solv(Gy) = Q, (see (7)), [[[w, c], f]1, b]leaib+ Fz.
Replacing ¢ by an appropriate scalar multiple gives the result. i

(13) For some ae F we have b+aze [[w, G,], f].

Proof. This follows from (12) since [w,b]eFw, [c¢,,b]eG,, and
[/, b] € Fz, which is central. |i

But (13) leads to a contradiction. For dim[b+az, G_,]<
dim[[[w, G,], ], G _1<dim[[w, G,], G_,]+dim[[[w, G,], G ], ]
<2dimf[w, G,],G_,] € 2dim[w, G,] (as G_, = (0)) < 6 (since
Stab(W, Q) preserves Fw (by (8)) and has codimension 2 in G,). However,
as b is a root vector satisfying b7 =z, it is clear that dim[b+az, G_,] =
p— 1, a contradiction. This completes the proof of the lemma. ||

7.5. We now prove four technical results which we will need in
Sections 7.6-7.8. Recall the definitions of M(G) and N(G) from Section 7.1.

LEMMA 7.5.1. If G, #(0), the grading of G/M(G) is nondegenerate (in
Weisfeiler's sense; cf. Theorem 1.5.1 of [BW82]).

Proof. 1If not we have (cf. Theorem 1.5.1(b) of [BW82]) that G, =(0),
so A,=(0). Now /< A, (by our choice of 4,) and since I(G,) = (0) (by
Corollary 7.2.8) we have /< A,. Since /< 3 ,(z) and ad z acts as the iden-
tity on G, we have that /< 4,=(0). Thus G satisfies the hypothesis of
Lemma 5.4.1 of [BW82] and that result gives the desired conclusion. |[I

LEMMA 7.52. Iftel, 1¢ Ap(A, T), then:

(a) 1€4dp(G,T),

() ©[G_\ e Gy D=(0) and if G_,.=(0) then t([G_,.,
G, _.1)=(0),

(c) if © is non-Hamiltonian then G = K (G).

Proof. Suppose x€G,, x¢ K(G). Then there exists je G _, such that
t([x, 1) #0. Since G, is nil for j#0, we may assume xeG, ., yeG_; _..
Without loss of generality we may assume i=0. Let x=x+4,,,,
J;=y+A7i+1’ XEAi,rs yEA»i, -1 Then T([X,y])=‘t([.f,_}7])?é0 Th]S
implies xed;,, x¢K,(A). Thus A, +K(4)#K.(4). If © is non-
Hamiltonian we have that dim 4,/K, <1 (by Lemma 5.3.4) and so 4,,+
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K. (A)=A,. But since I'yS Zy < Zt + Zy, part (c) of Corollary 6.4.2 gives a
contradiction. This proves (c) (and hence (a) and (b) in case t is non-
Hamiltonian).

Now assume that t is Hamiltonian. Let ¥, and A[t] be as in
Section 1.4. Note that H(2:1)¥c A[t]< H(2:1). Since t¢4p(4, T)
we can assume Y (T)=2((x;+1)x,) and, by Corollary6.4.2,
dim A,./(Ay .+ K. )=2 for all ieZ¥. Since K,=2(solvA®), (by
Lemma 5.3.1) we have dim ¥ (A4,.)/¥(A, .)=2. But ¥(A,.) is
invariant under ad(/(A[t]))=ad ¥ (I(4)). Thus by Lemma 2.1.11 we
have ¥ (Ao ) S span{2((x, + 1)/ x))|2<j<p—1} for ieZ}.
Also  Y.(I(A4)) € (A4 n A,) (as I(Gy) = (0)) and so, again
using Lemma 2.1.11, ¥ (4_, ,)<span{2((x,+ 1) x))|1<j<p—1}.
Then t([4_,. 4, _.1)=(0) so «([G_,., G, _.])=1(0). Also if
G_,.=(0) then [¥(4_, ), Y.(I(A4)]c¥.(A4p ) and as above this
implies ©([G_, ., G5 _.1)=(0). Thus (b) holds.

Finally, let © be Hamiltonian and t ¢ 4 (G, T). Then for every / we have
([Gr, G_1;]) #(0). As in Lemma 2.1.11 set

Vii=span{2((x,+ 1) x))lI<j<p-1}.
We may assume
(D((x;+1)x,))=1

For each ie Z;, we may take j; € Z such that ©([G; ., G_, _,])#(0). We
may assume that j_i=—j:. Then for each zeZ* we may take a,€ 4
such that t([a;, a_;]1) #0. Then (¥, ([a,,a_,])—t([a,, a_;]N#0 and so
[P.a), P.(a_;)]1¢V, ,. Let [, be the largest index such that ¥ (a,)e ¥V, ,.
Then we have /;+/ ,—1<1 (by Lemma 2.1.11(c)). Pick ke Z} such that
Je=min{ j,lieZ}, j,>0}. Also pick m#k with j,>0. We have
ay€ A 4 S Ao k. and so ¥ (a,)e V, , and [, > 2. Therefore /_, =0
and [, =2. Similarly, /,=2. Then ¥.(a _,)=u2((x,+ 1) %)+
2o U D((xy + )””‘”xf) and  ¥.(a,) = v2((x; + 1)"**x3) +
i3l @((xl + 1)"*/ x4) for some scalars u, v, u;, v;€ F with u#0, v#0.
Then direct computation shows that [¥ (a,,), Y{a_)1¢V, _« .. Thus
VYAA;  simtky) £V k2, contradicting ¥ (Ag n x)e) S Vn_x2- Hence
(a) holds and the lemma is proved. |

Lemma 7.53. If M(G)_, ,=G_._,, M(G)_,#G_,, and N(G)#
M(G) then N(G)_,=G_, and N(G)_ ., =G _.,.

Proof. Let G"=3,.,G,. Then G" is a subalgebra of G and
G=G +G". Hence U(G)=U(G") U(G"). Now N(G)/M(G)#(0) so it
generates a nonzero ideal (U(G)  N(G))/M(G) of G/M(G). But G/M(G)
contains a unique minimal ideal which contains ¥, o (G/M(G)),. Thus
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U(G)-N(G)=2G, for all i<0. But N(G) is an ideal in G’ and so
U(G)-N(G)=U(G") U(G")-N(G)=U(G")-N(G). Now as G_,_ =
M(G)_,_,, M(G)isanidealin G, and G,=[G,,,, G_,Jforallj< —1, we
see that G,= M(G); for all j< —k—1 and

Y G,SU(G")-N(G)S M(G)+N(G)_+N(G)_,,.+ Y G,

Jj<0 i>—k+1

Thus we have G_,=N(G)_,and G_,,,=N(G)_,.,.,. |

LEMMA 7.54. If G,+#(0) then the grading of G'/N(G) is nondegenerate.

Proof. 1If not, by Weisfeiler’s results (cf. [BW82, Sect. 1.5]) there is a
simple Lie algebra @ such that G'/N(G) contains an ideal isomorphic to
QO®B,, B,=F[x, .., x,]/(x?, .., xF), B, is graded by setting deg x,= —1
for 1<i<u and deg x,=0 for u<i<n, and (0®B,),=0®8B8, .
Furthermore, (G'/N(G)),=(Q0®B,); for all i<0, G, c
{Del®Der B,|deg D=1}, and (G'),=(0). Now as Q®B, =G,
ker(ad z) we see that T acts on Q® B, , as a one-dimensional torus of
derivations. If Tn(Q® B, o) = (0) then for every xe (Q® B, o), ieZ},
(ad x)? =0. Hence the Engel-Jacobson theorem (Theorem 1.10.1 of
[BW82]) shows that Q® B, , is nilpotent, a contradiction. Hence
Tn(Q®B, ) #(0). Now ker y (where y : Q® B, » Q® B, 1s defined by
Y(s®1)=s®]1 for all se Q and Y(Q® x;)=(0) for all j) is a nil ideal in
Q®B,. Thus (TNn(Q®B,,))nkery=(0). Then by Lemma4.3.2 of
[BW82], u® a> u-a gives an injection of (T (Q® B, ())® B, ; into G,.
Since [, u-a]=0 for all ue Q® B,, ae B, and since ad z annihilates G|,
and G ,, we see that (Tn(Q®B,,))® B, ; injects into 34(T) for
i=0, —p. Thus dim B, ;<2 and dim B, ,=0. Hence n=u = 1. Therefore
G,<<0/0x,> and as G, #(0) we have G,=<09/0x,). Since dim G, =1,
Corollary 5.2.5 of [BW82] shows that G,=sl(2)® Fz or W(1:1)® Fz.
Then (recall (7.0.3), (7.0.4)) we have G, =G, _; and t-x{e(G'/N(G))_, s
for 1<j<p-—1

Now for some i we have y([Gy ;,, Gy — 1) # (0). If y is not Hamiltonian
then 4, =4, ;,+ K, (A4). If y is Hamiltonian then (using Lemmas 2.1.11
and 5.2.1) we see that dim(4,/(4, ,+ K,(4)))<1 for n=iy or —iy. In
either case Corollary 6.4.2 shows that yed, so |I'_,|<6 by Lem-
ma 6.1.1(c). As 0¢ ", (Lemma 6.3.3) by Theorem 1.15.2 of [BW82], we
see that if Go=W(1: 1)@ Fz then I' = If Gy=sl(2)® Fz then I'y=
{0, +iy} for some i. As (G/M(G));=(Q® B,), for j<0and G, 2 (@ ® B),,
we have I' 21,4+ jd={jo, 15+1y} for 1<j<p—1. Furthermore, as
M(GYNnG_,=(0) we have I'_ =1,+d=1{5, 6+iy}. Suppose that for
some k, 2<k <p, we have I ;= {5, jo tiy} for all j<k and I" , # {k9,
ké+iy}. Then,as I'_,<=I_,,,+7I_, and as I'_, is symmetric about k¢
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(by Theorem 1.15.1 of [BW82]), we have ké+2iyel _,. But then
Lemma 1.14.1 of [BWS82], applied to the Heisenberg subalgebra
C=<{0d/dx,, h, h-x,) (where {e, f, h} is the usual basis for sl(2)) acting on
the C-submodule of G generated by G, ;542,, shows +2iyel” ,. But
since 0¢ " _,and |I"_,| <6, Theorem 1.15.1 of [BW82] shows that I"_, <
{+#y/2, +3iy/2, £5iy/2}. Thus 2e{+4, +3, =*3}. As p>7 this is
impossible. Hence I' ;= {jo, jo +iy} for all j, 1<j<p. But then I' <
I, +1I'_,{0, iy, +2iy}. Since I"_, < {£iy/2, +3iy/2, +5iy/2} and
p>7 this implies I"_,= & so G_,=(0).

It now follows that N(G)= M(G). For if not, Lemma 7.5.3 shows that
(G/N(G))_, 1 =(0). Then applying Lemma 1.14.1 of [BW82] to the C-
submodule of G’ generated by G, ., gives a contradiction.

Now suppose ueG,. Then ad u restricts to a derivation of
>i< 1 (G/M(G)), into X, .| (G/M(G)),. Since M(G)= N(G) we may iden-
tify (G/M(G)); with Q® x ;' for i <0 and (G/M(G)), with F(8/dx,). Then
(ad uls® x,)=A(s) d/0x,, where A is a linear functional on Q. Assume
0O =sl(2). (The case @ = W(l :1) is similar.) Then

O0=(ad u)([[e®x,,/[®@x ], h®x,])
=[[4(e) 0/0x,, [®x,], h® x,]
+[[e®x,, 4(f)0/0x,], h® x,]
+[[e®x,,/@x,], A(h) 6/0x,]
=2e)f@x, +2Mf)e®@x, - 2A(h) h® x,.
Therefore A(e)=A(f)=4(h)=0 so [u,G_,]=(0) and therefore u=0.
Thus G,=(0) so G=G" and hence G'/N(G)=G/M(G) has nondegenerate

grading by Lemma 7.5.1. This contradicts our assumption (that G'/N(G)
has degenerate grading) and so proves the lemma. |

7.6. We now analyze the case in which each nonzero G,, <0,
i # 0 (mod p), has p weights each of the same multiplicity. Recall that
re{—id+jyljeZ,} and that m(t) is the multiplicity of the weight 7 in
G;. Note (see the remark after (7.0.5)) that our proof of the following
lemma does not use Lemma 5.5.1 of [BW82] and so provides a corrected
proof of that result.

LEMMA 7.6.1. If A, #(0) and m,(—id0)=m{—id +jy) for every i<O,
i # 0 (mod p), and every jeZ,, then A=A .

We will assume 4# A4 _, and derive a contradiction. Our proof has
several steps.

(1) I'pcZyand |T_,,,|=p.
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Proof. Since A#A_, we must have |I'_|=|I"_,|=p. If |_4]|=0
then G_;=(0) and so by Lemma 7.3.2 every t€ [l is non-Hamiltonian.
Thus if tel’ ; we have 1, 21el’x (see Definition 5.6.7) and so by
Lemma 5.6.8(b), |I'xnZt|>4. Since every t is non-Hamiltonian,
Lemma 5.7.1(a) implies that |I',nZt|=2 for every e/l _,. Then by
Lemma 5.7.5, 4, # 4 — {0} and hence we can find some teI"_,, 1¢ [,. If
|I'_4|#£0then |I'_;|=pand so if te I'_, we have 1, 27, 3t € I',. Then by
Lemma 5.6.8, |I'xnZ1| > 6 and so Lemmas 5.7.1(a) and 5.7.5 again show
that we can find some 7e/l"_,, t¢I'p. Thus in any case there is some
tel_,, t¢Ip,. Then by Lemma 6.4.2(c) we have A, # A, ,, for all |
1<i<p—1L Thusitel’ ;oI , ,---and in any case I"_,# (. Therefore
|I'_;|=pforalli1<i<p—1.Thusifnel ,wehave Z¥ncI <TIgso
by Lemma 5.7.1(a), n¢ I'p. Thus 'y = Zy. |

(2) m _(iy)=0 for all but at most six values of ie Z}.

Proof. By Corollary 6.2.3, n(4, T)=1. By (1), I',=Zy. Hence ye 4,.
Then Lemma 6.1.1(c) gives the result. |

(3) G/M(G) contains a simple minimal ideal Q with (G/M(G)),= Q, for
i<O.

Proof. By Lemma 7.5.1 the grading of G/M(G) is nondegenerate. Hence
by Weisfeiler’s theorem (cf. Theorem 1.5.1 of [BW82]), G/M(G) contains a
minimal ideal V=Q® B,, where Q is simple and graded, (G/M(G));=
V.=0,® B, for i<0, and Q,, @, +# (0). Suppose n=1. Now ad ¢ (see
(7.0.3), (704)) acts on V=Q®B, Thus ad r=s+w, where
se(Der Q),® B, and wel, ® (Der B,). As t"=1t we have w”=w. Sup-
pose that w=0. Then clearly V_, .,-B,=V_, . (for ad z acts as a scalar
onV_,).Lettel_,veV , besuchthatv¢Q ,®(xB,+ --+x,B,)
Then it is clear that dimV _, . zdim(v-B,)=p". But dmV _, =
dim G_, ., <7 by Lemma 6.3.3. Since n>1 this is impossible. Hence w # 0.
This implies dim(7T N (Q ® B,)) < 1. Since ad ¢ acts diagonally on Q,® B,,,
there exists a t-invariant (hence 7-invariant) vector space complement U of
0o®(x;B,+---+x,B,) in Q,® B,. Then dim U=dim @,. We can write
U=Y U;and B,=3 (B,),;, where U, (respectively (B,);) is the i-eigenspace
for ad ¢ (respectively for w). By Lemma 4.3.1 of [BW82], each (B,); has
dimension p”"~!, and by Lemma 4.3.2 of [BW82], the mapping U® B, —
Qo® B, u®b+>u-b, is injective. Hence

dim Z Ui ) (Bn)p-i= (dlm QO)pan'

But [t’ Zi Ui'(Bn)pvi] = (0) and so Z[ Ui' (Bn)p—igaGo(T)z Ta
(dim Qo) p" ' <dim(T N (Q,® B,)) <dim(Tn (Q® B,))< 1,
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dim Q,=1, n=1, and Trn(Q,® B,) is restricted and one-dimensional.
Since ¢ (Der 0),® B, we have dim(Tn ((Der Q),®B,))<1 and so
T (Qo®B,)=Tn ((Der Q)y® B,). Now if z¢ T ((Der Q),® B,) then
it follows from Lemmas 4.3.1 and 4.3.2 of [BW82] that z has p eigenvalues
on G_,, a contradiction (since z acts as a scalar on G_,). Thus Fz=
TV, SinceG_;,=[G_,,G_,,,]fori>1wehave Q_,=[Q_,,0_;,{]
for i>1. Hence Qo={Q_,, Q,] (for otherwise [Q |, Q1+>;.00Q;is 2
proper ideal in Q). Thus V< [G_,, G,] and so there exists te I"_; such
that [G_, ., G, _1=T®V,=Fz. As tel | this implies =([G_, .,
G, _.1)#(0). As t¢I', this contradicts Lemma 7.5.2(b). Hence n=0, as
required. |

(4) If G, is solvable or G_, ;#(0) then [G_, ., G, _.]1=(0) for
every tel _,.

Proof. 1If not, then, as ©([G_, ., G, .])=(0) by Lemma 7.5.2(b), we
see that G contains a Heisenberg subalgebra C = Fx + Fy + F[x, y], where
xeG_, ., yeG, .. Suppose G_, ;#(0). Then |I' , |=p so
G , 1.1p#(0)for1<i<p—1. By Lemma 1.14.1 of [BW82] (applied to
the restricted Lie algebra T+ C which has toral Cartan subalgebra T),
since (t+&)([x,y])=ir([x,y})#0 the C-module generated by
G _, 1 .., must have nonzero intersection with G_, ,+G _,, ;, and so
m _(#y) #0. Since this must occur for all i, 1 <i<p— 1, this contradicts (2).
Hence G_, =(0) and so A=A _,. Now suppose A, is solvable. Since
I< Ay and I(G,) = (0) (by Corollary 7.2.8) we have I< 4, (as [z, I]=(0)).
Recall that S< 4 < Der S for some simple algebra § and that S+ 7= 4.
Thus 4=5+A4,=S+ A,. Suppose that X is a proper subalgebra of S
which properly contains SnA,. Then (as A/A,=(S+ A,)/A,=
S/(SnAgy)) X+ Ay is a proper subspace of 4 properly containing A,.
Now A,=Ayn(S+A4,)=SnAy+A, and so X+A,=X+ A4, But
(X+4,, X+4,] s [X,X]+ [XA4,]+[4,,4]1<cX+[4_,4,]
€ X+Ay=X+A, Thus X+ A,=X+ A, is a proper subalgebra of 4
properly containing A,. This contradicts the maximality of 4,. Hence
SN A, is a solvable maximal subalgebra of S. It follows by results of Kuz-
necov [ Kuz76] and Weisfeiler [ Wei84] that dim S/(S~ 4,) =1 and hence
that dim 4/4,=1. Then (as G, acts faithfully on G _,) dim G, =1, which
contradicts the fact that T injects into G,. This proves our assertion, ||

(5) G, is not solvable.

Proof. If G, is solvable then (4) shows that [G_, ., G, _.]=(0) for all
tel’_,. Let Q be as in (3), so that Q is a simple ideal in G/M(G) with
(G/M(G)),=Q, for i< 0. Since G, is solvable, and G, acts irreducibly on
G _,, we have dim G_, =p". Since G_, has p weight by hypothesis, n > 1.
If n>1 then dim G_, . >p for some eI _,, contradicting Lemma 6.3.3.
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Hence dim G _;=p. Now X,., Q;+[Q_,, Q,] is an ideal in Q, so (as Q
is simple) Qo=[Q ;, Q,]. Thus Q4 =(0). Now Q, is an ideal in G, and
G, acts faithfully and irreducibly on G _, so @, is not nil. Thus there exists
some x € Q ;, for some i # 0 such that x” #0. Now (as Q, ,=(0)) we have
(ad x)” Qo =(0), so x’eFz (since Q, € T). We may assume x”= —z
Therefore (since dim G _, = p and —z acts as the identity on G _,) ad x| _,
is a cyclic linear transformation of G_,. Hence (cf. [Jac53, Corollary to
Theorem 3.17]) any linear transformation of G _, which commutes with
ad x| _, is a polynomial in ad x|_,. Since x ¢ Fz and (ad x)?*'=0 on G,
there exists some yeG,; such that [x,y]#0, [x[x,y]]=0. Now
[x,1€Q0 4, 50 (as Qpo=1(0)) we have i+j# 0 (modp) As
ad[x, y]l¢_, commutes with ad x|, , we have ad[xy]|s € F(ad x|;_,)",
where mi=i+ j mod p. Therefore [[x, y], y1#0, and [x, [[x, ], ¥y1]1=0.
Assume (ad y)* x#0, (ad x)(ad y)* x=0. Then (ad )" xe Qq (), and
$0 i+ uj#0. Thus ad((ad y)" x)|s_, is proportional to a power of ad x|;_,
and so does not commute with ad y|;_,. Hence (ad y)**'x#0 and
(ad x)(ad y)**! x=0. Thus (ad y)* x#0 for all n so Qo (i +njyy # (0) for all
n. If j#0 this implies Q,,# (0), a contradiction. Thus [x, G, ;1= (0) for
all jeZy. As above this implies that if jeZY and G, ; #(0) then
(ad Gy ;)¢ , S F((ad x)|s_,)’. Since G, acts faithfully on G _, this implies
that 3 .. 72 Goy, is an abelian subalgebra of G, and hence that Q, is
abelian. Also the action of Q, on Q,, is nil for all /e Z (so Q,, contains no
nontrivial irreducible Q,-submodules).

Write Q=3",., Q;. Then the simplicity of Q implies (using [SF88,
Proposition I11.3.57]) that @, is a nontrivial irreducible Q,-module. Since
Q, is abelian we have dim Q, =1 and since @, is a nontrivial Q,-module,
p | r. This implies that x”Q, # (0) and so (as x is a root vector) dim Q, = p,
a contradiction. ||

(6) Write J= [/G,l, G,] nsolv Gy. If J#(0) then solv G, is nilpotent
and either 3,(solv Gy)=Fz or dim G _, =p.

Proof. Suppose J#(0). Note that T (solv G,)= Fz, since otherwise
T<solvG, and so solv Gy,=G,, contradicting (5). Hence solv G, is
nilpotent by the Engel-Jacobson theorem. Write X' = 3,(solv G,). Then X is
a nonzero abelian ideal in G,. Let Y be an irreducible X-submodule,
necessarily one-dimensional, of G_,;. Then codim Stab(Y, G,)<1 since
dim G_, <7p < p* If codim Stab(Y, G,) =0 then G_, = ¥, a sum of copies
of the one-dimensional X-module Y. As G _, is a faithful Gy-module this
implies X' = Fz. Thus we may assume that codim Stab(Y, Gy)=1. As
[solv Gy, X]=(0), we have solv G,< Stab(Y, G,;), and so Stab(Y, G,)/
solv Gy, is a subalgebra of codimension 1 in G,/solv G, =sl(2) or W(1:1).
Hence Stab(Y, G,) is solvable. Therefore ¥, an irreducible Stab(Y, G,)-



RESTRICTED SIMPLE LIE ALGEBRAS 201

module, has dimension a power of p. Hence G _, has dimension a power of
p. Since p<dim G_, <7p, we have dim G_,=p. |

(7) [G_,, G,] & solv G, and if J# (0) then [G_, ., G, . ]#(0) for
at least two tel"_,.

Proof. Since [G_,, G,]#(0), the assertion is vacuous if J =(0). Hence
assume J#(0). We let X and Y be as in the proof of (6). Now
Go/solv Gy sl(2) or W(1:1). In either case we can find ieZ} and
e€Gg 1, f€Gy 5 so that 0#y([e, f]). Then Fe+ Ff+ F[e, f] is a sub-
algebra of G, isomorphic to sl(2). Suppose Jn T=(0). Then 0 is not a
weight for the action of the above copy of sl(2) on X, and so [[e, ]+ Ze,
X]=X for all AeF. Since X is an ideal in Gy and G _, is a faithful G-
module, we have [X, Y]#(0). Thus F([e, f]+ ie)nStab(Y, G,)=(0).
But as codim Stab(Y, G,)<1 (since dim G_,<p?’) we have
(F[e, f]1+ Fe)nStab(Y, G,) # (0) and so eeStab(Y, G,). Similarly,
feStab(Y, G,) and so [e, f]=[e, f]+ 0eeStab(Y, G,), a contradiction.
Thus Jn T # (0).

For te I'_; we have t([G_, ., G, _.])=(0) by Lemma 7.5.2(b). Thus if
[G_i. G, _.JsFz then [G_,,, G, ,]1=(0). But (solvGo)nT=Fz
and so if [G_, ., G, _.J<solvG, then [G_, ., G, _.]=(0). Thus, as
JAT#(0), we have [G_,, G,] & solv G,. Since Jn T (0) we have
[G_.. G, _.1#(0) for at least two el _;. |

8) U 3AsolvGy)=Fz and J &Fz then Ggy/solvGy=sl(2) and
J=Fz+ Fu,+ Fu_,, for some ieZ}, u, € (solvGg),,,.

Proof. We write X;=Jn (solv Gy);, where (solv G,), denotes the ith
term of the upper central series of solv G,. Thus X, = {xe J|[solv Gy, x] &
X;_,} is an ideal in Gy, and X, =3,(solv Gy) = Fz. As solv G, is nilpotent,
by (6), and as J # Fz, we have J= X, for some i >2 and Fz g X,. Suppose
X, is abelian and let Y, be an irreducible X,-submodule of G _ ;. Then since
dim G_, < p? we have codim Stab(Y,, G,) <1 and Stab(Y,, G,) # G, (for
if equality held G_, would be ¥, and as Y, is one-dimensional X, would
not act faithfully on ¥,). Thus codim Stab(Y,, G,)=1. Now [solv G,,
X,]=Fz and so solv G, & Stab(Y,, G,). Thus G,=Stab(Y,, Gy)+
solv G,. It follows, as solv G, is nilpotent, that there exists an i such that
(Stab(Y,, G,)n (solv Gy)') + (solv G+ # (solv Gy ). Now Gy/solv G, =
(Stab(Y,, Gg)+solv Gy)/solv G, acts on (solv Gy)/(solv Go)'*' and
((Stab(Y,, Go) N (solv Gy)') + (solv G,) T 1)/(solv G,)' ! is a submodule of
codimension 1. But then 0 is a weight of the quotient module

(solv Go)'/((Stab(Y,, G,) N (solv Gy)') + (solv Go)'+ 1),

contradicting the fact that the O weight space for the action of G, on
(solv G,)' is contained in Fz < Stab(Y,, G,). Therefore X, is not abelian. As
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[X;, solvG,]=Fz=3,(s0lvG,) if ieZ} and 0#ue(X,),, then [u,
(solv Gy) _,, 1=Fz. Then by PropositionS5.5.1(b) (with B=solvG,,
W=G_,) we see that X,=(X,);,+(X;)_,+Fz for some ieZ}, and
dim(X,).,=1. Since X,/Fz is a G,/(solv Gy)-module this implies that
G,y/(solv Gy) ~sl(2). Now multiplication induces a homomorphism of
s1(2)-modules

((solv Gy)/[solv Gy, solv Gy 1) ® (X5/X,) - X,/X,.

Since Fz=(solv G4)n T is contained in X, and in [solv G, solv Gy], we
see that 0 is not a weight of any of the three modules (solv G)/[solv G,,,
solv Gy, X3/X,, X,/X,. Then by [Jac58, Lemma 3, Theorem 1] each of
these is a direct sum of irreducible restricted sl(2)-modules of even dimen-
sion. Then (cf. [BW82, Proposition 1.15.37) this homomorphsim is zero.
Therefore [solv Gy, X5] < X, and X;=X,=J. Thus J is as described in
the statement. ||

(9) There exists te I _, such that [G_, ., G, ,1#(0).

Proof. 1If not the ideal [G_,, G,] of G, satisfies [G_,, G,]1n T=(0).
Since G,/solv G, is simple (by Theorem 3.1.1 and the fact that I(G,)=(0))
and T & solv G, this would imply [G_,, G,] Esolv G,, which contradicts
M1

(10) IfyelI' | thendim G_| , =1

Proof. Let 7 be as in (9). Then, by Lemma 7.5.2(b) there exist xe G_, .
yeG, _.so that C=Fx+ Fy+ F[x, y] is a Heisenberg subalgebra of G.
By equality of multiplicities, it suffices to prove that dimG_, ., , <1 for
some i€Z, If i#0 then Lemma 1.14.1 of [BW82] applied to the
C-submodule of G generated by G_, .., shows that dimG_, ., <
dmG_, ., +dim [G_,, G],. By (2), G_,;,=(0) for all but at most
six values of i Also, dim [G _,, G,],<dim(Gy/solv G,), +dim J,. If
J=(0) or Fz then dim J,=(0) for all (nonzero) i, while if J & Fz
and 3,(solv Gy) = Fz then J, = (0) for all but at most two values of i, by
(8), and we are done in these cases since p> 7. Finally, if J £ Fz and
3,(solv Gy) # Fz then (6) gives the result. ||

(11) If tel'_, then 1 is non-Hamiltonian.

Proof. By (4) and (9), G_,_,=(0). Therefore by (10) we have
dim A4./A, .= 1. Then Corollary 6.4.2(d) shows t is non-Hamiltonian. ||

(12) T<Q is impossible.

Proof. As in the proof of (3) we have Q,=[Q _;, @, ]. Assume T<Q,

50 we haVC T=Zr]erv| [Q~l.t1! Ql, An]' Thus, as n([Q—l,n’ Ql, —n])z (0)
by (1), (11), and Lemma 7.5.2(c) we have [Q _, ,, @, _,]# (0) for at least
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two nel'_,. Since, for n¢ Zy, G,=K,(G) we have 0, =K,(Q) and hence
by Definition 5.1.7, RK,(0)=R,(Q). Thus [Q_,,,Q; _,1+# (0) implies
nelg(Q,T) so we have |I'_ nTgQ,T)=2 Also 40, T)=
4(Q, T)— {0}. Since T<Q, Q satisfies (5.7.1) (with A=0, S=Q). But
then Lemma 5.7.5 shows |I"_, " I'(Q, T)| <1, a contradiction. ||

(13) T £ Q is impossible.

Proof. As in (12) we have G, = K,(G) for all n¢ Zy. In view of (9) this
shows that if T & Q then Tn Q@ =ker . Then setting M =3,(TnQ) we
see that M is a Cartan subalgebra of Q but [M, M] is not nil. This con-
tradicts the fact that a Cartan subalgebra of a simple Lie algebra must be
standard. |

Since (12) and (13) are contradictory, the proof of the lemma is
complete. |

7.7. We now consider the case in which for some i, i>0, i £ 0
(mod p), there exist u, ve {id+jy| jeZ,} with m_(u)#m_(v). Note (see
the remark after (7.0.5)) that our proof of the following lemma does not
use Lemma 5.6.1 of [BW82] and so provides a corrected proof of that
result.

Lemma 7.7.1. If, A #(0) and if there exist i, u, and v such that i>0,
i#0(modp), u,velib+jyljeZ,}, m_(u)#m_(v), then Gy=sl(2)® Fz
(as restricted Lie algebras).

Proof. We will assume G, £ sl(2)@® Fz and derive a contradiction. The
proof has several steps.

(1) Gy=W(1:1)@® Fz by Corollary 7.2.8 above and Corollary 5.2.5 of
[BWS82]. 1

Q) I'_,=&.

Proof. Recall that I'ycZy. By Theorem 1.152 of [BWS82] an
irreducible W(1 : 1)-module for which 0 is not a weight has p — 1 distinct
weights. Thus if G_,#(0) we must have |I'_,|=p—1 As G,=
W(1:1)® Fz we have y([ 4, ;,, 4o, _;,]) # (0) for some ie Z}. If y is non-
Hamiltonian this implies A4, =4, , + K,(4) and so Corollary 6.4.2(c)
shows that ye I'p. If y is Hamiltonian then, as A4, ., is ad I-invariant,
we see from Lemma2.1.11 that either dim A4,/(4, ,+K,(4))<1
or dimA_,/(Ay _;,+K_;,(A))<1. In either case Corollary 6.4.2(d)
shows that yeI',. Now |I"_,|<6 by Lemma 6.1.1(c). Thus p—1<6,
a contradiction. ||

(3) m_(i6+y)#0for all i, je ZX.
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Proof. Suppose |I'_;|>1, where i>0, i# 0 (modp). Then by
Theorem 1.15.2 of [BWS82] we have {id-+jy|jeZ}¥} < I .. In particular
(as G, acts faithfully on G ), {o+jy|jeZ}}cT .

We claim that if 2<i<p—2 and |I_;| =1 then either |[I"_; ,|=0 or
|I'_;,_,|=p—1. For as |I'_,| =1, every composition factor of G_, is a
trivial Gy-module and so every composition factor of G_;,_ ;=[G _,, G_,]
(which is a quotient of G_,® G _,) is isomorphic to the (irreducible)
Gy-module G_,. Thusif G_,_,#(0) we have |[I'_,_,|=zp— L

Now suppose G, 1)2#(0). As (p+1)/2>6 we see by the remarks
above that {i6+jy|jeZ}}<I ,fori=1,i=2or 3, and i=4 or 5. Thus
as I'_cI'p, (as A, is a distinguished maximal subalgebra) and as
I'k=—Tg (by Lemma 5.6.8(b)), we see that if ne {d+jy|jeZ}} then
|ZnI'g| 2 6. Since |I';| <4 (by Proposition 5.7.6 and Corollary 6.2.3),
Lemma 5.7.1 shows that for some /e Z), 6+ Iy ¢ I'p.

Next suppose that G _,, ;,,=(0) and |I"_,|> 1. Then by Lemma 7.3.2,
every root of A is non-Hamiltonian. As |I”_,[>1 then {20 +jy|jeZ}} <
I'_,and so if ne{0+jy|ljeZ}} we have |ZynnI'z|>4. Since || <4
{Proposition 5.7.6 and Corollary 6.2.3) and since every # is non-
Hamiltonian, we see by Lemma 5.7.1(a) that for some leZ), 6+ ly ¢ I'p.

Finally, suppose that G_(,,,,=(0) and |I" ,|<L. If [I"_5|=0 then
Lemma 7.4.1 gives the result of the lemma. Hence we may assume
|I"_;| =1 and so, by our remarks above, {36 +jy| jeZ}}<=TI ;. Thusif
ne{d+jyljeZ}} we have |ZnnIlg|>4 We again have (by
Lemma 7.3.2) that every root of 4 is non-Hamiltonian and so as | [",| <4,
Proposition 5.7.1(a) shows that for some /e Z}, 6+ Iy ¢ I'p.

Thus, in any case, there is some /e Z¥such that é +/y ¢ I',. Hence by
Corollary 6.4.2 we have m_(i(0+Iy))#0 for all ieZ} so |I" ;| #0. Thus
{id+y|jeZ}} =T _,, as required. ||

4) Ift=id+jy, i,jel), then t¢ 'p.

Proof. By (3),m_(kt)=1forall keZy. Thus |I'xnZt|=p—1,s0 by
Lemma 5.7.1(a), t¢ p. |

(5) fr=0+jy,jely, then [G_, ., G, .]=(0).

Proof. By (4) and Lemma 7.5.2(b), t([G_, ., G; _.])=(0). Suppose
there exist xe G_, ., ye G, _, such that [x, y]#0. Then x, y and [x, y]
span a three-dimensional Heisenberg algebra. Since G _,=(0) (by (2)),
Lemma 1.14.1 of [BW82] shows that ad y is an injection of G_;, into
G_, 1, . forall i 1<i<p-—1, and all nel'_,, n¢Zz. But as G,=
W(l:1)® Fz we have dimG, ;=1 for all Ael',, A#0. Thus we have
dimG_,,<1forall i 1<i<p—1,ned, n¢Zr. Now by (3) we also have
dim G _,,>1foralli, I<i<p—1,n=id6+ky, keZ}. By Corollary 5.2.5
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of [BW82], m_(i6+ky)=m_Jid+1lk) for 1<i<p—1 and k, leZ}.
Thus dim G_,,=1 for all n=id+ky, keZy. But then for
each I, 1<I<p—1, (ad y)' injects the one-dimensional space
G ooty (p-1-ns+r MO G_(, 1y, (,—1-ns- Hence dimG_; ;5> 1 for
1<ig<p—2. Thus 6¢ I, and so, by Corollary 6.4.2(c), m_((p—1)d)#0.
Therefore dim G_; ;21 for all i, 1<i<p—1. But then (as ié¢Zr)
dimG_, ;=1 for ali i, 1 <i<p—1. But this means that for all i>0, %,
leZ,, m_(i6+ky)=m_[ib+l). This contradicts our hypotheses of
unequal multiplicities. ]

(6) G/M(G) contains a graded simple minimal ideal @ with
(G/M(G)),=Q, for i<0.

Proof. By Lemma 7.5.1, the grading of G/M(G) is nondegenerate.
Hence by Weisfeiler’s theorem (cf. Theorem 1.5.1 of [BW82]), G/M(G)
contains a minimal ideal J=Q® B,, where Q is simple and graded,
J;=0,® B, for all i, J, #(0), and (G/M(G)),=J, for all i<O0. Since G, =
W :1)® Fz (by (1)), dim Jo<p+ 1. As J,#(0) (for otherwise, as G _; =
[G_iv1,G_ylandso Q_;=[Q_,,,, @_]fori>0, we see that 3, ¢ Q,
is a nilpotent ideal of Q, so equals (0), and thus Q =%, _,0Q, is nilpotent, a
contradiction) we have n < 1. Furthermore, if n=1 then Q, must be one-
dimensional and so J, is a p-dimensional abelian ideal of W(l:1)@® Fz,
which is impossible. Thus » =0, proving our assertion. |

(7) Qo=WI(1:1) and dim TnQ=1. Thus we may assume that the
element ¢ (see (7.0.3), (7.0.4)) has been chosen so that Tn Q = Ft.

Proof. {xeG_,|[x,G;]= W(1:1)}is a Gy-invariant subspace of G _,
hence (0) or G_,. By (5) this subspace is nonzero. Thus [G_,, G,]&
W(1:1). Now as Q is simple, by Schue’s lemma we have Q,=Y,.,
[Q,,0Q_;1.8ince Q_,=[Q_,.1,Q_,]fori>1 (asin the proof of (6)), we
have Qo=[Q_,, @,1< W(1:1). But Q, is a nonzero ideal in G, so @, =
W(1:1) and hence dm TnQ=1. |

(8) 30(TnQ)=3%,.20Q; is a Cartan subalgebra in Q.

Proof.  Since 3,(Tn Q) is the centralizer of a torus, it is equal to its
own normalizer. Since (TN Q)=(0), 3o(TNQ)=(TN Q)+, 40,2 Q. s
is nilpotent by the Engel-Jacobson theorem. |

) [Q-14s Qi -51=(0)

Proof.  As Q is simple, 3,(T N Q) is standard by [Wil77]. Thus [Q 5,
01,51 3o(TNQ), 3oTNQ)1SQpo is mnil and so [Q_, s,
Q. -s1=1(0). 1

We now have a contradiction. For by (5) we have [G_, ., G, _.]1=(0)



206 BLOCK AND WILSON

for 1#0. Since[Q , 5, Q1 _5]1=(0) we have [Q_, ., @, _.]=(0) for all
7. Thus Tn[Q_,,0,1=(0). But [Q_,, Q,]is anideal in Qo= W(1:1)so
[Q_.. @.:1=1(0), contradicting the simplicity of Q (as in the proof of (6)).
This completes the proof of the lemma. ||

7.8. We now consider the case Gy~ sl(2)@® Fz in more detail. Note
(see the remark after (7.0.5)) that our proof of the following lemma does
not use Lemma 5.7.1 of [BW82] and so provides a simplified and correc-
ted proof of that result.

Lemma 78.1. If Gy=sl(2)® Fz and G, #(0), then N(G)=(0) and G,
acts faithfully on G,.

Proof. We first show that G, acts faithfully on G,. For if not, since z
acts as the identity on G,, G, is a trivial sl(2)-module. Hence [G ., G,] is
a quotient of a direct sum of copies of the sl(2)-module G _,. Since G, acts
faithfully and irreducibly on G_,, this forces [G_,, G,]<=sl(2) and so
[[G_,,G,], G;]=(0). Thus [G_,, G;]+ 23 ;.,G,;is an ideal in G' and so
the grading of G'/N(G) is degenerate. This contradicts Lemma 7.5.4.

We next show that N(G) = (0). We will assume N(G)+# (0) and derive a
contradiction. We let y be as in (7.0.3). Without loss of generality (by
replacing ¢ by a suitable element of Z*¢) we may assume I'y= {0, +2y}.

Now Kac’s recognition theorem for graded Lie algebras (Theorem 1.2.1)
applies to G'/N(G) (where G’ denotes the subalgebra of G generated by
>:<1G,). Since G’ (and hence G'/N(G) is restricted (by Lemma 1.19.1 of
[BW82]), we see that G'/N(G) must be isomorphic to Q, where either
Q=W2:1), H2:1)®* + F(x,D,+x,D,) < Q<Der H2:1%;,0=K(3:1);
or Q is classical simple. Since N(G)< >, oG, is nilpotent, each each
quotient N(G)/N(G)'*' is a nontrivial G'/N(G)-module. By Lemma 6.3.4,
each of these has <p?—p+ 6 weights. This is impossible if Q= W(2:1)
(by [BWS82, Corollary4.11.2]) or if Q=K(3:1) (by Lemma 6.5.1).
If H2:1)® + F(x,D, + x,D,) = Q< Der H(2:1) then by [BW8§2,
Lemma 4.11.17 we see that H(2 : 1)'? annihilates each composition factor
of each N(G)/N(G)'*'. Thus N(G),=N(G), _,5 for all j< —2. Since
Q_,=(0) and G_, ;=(0) we have G ,=N(G)_, and G_; =(0). But
then Lemma 7.3.1 gives [G_,, G,1=G,, contradicting the choice of Q.
Thus Q must be classical.

Since Q is classical, Kac’s theorem gives that the grading of @ = G'/N(G)
is standard. Thus we have that Q _,=(0) and that the possibilities for the
dimensions of the Q _;, 1 <i<3, are given by Table 7.8.1.

First assume that Q and its grading are given by one of the last three
lines of Table 7.8.1. Then we have Q _,#(0), G_, s=(0), and (as Q is
classical) 8([G _,, 25, G2 _25]) # (0). Then Lemma 7.5.2(b) shows that é is
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TABLE 78.1
(9] dimQ_, dim Q_, dim Q _;
A, 2 0 0
C, 3 0 0
G, 2 1 0
G, 4 1 0
G, 2 1 2

proper and so by Lemma 5.7.1(a), [{+2} v {i|N(G);;#(0)}]| <6. Since
N(G)o = (0) this implies N(G);; =(0) unless i= 11, +3. Thus N(G) 4 4s=
N(G) 5 55=1(0). Since G_, ;= (0), Proposition 1.15.3 of [BW82] shows
that N(G)_s=(0). As each N(G)/N(G)'*! is a Q-module, the set of
weights of N(G) is invariant under the Weyl group of Q. Since Q is of type
C, or G,, this implies the set of weights of N(G) is symmetric about 0.
Since N(G)=N(G)_,+N(G)_3;+ N(G)_,, this implies N(G)=(0),
contradicting our assumption.

Similarly, if 9~ C, and dim Q _, =3 then §([G_, 5, G, _5])#(0), J is
proper by Lemma 7.5.2(b), and so |{+1}u {i|N(G);s5(0)} <6. Since
N(G)o=(0) this implies N(G);;=(0) unless i= +(p+1)/2, +(p+3)/2.
Then N(G)_,,;=(0). Since N(G)_, is a homomorphic image of
G_,®G_,, Lemma 1.15.3 of [BW82] shows N(G)= (0).

Thus we may assume that G'/N(G)=sl(3). Assume [,= {0, +2y}.

We claim that ye I',. For we have y([4, ,,, 4o 1) #(0). I y is non-
Hamiltonian this implies A4,,= 4, ,,+ K,,(A4) and so Corollary 6.4.2(c)
shows that ye I',. If y is Hamiltonian then, as 4, ., is ad /-invariant, we
see from Lemmas2.1.11 and 52.1(e) that either dim A, /(4 ,, +
K, (4))<1l or dimA ,/(Ay ,,+K ,(A4))<1. 1In either case
Corollary 6.4.2(d) shows that ye I',.

Therefore, I'_,, = {47, £3y}forl=12,... For since y e I, we see from
Lemma 5.7.1(a) that | 'y nZy| <6. Since I"_,, = ' and +2ye ', we have
I, u{+2y}<6. Since 0¢ " _,, and p>7 we see (cf. Theorem 1.15.1 of
[BW82]) that I"_,,< {4y, +3y}. Thus I' , # (& implies ye I ,,. Since
m_(y) <5, by Lemma 6.3.3 we see that I' ¢, = (.

Since I'_;={é+y} we see that I ,={26} and I_,_,<
{2045y,26+3y,20 £y} for [=2, 3,... Thus I'_ N (20 + Zy) < {20 + 5y,
264 3y, 264y, 28}. Since p > 7 this implies 26 + 4y ¢ I'_.

NowasG_, ;,,+Gy s ,+[G_,5.,,G s ,]and Gy 5,4+ Gy _5,+
[Go, 2,5 Go, _2,] are copies of sl(2) and as G_,=N(G)_,=G _, 55, We see
that

(ad G,, _,,)" (ad G_1 54+, G_52#(0) (78.1)

481/114/1-14
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for all i, j, 0<j<p~—3, 0<i<j Thus, in particular, —26 —dyel ,,,
(taking j=p—4,i=0). Now 4_, ., 55 4, 2 Ao 25 4,2 R(A)_25_4, 50
[A—p+2,A2r5A4y’ Aypiay]E 1 But 26+4y¢I’_ so [A4 —p+2, —26—4y>
A0,26+47]=[A7p+2,72574y’ Ap~2,2(5+47] ¢ I. Hence [G_pia —25- 4y
Gpo225+4]1#(0).Thus C=G_,,5 55 4,+G, 22540t [G .2 25 a5
G, 3 15+4,] 15 a three-dimensional subalgebra of G which is either a
Heisenberg algebra or a copy of sl(2).

Suppose C is a Heisenberg algebra. Then noting that I'_ ;= {d+y} we
see that (ad G, 5 5.4, G, 5_7,=(0). Since —6—-Tyel ,,,
(taking j=p—3, i=2 in (7.8.1)) we see (by Lemma 1.14.1 of [BWS82])
that (ad G _,,5 55 4,)” 'G_, 15 +,#(0), contradicting I"_¢,= .

Suppose C is a copy of sl(2) with u€G, 5 35,4, VEG 12 25 4y»
(26 +4y)[u, v])=2. Suppose y([w,v])#0. Then (as |I'_,,,|=p—2
by (7.8.1) and since |I_;|=2) we see that if i¢{-5 -3, —1,1}
then (adG,_, 5. 4,(G _, 1 —5.5,)=(0) and —d6+iyel’ ,,,. Since
7([u,v])#0 we can find ve I"_,,, such that (ad G, , 55, 4, G _,,,.)=
(0) and p—2<v([u,v])<p—1. Thus G_,,;, 3#(0). This contradicts
I ¢,=@.

Finally, suppose C is a copy of sl(2) (with u», v as above) and
([u,v])=0. Then 6([u,v])=1 and so v([#,v])=p—1 for any
vel' ,,,. Since I' , \&I' ,+I ,£{4,0+2y, 6+4y} and I' ;<
I ,+I_,={36+y}, we see that (ad G, 5 35,4,) G_, 1 =(0). Thus
G , #(0) implies (adG _,,5 » 4)” 'G_, #(0), contradicting
I' ¢,=¢. Therefore G_,_ =(0). Thus vel_, ., [G,_22+4
G_,...,1=1(0) implies v([u, v])=0. Since we have noted that there are
p — 4 such v, this contradicts d([w, v]) # (0).

Thus G'/N(G)=sl(3) is impossible, so N(G)=(0) and the lemma is
proved. |

8. DETERMINATION OF G IF 3(G,) = (0)

Throughout this section we assume that A is a finite-dimensional restric-
ted Lie algebra over F which satisfies the conditions of Theorem 4.1.1(h),
that is, we assume that (7.0.1) holds.

As in Section 7, we let 4, be a distinguished maximal subalgebra of A4
associated with T and let A=4 _ ,2---24_,24,24,2---be a
filtration of A constructed as in Section 1.2. Let G=Y,, , G, be the
associated graded algebra. We continue to use the notations I';, G, ,, and
I(G,) as in Section 7.

We will also assume throughout this section that

3(Go) = (0). (8.0.1)
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8.1. Section 8 is devoted to the proof of the following result.

ProposITION 8.1.1.  If A is as above, then one of the following occurs:

(a) Y= G,=Der Y for some simple Y and for every two-dimensional
torus T) = Gy we have T, S Y and Gy= Y + I, (where I, is the nil radical of
36(T1));

(b) Gy isoneof sl(2)®sl(2), sl2)@ W(1:1), 0or W(1:1)® W(1:1).

Furthermore, if G, # (0) and (b) holds then G, =sl(2)@sl(2), N(G) = (0),
and G, acts faithfully on G,.

Sections 8.2-8.11 are devoted to the proof of this proposition.
8.2. We begin with an easy observation.

LemMma 8.2.1. G, is semisimple.

Proof. Let J be a maximal abelian ideal of G,. Since J is again an
abelian ideal, J is restricted. Let xeJ have Jordan-Chevalley—Seligman
decomposition x = x, + x, into its semisimple and nilpotent parts. Since J is
restricted, x,eJ so (ad x,)*=0 (as J is abelian). Since x, is semisimple,
ad x,=0 s0 x,e€3(Gy)=(0). Thus x=x, is nil. Then by Engel’s theorem J
is a nil ideal of G,. Since G, acts faithfully and irreducibly on G _, we have
J=(0). 1}

It follows that G, satisfies the hypotheses of Theorem 4.1.1.

Since A, is a distinguished maximal subalgebra, |I"_|<p*—p+6 by
Lemma 6.3.2. Furthermore, by Lemma6.3.3, dim G , , <7 for every
ye I'_,. We will show that most of the algebras listed in the conclusion of
Theorem 4.1.1 do not have any faithful irreducible restricted representation
with at most p?> — p + 6 weights each of multiplicity <7 and hence cannot
occur as G,. In the following sections Q is always assumed to be restricted
and semisimple, 7" is a two-dimensional standard maximal torus in Q, and
I’ is the nil radical of 3,(T7).

83. Let Y, +Y,cQc(DerY,)"") + (Der ¥,)"), where Y,, Y, are
among sl(2), W(1:1), H(2:1)? (that is, let Q be one of the algebras listed
in Theorem 4.1.1(a)). Assume at least one of the Y, is H(2:1)®. Then any
faithful irreducible restricted Q-module has some weight space of dimen-
sion >7, so Q cannot occur as G,.

Proof. As Y,, Y, are non-nil restricted ideals of Q, we have T' =
(T'nY,)®(T'nY,). Then we can find 0£+1,eT"nY,, i=1,2, satisfying
t? =1, Define a,, aye T'* by a,(t,)=4,. Then if W is a faithful irreducible
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restricted Q-module we have W=3, ..z Wy, 4 1s,- Suppose (without loss
of generality) that Y, is H(2:1)®. Then for each b, 0<b<p—1, W(b)=
Y ez Wi 1+ sy 18 @ Y,-submodule of W. Since W is a faithful Q-module,
some W(b) is a nontrivial Y,-module and so (as Y, is simple) has a faithful
irreducible constituent ¥. But by Lemma 7.2.7 (where we take M =Y, ® Fz
and let z act on V as the identity) dim V,>7 for some y and hence
dim W,>17. |

84. Let H2:1)? + Fx,D,= Q< Der H(2:1)?. (That is, assume
Q is one of the algebras of Theorem 4.1.1(c).) Then by Lemma 4.11.1 of
[BW82] every faithful irreducible Q-module has at least p> — 2 weights and
hence Q cannot occur as G,. ||

85. Assume a, feT'* with a and B Z linearly independent,
xeQ,, yeQy, and 3,(T")= Fx? + Fy? + 1. Then any faithful irreducible
restricted Q-module has at least p? — 1 weights. Therefore Q cannot occur
as Gg.

Proof. Let V be a faithful irreducible restricted @-module. Then some
V, #(0) with y(x”)#0. Then x” is a bijection on ¥V, and so V, , , 2x'V, #
(0) for 0<i<p—1. Now a(x?)=0 (by Lemma 1.8.1) so a(y?)#0. Thus
there is at most one i,eZ, such that (y+i,0)(y?)=0 (and thus
y+ o€ Zg). Hence y? is a bijection of V., ,, for i#i,. Thus V, ;52
V'V, u#(0)forall jeZ,, i#iy, ie, V. #(0) if ¢ Zf. Interchanging the
roles of « and f gives the result. ||

8.6. Suppose that for some simple algebra Y we have Y® B, <
Q<= Der(Y® B,), where n>0 and T'<(Y® B,). Assume Q contains no
tori of dimension greater than two and that all two-dimensional tori in
Q are standard. (That is, assume that Q is one of the algebras
of Theorem 4.1.1(d).) Then by Lemma 3.1.2, 3,4 5/(7") is nil and so (as
T'cY®B,) there exist nonzero o, PfeT* xe(Y®B,),<O,,
ye(Y®B,)3 < Qp so that 3,(T')=Fx? + Fy” + I. Since a(x”)=p(y*)=0
(by Lemma 1.8.1), « and f are Z,linearly independent. Then by Sec-
tion 8.5, any faithful irreducible restricted Q-module has at least p>—1
weights and so Q cannot occur as G,.

8.7. Suppose that for some simple algebra Y we have Y= Q<
DerY, T'c ¥, and dim Q)Y +TI)=2. (That is, assume Q is as in
Theorem 4.1.1(¢).) Then as Q=Y+ T7T'+I by (453), we have
dim T'/(T'n(Y+TI))=2and so T'n (Y + I')=(0). Then 3,(7") is nil and
so, as T'< Y, we have that there exist nonzero o, feT'*, xe Y, <Q,,
ye Yy < Qp so that Fx? + FyP +I' =3,(T"). Since a(x”)=B(y?)=0, o and
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B are Z -linearly independent. Then by Section 8.5, any faithful irreducible
restricted Q-module has at least p> — 1 weights and so Q cannot occur as
G,.

8.8. Suppose that for some simple algebra Y we have
YcQcDerY, T'cY, and dim " n(Y+I')=1. Suppose further that
T n (Y + I') is restricted, that Q contains no tori of dimension greater than
two, and that all two-dimensional tori in Q are standard. (That is, assume
that Q is as in Theorem 4.1.1(f).) If V is a faithful irreducible restricted
Q-module in which each weight space has dimension <7, then V has at
least p> — 1 weights, and hence Q cannot occur as G,.

Proof. We have dm T'/(T'n(Y+1T))=1. Note that 3,(T")=Yn
(T"+I'<(T'n(Y+TI'))+1TI. Since (T"n (Y +I')) is one-dimensional and
restricted we see that 7" & 3,(T"). But T'< Y by hypothesis so there is
some 0#aeT'* xeQ, such that ' Y+ I + Fx”. By Lemma 1.8.1,
a(x”)=0 and so if feT'*, B¢ Fa, then B(x")#0. If ye T'*, y¢ Za, and
yeQ, satisfies y"¢ I then y"¢ Fx”+1I, and our result follows by
Section 8.5. Thus we may assume that y” € I' whenever y € Q,, v ¢ Za. Thus,
setting N¥ =YW + I', N¥ is restricted.

By Schue’s lemma (Lemma 1.12.1) there is some y¢ Zo such that
[Y,,Y ,] is not nil, and hence T'n(Y+I)c[Y, Y ,J+7I. If
p[Y,, Y_,1)=(0) then y(T"n (Y +I'})) = (0) and so by Section 4.6 (with y
in place of B), we have that Y is a Cartan subalgebra of Y. But then
[Y?”, y"]=[Y,, Y ,] is not nil, contradicting the fact [Wil77] that
Y, being a Cartan subalgebra of a simple Lie algebra, must be standard.
Thus y([Y,, Y _,])#(0) and so, by Lemma 1.8.3, Y’ (and hence N) is
not solvable. Now solv(N), is nil (for otherwise y(solv(N'""),) # (0) and
so N'=s0lv(N")). Also, as noted above, we may assume that
ye(Y"), Y, for ieZ} implies y” is nil. Thus by the Engel-Jacobson
theorem, solv(N™) is a nil ideal in the restricted algebra N*.

Now let V be a faithful irreducible restricted Q-module in which each
weight space has dimension <7. Then if 8¢ Zx we have (as B(x”) #0) that
x” acts bijectively on V; and so dim ¥, ,, is independent of i Let
Wi=372"0 Viiisp- Then W, is an N”-module and as solv(N®) is nil,
each N composition factor of W, is an N“/solv(N")-module. The
hypotheses of Theorem 3.1.1 are satisfied by N”/(solv N*’) by Lemma
1.6.1 (applied to the mapping N® + T" — (N + T")/N™) and the fact that
solv(N®) is nil. Therefore N/solv(N™)xsl(2), W(1:1), or H2:1)®P <
N©/solv(N®)< H(2 :1). There exists i such that (T"~ (Y +1I')) W, # (0);
for this i, some composition factor is (N"/(solv N®))®)-nontrivial, hence
faithful. By Lemma 7.2.7 (with M = N"/(solv NV} + Fz, where z acts as
the identity), if H(2:1)® < N®/solv(N"") then dim W, > 7 for some t, sO




212 BLOCK AND WILSON

dim V,>7, a contradiction. Thus N®/solv(N")=sl(2) or W(1:1). In
either case we have that if T"n(Y+I')=Ft, "=t then the set
{a(t) | W, ,#(0)} is symmetric about 0 (cf. [BW82, Theorems 1.15.1,
1.15.2]). As V is faithful there exists some f¢ Zx with V;# (0). Then for
every ieZ, we have Vj;,,#(0) and so W,;, ., #(0). Then since
{a(2) | W,,#(0)} is symmetric about 0 we see that if (f+ix+jy)(t)=
—(B+in)(z) then W, 5, ;. ;, #(0). Note that a(z) # (0). Thus if jeZ, and
i= —(2B+ jy)(1)/2a(t) we see that W, 5, .., #(0). Since dim V4, ;, is
independent of / whenever f+ jy¢ Za we have that V_ # (0) whenever
1¢ Zo. But a(t)#0 and {a(t) | W,,# (0)} is symmetric about 0 and has at
least p— 1 elements, the pth weight ¢ being in Za, so V, # (0) whenever
7#0, as required. |

89. Suppose that for some simple algebra Y we have Y= Qc
Der Y, T'< Y and that T'n (Y + I') is one-dimensional and nonrestricted.
Suppose further that Q contains no tori of dimension greater than two and
every two-dimensional torus of Q is standard. (That is, let Q be one of the
algebras of Theorem 4.1.1(g).) If V is a faithful irreducible restricted
Q-module in which each weight space has dimension <7, then V has at
least p> — 1 weights and so Q cannot occur as G,.

Proof. By Schue’s lemma there exists two roots «, f, « ¢ Zf, such that
[Y,,Y_,] and [Y;, Y 4] are not nil. We claim that if j#0 then
dim V,, . ;5 is independent of i (and, similarly, if i#0 then dim V,,, ;; is
independent of j). If xeY,,, ueZ}, and x” is not nil then a(x”)=0 so
P(x?)#0 and hence x” acts bijectively on V4, giving the result. Hence we
may assume that each such x is nil.

Since T~ (Y + I} is one-dimensional and is not restricted, any restricted
subalgebra of 3,(7") is contained in I'. In particular, for any root y we have
kery< I’ and so since [Y,, Y_,] is not nil we have a([Y,, Y _,])# (0).
Then by Lemma 1.8.3, O is not solvable. Let J=1I n(solv Q™)+
S22 (solv Q),. Lemma 1.8.3 shows that a([Y,, (solv Q™) ,])=(0)
and hence [Y,,, (solv 9*) _,]<r. Thus J is an ideal in Q* and is nil by
the Engel-Jacobson theorem. Since o vanishes on 3., o=(7"), we have
solv Q' = Fz + J, where 0# 2z =z” and a(z)=0.

By Theorem 3.1.1, either Q®/solv Q' ~sl(2), Q*/solv Q¥ =~ W(1 : 1),
or H2:1)? < 0WisolvQ™ < H(2:1). Suppose H(2:1)? <
0®/solv Q¥ < H(2 : 1). We may apply Lemma 7.2.7 to Q®/J acting on
some irreducible Q*-constituent of Y?-} V,,,, and conclude that
dim ¥,>7 for some y, a contradiction. Thus Q/solv Q® =sl(2) or
W(1:1) and so I' = solv 0 (and hence I' = J). Therefore Corollary 5.2.5
of [BW82] applies to Q‘*)/J acting on any irreducible Q'*-constituent of

220 Vigs - Since T'n (Y +1') is not restricted, [Q*/J, Q'*/J] cannot
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be restricted (for ((T'+J)/J) n [QW/, Q9] = (T' n (Y + 1))+ )J).
Therefore dim V,,, ; is independent of i. Lemma 4.6.3 of [BW82] now
gives the result. ||

8.10. We will now investigate whether an algebra Q listed in
Theorem 4.1.1(b) can occur as G,. Thus we assume

Y® B, Q< Der(Y® B,), where Y ~sl(2), W(l:1),or H22:1)?.

All two-dimensional tori in Q are maximal and standard and
T’ is one such.

T"¢ Y®B, (= Y®B,), n>0. (8.10.1)

Then as Y® B, (containing Y) is not nil we have (by the Engel-Jacobson
theorem) that T~ (Y® B,)# (0). We can then find ¢, ¢, satisfying
T =Ft,+Ft,, t!=t,for i=1,2, t,€eY®B,, t,¢ Y®B,. Define ;e T'*
for i=1,2 by a/t;)=9,. Then as t,€ Y® B,, ad ¢, annihilates Q/Y® B,
and so Q=(Y® B,) + Q2.

Recall that there is a mapping

(Y®B,)®B,»Y®B,
v@®br—v-b

such that
(y®b,)®b— y®(b,b)

forall ye Y, b,, beB,. If $: Q - Der B, = (Der(Y® B,))/((Der Y)® B,) is
the canonical homomorphism we have [g,u-b]=[g, u]-b+u-(¢(g)b)
forall ge Q, ue Y®B,, h® B,

Let 1 Y®B,-»(Y®B,)/(Y®(xB,+ --- +x,B,))=Y denote the
quotient map.

LemMMA 8.10.1. Let Q and T satisfy (8.10.1), Y=sl(2), or W(1:1) and
n=1. Then:
(a) 3p(T)=T.
(b) (Y®B)*<=(Y®x,B,)+ Ft,.

(c) If Y®x,B, is invariant under ad t, then n{((Y® B,)*’)=Y and
(Y®B)"<(Y®x,B,)+ Ft, for all y¢ Za,.

(d) If Y®x, B, is not invariant under ad t, then n((Y® B,)")=Y
for all y¢ Za,.

Proof. Clearly Q/Y® B, cDer(Y® B,)/(Y® B,)< W(1 :1). Since any
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maximal torus in W(1:1) is one-dimensional and is equal to its own
centralizer (cf. Corollary 1.3.2), we see that 3,(f,) S Ft,+ Y® B,. Now
3Y®B.(t JeFt,+ Y®x,B, (as Ft, + Y® x, B, is a one-dimensional torus
in Y® B,/Y®x, B, =Y and any nonzero torus in Y (=sl(2) or W(1:1))
is equal to its own centralizer). It follows that 3, (f,)=1,-B,. Now
[t,,t;-b]=t, -#(t;)(b) and since (using Theorem 1.3.1(c}) ¢(,)(b)=0
implies b€ F we have 3,(7") = T", proving (a).

If xe(Y® B,),,, then [1,,x]=0 and so n(x)ezy(n(¢,))= Fn(t;). This
proves (b).

Now suppose that Y ® x, B, is invariant under ad #,. Then ad ¢, induces
a derivation of (Y® B,)/(Y®x,B,)=~Y and this derivation commutes
with »n(z,). Since all derivations of Y (= sl(2) or W(1 : 1)) are inner and any
one-dimensional torus in Y is equal to its own centralizer (cf. Corollary
1.3.2), we see that we may assume (replacing ¢, by an appropriate element
of t,+Zt;) that [t,,Y®B,]cY®x,B,. Thus (Y®B,)Vc
Y®x,B,+ Ft, for all y¢ Za, and YR B, =(Y® B,)* + Y® x, B,. Since
n: Y® B, — Y is surjective, n((Y® B,)®)= Y. Thus (c) holds.

Finally, suppose that Y ® x, B, is not invariant under ad ¢,. By Theorem
1.3.1(a) we may assume ¢(t,)=(x,+1)D,. Then for any fe4(Q, T')
we have (Y®B)y (x,+1)=(Y®B)s1s and so n((Y®B))s)=
n((Y® B\)s..1,)- Then (as n((Y® B,)*?)= Fy(t,), by (b)) we have (for
any y¢Z,2,) Y=n(Y® B) =4, 2 n((Y® By)p) =n((Y® B,)), 50 (d)
holds. §

LEMMA 8.10.2. Let Q and T' be as in (8.10.1). Let V be an irreducible
restricted Q-module which is not annihilated by Y® B,. Suppose that
dim V., <7 for all ye T'* and that V has < p* — | weights. Then:

(a) n=1

(b) Y=sl(2) or W(1:1).

(c) dim V,,, , ,,=dim V,, for all i, je Z.
(d

) For some a€ A(Q, T'), Q< Y® B, + T and Q™ is not solvable.
)

() If a is as in (d), 2a€dpQ, T), BeA(Q, T), and Q¥ c
Y® B, + T, then fe 4,(Q, T').

Proof. Let W be an irreducible Y® B,-submodule of V. Hence W is
{,-invariant and W is annihilated by Y®(x,B,+ --- +x,B,). Then by
Lemma 1.10.1, V2u(Q)®  subw.o)) W, where W is the sum of all
Y® B,,-submodules of V isomorphic to W and u(-) denotes the restricted
enveloping algebra functor. Let W,={we W |t,w=iw}. Then as
O=Y®B,+ Q"™ it is clear that

Y dim V,,, ., = (pOm (@St V.00 (dim W), (8.10.2)

JjEZp
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Since dim 3.7 Vi, 1 jo; <7p, by hypothesis we have dim(Q/Stab(W, Q))
< 1. Now Y® (x, ---x,)? ! does not annihilate ¥, for if it did Y® B,, the
ideal in Q generated by Y® (x, ---x,)? ~!, would annihilate ¥, contrary to
our hypotheses. Also (ad Q)" (Y® (x,---x,)? ') does annihilate W for
0<m<n(p—1), since it is contained in Y® (x,B,+ --- +x,B,). Thus
VEW+QW+ - +Q"» D' But V=W+QW+ .- +07"'W
since dim(Q/Stab(W, Q)) < 1. Therefore n(p—1)— 1< p— 1, and (a) holds.
Also dim(Q/Stab(W, Q))>1 since V# W. Thus dim(Q/Stab(W, Q))=1
and so (8.10.2) gives dim W,<7. Then by Lemma 72.7, as W is an
irreducible Y= (Y® B,)/(Y® x, B,)-module, Y= H(2:1)? is impossible,
so (b) holds. Since dim(Q/Stab(W, Q))=1, we have Q = Fy + Stab(W, Q)
for some y. We may assume ye Q,,, for some meZ,. If 1, e Stab(W, Q)
then, since Q/Y® B, is isomorphic to a subalgebra of Der B, = W(1:1)
and since every one-dimensional torus in W(1 : 1) is equal to its centralizer,
we must have me%;,". Let we W,-alﬂaz. Then y'-we Vs + (s + mi)ay aNd 50
dim V,, , ,,=dim W, for all i, je Z. Thus (c) holds~when t, e Stab(W, Q).
If ¢, ¢ Stab(W, Q) we may take y =1,. Then if we W,, the linear indepen-
dence of {¢,-w|0</<p—1} implies that 1, has p distinct eigenvalues on
span{r,-w|0</<p—1}. Thus dim V,, , , =dim W, for all i, je Z and
(c) holds in this case as well.

By (c) and (d) of Lemma 8.10.1 we see that there is some axe 4(Q, T"),
a ¢ Za,, such that n((Y® B,)'”) = Y..Since Y is simple this implies Q* is
not solvable. Since 7,e Y® B, and a(;)#0 we have (Y®B,)®c
Y® B+ T'. Thus (d) holds.

Suppose « is as in (d) and Q¥ < Y® B, + T. If fe Za, then by Lemma
8.10.1(b) we have QP cY®x,;B,+ T so Q¥ is solvable and hence
Bedp(Q, T'). If f¢Za, uZa and Y® x, B, is invariant under ad ¢,, then
Lemma 8.10.1(c) shows that (Y®B)®PcY®x,B,+T, so again
Bedp(Q, T). Finally, if Y® x, B, is not invariant under ad ¢, then Lemma
8.10.1(d) shows that, for y¢Za,, n((Y® B,)"’)=Y. Thus # induces an
isomorphism #,: (Y® B;)[y] =Y such that »n(¥,(z;))=n(¢,). Thus
(Y®B))a]=(Y®B,)[f] by an isomorphism mapping ¥,(¢,) onto
¥4(t,). Hence (since Q"'=(Y®B,)Y+T for y¢Za,) we see that
aedp(Q, T') implies fe 4,(Q, T'). Thus (e) holds. |

LemmA 8.10.3. Let A satisfy (7.0.1) and (8.0.1). Assume that G,=Q,
where Q is as in Lemma 8.10.2, and let o be as in (4d) of that lemma. Then
I(Gy)=(0), aedp(A, T), Gocsl(2)®B,+DerB,, and G_,=V®B,,
where V is a two-dimensional irreducible s1(2)-module. Replacing o by an
element of ZYa if necessary we may assume I'y=(ta+Za,)u Za, and
I'_, = +(a/2) + Za,. Furthermore, G, # (0).

Proof. By Lemma 8.10.1(a) we have I(G,)=(0). Note that a¢ Za,,

481/114/1-15
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since Q< Y®B,+ T is not solvable, while (Y® B,)* is solvable
(by Lemma 8.10.1(b)). Suppose a¢ 4.(A4, T). By Lemma 6.4.4 we may
find xed,n A, (replacing a by some ia if necessary) such that o, e
Ap(A, e*(T)). Now xe Q™= Y® B, + T and Y® B, is a restricted ideal in
Q, so x’€35(T)n(Y® B,)=Ft, (by Lemma 8.10.1(a)). Since a(x”)=0
(by Lemma 1.8.1) we have x”=0 (as o ¢ Zo,). Thus y, (E*(¢;))=7y(¢,) for
every root y (see Definition 1.9.2) and so if y ¢ Za, we have vy (E*(¢,)) #0.
Since E*(t,)e Y® B, this implies (Y® B,)" < Y® B, +¢e*(T). Now
suppose fe Ap(A, T) and B¢ Za,. Then Lemma 8.10.2(e) applies to «, and
. and shows that f.eA4,(Gy, e*(T)). Hence Lemma 6.4.3 shows
B.edp(A, e*(T)). f a,eA,(A, T) then a, € 4,(Gy, e*(T)). But Go[a,] is a
quotient of G,/Y® B,, and xe Y® B,, so E* acts as the identity on
Gol[a,]. Thus (a,).€4p(Gy, e (T)) and so, again by Lemma 6.4.3,
(a5) € 4p(A, e*(T)). Thus |4(A4, e*(T))| > |4p(A, T)|, contradicting the
optimality of T. Hence o€ 4,(A4, T).

Now suppose Y= W(1:1). Then by Lemma 8.10.1(c), (d) we see that
(Y®B)[al=W(1:1). Since G, acts faithfully on G_, there is an
irreducible Q-constituent U of G _, with U, # (0) for some y ¢ Za,. As
0™ = (Y® B,)™ + Ft, we see that U remains irreducible under (Y ® B, )™
and hence is annihilated by the nil ideal solv((Y® B,)*). Thus U is a
(Y® B,){a]-module, hence a W(1:1)}module. Therefore (cf. [BWS82,
Theorem 1.15.27) ¢, has (p — 1) nonzero eigenvalues on U and hence by
Lemma 8.10.2(c), |I"_;nZa| = p— 1. This contradicts x € 4,(A, T). Thus
G,csl(2)® B, + Der B,. We may therefore assume (replacing o by some
element of ZYua) that I'o< (a+ Zoy) v (—a+Za,) U Za,. We may also
assume (replacing ¢, by some element of Z*¢) that a(¢;)=1, ie., that
aeo; + Za,.

Let & denote the set of eigenvalues of ad ¢, on G_,. By Lemma 8.10.2(c)
we see that ie & if and only if ine I"_,. Thus 0¢ & (by Lemma 6.3.3) and
[{+1} & <6. Now we may find ue G, ,, ve G, _, such that [u,v]=1,.
Thus Fu+ Fv+ Ft, is a subalgebra of G, isomorphic to sl(2). Hence
&< {+3,+4}. If equality holds then, by Lemma 8.10.2(c), we have
2T _ = {+(B/2),+(3B/2)} for all Bea, + Za,. By Proposition 5.7.6
we can find fBeoa,+Za, with ZnT.=. Thus +(B/2),+(38/2)e
ZB N I, contradicting Lemma 5.7.1(a). Hence ZanI"_; = { +(«/2)} and
so (by Lemma 8.10.2(c)) I" ., = +(o/2) + Za,.

Now it is clear that V' ® B; is a faithful irreducible restricted G,-module
with set of weights equal to +(«,/2)+ Za, and with each weight space of
dimension <7. Since G _, has these same properties, the assertion that
G_, = V® B, follows if we show that G, has a unique faithful irreducible
restricted module with set of weights equal to + (o, /2) + Za, and with each
weight space of dimension <7. Let W be such a module. Let W, be an
irreducible sl(2)® B,-submodule of W. Since sl(2)® x, B, is a nil ideal of
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sl(2)® B,, it annihilates W,. Hence Stab(W, Gy)#G,. Also W, is an
irreducible sl(2)-module. Since ¢, has only two weights on W, dim W, =2.
Then dim G,/Stab(W,,G,)=1 and W=u(Gy)® ,s1abw1. 6o W, (see
Lemma 1.10.1). Let N denote the normalizer in G, of sl(2) ® x, B,. Clearly
dim G,/N<1 and, since G, is semisimple, dim Gy/N=1. We claim that
N=Stab(W,, G,). To see this note that if ue N, then adu induces
a derivation of s{(2)® B,/sl(2)® x, B, =sl(2). Since all derivations of
s[(2) are inner we have N=sl(2)® B, + {ve G, | [v, sl(2)® B;] =sl(2)®
x, B} =Stab(W, Gy) + {ve G, | [v,s1(2)® B,] W, =(0)} =Stab(W,, G,).
Since dim G,/N =dim G,/Stab(W,, G,) we have equality. Now
sl(2)® x, B, is a nil ideal and so W, is an irreducible N/(sl(2)® x, B,)-
module and N/(sl(2)® x, B,)=sl(2)® N’, where N' is a subalgebra of
W(1:1),. Since N'~ W(1 :1), is a nil ideal in N’ (and hence in sl(2) @ N')
we see that W, is an irreducible (sl(2)@® N')/(N' n W(1 : 1),)-module. But
N'/N'AW(1:1), has dimension <1. Thus W, is an irreducible
s1(2)-module and so W, = W,. Thus the structure of W=u(G,) ®,n, W, is
uniquely determined.

Finally (as I(G,)=(0)), if G,=(0), then I=(0). Lemma 634 of
[BWS82] shows that this cannot occur. [

Let {e, f,h} denote the usual basis for sl(2) (so [k e]=2e,
[h f1= =2f, [e,f]=h). Let V, a two-dimensional s[(2)-module, have
basis {v, w}, where hv=v, hw = —w, ev=fw=0, fo=w, ew=1. In view of
Lemma 8.10.3 we can, and do, identify G_, with V® B, so that G_, has
basis {v@x{ |0<i<p—1}u{w®x|]0<ig<p—1}.

LEMMA 8.104. Let A and G be as in Lemma 8.10.3. Then I'_,=I'_, if i
is odd and I' _, = Za, if i is even.

Proof. We prove this by induction on i, the case i= 1 being vacuous.

Assume the result holds for all j<i and that i/ is even. Then
r.,er_, +r_,s(a+Za,)u(—a+Za,)uZa, (by the induction
assumption and Lemma 8.10.3). If I"_; &€ Za, then there is an irreducible
constituent U of G __; which is not annihilated by sl(2)® B,. Then (as
0¢ 7'~ by Lemma 6.3.3) Lemma 8.10.2(c) shows that the weights of
U are contained in (ax+Za,)u(—o+Za,). Since IyS(a+Za,)u
(—oa+Zay)u Za,, the irreducibility of U implies that its weights are
contained in a + Za, or in —a + Za,. This implies that G, ,, annihilates
U. Since t,€ [G,,, Gy _,] this is absurd. Thus I'_, < Za,.

Now assume the result holds for j<i and that i is odd. Then I'_,<
I ., +I'_€Za,+1I_,=TI_, (again by the induction assumption and
Lemma 8.10.3). §

LEMMA 8.10.5. Let A and G be as in Lemma 8.103. Suppose
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Go/(sl(2)@ B, )=W(1:1). Then a, € 4p(A,T), G_,=(0), and [G_,, G,] =
sl(2)® B,.

Proof. Suppose o,¢ 4,(4, T). By Lemma 6.4.4 we may (replacing
t; by an element of Z}:, if necessary) find xeA,,nA4, so
that (o,),€45(A4,e"(T)). Now if Bfed(A, T), p¢Za,, we have
GP¥) < (sl(2)® B,) +e*(T), which is compositionally classical and so
p.eAp(Gy, e*(T)). Then Lemma 6.4.3 shows that [4,(4,e*(T))| >
|4 (A, T)|, contradicting the optimality of 7. Thus a, € 4,(A4, T).

By Lemma 8.104, sl(2)® B, acts as a nil ideal on each composition fac-
tor of the Go-module G_,. Thus since (sl(2)® B,)*? = solv(G{?), each
composition factor of G_, is a Gy[a,]= W(1:1)-module. But as «, is
proper, |I'_,nZa,| <6. Thus (cf. [BW82, Theorem 1.1.52]) each
composition factor of G_, is a trivial G,{«,]-module. Hence G _,=
G 2,0~ (0).

To show [G _,, G,] =5sl(2)® B, observe that h® 1 is toral, hence G, is
a sum of eigenspaces for A ® 1. Since the only eigenvalues of /® 1 on G _,
are +1 and since all eigenspaces in G, for nonzero eigenvalues are
contained in s{® B,, we see that if ge G, and [A®1,g] =g, i# +1, we
have [G_,,g] =sl(2)® B,.

Now let jeZ, and ge G, satisfy [A® 1,g]= —g, [(x;,+1)D,,g]l=Jjg
Then for ie Z, we have

[v® (x; + l)iag:]:aih®(xl+ 1)i+j+bi(x1+ 1)”’+1 D,
and

w®(x;+ 1), gl=c. /@ (x, + 1),

where a;, b;, c;e F. Then
[0® (x, + 1) [v® (x, + 1), g]] = (—a;, = bk) v® (x, + 1) 7+,
W@ (x+ D5 [0® (x; + 1), 11 = (a;,— bk) w® (x, + 1)/ *5,
and
[v®(x;+ 1), [Ww® (x,+ 1), g]]1= —c,w® (x, + 1) T/
for all i, j,keZ,. Since [G_,, G_,]=(0) this gives
a;+bk=a,+bi (8.10.3)
and

a,—bk= —c, (8.10.4)
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for all i, ke Z,. Then (8.10.4) shows that for i, j, ke Z, we have a,— b,k =
a;—b;k and so a;,—a;=k(b,— b)) for all i, j, ke Z,. Since the left-hand side
is independent of k, this implies that b,=b, and a,=gq, for all i, je Z,. But
then (8.10.3) implies b,=0 for all i. Hence we have [G_,, g]csl(2)® B,.
Similarly, if g’e G, and [A®1,g']=g then [G_,, g'] =sl(2)® B,. Hence
[G_ (.G, 1<sl(2)® By, as required. |}

LEmMmA 8.106. Let A and G be as in Lemma 8.10.3. Suppose
Go/(s1Q)® B,) £ W(1:1). Then [G_,,G,]<sl(2)® B, and G_,=(0)

Proof. Every irreducible constituent of G _, as an sl(2)-module is
annihilated by s[(2) ® x, B, and hence is an sl(2)-module. By Lemma 8.10.4
each such constituent is a trivial sl(2)-module and hence is annihilated by
h® 1. Thus the only eigenvalue of A®1 on G_, is 0. Therefore since
[F®1,0@xi]=v®x! we see that [v®@x{,v®x,]=0 for all i j,0<|,
]sp— 1 Then [U@X’i, [U@Xfﬁl, Gl]] = [U®xl1,71’ [D@Xﬁ, Gl]] = V®
(Fxt=2+Fx?~1) for all i I1<i<p—-1. Thus [v®x{~!,G,]<
Fx?= 2D+ Fx?~'D,+sl(2)®B,. If [v®x]"',G,] £ sl(2)®B, this
implies  that  (Go/(sl(2)® B,))~(Fx? 2D, + Fxf~'D,)#(0).  Since
Go/(sIQY® B,) £ X, o Fx\ D, (as G, is semisimple) this is easily seen to
imply G,/(sl(2)® B,)= W(1 : 1), a contradiction. Hence [v®x2~!, G,] <
sl(2)® B,. Since {ue G_, | [, G,]1<sl(2)® B, } is a G,-invariant subspace
of G_,, this implies [G_,, G,]<sl(2)® B,.

Now [G_,,G,] is a nonzero ideal of G,, so it cannot be nil. Thus
te[G_,,G,] and so there exist yeI' |, xeG_,,, yeG, _, such that
[x,y]=1t,. Note that yelI'_, =((¢/2) + Za,) v (—(2/2) + Za,). Suppose
G/M(G)=%,5,(G/M(G));, and k is odd, k< —1. Then [G_,,,
(GIM(GY iy +1,]=(0)=[G\ . (G/M(G). ys1y] (a5 —2y+lr¢ I
by Lemma 8.10.4). Thus [¢,, (G/M(G))x, _, +1,1=(0). Since (y + lo,)(¢,) =
y(¢;)#0 this implies (G/M(G));, _,4u,,=(0). Hence (see Lemma 8.10.4)
I'. v+ Za,. Therefore (sl(2)® B,),, annihilates (G/M(G)), for all /#0.
Since (sl(2)® B,)' is not solvable this implies ¢, annihilates (G/M(G)),
so (G/M(G)),=(0), a contradiction. Now suppose that £ is even. Then
r.cZo, and so [G_,,G,] annihilates (G/M(G)),. By Weisfeiler's
theorem (cf. Theorem 1.5.1 of [BW82]), G/M(G) is semisimple and every
nonzero ideal of G/M(G) contains (G/M(G)),. Let G_=3%, ,G; and
G,=Y,.0G,. Since G_, generates G_ we see that G'=[G_,,G, ]+
> 20(G/M(G)); is an ideal in G/M(G). Since G/M(G) is semisimple we
have 3(G") # (0) and so [G', (G/M(G)),]# (0). Since G_ and [G_,, G,]
annihilate (G/M(G)),, the Poincaré-Birkhoff-Witt theorem shows that the
ideal J in G' generated by [G',(G/M(G)),] is contained in
S .o« (G/M(G));. But since (G/M(G)), and G’ are invariant under ad G,
we see that J is an ideal in G/M(G). Since J# (0) and J= Y, (G/M(G)),,



220 BLOCK AND WILSON

this contradicts the fact that (G/M(G)), is contained in every nonzero ideal
of G/M(G). Thus k cannot be even and so k= —1. Hence G_,< M(G).
Now consider the (Fx + Fy + Ft,)-module generated by G_;, , , (where
leZ). Since [x,G 3,,1,1SG 43 :n,=(0) and (ady)*G _;,, 4 <
M(G)_,=(0), we sec that the set of ecigenvalues of ad ¢, on this module is
contained in {y(¢#,), 0}. Since this set must be symmetric about 0 and since
y(¢;) #0, we conclude that G _;,,,,=(0). Thus I ;< —y + Za, and, as
above, this implies G _, = (0).

Now since I < +(2/2)+ Za, and 'y (+oa+ Za,)u(Za,) we have
[A° A ]S AP+ A +[A4 A4,]. Since G ,=M(G) (so that
[G_,,G,]1=(0)) we have [4, A,]< Ay. Thus [4°?, 4,] = A*) + 4, and
hence 4"+ 4, is a subalgebra of 4. By the maximality of 4, we have
A"+ 4,< Ay. By Lemma 8.10.4 this implies G_,=(0). |

LEMMA 8.10.7. Any element 0#tesl(2)® B, satisfying t*=1t is con-
Jjugate (under an automorphism of sl(2)® B,) to an element of Z}(h®1).

Proof. Since sl(2)® x, B, is nil, t¢sl(2)® x, B,. Thus we may assume
(replacing ¢ by an element of Z*¢ and applying an automorphism of sl(2))
that 1=h® 1 +e®u (x;) +h®us(x,) +f®us(x,), where u(0)=0 for
i=1,2,3. Now (ad(e®x!))’=(ad(f®x%))*=0 for 0<i<p—1 and so
exp(ad(c(e ® x?))) and exp(ad(c( f ® x}))) are automorphisms of sl(2) ® B,
for 0<i<p—1, ceF. Applying such automorphisms we may assume
t=h@1+h®uy(x,;). But [h® 1, h®uy(x,;)]=0 and (h® u,(x,))’=0 so
=t implies t=h®1. |

LEMMA 8.108. Let A and G be as in Lemma 8.10.3. Let A denote the
ideal 3,y 70, Ay + 2, 5420 [Ay, As] Then Ag € A+ A.

Proof. Since sl(2)®B,cG,<(sl(2)® B,)+ Der B, and since T &
sl(2)® B,, we may assume (Theorem 1.3.1(c)) that either x,D;e G, or
(x;,+1)D,eG,. Since G, is semisimple, sl(2)® x, B, is not invariant
under ad G,. Hence if x; D, € G, we have D, e G, and so (x, +1) D, e G,.
Thus in any case (x, +1) D, € G,. Write y=x, + 1 and note that if /, je Z
and i= j mod p, then y’ = ). Therefore it makes sense to write y’ for ie Z,.

Let R, be a maximal torus in A, such that R, +A4,/4,=
span{h® 1, yD,}. By Lemma 8.10.7 we may and do assume ¢, =A® 1.
However, we do not assume R,=T. For ie Z, let V,, W,eA and
H,, E.€ A, be root vectors with respect to R, satisfying

Vi+ Ag=0v®Y",
W, + A, =w®)',
H+A4, =h®y',

E+A,=e®y"
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Also let C;e A, be root vectors satisfying

yi+1D1 if yi+1DIEGO,

Cit 4y {0 it D, ¢G,.

Then for i, je Z, the following congruences hold mod A4, (since G_,=(0)):
v, Wj] = ai,jHi+
[V Vi1=c, E,

Lji™i+j

+b,,Ciy;

J

(8.10.5)

b

for some aq,;,
yi+j+lD1¢G0.
Now [H,,V.]1=V,,, mod 4,, [H,W]= —W,,, mod 4,, and

([A_,, 4,1+ 4,)/A, =5l(2)® B,. Therefore since

¢, € F. Furthermore, we may assume b, ;=0 if

iLj

[Hl’ [V,-, I/Vj]]—__ [[Hl’ Vi]’ [/I/j]+ [Vh [Hl’ VV]]]

we have b,,, ;—b,,;,,=0 for all i, j. Hence there are elements b,€F,
uel,, such that b, ;=b,, for i, je Z,.

Suppose that dim(G,/s1(2)® B,)> 1. Then C, # 0 for some ue Z;. Now
[C,, V=iV, ,and [C,, W]=iW, ,mod A, for ieZ} If C, ;. ,#0,
comparing coefficients of C,, ;,, in the Jacobi identity

[Cw [Vi’ u/j]] = [[Cu’ Vi]’ Wj] + [Via [Cu’ Wj]]
gives
(i+)) bi+j+u=(i+j—u) bi+j

and the convention that b,=0 whenever C,=0 shows that this identity
holds for all i, je Z,. Taking i=mu, j=0 gives b, ), =((m—1)/m)b,,,
for me Z}. Taking m=1 gives b,,=0 and then induction gives b, =0 for
all k£ u.

On the other hand, if dim(G,/s1(2)® B,)=1 we have b, =0 for all £ #0.

Thus, in any case, there is some u € Z, such that b, =0 for all k # u. Now
by the Jacobi identity we have

[Vis [Wj’ Vk]]+ [Wi’ [Vka V!]]+ [Vk’ [Vh W]]] =0'
But by (8.10.5) we have

[Vi’[Wj, Vk]]E(ak_j+ibk+j) Vi+j+k mOdAO,
[VVj’ [Vks Vr]]E _Ck.iVi+j+k mod AO’
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and
Vi, Vi, Will=(—a, ;= kb, ) Vi mod A,.
Thus
—a;;— kb ;ta;+ib,;=c, (8.10.6)

forall i, jkeZ,.
Now suppose i+ j=u. Fix ksothat j+ k#u, j+k—1#u, i+k—1+#u,
2k —1+#u. (As p>7 such a k exists.) Then as b, , ;=0, (8.10.6) gives

kb, ;= —a, ;+a, ;—ci,
and as b, _,,;=0, replacing k by Kk — 1 in (8.10.6) gives
(k—1)b,, ;= —a; ;t A g Cp
Thus, taking the difference,
bivi=(ar;—a_1;)~(Chi—Cx_1). (8.10.7)

Fix / so that i+/#u, k+1#u, k+!/—1+#u. Since b,_,,,=b,,,=0,
replacing i by k— 1 and j by / in (8.10.6) gives

Cop—1= —p_ 1t ay,
=(—a+ta,)—(—a,+a._ )
Setting j=1/1in (8.10.6) and using b,,,= b, ,,=0 gives
—a;,+a,,=¢;

Setting j=/ and replacing k by k—1 in (8.10.6) and using
bivi=bi_y,.,=0 gives

—a a1 = Cr_y
Thus

Crok—1=Ck i — Cp— 1,4 (8.10.8)

Finally, setting i=k —1 in (8.10.6) and using b, ,, ;=0 gives
ot A O (8.10.9)

Then substituting (8.10.8) and (8.10.9) into (8.10.7) gives b,, ;=0, ie,
b,=0. Thus b,=0 for all keZ, and so (8.10.5) gives [V, W]+
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A, eslQ)®B, for all i jeZ, Setting A'=span({V,|ieZ,}u
{W.|ieZ,}) we may express this result as

([A4T, AT]+ 4,)/4,=51(2)® B,. (8.10.10)

Now since 3 5,, 4,=[4, 1,1 we have A=[4,,1+[[4, 1,1, [4, 1]
and the lemma will follow if we show (([[4,t,], [4.t;1]1nA4y)+4,)/
A,csl(2)® B,. We already have ([4_,,4,]+4,)/4,csl(2)® B, (by
Lemmas 8.10.5 and 8.10.6). Therefore, since ¢, €sl(2)® B, and
(I \+T)nTy=, we have (([[4,1]), [4o, ;11N Ao)+A4,)/A, <
s[(2)® B,. Combining this with (8.10.10) gives the required result and so
proves the lemma. ||

COROLLARY 8.10.9. G, cannot be one of the algebras listed in Theorem
4.1.1(b).

Proof. As in the lemma let A=Y ,,,, 4, +Y, ;,7., [4,, 4;]. Since
A=S+1I, where S is a simple ideal in 4, we have A, =S, for all 0 #ye T*
Then by Schue’s lemma (Lemma 1.12.1) we have S= A Hence A=A+1.
Since 1(G,) = (0) this implies 4 = 4 + A4, contradicting the lemma. |

8.11. We have now verified that (a) or (b) of Proposition 8.1.1
must hold. We will now prove the additional conclusions of Proposition
8.1.1 in case (b) holds and G, 5 (0). Thus we assume Gy,= Y, + Y,, where
Y,=sl(2) or W(1:1) for i=1,2. Then T=TnY,+TnY, and
TNY,=Ft for some 0#1,€ TnY, satisfying /=1, Define a,e T* by
aft;)=0,; for i, j=1,2. Then we have I'y = Za, L Za,.

LemMMmA 8.11.1. If G, is as above, then A=A _,. Consequently, if
G, #(0) then N(G)=(0).

Proof. Since Y,=sl(2) or W(1:1) we have A, ,;, # Ko 1o, fOr some
jeZ}) By replacing t; by 2j~'t,, we may assume j=2. Since
IysZa,uZa,, Corollary 64.2(c) shows that if o,¢4, then
Ao, 124+ K20 # A 42, and hence (as Ay ,,, € K, 5,) dim A4 ,,, /K, 5, >2.
This implies that «; is Hamiltonian and so Corollary 6.4.2(d) shows
that (still assuming a,¢4p) dim(A4,,, /(Ao 420, +Ki2)) =2 As
dim A4 ,,,/K,,,=3 (for o, is Hamiltonian and «;¢4,) this implies
dim(Ag 4 20/A0, 120, Ki2,))= 1. Since IS Ay, Ag 12, 18 (ad I)-invariant.
By Lemmas 5.2.1(e) and 2.1.11(b) this implies [ A4y »,,, 4o, _2,,] =1, & cON-
tradiction since #;€ [Aq 24> Ao, 24,] Thus a;€ 4, for i=1,2. Therefore
n(A, T)=2 and so || <2. Hence I'ynZa,= for i=1 or 2. Assume,
without loss of generality, that I, Za, = . Then |I'gnZa,| <4. Thus
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for /<0 we have |(I';nZa,) U {+2a,}| <4. Since 0¢ I'; and Yiez
a Y,-module, this shows that I’ Za, < {+a,}.

Now let M; be any irreducible Y -submodule of G_,. By the above, M,
is two-dimensional. Let N, denote the sum of all Y,-submodules of G _,
isomorphic to M. Clearly N, is a Gy-submodule of G_,, hence N;=G _,.
Thus ad ¢, has only two eigenvalues, +1, on G_,;. Thus G_,, being a
homomorphic image of G_,® G_,, is spanned by eigenvectors for ad ¢,
corresponding to the eigenvalues —2,0,2. Now I'_,nZa, = 5. But by
Proposition 1.15.3 and Corollary 1.15.4 of [BW82], 3, _, G _, ,, (the zero
weight space for G_, as a Y,-module) generates G_, (a homomorphic
image of G_,® G _,) as a Y,-module. Since 2jez G2 ja, = (0) this implies
G_,=(0). Since if G, #(0) we have N(G)c=3 ;. ,G,, this gives
N(G)=(0). 1 '

LemMA 8.11.2. If G, is as above and G, #(0), then I' _, = {+o, + a5},
Go=sl(2)+sl(2), and G acts faithfully on G,.

Gy 18

Proof. Let M; be an irreducible T+ Y-submodule of G _,. Since
3(T+ Y;) acts as scalars on M;, M, is an irreducible ¥-module. Let N, be
the sum of all irreducible Y -submodules of G _, isomorphic to M;. Then N,
is a Gy-submodule of G_, and so N, =N,=G _,. Let I'(M,) denote the set
of weights of M. Then (as Y,=sl(2) or W(1 :1)) setting m,=dim M, we
have

I(M)={(m, —1)a,+ny05, (m —3)o, +n,05, .., =(m; — 1) &y + ny0,}

and

I(My)={(my—1)o,+nya;, (my—3) oy +nay, .., —(my— 1) ay +ny0,}

for some 0< n,,n,<p-— 1. Then since G_, =N, =N, we see that

I ={m—-1-2a)a;+(m,—1—-2b)a, | 0<a<m, —1,
0<bsm,—1}.

Since the representation of G, on G _, is faithful, we have m,, m, > 2. We
will now show m,, m,=2.

Suppose m, >2. Let ue I',. Write u=ua, + va,. Then there exists some
b, 0<b<m,—1 such that (m,—1—2b)¢ {0, —v}. (To see this note that if
m,—1—2b=0 then m, is odd, hence >3.)

Since I'y & Zo, U Za, this implies

(" (Zay + (my — 1= 2b) a5)) + ) N Tl < 1
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and so as m,>2 we may find two elements 1,,1,6l _ N (Za; +
(my—1—2b)a,) such that 7,4+ u¢ I'y for i=1,2. Since m,—1 —-2b#0, 1,
and 1, are linearly independent. Then for i=1,2, [G_,,, [G_; _,, G} 1]
<[G , . [G_y .G, ,11=(0). Since 1,, 1, are linearly independent this
implies [G | _,, G, ,]=(0). Since this holds for all pe ", and since Y,
and Y, are simple, we have [G_,, G,]=(0), contradicting G, # (0). Thus
m,; =2 and similarly m,=2. Since Y, acts faithfully on G_, this implies
Y, =Y, =sl(2).

Finally, suppose the action of G, on G, is not faithful. Then
[Y.,G,]=(0)fori=1o0r2andso I'ycZa, or I'; < Za,, say, without loss
of generality, I'y/cZa,. Then I' ,+ 'S Za,a,s0 (I _+1))nTly=
and so [G_,,G,]=(0). This contradicts the hypothesis that G, # (0).
Hence G, acts faithfully on G, so the lemma is proved. {

This completes the proof of Proposition 8.1.1. |1

9. DETERMINATION OF ALL SEMISIMPLES IN WHICH EVERY
Two-DIMENSIONAL TORUS 1S MAXIMAL AND STANDARD

9.1. We now complete our analysis of cases (g) and (h) in the
conclusion of Theorem 4.1.1. From this analysis we obtain:

THEOREM 9.1.1. Let F be an algebraically closed field of characteristic
p>1. Let A be a finite-dimensional restricted semisimple Lie algebra over F.
Let T be a two-dimensional torus of A. Assume that all two-dimensional tori
in A are maximal and standard. Let 3 ,(T)= T + I, where I is the nil radical
of 3.(T). Then one of the following occurs:

(a) S,+S,cA<(DerS,)"+ (Der S,)", where S,, S, are distinct
ideals in A and each is isomorphic to one of sl(2), W(1 :1), H(2:1)®,

(b) SB,cA<Der(S®B,), n>0, and T & (Der S)® B, for some
simple S. In this case S is one of sI(2), W(1:1), H(2:1)®,

(c) ScAcDerS with dim(SnT)=1 for some simple S. In this
case S=H(2:1)? and we may assume (replacing A by PA, Pe
Aut(Der(H(2 : 1)®)) if necessary) H(2:1)® + Fx, D, < A < Der(H(2:1)®).

(d) S®B,cAc<Der(S®B,), T<(S®B,), and n>0 for some
simple S. In this case S=H(2:1: ®(y))V and 3565 (TSI

() ScAdcDerS, TcS, and dim(A/(S+ 1)) =2 for some simple S.
In this case S=H(2:1:d(y))™".

(f) ScAcDerS, T<S, and T (S+1) is one-dimensional and

restricted for some simple S. In this case S is one of W(1:2), H(2, (2, 1)),
H2:1:4).
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(g8) ScA<DerS, TcS, and T (S+ 1) is one-dimensional and non-
restricted for some simple S. In this case S is one of W(1:2), H(2:(2,1))?,
H(2:1:4).

(hy ScA<DerS and A=S+1 for some simple S. Consequently
A=S is one of the following simple algebras: A,, C,, G5, W(2:1),
SG: )M, H4:1)D, K3 : 1),

9.2. Before we can prove Theorem 9.1.1 we need to accumulate
some information about the algebras S(3:1:®) and H(4:1: ®).

LemMA 9.2.1. Let U=S(3:1:®). Assume that U® contains no tori of
dimension greater than two. Then U= S(3:1).

Proof. We may assume, by [ Wil80], that @ is either the identity, @(1),
or &(y(1)).

If @=a(1) then U™ contains E=D,+x} 'x,D,. Since E”= —x,D,
and since x, D, — x,D,, x, D, — x; D€ U we have that U® contains the
three-dimensional torus spanned by {x,D,|1<i<3}, contradicting our
hypothesis. Note that this calculation also shows that S(3 :1: &(1)) is not
restricted.

Now consider

Q={EeW3:1)| E((x,+1) "'
x (x4 1) (x34+ 107 Vdx, A dxy A dx;)=0).

Then Q=S(3:1:¥) for some ¥e Aut W(3) and hence is isomorphic to
S5(3:1), S(3:1:®(1)), or S(3:1:P(y(1))). But Q contains a three-dimen-
sional torus spanned by {(x;+1)D,|i=1,2,3} and so Q # S(3:1), since
(as S(3:1)/S(3:1)'V is nil) any torus in S(3 :1) is contained in S(3:1)"
and Theorem 1.3.1(f) shows that all maximal tori in S(3:1)") are two-
dimensional. Since @ is clearly restricted we must have
Q=83:1:®(y(1))), so S(3:1:d(y(1))) contains a three-dimensional
torus and the lemma is proved. ||

LEMMA 922. Let U=H(4:1:®). Assume that U® contains no tori of
dimension greater than two. Then U® < U.

Proof. Since H4:1)? < grU? < grU® < grDer H(4:1:®) <
Der H(4:1) and Der H(4:1)=H(4:1)?® + (Der H(4:1)), (see [Cel70]
for the computation of Der H(4 : 1)), we have U® < U + (U®),. Now
(UD), contains the restricted subalgebra (UP),n U, which contains a
two-dimensional torus (as Uy = (U*)o+ U, and U,/U, =sp(4)). Thus, as
(U™, contains no tori of dimension greater than two, (U™),/
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(U Ug) = (UP)o+ Up)/Up is  nil.  But  (Der H(4:1)),=
F! ,x;D)+ H(4:1), so (Der H(4:1)),/H(4:1), is a torus and thus
(Der U),/U, is a torus. Hence (UP),cU, and so UPcU?+
(UP), € U, as required. |l

LEMMA 92.3. Let U=H(4:1:®). Assume that U® contains no tori of
dimension greater than two. Then U~ H(4:1).

Proof. By Lemma 9.2.2 we have U® < U. Then H(4:1)® cgr UP <
H(4:1) and so, by Lemma 8.3 of [Kac74] applied to the restricted Lie
algebra U™ (and taking ¢ Aut W(4) such that @D=¢ D¢ ' for all
De W(4)), we may assume that dow=(1+c(x,x3)" ")Vdx, Adx,+
(1+ cy(xy,x4)7 " V) dx, A dxy. Let S, denote U™ nspan{x3"Vx3*D, |
i=1,3, 0<a(l), (3)<p—1} and S, denote U™ nspan{x3?x3*¥D, |
i=2,4, 0<a(2), a(4)<p—1}. It is clear that if ¢,#0 then S, contains a
subalgebra isomorphic to H(2:1:¢(y))® and so (by Corollary 2.2.3(c))
contains a two-dimensional torus, while if ¢;=0 then S, contains a sub-
algebra isomorphic to H(2 :1)* and so_contains a one-dimensional torus.
Since S, S,=1(0), [S,, 5,]1=1(0), and U™ contains no tori of dimension
greater than two, we see that we must have ¢, =c,=0,s0 UxH(4:1). |}

9.3. We are now ready to begin the proof of Theorem 9.1.1. In
view of Theorem 4.1.1, it is only necessary to prove that if A satisfies (g) or
(h) of Theorem 4.1.1 then it satisfies the same part of Theorem 9.1.1. In this
section we will do this for algebras satisfying (h) of Theorem 4.1.1.

Let A4 satisfy Theorem 4.1.1(h). Let 4, be a distinguished maximal sub-
algebra of 4 containing the two-dimensional standard maximai torus T.
Give A4 a corresponding filtration and let G=3% G; be the associated
graded algebra. Assume that if U is any algebra satisfying Theorem 4.1.1(h)
and dim U <dim 4, then S U< Der S, where S is one of 4,, C,, G,,
W2:1), SG: DY, H@4: 1)WY, K(3:1).

If 3(G,) # (0) then by Proposition 7.1.1 either

G,=(0) (9.3.1)
or
Go=sl(2)+ Fz, N(G)=0, and G, acts faithfully on G,. (9.3.2)

Also I(G,) = (0) by Corollary 7.2.8 and so if (9.3.1) holds, we have I=(0).
But then A satisfies the hypotheses of Theorem 7.2.1 of [BW82] and so 4
is one of the algebras listed in Theorem 9.1.1. Thus if 3(G,) # (0) we may
assume that (9.3.2) holds. But then G satisfies the hypotheses of Kac’s
theorem on graded algebras (Theorem 1.2.1) so G is either classical simple



228 BLOCK AND WILSON

or of Cartan type (and hence isomorphic to W(2:1) or K(3:1) since
Gy =sl(2) + Fz). Thus G must be simple and so 4 =S is simple. Then Kac’s
recognition theorem for restricted simple Lie algebras of Cartan type (cf.
Proposition 1.1.1 and Theorem 1.2.2) shows that A is classical, W(2:1), or
K(3:1).

We may therefore assume that 3(G,)=(0). Then by Proposition 8.1.1
one of the following occurs:

Y= GycDer Y for some simple Y and for every
two-dimensional torus T, = G, we have T, = ¥ and

Go=Y+1,; (9.3.3)
Goz=sl(2)®sl(2), sl2)y@W(1:1), or W(l:1)®
W(l:1)and G,=(0); (9.3.4)
Gy xsl(2)Psl(2), N(G)=(0), and G, acts faithfully
on G,. (9.3.5)

If (9.3.4) holds then since I(G,)=(0) and G, = (0) we have I=(0). Hence
Theorem 7.2.1 of [BW82] applies and so A is one of the algebras listed in
Theorem 9.1.1. If (9.3.5) holds then G satisfies the hypotheses of Kac’s
theorem on graded algebras [Kac70] so G is either classical or of Cartan
type. But there is no G of classical or Cartan type satisfying
Go=sl(2)®sl(2). Thus (9.3.5) cannot occur.

Suppose G, satisfies (9.3.3). Since dim G,<dim A the induction
assumption implies that Y is one of the algebras listed in Theorem 9.1.1(h),
e, Y is classical or isomorphic to some W(2:1), S(3: 1)V, H(4: 1)1,
K(3:1). But Y acts faithfully on G_, and by Lemma 632, |I' || <
p>—p+6. Since W(2:1) has no faithful restricted representations with
fewer than p* —2 weights (by Corollary 4.11.2 of [BW82]) and Y has no
faithful restricted representations with fewer than p?—1 weights (by
Lemma 6.5.1), if Y=S(3:1)", H(4: 1)), or K(3 : 1) we see that G, must
be classical. Also if G, = (0) we have /= (0) so A4 satisfies the hypotheses of
Theorem 7.1.1 of [BW82] and hence A4 is one of the algebras listed in
Theorem 9.1.1. Therefore we are done unless

G, is classical simple and G, # (0). (9.3.6)

We claim that G, acts faithfully on G,. For if not (as G, is simple) we have
G,=G,,. But [G_,,G,] is a nonzero ideal in G, so Gy=[G_,,G,].
Hence T<Goo=[G_1,G1o=[G_1,G0)o=[G_10,G0]=0, a con-
tradiction. Then Kac’s theorem on graded algebras Theorem 1.2.1
applies to G'/N(G), where G’ is the subalgebra of G generated by 3", G,.
It follows that G'/N(G) is of classical or Cartan type. Since G, is classical
simple (of rank two), G'/N(G) cannot be classical and so must satisfy
S(3:n) M= G'/N(G)= S(3:n) or H(4:n)" = G'/N(G)c H(4 :n). Since 4
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is restricted so are G and G’ (by Lemma 1.19.1 of [BW82]). Thus n=1, so
S3:1)V<=G@/NG)=S3:1)or H4:1)VcG'/N(G)< H(4 :1). In either
case G'/N(G) acts on N(G)/[N(G), N(G)] and thus if N(G)#(0) we
have that X (where X=S3:1)V or H(4:1)") acts (faithfully
on N(G)/[N(G), N(G)]. But then by Lemma 6.5.1 we see that
N(G)/[N(G), N(G)] has =p” — 1 weights. This contradicts the fact that the
set of weights of N(G)/[N(G), N(G)] is contained in I'_ and |[I'_| <
p>—p+ 6 by Lemma 6.3.2. Thus N(G) = (0) and so the hypotheses of Kac’s
theorem on graded algebras apply to G. Thus either S(3:1)"c
G=S3:1)or H4:1)W < G< H(4:1). In either case we see that A=A |
and I' nly=. Since I=A, we have [I,A]=A, and since
I' \nl'y= we have [[,A}1<A4,. Thus /=4, and so A=S+1=
S+ A4,. Setting S;=S5n A4, we see by Lemma 2.2 of [Wil76] that S, is a
maximal subalgebra of § and S=S_,25,2 --- is a corresponding
filtration. Moreover, S_,/So=G_,, S¢/S1 =Gy, S,/5,=G, so that S
satisfies the hypotheses of the Recognition Theorem for algebras of Cartan
type. Thus S=S(3:n: @)Y or H(4:n:P)". As dim S<dim G we must
have n=1. Thus S=S(3:1: )" or H(4:1:®)"). By Lemmas 9.2.1 and
9.2.3 we may assume @ = identity. Thus S is among the algebras listed in
part (h) of Theorem 9.1.1. By the remark at the beginning of Section 5.8 we
have S=4. |

9.4. We now complete our proof of Theorem 9.1.1 by showing that
if 4 satisfies (g) of Theorem 4.1.1 then S is one of W(1:2), H(2: (2, 1)),
H(2:1:4). We prove this by showing that if 4 satisfies (g) of Theorem
4.1.1 then A contains a two-dimensional torus 7" such that T"n (S+ 1) is
restricted.

LemMa 94.1. Let U be a nonsolvable restricted Lie algebra in which
every two-dimensional torus is maximal and standard. Assume that
3(U)=Fz+ N, where z’ =z and N is nil. Then there exists a two-dimensional
torus R < U with R~ ([U, U]+ I') nonzero and restricted.

Proof. We may assume that U/(solv U)=sl(2). For by Theorem 3.1.1,
U/(solv U) is isomorphic to sl(2), W(1: 1), or a subalgebra of H(2:1) con-
taining H(2:1)¥. Any of these algebras contains a restricted subalgebra
isomorphic to sl(2). Letting ¥ denote the inverse image of this subalgebra
in U, we see that V satisfies the hypotheses of the lemma and that
V/(solv V) =sl(2). If the lemma is proved for V with V/(solv V) =sl(2)
then there exists R"< V with R'n ([ ¥V, V]1+1I},) nonzero and restricted
(where I, is the nil radical of 3,(R’)). But then, as R’ n([U,U]+TI')=
R' n([V,V]1+1I,), either R"n([U, U]+ TI)=R’, which is restricted, or
else R ([U, U]+ TI'Y=R n([V, V]+1I}), which is restricted.

From now on we assume U/(solv U) = sl(2).
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Suppose M is a nonzero restricted nil ideal in U. Then U/M again
satisfies the hypotheses of the lemma and the result follows by induction.
Hence we may assume that U contains no nonzero nil ideals.

Let R be any two-dimensional torus in U. Clearly z e R. Suppose that
ze[U, U]+ 1 Since R maps onto a maximal torus of U/(solv U)zsl(2)
and since sl(2) is equal to its derived algebra, we have that R~ ([U, U] +
(solvU)) £ solvU. Thus R ([U, U]+ Fz+1) & solvU. As we are
assuming ze[U,UJ+1, we have Rn([U,U]+1I) <& solvU Thus
R=Rn([U, Ul+1) is restricted and we are done. Hence we may assume
z¢[U, U]+ 1L

Now since U/(solv U)=sl(2) we have JcsolvU. Let J=1+
2. z0(solv U),. We claim that J is an ideal in U. Clearly it is enough
to check that [U,, (solvU)_,]<I for all roots « If not, we have
ze[U,, (solvU) ,J+I<[U,U]+1, contradicting our assumption. If
x € (solv U), then x* € 3., ,(R) = Fz+ I Thus (ad x)” = ad(x*) is nilpotent.
By the Engel-Jacobson theorem J is nilpotent.

Suppose J#(0). Then 3(J)#(0) and (as solvU=J+Fz) 3(J) is a
U/(solv U)-module. Let M be an irreducible U/(solv U)-submodule of 3(J).
Then M is a nonzero ideal of U so, by our assumption, M cannot be nil.
Thus there exists xe M, for some a such that x’=z Let R=Fr+ Fz,
where r” =r. Assume (replacing » by an element of Zr if necessary) that
[7, x]=x. Let H denote the image of r in U/(solv U) and A, B denote root
vectors in U/(solv U) with respect to FH satisfying [4, B]=H. Leta, be U
be root vectors such that A =a+solv U, B=bh+solv U. Let h=[a, b].
Then h=r+ uz+n, where pe F and nel Let de Fsatisfy u# — A — u=0.
Then [a—A[a,x], b—Alb,x]]=[a b]—Al[a, b)), x]=h—A[h x].
Since /< J and [J, x] =0 we have {h, x]=rx=x. Thus [U, U] contains
h—Ax.

Write h—Ax="h"=h,+ h,, where A, is semisimple and 4, is nilpotent.
Then R’ = Fh,+ Fz is a two-dimensional torus and R'n ([U, U] +I') con-
tains h;. It is therefore enough to show that (k))’=h, (for then
R~ ([U, U] +7T) is restricted), hence enough to show that (h')” — 4’ is nil.
Now (B'Y =(h—Ax)? =h" — IPx* + 3 s,, where is, is the coefficient of v/~ !
in (ad(vh—Ax))? ' h=(ad(vh— Ax))" "2 (Ax)=v? " 2ix. Thus (h')’ =h*—
Az—ixand so (W'Y —h =P +p’z+n" —APz—Ax)— (r+pz+n—IAx)=
rP—r+(W—AP—pyz+n”+n=n"+nel Thus (K'Y —h is nil, as
required. Thus if J# (0) the lemma holds, so we may assume that J = (0).

If J=(0) we have 3(U)=Fz and U/3(U)=sl(2). Thus U has basis
{a, b, r, z}, where Fz=3(U), 2=z, r"=vr, [r,a]l=2a, [r,b]= —2b, and
[a, b] =r+ puz, pe F. If a? # 0 we may assume (replacing a by a scalar mul-
tiple if necessary) that a’=z. Let AeF satisfy pu”?—A?—u=0. Then
[a, b+ (A2)r]=r+pz—2a and (r+uz—Aay=r"+uPz’ —A’z—Aa=
r+ uz— Aa. Thus R’ = F(r + uz — Aa) + Fz is a two-dimensional torus in U
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and r+puz—Aae R n[U, U] so R"'n([U, U]+1) is nonzero and restric-
ted. Hence we may assume ¢” = 0 and similarly we may assume that b” = 0.
Then consider a+b=[r,a—5b]/2e[U, U]. Also, (a+b)V=a’+b"=0
mod[ U, U]. On the other hand, the linear map ¢: U — sl(2) defined by
¢(a)=(34), ¢(b)=(%3), ¢(r)=(; 1), ¢(z)=0 is a homomorphism of
restricted Lie algebras with kernel Fz. Thus ¢((a+ b)Y —(a+b))=
(98 —1(83)=0s0 (a+b) =a+bmod Fz. Thus (a+b)’ =a+ b+ h, where
heFzn[U, U]=(0). Thus (a+ b)Y =a+b. Setting R'= Fla+ b))+ Fz we
have R'n([U, U]+ 1T} is restricted. This completes the proof of the
lemma. |

Now suppose that A satisfies (g) of Theorem 4.1.1, that is,
S< A< Der S, where S is simple, T< S, and T~ (S + ) is one-dimensional
and nonrestricted. Since S is simple, so S=[S,S], we have that
[S,,S_,] &I for some a. If a([S,,S_,])=(0) then Tn(S+I)=kera,
which is restricted, contradicting our hypotheses. Hence S is not solvable.
We may therefore apply Lemma 9.4.1 to U= T+ S™ <= § to obtain a two-
dimensional torus T"< U such that T"n([U, U]+ I') is nonzero and
restricted. But [U, U]< S so T"'n(S+ ') contains a nonzero restricted
subalgebra. Since 7" is two-dimensional this implies that "N (S+1I') is
restricted. Note that T’c U< S If T’ S+ 7 then A=S+1T, so A satisfies
Theorem 4.1.1(h) and hence (by Section 9.3) satisfies Theorem 9.1.1(h).
Thus S is restricted. But then as 7< S we have T< (S + /), contradicting
our assumption that (g) of Theorem 4.1.1 holds. Thus we must have
dim I"'n(S+7I')=1. By (f) of Theorem 4.1.1, S is one of W(1:2),
H(2:(2,1)), H(2:1: 4). Thus (g) of Theorem 9.1.1 holds and the proof
of Theorem 9.1.1 is complete.

10. ALL Roots CaN BE MADE PROPER

In this section we prove that if L is a restricted simple Lie algebra then L
contains a torus T of maximal dimension such that all roots with respect to
T are proper. We begin (Section 10.1) with some technical results about
Cartan decompositions of the algebra H(2:(2, 1))® analogous to the
results of Section 5.8. (These results will also be used in Section 11.) In Sec-
tion 10.2 we show that certain of the algebras of Theorem 9.1.1 cannot
occur as sections of L. In Sections 10.3 and 10.4 we show that if T is an
optimal torus (recall Definition 6.2.1) in L then I'(L, T)=1TI,(L, T).

10.1. We begin by investigating the Cartan decompositions of
H(2:(2,1)*.

481/114/1-16
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LEMMA 10.1.1. Let S=H(2:(2,1)?, ScAcDer S, and T be a two-
dimensional torus in A. Assume that A contains no tori of dimension >2. Let
xe A(A, T) and let t, be as in (5.8.1). Then:

a) Ift,¢S then A[a] 2 H(2 : 1),
b) Ift,e€S then A[a]=(0).
c) Ift,eS, then x*e S, for all xe A,.
d) A(A, T)=A4,(A, T) if and only if TS, +#(0).
() If aed(A, T), a¢Adp(A, T), xeA,, and o .€4,(A, e"(T)) then
A(A4, eX(T)) =4 p(A4, e(T)) (and so |4 (A, eX(T))| > 14 (4, T)|).

() If A(A, TY=A4,(A, T) then T &£ S and there exist e A(T) and
xe Ay such that A[B] =(0) and x" is not nil.

Proof. Write ¢ for t,, so that 4™ =3 ,(¢).

Since S does contain a two-dimensional torus (Corollary 2.2.3(b)), the
hypothesis that 4 contains no tori of dimension greater than two implies
that 4/S is nil. Hence T<§ and so we may assume, without loss of
generality, that 4 =S.

Now suppose ¢=a(ad Df) mod S, where O#aeF. Let Sy =
{EeS|[t, El=IE}. Then it is clear that grS, <3s((ad D,)?)=
span({Z2(x**2) | 0<i, j<p—1, (,j)#(0,0)} U {2(x*)}). Thus
3s((ad D;)?) is a p*-dimensional subspace of H(2 : 1) containing H(2:1)?
and so dim S, < p? for all /. Since S=37_ S, has dimension p* -2 we
see that dim S, =p? for some / and so gr S, =3s((ad D,)?) for this L
But then, since [S(,,, S,,1<S., .., we see that grS,,2H((2:1)? for
all k. In particular, grS,,2H(2:1)?. Thus by [Kac74, Wil76],
Soy2H(2:1:®) for some @ and so we have A[a]2H(2:1:®)?.
Then by Theorem 3.1.1 we must have 4[a]2 H(2:1)®, proving (a).

Now suppose t€ S, t¢S,. Since #* =t this implies that (after applying a
suitable automorphism) ¢=D, (modS;). Then gr(3s(¢))<S34(D,)=
span({2(x™) | 1 <i< p*— 1} U {D(x?)}). It is then clear that (34(1))o + F?
is a solvable ideal of codimension <1 in 34(¢). Hence 34(¢) is solvable, so
(b) holds in this case.

Suppose t€S,. Then if 7= (1+S,)eS,/S, =sl(2) we see that ad 7 is a
linear transformation of trace zero on the two-dimensional space S _,/S,.
Since t¢ .S, (for S, is nil), ad { acts nontrivially on S_,/S, and hence
3s(1) = S, and so 34(¢) = Fr+ S, is solvable. This proves (b) and (c) follows
since S, is restricted.

Now Syn A is a subalgebra of codimension <3 in A, Thus if « is
Hamiltonian (so f,¢ S), Son A + Ft, is a compositionally classical sub-
algebra of codimension <2 in 4. By Lemma 5.3.6 it is the unique sub-
algebra subalgebra with these properties. Thus, by Corollary 5.6.4, a
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Hamiltonian root « is proper if and only if TSS,nA™ + Ft, or,
equivalently, T Sy # (0). Thus if T S, # (0), every Hamiltonian root is
proper. Since (by (a), (b)) there are no Witt roots we see that
A(A, T)=4p(A, T). Conversely, if A(A, T)=A4,(A, T) and there is some
Hamiltonian root, then T n S, # (0), while if there is no Hamiltonian root
then every 7,€ S, so T< S. But as T is restricted this implies T< FD, + S,
so T'n Sy # (0). Thus (d) holds.

If aed(A, T), a¢ Ap(A, T), then (by (a)-(c)) « must be Hamiltonian,
so a, is also Hamiltonian. Since «, is proper, S, e™(T)#(0), so
A(A, e (T))=A4p(A, e*(T)). Thus (e) holds.

Now assume that A(A, T)=A4,(4,T) so S;nT+#(0). Since Son T is
restricted there is some root f vanishing on S,n 7. Write Son T= Fu.
Then ad(u + S,) is a nonzero linear transformation of trace zero on S/S,,
50 35(u) = S,. Since S,/S, =sl(2) and S, is nil this implies 7 ¢ S. Hence
there is some ve T with v”=v and v=a(ad D,y mod S, a#0. We have
seen above that if S,,={E € S| [v, E]=IE} then gr S, 2 H(2:1)® for
any /, in particular for /= f(v). Then u+ S, e gr S;. Since u is not nil this
shows that 4, contains a nonnil element, proving (f). |

10.2. We now show that certain of the toral rank two semisimple
algebras of Theorem 9.1.1 cannot occur as sections of a simple Lie algebra.
If 4 is a semisimple restricted Lie algebra with maximal torus 7 and if
aed(A, T), we define A{a} to be the subalgebra of 4 (in fact of 4A™)
generated by 7' 4,,.

LEMMA 10.2.1.  Let A be a restricted semisimple Lie algebra containing a
torus T of maximal dimension. Assume that T is standard (so 3 (T)=T+ 1,
where [ is a nil subalgebra of 3 ,(T)) and that dim T < 2. Assume further that
there exist o, fe A(A, T) and x € A{a} N 3,(T), such that a(x)=0, f(x)#0,
and x([Ayz, A _y1)#(0). Then:

(a) dim T'=2.
(b) If M is a nonzero restricted ideal of A then T< M.
(c) A is one of the algebras listed in (e)-(h) of Theorem 9.1.1.

Furthermore, if xe A{a} N3 T) then:

(d) If M is a nonzero ideal of A then TS M + L.
(e) A is one of the algebras listed in Theorem 9.1.1(h).

Proof. Since « and f are linearly independent (as a #0 and a(x)=0,
B(x)#0) we have dim 7> 2, so dim T=2. Thus (a) holds.

Now let M be a restricted ideal in A. If a(3,,(7))=(0) then Mg+ A,
(since a([Az, A z])#(0)). Therefore f(34(7))=(0) and so (since «, f
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are linearly independent) 3,,(7)</ Then the Engel-Jacobson theorem
implies that M is nil. Since A is semisimple this implies M = (0). Thus if
M#(0) we have a(3,(7))#(0) so A{e} =M and hence xe M. This
implies B(34(T))#(0), so [Az, A g]1= M. But (as dim T=2) 3(7)=
Fx+[Ag, A 4]+ 1s0 A= M+ 1 Since M is restricted, Lemma 1.8.2 shows
that T< M. Thus (b) is proved.

Observe that the algebras of (a)-(c) in Theorem 9.1.1 each contain a
restricted ideal not containing T (S, in case (a), 4 n ((Der S)® B,) in case
(b), Sin case (c)). If Ais as in (d) then Ay, A ;< S®B,s0 [A5, 4 ;)<
3s@sT) <1, contradicting a([Az, A_4])# (0). Thus A cannot be one of
the algebras of (a)-(d) in Theorem 9.1.1. This proves (c).

Now suppose xe€ A{a} n3(T). If M is a nonzero ideal in A then M is a
nonzero restricted ideal, so A=M+1 Then A{a}, [A;. A g]=M so
Fx+[Ag, A_y1< M and hence 4= M + I. This proves (d). If 4 is one of
the algebras of (e)-(g) in Theorem 9.1.1 then S is a nonzero ideal with
S+ I# A. Thus 4 cannot be one of these algebras, so (¢) holds. |

CoRrROLLARY 10.2.2. Let L be a restricted simple Lie algebra and T be a
torus of maximal dimension in L. Let ae A(L, T) and ue L{a} n3,(T).
Assume that a(u)=0 and u¢l. Then there exists fe A(L, T) such that
B(u)#0, a([Lg, L_5])#(0) and L[a, B] is one of the algebras listed in
(e)-(h) of Theorem 9.1.1. Furthermore, if ue L{a} n3,(T) then L[a, B] is
listed in (h) of Theorem 9.1.1.

Proof. Schue’s lemma (Lemma 1.12.1) shows that 3,(7)=
2 wwo [Ly, L_.]. Since a(3,(T)) # (0), the required B exists. Then apply-
ing Lemma 10.2.1 to A = L[, f] (noting that the hypotheses on ¥, ;T are
satisfied in view of Proposition 1.7.4 and replacing x by ¥, ,u) gives the
result. ||

LemMMA 102.3. Let L be a restricted simple Lie algebra and T be a torus
of maximal dimension in L. Let aedx(L, T), x,yeL,. Suppose that
x, ye M, where M is a compositionally classical subalgebra of codimension
<2 in L™, and that a((ad x)? ~' y)=0. Then (ad x)* "' yel

Proof. Suppose (ad x)?~! y¢ I Then applying Corollary 10.2.2 (with
u=(ad x)” ' y) we see that for some  we have that L[a, f] =S, where S
is classical, W(2:1), S@: 1Y, H(4:1)Y, or K(3:1). Furthermore,
B((ad(¥, 5x)Y ' (¥, y))#0. This is clearly impossible if S is classical
(for then Za N A(S, T)= { +a}). We claim that ¥, zx, ¥, sy € L[a, B]o. If
o is solvable or classical this follows from Lemma 5.8.2(d). If o is Witt or
Hamiltonian we note that x, y € M, a compositionally classical subalgebra
of codimension <2 in L®. Thus ¥,zx, ¥,;ye¥,s3(M), a com-
positionally classical subalgebra of codimension <2 in L[« 8]. By
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Lemma 5.8.2(f), (L[a, f]1*)o + ¥, solv L™ is a compositionally classical
subalgebra of codimension 1 in L[a, $] if « is Witt and of codimension 2
in L[«, p1* if « is Hamiltonian. Then, by Lemma 536, ¥,,x,
¥Y.pye(Llo, B1™)+ W, zs0lv L. By Lemma 5.82(e), (L[a, f1™)o+
¥, psolv L® < (Lo, 1)y + ¥, 3T and since a is proper, Corollary
5.8.2(g) shows that [V, ,T, (L[« f1)o] = (L% B1). Thus ¥, ,x,
¥.pye(Lla, B1™),. This contradicts Lemma 5.8.5. |

CoroLLARY 10.24. Let A be a restricted semisimple Lie algebra.
Assume all two-dimensional tori in A are maximal and standard. Let T be a
two-dimensional torus in A, o€ A(A, T), x,ye A,, a((ad x)’ ' y)=0, and
(adx)?~'y¢l Let M< A™ be a compositionally classical subalgebra of
codimension <2. Assume x, ye M. Then A cannot be a rank two section
(with respect to a torus of maximal dimension) of a restricted simple Lie
algebra.

Proof. 1f A were a rank two section of a restricted simple Lie algebra L,
say A=Y ;L, then (Lemma 1.7.2(b)) there would be a torus R of
maximal dimension in 4 such that T'= ¥, ;R. Then we may extend a, f to
elements of R* vanishing on Rnker ¥, ; so that A =¥, ;L. Then Lemma
10.2.3 gives the result. ||

CoroLLARY 10.2.5. Let A be a restricted semisimple Lie algebra
satisfying S® B, A< Der(S® B,), n>0, A/(An ((Der S)® B,)) not nil,
S=sl(2), W(1:1), or H(2:1)®. (That is, let A be one of the algebras of
Theorem 9.1.1(b).) Assume A is a rank two section (with respect to a torus of
maximal dimension) of a restricted simple Lie algebra. Then n < 2.

Proof. Since S® B, is a restricted ideal which is not nil, it contains an
element £ # 0 satisfying h” = h. Since (4 + ((Der S)® B,))/((Der S)® B,) is
not nil and [h, A]1= S® B,, we have that 3,(h)/Fh is not nil. Thus 3 ,(k)
contains a torus of dimension >2. Since A is a rank two section of a
restricted simple algebra, 3 ,(4) contains no tori of dimension greater than
2. Hence (by Theorem 3.1.1) 3,(h)/(solv 3,(h)) is (0), sl(2), W(1:1) or
contained between H(2:1)® and H(2:1). Then (Lemma 5.3.6) 3,(h)
contains a unique compositionally classical subalgebra M of minimal
codimension, dim(3,(h)/M) <2, and M contains a two-dimensional torus
containing A. Furthermore, M is restricted.

Let J=8S®(x;B,+ --- +x,8B,). We claim that dim 4/N ,(J)=n. Since
dim(Der(S® B,)/Npes@5,(J)) =n it is clear that dim A/N ,(J) <n. Now
N ,(J) stabilizes J™P~ il S®xP~'...xP~1 Since N ,(J)is a restricted sub-
algebra of 4 we see that if A=3!_, Fu;+ N ,(J) then the ideal of A
generated by J"# D is u(A4) JMP D grlr-D-lr=Y [f [ < p this ideal is
contained in J and hence is nil, contradicting the semisimplicity of 4. Thus
we must have /> n so dim A/N ,(J)=n.



236 BLOCK AND WILSON

Since 4 =3,(h)+ S® B, this implies that
n < dim(M/N,(J)) + dim(3 ,(h)/M). (10.2.1)

If ue A write u' for the image of u in Der(S® B,)/((Der S)® B,) =
Win:1).

Now N, (J) is a restricted Lie algebra containing the central torus Fh.

Suppose that n>2 and that Fh is not a maximal torus in N,(J), so
N,(J) contains a two-dimensional torus R = Fr+ Fh, where r=r". Then
(10.2.1) shows that M # N ,,(J) and so we may find Ee M, E¢ N,,(J) such
that E is either a root vector (with respect to R) or an element of 3,(R).
Then as r stabilizes J we may assume (Theorem 1.3.1(b)) that x, .., x,, are
eigenvectors for r’, say r'x,=c;x;, where ¢, .., c,€ Z,. We may also write
E=Y"_,a,D; mod N ,(J) and may assume, without loss of generality, that
a;=1. Now [r, E]=bE (beZ,) so [+, E']=bE" Thus [r,E']}x, =
rEx,—Er'x;= —c,=b (mod(x,B,+ --- +x,B,)). Definexe R* (a=01is
a possibility) by «(h)=0, a(r)=>b. Then E€ A, and x{~'-he A,. Clearly
(ad E)y»~' (x2~'.h)= —hmod J so (ad E)* ' (x,~'-h)isnot nil. If =0
this contradicts the fact that R must be standard. If b# 0 this contradicts
Corollary 10.2.4. Thus this case cannot occur.

Now suppose n>2 and Fh is a maximal torus in N,(J). Then M con-
tains a two-dimensional torus R = Fr + Fh with r=¢" and r ¢ N,,(J). Sup-
pose M # Fr+ N,,(J). Then there exists an element E€ M, E¢ Fr+ N (J)
such that E is either a root vector (with respect to R) or an element of
34(R). By Theorem 1.3.1(a) we may assume r'=(x, + 1) D,. We may also
write E=3Y"_, a,D; mod N ,(J) and may assume (since E¢ Fr+ N,(J))
that a,=1. Now [r, E]=bE for some beZ,. Define ae R* (a=0is a
possibility) by a(h)=0, a(r)=>b. Then E€ 4, and (x,+1)" x5 ' heA,.
Clearly (ad EY ' ((x,+ 1)* x5~ '-h)= —h mod J so (ad Ey' ' ((x; + 1)
x5~ '-h) is not nil. If »=0 this contradicts the fact that R must be stan-
dard. If b #0 this contradicts Corollary 10.2.4. Thus this case cannot occur.

Finally, suppose that n> 2, Fh is a maximal torus in N,,(J), R=Fr+ Fh
is a two-dimensional torus in M with r=r", and that M= Fr+ N,(J).
Thus dim M/N,,(J)=1 and so (recalling dim(3,(h)/M <2) (10.2.1) shows
that dim(3,(h)/M)=2. By Lemma 1.11.1 this implies H(2:1)* =3 ,(h)/
solv(3 4(h)) < H(2 : 1) and M/solv(3,(h)) = (3.4(h)/solv(34(h)))o. Therefore
M/solv M = sl(2). Since Fh is a maximal torus in the restricted subalgebra
N, (J) and he3(M), the Engel-Jacobson theorem shows that N,(J) is
nilpotent. Hence N ,,(J)+ solv M is solvable. Since M is not solvable and
dim M/N,,(J)=1 we see that N, (J)2solv M. Then N,(J)/solv M is a
two-dimensional nilpotent subalgebra of sI(2). Since sl(2) has no such sub-
algebra, this case cannot occur and the proof is complete. |

10.3. We now assume that A is one of the algebras of Theorem
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9.1.1 excluding case (b) or is one of the algebras of Corollary 10.2.5. We
show that if 4 has an improper root relative to T, it is possible to switch to
a torus with respect to which 4 has more proper roots.

LemMa 10.3.1. Let A be a finite-dimensional restricted semisimple Lie
algebra over F. Assume that all tori of maximal dimension in A are two-
dimensional and standard. Let T be a two-dimensional torus in A. If
S®B,cA<Der(S®B,), n>0, and A/(A ~ ((Der S)® B,)) is not nil (ie.,
if A is one of the algebras of Theorem 9.1.1(b)), assume that n<2. Let
0ed(TYy—Ap(T) and xe A,. Assume a.€ Ap(e™(T)). Then |Ap(e™(T))| >
|4 p(T)I.

Proof. Since A satisfies the hypotheses of Theorem 9.1.1 it is sufficient
to prove the result for each of the aigebras listed in cases (a)-(h) of that
theorem.

Suppose A4 is one of the algebras listed in (a) of Theorem 9.1.1. Thus
S +S,c4<Der(S,+S,), where S,, S, are among sl(2), W(l:1),
H(2:1)?. Thus S, and S, are nonnil restricted ideals and so T S;# (0)
for i=1,2. Hence T=Ft, + Ft,, where t;€ S, and 7 =1, Define a, by
alt;)=0; for i, j=1,2. Then A(T)< Zx, U Za,. We may assume, without
loss of generality, that ¢ =«,. Then xe A, [, A]< S, so E*(t,)=1,
and [x, 4,15, nS,=(0) for 1<j<p—1. Then by Proposition 1.9.3
we have A, =4, for 1<j<p—1 Since (a,), (1) =(a,), (E’t))=
ay(t7) = Elax(xP)) ay(2;) = ax(r;) we have (ay), ([A4 (s A (. ]) =
Ux([Aj,, A o, 1) forall j, 1< j< p—1. Thus (a,), is proper if and only if «,
is proper, and the lemma holds in this case.

Next suppose that 4 is one of the algebras listed in (b) of Theorem 9.1.1.
Thus S®B,cA4<Der(S®B,), n>0, and A/(4~((Der S)® B,)) is
not nil. Then T=Ft +Ft,, where t2=1t,, t5=1t,, t,¢(DerS)®B,,
and 1,e(S®B,). Define «, for i=1,2 by afs,)=06, Set J=S®
(x;B,+ -+ +x,B,). Assume that n< 2.

Suppose first that T & N ,(J). Then by Theorem 1.3.1(a) we may assume
that 7, =(x;+1) D, mod((Der S)® B,). Let §§ be a root, $¢Za,. Then
B(t;)#0 and so 4,<S®B,. Then (x,+1)-A,= Az, , and (since
(x;+1)’=1) the map 6: Ay — A;,,, defined by O(u)=(x,+1)-u is a
bijection. Then the linear map @: 4¥’ » 4 *=) defined by @ | ,, =6’ is an
isomorphism of Lie algebras fixing 7. Thus f is proper if and only if 8+ «,
is proper, and hence, for any ieZ, f is proper if and only if f+ix, is
proper.

Now suppose a ¢ Za,. By hypothesis « is improper, so by the above
remark f is improper for every B ¢ Za,. Since a,(Tn(S® B,)) = (0) we see
by the Engel-Jacobson theorem that (S® B, )™ is solvable. Hence A[«,]
is a quotient of 4/(S® B,,). Since xe S® B, E* induces the identity map
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on A/(S® B,). Thus A[x;]=~ A[(«,).] by an isomorphism mapping ¥, T
to ¥, T and so a, is proper if and only if («,), is proper. Thus the lemma
holds when o ¢ Za,.

If «eZa, and P is improper for some f¢Za,, then every root is
improper so the lemma holds vacuously in this case.

Thus we may assume that o e Za, and that f§ is proper for every f
Zo,. Let n, denote the homomorphism of restricted Lie algebras
of (S®B,)*=*™) into S obtained by composing the inclusion
(S®B,)*+*™cS®B, and the isomorphism S=(S® B,)/J. Since
(1 + DY Apoy s iy = Akimp+ i+ yuy WE see that the images of ng, ... 7,
are all the same. Since S® B, =3, 42+ ™) we see that § is the sum of the
images of the 5,. Hence each #, is surjective. Since every f € Za, is proper it
follows that the roots of S with respect to Fh, where h=1,+J, are all
proper. Now let n; denote the homomorphism of restricted Lie algebras of
(S® B,)2=+i=09 into  § obtained by composing the inclusion
(S® B,)2x+iedc S B, and the isomorphism S=(S® B,)/J. Since
xe A, and o,(1,) =0 we have t,€e*(T) and so ¢*(T) maps onto Fh. Since
the roots of S with respect to Fh are proper and since the kernel of #; is a
nil ideal, the roots of (S® B, )2+ 1) are proper for every i. Thus f_ is
proper for every B¢ Za,, hence for every root . This gives our result in
this case.

Now suppose that T< N ,(J). Since n<2 and (S® B,)™ is solvable we
see that N ,(J)n A is a compositionally classical subalgebra of codimen-
sion <2 in 4. Then Corollary 5.6.4 shows that «, is proper. Thus a ¢ Za,
and so A,=S® B,. Hence xe S® B, and so e*(T)= N 4(J). Since f ¢ Za,
implies Az, S®B, we see that A4,(4, T)=4,(T+S®B,, T) and
similarly A p(A, e*(T))=A4p(e*(T)+ S® B,,, e*(T)). Let ¢: N (J)—> Der S
be the homomorphism of restricted Lie algebras defined by

ou)s)=[u,s]+JeS®B,/J=S

for ueN,(J), seS. Let U=ker¢|,. Suppose f(U)#(0). Then
(S®B,)s=[u,(S®B,);1<J and so fe4,(T+S®B,, T). This implies
a(U)=(0) and so B (E*U)=p(U). Thus f,edp(e’(T)+S®B,, e*(T))
whenever B(U) # (0). Then if U # (0) we see that a, € 4 (4, e*(T)) implies
Ap(A, e*(T))= 4(A4, e*(T)) and so our result holds in this case. Thus we
may assume U= (0) and so Der S contains a two-dimensional torus ¢(T).
Thus H2 :1)P = d(T)+S<HR:1), Ap(A, T)=Ap(HT)+ S, (7)), and
Ap(A, eX(T)) = A p(e*P¢(T) + S, e?@¢(T)). The result (in this case) now
follows from Lemma 5.8.6.

Now suppose that Sc A< DerS, where S=H(2:1)?®, W(:2),
H2:1:9(p)", HQ2:1:4), or W(2:1). Then A< W(2:1), so any two-
dimensional torus in A4 is equal to its centralizer. Thus Proposition 4.9 of
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[Wil83] applies and gives the result. This shows that the result holds in
cases (c) and (e) of Theorem 9.1.1 and in some situations in the remaining
cases.

Suppose that (d) of Theorem 9.1.1 holds. Thus S®B,cA4<
Der(S® B,), A/(An ((Der S)® B,)) is nil, and 354 5. (7T) < I. Then any root
with respect to T is proper and so the conclusion of the lemma is
{(vacuously) true in this case.

Since the result clearly holds if A is classical (for then all roots with
respect to any torus are proper), we are left only with the cases
ScAcDerS, S=H2:(2,1)?%, and 4=83: 1)V, H4: 1)V K3 :1).
The first of these cases is covered by Lemma 10.1.1(e) and the rest by
Corollary 5.8.4. |

104. We now prove the main result of Secton 10. Recall the
definition (Definition 6.2.1) of an optimal torus.

PROPOSITION 10.4.1. Let L be a finite-dimensional restricted simple Lie
algebra over F. Let T be an optimal torus in L. Then all roots with respect to
T are proper.

Proof. 1If not then there exist a e A(T)— Ap(T) and xe L, such that
a.€dp(e*(T)). Let X denote Z4, the subgroup of T* generated by 4. Let
~ denote the equivalence relation on X defined by f~7v if and only if
Zo+ZB=Zo+Zy let Y be a complete set of representatives of
equivalence classes for ~ containing 0. Then it is clear that

AP(L’ T):AP(L(a)s T)
v U LD, T) = 4,(L™, T))

Bey—{0}

=4p(L[x], ¥,T)
v U (Ll B, ¥,y T)— 4L, T)).

Bev— (0}
We also have the corresponding expression for 4 .(L, e*(T)). Now
|[4p(L[a], ¥, T)| <|dp(L[2.], ¥, e*(T))|
by hypothesis. Furthermore,
|4 p(LLo, B), ¥, s T)— 4 p(L[a], ¥, T)|
<l4p(Liay, B.), ¥y, 5.65(T)) — A p(L[a ], ¥, e (7))l

by Lemma 10.2.5 and Corollary 10.3.1. Therefore |4(T)| < |4 p(e*(T))I.
This contradicts the optimality of 7. Hence the proposition is proved. ||
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11. SECTIONS OF A SIMPLE ALGEBRA

In this section we will show that certain of the semisimple algebras listed
in Theorem 9.1.1 cannot occur as a section L[«, §], where L is a restricted
simple Lie algebra over F.

Throughout this section we will let L denote a finite-dimensional restric-
ted simple Lie algebra over F and T denote an optimal torus in L. By
Proposition 10.4.1 every root of L with respect to T is proper.

11.1. We first need to accumulate some fairly detailed information
about the Cartan decompositions of the algebras which occur in (e)}-(g) of
Theorem 9.1.1. These results are analogous to the results of Sections 5.8
and 10.1.

LemMa 11.1.1. Let S=W(1:2), A=15, and let T be a two-dimensional
torus in A. Let aoe A(A, T) and let t, be as in (5.8.1). Then:

(a) Ift, ¢S then A[a]= W(1:1).
(b) Ift,eS then A[a]=(0) and x* € S, for all xe A,.
(c) TZS.

(d) If 4(A, T)=4p(A, T) then there exists fe A(T) and xe Ay such
that A[B]=(0), and x* is not nil.

Proof. Write ¢ for ¢,.

Suppose t¢.S. Then we must have t=a(ad D,)” + b(ad D) mod S, for
some nonzero a, be F. Let Q =span{x*D, | j> p}. Clearly Q contains no
eigenvectors for ¢ Since (ad 1)’ —(ad 1) =0 we have S=3%7_/ S, where
Sy={EeW(1:2)|[t, E]=IE}. Since S;n Q= (0) we have dim S, <p
for all I Since dim S=p*> we have dim S,,=p and S=5,,+ Q for all /.
Since Q=3S, , this implies gr S, = W(1:1). Then S, contains a sub-
algebra of codimension one and S, is simple (for if (0)#J is a proper
ideal in S, then grJ<grS,, is a proper ideal in gr Sq)). Thus (by
[Kac74] or [Wil76, Theorem 1]) S, = W(1:1). Thus (a) holds.

Now suppose r€S. Then (after multiplication by a suitable integer)
t=x,D, mod S, and so 34(t) = S,. Since S, is solvable, 34(¢) is solvable.
Since [S, S]< S this implies 35(¢) is solvable. Hence A[a] = (0). Further-
more, A, S SN 35(1)=3s(t) = S,. Since S, is a restricted subalgebra of §
we see that if xe 4, then x” € S, proving (b).

If T= S then T S, #(0) (as dim S/Sy=1). As dim S,/S; =1 and S, is
nil we have Sy=(TnSy)+ S,. Consequently S=T7T+S, and [S, S,]c
[T+ S, (TN Sy)+S,]1<S,, contradicting the simplicity of S. Thus (c)
holds.

Since T ¢ S and T is spanned by {z,]|yeA(T)} we see that there is



RESTRICTED SIMPLE LIE ALGEBRAS 241

some yeA(T) such that ¢ ¢S. By (a) we have that y is a Witt root.
Therefore Lemma 5.3.6 shows that 4 contains a compositionaily classical
subalgebra of codimension 1 which contains every compositionally classical
subalgebra of codimension <2. Therefore this subalgebra contains
Son A" and since y is proper, Corollary 5.6.4 shows that it also contains
T. Thus TnSg#(0) so TnS,= Fr, where r’ =r. Let fe A(A4, T) satisfy
B(r)=0 and let xe 4;. Since [r, x]=0 we have xeS,. If x” is nil then
xe S, (for Sy/S, is a torus). But xe S, and [r, x] =0 implies x€ S, and (as
T & S) this implies x =0. Thus for any 0 # x e A, we have that x” is not
nil. Since A[f]=(0) by (b), (d) is proved. |

LEMMA 11.1.2. Let S=H(2:1:d(y)V, A=S8, and T be a two-dimen-
sional torus in A. Then:

(a) 3.T)=T, TnS=(0), and A[a]=(0) for every a e A(T).
(b) There exist some ae A(T) and x € A, such that x is not nil.

Proof. By Corollary 1.3.2 we have 3,(7T)=T7. We must have T & S,
since otherwise Theorem 9.1.1(h) would contradict S=H(2:1:®(y))".
Then (since S is not restricted) by Lemmas 4.6.4, 472, and 4.8.1 of
[BW82] we see that A has p°~ 1 roots, each of multiplicity one. But
dimS=p>—1 so TnS=(0) and S¥=Y%7-'4,. If yeS,, ady is
nilpotent on S, so by the Engel-Jacobson theorem S is nilpotent,
hence solvable. Thus A[a]=(0), proving (a).

Finally, S=3,.,,S,. Since S is not nilpotent, then Engel-Jacobson
theorem implies that there is some x e A(7T') and some x € S, such that x is
not nil. ]

LemMma 11.1.3. Let S=H(2:1:4) and A=8. Let T be a two-dimen-
sional torus in A. Assume that all roots with respect to T are proper. Then:

(a) T A,.

(b) If A™ & A, then A[a]=~W(1:1). Hence if Ala]z=sl(2) or
A[a]=(0) and xe A, then x*=0.

Proof. As in the proof of the previous lemma, we have that 3 (T)=T,
that T & S, and that 4 has p> — 1 roots, each of multiplicity one. Now (by
Theorem 1.3.1(c)) we may assume (replacing A by &4 for some
DeAut W(2:1)) that T is one of span{(x,+1)D;, (x,+1)D,},
span{(x, +1) D, x,D,}, span{x, D, x,D,}.

Suppose T'=span{(x;+1)D,, (x;+1)D,}. Then as every root a is
proper, Corollary 3.8 of [Wil83] shows that for any root a either
Ala]=(0) or A[«] =sl(2) and therefore 4, < K, (W(2:1)) for at least
p—3 values of i, 1 <i<p—1. Thus (0)#A4,,=K, (W(2:1)) for some i.
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Then by Lemma 3.7(f) of [Wil83], AZK(W(2:1))=Y,.c K(W(2:1)),
a (p*—1)-dimensional T-invariant subalgebra of W(2:1). Thus
A=T+K(W(2:1)) so S=AV < K(W(2:1)). This contradicts the fact
that dim S=p? Hence T=span{(x,+1)D,, (x,+1)D,} is impossible
and so T'nAy#(0). Therefore T A, contains an element ¢, satisfying
t? =1, (0). Suppose T & A,. Then ad(t; + 4,) annihilates an element of
AfA,, hence is a rank one transformation. We may therefore assume
(replacing ¢, by @¢;, and 4 by &4 for some PeAut(H(2:1)) that
ty=x,D, or x,D, mod W(2:1),. Then gr 34(¢,)=span{2(x;x}) | 0<i<
p—1}if t;=x,D; or span{P(xix,) | 0<i<p—1} if t=x,D,. In either
case grig(¢,)= W(1:1) and so 34(¢,)= W(1 :1). Then since all roots are
proper we must have (Proposition 1.7 of [Wil83]) that Tn.S< A4, and so
T < A,, contradicting our assumption. Therefore T< 4, and (a) is proved.
Our computation of A[«] also shows if 4 & 4, then A[a]=x W(1:1).
Thus A[a] 2 (0) or sl(2) implies A<= A4,. But 4, is a nil ideal in 4, and
Ag/A; =sl(2), so if xe A, we have x” =0. This completes the proof of the
lemma. |

11.2. We now show that only certain of the algebras listed in
Theorem 9.1.1 can occur as a rank two section of a restricted simple Lie
algebra.

LemMA 112.1. Let M be one of the algebras listed in Theorem
9.1.1(e)}-(h). Let T be an optimal torus in M (so A(M, T)=A4p(M, T)) and
MM, T)< Zo+ ZB. Suppose M[a]=(0) and that, for some xe M,, x" is
not nil. Then ye A(M, T) and y(x*)# 0 imply that a([M,, M _,1)=(0).

Proof. If M is classical then M[a]=(0) implies M,=(0). Thus M
cannot be classical. Corollary 5.8.3 shows that M cannot be one of the
nonclassical algebras of Theorem 9.1.1(h). Thus we may assume SSM <
Der S, where S is one of W(1:2), H(2:(2,1)?®, HQ2:1:®(y)",
H(2:1:4)

If S=H(2:1: 4) then by Proposition 2.1.8(c) we have M = S. But then
Lemma 11.1.3 shows S= H(2:1: 4) is impossible.

If S=H(2:(2,1))? then by (d) and (f) of Lemma 10.1.1, TnS=Tn
Sy #(0). If M[a]=(0) then t,eS (where 1, is as in (5.8.1)) by Lemma
10.1.1(a). Thus (T~ S)=(0) and so, as S, is restricted (Lemma 2.1.7),
a(3s5(T)) = (0). Thus a([M,, M _,])=(0) for all y and our result holds.

If S=W(1:2) then, as S=Der S (cf. [Wil7la, Lemma 4]), we have
M =35 Hence Lemma 11.1.1 shows that since M[a] = (0) we have x” € S,.
Since x” is not nil, x”¢ S, and so (as dim So/S,=1) So=Fx”+S,. But
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a(x?)=0 (by Lemma 1.8.1) and S, is nil, so a(35,(7)) = (0). But we have
3s(T)=35,(T), for otherwise [S,So]=[3s(T)+ Sy, FX*+S,]=S,, con-
tradicting the simplicity of S. Thus a([M,, M __1)=(0) for all y and our
result holds.

Finally, if S=H(2:1:®(y))® then S=Der S and so M =S Then
Lemma 11.1.2 shows that 3,,(7) n S = (0) for all y. Hence our result holds
in this case as well. |

COROLLARY 11.2.2. Let L be a restricted simple Lie algebra and T be an
optimal torus in L. Let o€ A(L, T). If L[a]=(0) and xe L, then x” is nil.

Proof. 1 not then (as «(x”)=0 by Lemma 1.8.1) Corollary 10.2.2 (with
u=x") implies there exists fed(L,T) such that pB(u)+#0,
a([Lg, L_g1)#(0), and L[a, B] is one of the algebras listed in Theorem
9.1.1(e}-(h). Lemma 11.2.1 shows that this is impossible. |

COROLLARY 11.2.3. Let L be a restricted simple Lie algebra. Let T
be an optimal torus in L and o, fed(L,T). Let A=L[a, B] and
yed(A, ¥, 4(T)). Suppose A[y]1=(0) and x€ A,. Then x* is nil.

Proof. We may assume (replacing «, B by different generators for
Zo + Zp if necessary) that y is the element of ¥, 4(T)* induced by «. Then
A[y]=(0) implies L[a]=(0), so by Coroliary 11.2.2, y? is nil for all
yelL,. Since ¥, 4 L™? 5 4 is a surjective homomorphism of restricted
Lie algebras, our result follows. |

PROPOSITION 11.2.4. Let L be a restricted simple Lie algebra over F. Let
T be an optimal torus in L. Let o, fe A(L, T). Let A= L[, 8. Then one of
the following occurs:

(a) S, +S,cA4<(DerS,)"V+(Der S,)", where S,, S, are distinct
ideals in A and each is isomorphic to one of s1(2), W(1:1), H2:1)».

(b) S®B,cA<Der(S®B,),n=10r2, ¥,4T) & (Der S)® B, S
is one of sl(2), W(1:1), H2:1)®, and S®(x,B,+ --- +x,B,) is
invariant under ad W, 4(T).

(¢) HR:1)® 4+ Fx,D,c A<Der(H(2:1)?).

(d) A=S, where S=H(2:1:4).

(e) A=S, where S is one of the following simple algebras: A,, C,,
G,, W(2:1), SG: 1), H4: 1)WY, K(3:1).

Proof. We know that A4 is listed in Theorem 9.1.1. If 4 is listed in (a),
(c), or (h) of that theorem, then it is also listed here (in (a), (c), or (e)).
Suppose 4 is listed in (d) of Theorem 9.1.1. Then, since 3sq, 5,( ¥, 5(T)) is
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nil and S® B, is not nilpotent, the Engel-Jacobson theorem shows that for
some ye 4(A4, ¥, 4(T)) and some xe€ 4,, x” is not nil. Furthermore, since
[4,,4 1S35¢5,(¥.5(T)) we have A[y]=(0). This contradicts
Corollary 11.2.3.

Next suppose S< 4 < Der S. If S= W(1 : 2) then (as S= Der S) we have
A=S and Lemma 11.1.1(d) and Corollary 11.2.3 give a contradiction.

If S=H(2:(2,1)® then Lemma 10.1.1(f) and Corollary 11.2.3 give a
contradiction.

If S=H(2:1:®(y))?® then Lemma 11.1.2(b) and Corollary 11.2.3 give a
contradiction.

It remains to show that if 4 is one of the algebras of Theorem 9.1.1(b)
then A satisfies (b) of the proposition. Since n<2 by Corollary 10.2.5,
we need only show that S® (x,B,+ --- +x,B,) is invariant under
ad ¥, 4(T). If not we may find ¢,,1,€ ¥, ,(T) satisfying tf=1,, tJ=1,,
t,¢ (Der S)Y®B,, and t,e S® B,. By Theorem 1.3.1(a) we may assume
that ¢, = (x; + 1) D, mod(Der S)® B,. We may assume, replacing {o, §}
by another base for Za+ Zf if necessary, that a(z,)#0 and a(z,)=0.
Then ((x,+1)-t,)’=t,. Furthermore, (x,+1)-1,eso0lv(4®). Choose
ve L, (solv L™) such that ¥, ;o= (x,+1)-1,. Then v” is not nil. Then
by Corollary 1022 we may find yed(T) so that y(")#0,
a([L,, L_,]1)#(0), and L[a, 7] is one of the algebras in parts (e)-(h) of
Theorem 9.1.1. Now as 7p(v”)#0 and vesolv(L®), we have
solv(L[«, y]*) # (0), which implies that L[a, y] cannot be classical. But
Corollary 5.8.3 shows L[a, y] cannot be any of the nonclassical algebras of
Theorem 9.1.1(h). Furthermore, if L[a, y]= H(2:1: 4) then (as every root
multiplicity is one in H(2 : 1: 4)) solv(L[a, 1) # 0 implies L[] = (0) or
5[(2). Hence Lemma 11.1.3 shows L[a,y] & H(2:1:4). But we have
already shown that none of the other algebras of Theorem 9.1.1(e)-(g) can
occur as L{a, y]. Thus S® (x,B,+ --- +x,B,) must be invariant under
ad ¥, 4(T). This completes the proof of the proposition. |

LeMMA 11.2.5. Let L be a restricted simple Lie algebra over F. Let
T be an optimal torus in L. Assume that S® B, < L[a, f]< Der(S® B,,),
where n>0, ¥, T) £ S®B,, S=sl(2), W(l1:1), or H(2: D and
S® (x,B,+ --- +x,B,) is invariant under ad ¥, 4(T). Let t,,1,eT
satisfy t0=1,, t5=1,, ¥, y(T)=span{¥, 4(¢,) | i=1,2}, ¥, 4(¢;)e S® B,
¥, 4(1,)¢ S® B,. Rename the roots so that a(t;)=0. Then Ll{a] is non-
classical (hence L[a]= W(1:1) or L[a] < H(2:1)). Furthermore, if L{a],
denotes the usual subalgebra of derivations of degree >0 in L[a] and (L),
denotes the inverse image of L[a], in L™, then S® (x,B,+ --- + x,B,) is
invariant under ad ¥, ;((L*),).

Proof. Since L[a, f] is semisimple, S® (x,B,+ --- +x,B,) is not
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invariant under ad ¥, B(L‘“’). Thus we may assume (renaming the roots if
necessary) that there is some xe L, U3,(T) such that ad ¥, 4(x) does not
stabilize S® (x,8B,+ --- +x,B,). Without loss of generality we may
assume that ¥, ;(x)= D, modulo the stabilizer of S® (x, B, + --- +x,B,).
If xe3,(T) then we have x, -1, €3,1,57 (¥, 5(T)) and [¥,4(x), x,-t,]1=
[Dy,x,-t;]=r,mod S®(x,B,+ --- +x,B,). Thus [V, s(x), x,-1,] is
not nil, contradicting the fact that 7 (being a maximal torus in a simple Lie
algebra) is standard. Thus we must have xe L,. This implies x4~ !-¢, ¢
L[a, y],nsolv(L[a, y]™). Let ye L, nsolv(L*)) satisfy ¥, 4(y)=x5 =" -1,.
Then ¥, ,((adx)’ 'y) = =W, 4(1;) mod S ® (x,B, + --- + x,B,) so
(ad x)’" 'y is not nil. It follows from Corollary 10.2. 2 that there is
some y such that y((ad x)* ~' y)#0 and L[a,y] is one of the algebras of
Theorem 9.1.1(h), necessarily one of the nonclassical algebras (since
(ad ¥, 4(x))?'#0). By Lemma 58.5 this implies that L{a,y], &

L[a, y]¢ and hence L[ «] is nonclassical by Lemma 5.8.2(d) and ¥ (x) does
not belong to the subalgebra A[a], by Lemma 5.8.2(f). ||

11.3. We now study the situation in which every L{a]=(0) or
s1(2).

LemMma 11.3.1. Let L be a (finite-dimensional restricted simple Lie
algebra over F. Let T be an optimal torus in L. Assume that L[o] = (0) or
sl(2) for all a. Then every L[a, B] is classical semisimple.

Proof. 1f L[a, ] has toral rank <2 then it is also L[y] for some
yeZa+ Zf and hence is classical semisimple by hypothesis. Thus we may
assume that L[, f] is one of the algebras listed in Proposition 11.2.4. If
L[, #] is listed in Proposition 11.2.4(a) then L{«, 125, + S,, where S|,
S, are restricted simple. Renaming the roots if necessary, we have
L{o]=2S8,and L[B]=S,. Hence S, =S5, ~sl(2) so L[a, B]=5l(2)Dsl(2)
is classical semisimple.

By Lemma 11.2.5, L[a, f] is not one of the algebras of Proposition
11.2.4(b).

Suppose L[a, f] is one of the algebras of Proposition 11.2.4(c). Then by
Theorem 1.18.4 of [BW82] we may assume ¥, 4(T) contains u=x,D, or
v=(x;+1)D;. As 3yp.1)(u)=span{P(x,x}) | 0<i<p—1}=W(1:1)
and 3y, . 1,(v) =span{2((x; + 1) x5) | 0<i<p—1} = W(1:1) we see that
L[, f] cannot be one of the algebras of Proposition 11. 24(c)

By Lemma 11.1.3(b), L[a, f] cannot be the algebra of Proposition
11.2.4(d).

If 4 is one of the nonclassical algebras of Proposition 11.2.4(e) and
A & A4, then A[«] is nonclassical by Lemma 5.8.2(d). Thus the lemma is
proved. ||
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CoROLLARY 113.2. Let L be a finite-dimensional restricted simple Lie
algebra over F. Let T be an optimal torus in L. Assume L[a] = (0) or sl(2)
for all a. Then L is classical.

Proof. This follows from Lemma 11.3.1 and Proposition 7.1 of
[Wil83]. 1|

12. CONCLUSION

In this section we let L be a finite-dimensional restricted simple Lie
algebra over F. If L is nonclassical we will construct a maximal subalgebra
L, such that the hypotheses of the Recognition Theorem (Theorem 1.2.2)
are satisfied by the pair (L, L,). Hence we have that L is of Cartan type
and the classification of the finite-dimensional restricted simple Lie algebras
over F (Theorem 12.5.1) is complete.

The key idea in our proof is the definition (Section 12.1) for a restricted
Lie algebra A containing a torus 7 of maximal dimension such that all
roots with respect to T are proper of a certain subspace Q(4)=Q(4, T). In
case A =L is simple we will use the results of Section 11 to show (Sec-
tion 12.2) that Q(L) is a subalgebra, that Q(L)= L implies L is classical,
and that Q(L) is a very “large” (see Lemma 12.2.3 for the precise
statement) subalgebra of L. Assuming L is nonclassical we then (Section
12.3) let Ly2Q(L) be a maximal subalgebra of L. We construct a
corresponding filtration and the associated graded algebra G as usual. It
follows (Section 12.3) from Lemma 12.2.3 that G{"/3(G{") is classical
semisimple and that the graded algebra G satisfies (1.2.3). Section 12.4 is
devoted to showing that G{"/3(G{") cannot have more than one summand.
This involves some detailed computations in }?_ _, G;. When this is done
we see (Section 12.5) that L satisfies the hypotheses of the Recognition
Theorem and so prove the main theorem (Theorem 12.5.1).

12.1. We begin by establishing a property of proper roots.

LemMMmA 12.1.1. Let A be a restricted Lie algebra and T be a torus of
maximal dimension in A. Assume that T is standard in A. Let o€ Ap(A4, T).
Then A contains a unique compositionally classical subalgebra of maximal
dimension and this subalgebra contains T.

Proof. 1If a is solvable or classical, then 4'* is compositionally classical
and the required subalgebra is A itself. If « is Witt or Hamiltonian, Lemma
5.3.6 and Corollary 5.6.4 give the result. |

DErFINITION 12.1.2. Let 4 be a restricted Lie algebra and T be a torus of
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maximal dimension in 4. Assume that T is standard in 4. Let a e 4 (A4, T).
Define U™ = U4, T) to be the unique compositionally classical sub-
algebra of 4 of maximal dimension given by Lemma 12.1.1.

LEMMA 12.1.3. Let A be a restricted Lie algebra and T be a torus of
maximal dimension in A. Assume that T is standard in A. Let ae 4.(A, T).
Then:

(a) U™ 234(7)

0 if o is solvable or classical,
(b) dim A®/U = {1 if o is Witt;
2 if a is Hamiltonian.

() If « is Witt then there is some iel) such that
dim 4, /(U™),, =4, ;.

(d) If o is Hamiltonian then there is some ie€Z) such that
dim A, /(U™),=6,,+6_,

L

Proof. Since solv(A®)c U™ (for U™ + solv(4™) is compositionally
classical) we may assume that solv(4®)=(0). If « is solvable or classical
then 4™ = U™ and there is nothing to prove. If a is Witt (respectively,
Hamiltonian) it follows from the proof of Lemma 5.3.6 that
U™ =W(1:1), (respectively, A~ H(2:1),). Since T< U, Theorem
1.3.1 shows that we may assume 7 is spanned by x,D, (respectively,
x,D,—x,D,). Direct computation shows that ad x,D; has the single
eigenvalue —1 on A™/U™ (respectively, ad(x, D, —x,D,) has the two
eigenvalues +1 on A/U™), proving the lemma. |

DeFINITION 12.1.4. Let A4 be a restricted Lie algebra and T be a torus
of maximal dimension in 4. Assume that 7 is standard and that every
root with respect to A4 is proper. Define Q(4)=Q(4,T) to be
Zael‘(A,T) U(a)(A’ T)

LemMA 12.1.5. Let A be a restricted Lie algebra and T be a torus of
maximal dimension in A. Assume that T is standard and that every root with
respect to T is proper. Let a, Be A(A, T). Then:

(a) QUA, TVNAY=Q(4*P, T)n A,
(b) If xeAd, then xeQ(A,T), if and only if W, ux)e
Q(A[aa ﬂ]s qla,B(T))'

Proof. Definition 12.1.4 implies that Q(A4, T)n A® =U®(4, T)=
U4, T). Since (A@P)* =4 part (a) holds. By Lemma 12.1.3,
dim A9/US(4, T) = dim A[a, f1O/U(Aa, B], P, ,T)). Let V=
'P;é(U(“)(A[a, B1, ¥, 4(T))). Then dim A/U™(A4, T)=dim A“/V and,

481/114/1-17
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since ker ¥, 5 =solv(4*") is solvable, V is compositionally classical. Thus
dim V'=dim U)(4, T) and so, by Lemma 12.1.1, V=U™(4, T). This
proves (b). |

12.2. From now on we will assume that L is a finite-dimensional
restricted simple Lie algebra over F. Recall (Definition 6.2.1 and
Proposition 10.4.1) that if T is an optimal torus in L then T is of maximal
dimension in L, T is standard, and all roots with respect to T are proper.

PrROPOSITION 12.2.1. Let L be a finite-dimensional restricted simple Lie
algebra over F and T be an optimal torus in L. If Q(L, T)=L then L is a
classical simple Lie algebra.

Proof. By Definition 12.1.4, if Q(L, T) = L then L is compositionally
classical and so L[a] = (0) or sl(2) for every «. Then Corollary 11.3.2 gives
the result. |

DEerINITION 12.2.2. Let 4 be a restricted Lie algebra and T be a torus of
maximal dimension in 4. Assume that T is standard and that every root
with respect to T is proper. Let Q=Q(A4, T)={acd(4,T)| 4,#
Q(4,T),}. We say that the pair (4, T) is amenable if the following
conditions are satisfied:

Q(A, T) is a subalgebra of A4. (12.2.1)
If 0e (A4, T) and fe A(A4, T) then |2(A4, T) (x + ZB)]
<3 and (ad 4;)* A= Q(4, T). (12.2.2)

If opBatfeA4,T) and if A, ,=[A4,, As]+
Q(A, T),, sthen A[a, B1=K(3:1), [Ag, Q(4, T), 4]+
(A4, T)y=A,,and [A4,, 5, Q(4, T) 41+ 0Q(4,T),=A4,. (12.2.3)

LEMMA 12.23. Let L be a finite-dimensional restricted simple Lie
algebra over F and T’ be an optimal torus in L. Then (L, T') is amenable.

Proof. In view of Lemma 12.1.5(b) it is sufficient to prove that
(L[y, v], ¥, (T")) is amenable for every pair of roots p, ve A(L, T"). Thus,
writing A= L[y, v], T=Y¥, (T') we must show that (4, T) is amenable
for every A which can occur as an L[y, v].

If dimT<1 then 4=A4 for some y. Then Q(4, T)=Q(A4, T)n
AV =U"Y is a subalgebra of 4 (Definition 12.1.2) so (12.2.1) holds. Also
dim A/Q(A, T)=dim A/U" < 2. This clearly implies (12.2.2) and (12.2.3).

Thus we may assume that dim 77=2 and hence that 4 is one of the
algebras listed in the conclusion of Proposition 11.2.4. We will consider
each of the cases in the conclusion of that theorem.

Suppose A4 is one of the algebras of Proposition 11.2.4(a). Thus
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S, +S,c4<Der(S,+ S5,), where S,, S, are distinct ideals and are among
sl(2), W(1:1), H22:1)?. Let J; be the restricted ideal generated by S,.
Then by the Engel-Jacobson theorem, TnJ;#(0) for i=1,2. Let
0+#t,e TnJ,satisfy tf =¢,. Then T = Ft, + Ft,. Define a,, a, by at;) =4,.
Since [t1, 8,1+ [£:, S,1S,nS,=(0) we have S;,+3,(T)=A4") for
i=1,2. Thus 4,=(0) unless ye Za, w Zx,. This clearly implies (12.2.2)
and (12.2.3). For (122.1) we must show that Q(4, T)= Q(4, T)* +
0(A, T)*? is a subalgebra. Since (A, T)'* is a subalgebra for i=1, 2 it is
sufficient to show that [Q(4,T),,,, Q(4, R),,,]1<Q(A, T) whenever u,
veZ. If ue, =0 or va, =0 then as 3,(T) <= Q(A4, T)* for i =1, 2 the result
holds. If ua,, va, #0 then [Q(4, T),,,, Q(4, T),,, 1< [S:, S2]1=(0). Thus
(12.2.1) holds and (A4, T) is amenable.

Next suppose A4 is one of the algebras of Proposition 11.2.4(b). Thus
S®B,=A<Der(S®B,), where n=1 or 2, T&£ S®B,, S=sl(2),
W(:1), or H2:1)* and S® (x,B,+ --- +x,B,) is invariant under T,
Furthermore, by Lemma 11.2.5, if ¢,,t,e T satisfy t*=1,, T=Ft, + Ft,,
LeS®B,, t,¢S®B, and if the roots a,, «, are defined by a,s;)=9,,
then S® (x,B,+ --- +x,B,) is invariant under ad(Q(4, T) n A*Y) (and,
since A'=S®B,+3,7), S®(x,B,+ --- +x,B,) is invariant under
ad(Q(4, T)n A1),

Suppose S=sl(2). Let M= (Q(4, T)nA")+ S® B,. Then M is com-
positionally classical and M = Q(A4, T). Thus (12.2.1) holds and (in view of
Lemma 12.13) [{y|A4,#Q(4,T),}| <2, which implies (12.2.2) and
(12.2.3) hold, so (A4, T) is amenable.

Suppose S=W(1:1). Then ad¢, induces a derivation of (S® B,)/
(S®(x,B,+ ---+x,B,))=S=W(1:1). Since [¢t,,1,]=0, since all
derivations of W(1:1) are inner, and since any maximal torus in
W(1:1) is equal to its centralizer, we may (replacing 7, by some element
of t,+Zt,) assume that [7,, S®B,]=S®(x,B,+ - +x,B,). This
implies 4Y<S®(x,B,+ --- +x,B,) whenever y¢Zx, uZx,. Thus
{y1 4, #0(4, T),} € Za, U Za,, which implies that (12.2.2) and (12.2.3)
hold. Furthermore, Q(A,T) = (Q(A, T) n A®)+(Q(A, T) n A™)+
S®{(x,B,+ -+ +x,B,), which is a subalgebra (recall that
S®(x,B,+ --- +x,B,) is invariant under ad(Q(4, T)n A™) for i=1, 2).
Thus (12.2.1) holds and so (4, T) is amenable.

Now suppose S= H(2:1)?. Then ¢, and ¢, induce a torus of dimension
<2 acting on (S®B,)/(S®(x,B,+ --- +x,B,))>=S=H(2:1)?. We
may therefore assume that ad ¢, induces the derivation /(ad(x, D, + x,D,))
for some /e Z and that ad ¢, induces the derivation ad(x, D, —x,D,). It is
immediate that Q(A4, T)2 A4, unless t€ Za,, T=a, —lua,, or 1= —o; — .
Thus Q(A4, T)=(Q(A4, T)n A"y + M, where M=(H(2:1)?),®1+S®
(x;B,+ --- +x,B,). Now (H(2:1)?)), is a subalgebra of H(2:1)® (so M
is a subalgebra of 4) and is invariant under every derivation of H(2:1)"®
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which commutes with ad(x, D, — x,D;) (by Proposition 2.1.8(vii}). Now if
xeQ(A4, TYn A we have that ad x stabilizes S® (x,B,+ --- +x,B,)
and so induces a derivation of H2:1)? >~ (S®B,)/(S® (x,B,+ --- +
x,B,)). Since [x, 1;]=0 this derivation commutes with ad(x, D, — x,D,)
and so stabilizes (H(2:1)?),. Thus ad x stabilizes M. Hence (12.2.1)
holds. Also Q< {+ma,, +a,—la,} so (12.2.2) holds. Finally, «, B, a +
BeQ forces {a, p} ={+a,—ln,}. Thus [4,, A;]<(S®B,) P =Q(4, T)
so [A,, Agl+Q(A, T),, s <Q(A, T),,p. Since a+ B implies A, ;#
Q(A,T),, 5 we see that [4,, Ag]1+ Q(A, T), . 5= A, s is impossible. Thus
(12.2.3) holds and (A4, T) is amenable.

Next suppose A4 is one of the algebras listed in Proposition 11.2.4(c).
Thus H(2:1)® 4+ Fx,D,c A< Der(H(2:1)?). By Theorem 1.18.4 of
[BW82] we may assume 7T is one of Fx,D,+ Fx,D,, F(x,+1)D,+
Fx,D,, F(x,+1)D,+ F(x,+ 1) D,. Since all roots with respect to T are
proper, T=Fx,D, + Fx,D,. Then if Aq=A n (Der(H(2:1)?)), we have
A, i1s compositionally classical and dim 4/4,< 2. But D, and D, are root
vectors for independent roots and D, D, ¢ Q(A4, T) (since {D(xix,)]|
0<i<p-—1} and {2(x,x5)|0 < i< p—1} span subalgebras of
H(2:1)® isomorphic to W(1:1)). Thus dim A4/Q(A4, T)>2. Hence
dim 4/Q(A4, T)=2 and Q(A, T)=A4,. Thus (12.2.1)-(12.2.3) hold and
(A, T) is amenable.

Next suppose A is the algebra of Proposition 11.2.4(d), i.e., suppose that
A=H(2:1:4). Then Lemma 11.1.3(a) shows T H(2:1:4),. Since
H(2:1:4), is compositionally classical, Lemma 11.1.3(b)} shows that
QH(2:1:4), TY=H(2:1:4),. Since H(2:1:4), is a subalgebra of
codimension two in H(2:1:4), (12.2.1)-(12.2.3) hold and hence (4, T) is
amenable.

Finally, suppose that A is one of the algebras listed in Proposition
11.2.4(e). Then A is classical or isomorphic to one of W(2:1), S(3:1)1",
H(4: 1)V, K(3:1). If A is classical then 4 =Q(4, T), while if 4 is non-
classical then T< A, by Corollary 5.8.2(h). It is then immediate that
04, T)=A, (= (X(m:1)?),, where A= X(m :1)®). Thus (12.2.1) holds
and explicit computation of the Cartan decomposition for each type shows
that (12.2.2)-(12.2.3) hold. |

12.3. We continue to assume that L is a finite-dimensional restric-

ted simple Lie algebra over F and that T is an optimal torus in L.
Suppose L is nonclassical. Then by Proposition 12.2.1 and Lemma
12.2.3, Q(L, T') is a proper subalgebra of L. Let L, be a maximal sub-
algebra of L containing Q(L, T). Note that L, is restricted by Corollary
1.1.2 of [BWS82]. Let Lo ---2L_,2Ly=2L,2 --- be a corresponding
filtration and G=3Y G, be the associated graded algebra. We will now



RESTRICTED SIMPLE LIE ALGEBRAS 251

derive some results on the structure of G. Recall (Section 6.1) that
Gi=2yeriGi,y'

LemMma 1231, G{/3(GEY) is a direct sum of classical simple algebras.

Proof. Since G, acts faithfully on G_, and since dim G_, ,=1 for all
Ael_y (by Lemma 12.1.3) we have I(G,)=(0). If xeG,,, yeG, _,,
[x, y1#0and y([x, y]) =0 then by Lemma 1.14.1 of [BW82] we see that
(ad x)*’G_, + (ad y)*G_, # (0), contradicting (12.2.2) (which holds by
Lemma 12.2.3). Hence, setting Jy = {x € Go4| [x, Gy, _z]1=(0)}, we see that
if Gog+#J, then there exist x, ;€ G, 4 such that B([xg, x_g])=2. Set
hg=[xg5, x_g]. By (12.2.2) the eigenvalues of ad #; on G _, are contained
in {0, £1} and so the eigenvalues of ad hg on G, are contained in
{0, £1, £2}. Then (applying [Jac58] to the Fx;+ Fx_,+ Fhy-submodule
2iGoup of Go) we see that dim Gy . ,=1. Suppose [Goy, J,1 & Jy, .
Then the Jacobi identity shows G, ;# J; and h,, € Fh s~ Since the eigen-
values of ad &, and of ad h;, , on G _, are contained in {0, +1} we see
that  hy,,=thy. Now hy, = —hy implies y(hy)=(B+y)hy)—
B(hg)= —4 which is impossible. Thus hy, ,=h; so Y(hg) = (B+7)h) —
B(hg)=0.Thenif Ae I" |, A(hg) =1 we have (ad Xgaadx _5) G, #(0).
This implies A+yeI'_; and (A+7y)(h,)=1. Iterating gives A+3y<=Tl_,,
contradicting (12.2.2). Thus [Goy4, J,1 /4, ,, s0 X J, is a nil ideal in G,.
As G, acts irreducibly on G _; this implies J, = (0) for all 7.

It is now clear that G{"/3(G(") satisfies the hypotheses of Block’s
classification theorem [Blo66], giving the result. |

COROLLARY 1232, L,=Q(L, T).

Proof. Since L, is a nilpotent ideal in L,, the lemma shows that L, is
compositionally classical. Thus for every a € A(L, T) we have that Ly~ L
is compositionally classical. Since Lon L™ 2Q(L, T)n L™ =U™(4, T)
(by Definition 12.1.4) the maximality of U4, T) implies Lyn L™ =
QL T)n L™ for all @ so Lo=Q(L, T). |

LEMMA 123.3. If Ael | then every exist v,;€G_,,;, w_,€G, _; such
that A([v;,, w_;1)=2. Thus Fo,+ Fw_,+ F[v,, w_,;] =sl(2).

Proof. As Ael'_,, A is Witt or Hamiltonian. Suppose 4 is Witt. Then
L{A1=wW(1:1), LY " Ly2solv L, and LW~ Ly/solv LY = W(1: 1),.
Thus there exist x,eL,, x,¢L,, and y_,eL ,nL, such that
AM[x;,y _41)#0. Now either y_,e L, in which case we are done (taking
v,=x,+Lo,w_,=y ,+L,) orelse G, _,;#(0). But by Lemma 12.3.1, if
Gy, #(0) then Gy, +Go_;+[Gy;, Gy _;1=sl(2). Then LP~ Ly is not
solvable, contradicting the fact that LY ~ Ly/solv L™ is isomorphic to the
solvable algebra W(1 :1),. Thus the lemma holds if A is Witt. Now suppose
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that A is Hamiltonian. Then HQ2:1)®?cL[AJcH2:1), LY Ly2
solv LY, and LY~ Ly/solv L2 (H(2:1)?),. Thus there exist x;€L,,
x;¢Ly, and y_,eL_,n Ly such that A([x,,y_,])#0. Again it is
sufficient to show that y *elL,. If not G, ;#(0). But as LW~
Lo/solv LW 2 (H(2: 1)), we have Gq ,,; # (0). As G{V/3(GEY) is a direct
sum of classical algebras, this is impossible. Hence the lemma holds if 2 is
Hamiltonian. |

LemMMA 1234. G_;=(0).

Proof. Ifnot,since G ;=[G ,,G ], wecanfind ueG ,,,veCG_,
such that 0#[u,v]eG ;,,;5 Write u=x+L_,, v=y+L,, where
xeL,, yeLs Then x¢L |, y¢ Ly, and [x,y1¢L_,. Thus L,#Q(L, T),
for y=0a, B, a + B, and so by (12.2.3) (which applies to the pair (L, T) since
(L, T) is amenable by Lemma 12.2.3) we have [L;, Q(L, T), ]+
QWL,T),=L,. Thus L,=[Ly, Lo+ Lo. But as dim(Lgz/Lsn L) <1 (by
Lemma 12.1.3) and yeLy;nL |, y¢L,, we have L,cL_,. Thus L, <
[Lg, Lol+Los[L_,Lo]+LysL_,, a contradiction. ||

LEmMMa 12.3.5. N(G)=(0).

Proof. If N(G)# (0) then as N(G)=G_,=[G_,, G_,] (using Lemma
12.34) and as dim G _, ;=1 for all Ae I"_, (by Lemma 12.1.3), there exist
some o, fe I with (0)#[G_,,,G_,gland [[G_,,,G_, 4], G;1=(0).
Let wueL,,; satisfy L,,g=Fu+L, . gnL_,. Then we must
have [uw, L,]=L,. By (12.2.3) (which holds for the pair (L, T) by
Lemma 1223) we have [L,,5 L snLlol+L,nLy=L,. Now
dim L, y/(L,, 30 Ly)<1 (by Lemma 12.1.3) and dim L, s/(L,. s L _y)
21soL,,snL =Ly Thus[L,, 5L snLol+L,nLo=[u,L_zn L]
+L,nLy=L,. Since L,#L,nL,(asael'_,)and [u, L,] < L, we must
have L ;nLy ¢ L,. Now (12.2.3) shows that L[«, f]=K(3:1) and
hence L,=Q(L,T), for all yeZa+Zp, y#a, f,a+ B Note that this
implies that f is a Witt root. Since L zn Ly € L, we have G, _z# (0).
Then by Lemma 12.3.1, L' A L, is not solvable. But § is a Witt root and
so L®’~ L, is solvable, a contradiction. Hence N(G)=(0). ]

Lemma 12.3.6. G, acts faithfully on G,.
Proof. By Lemma 12.3.3, I'y= —I"_,. Since G, acts faithfully on G_,,
this implies that T acts faithfully on G,. Since any nonzero ideal of G, has

nonzero intersection with 7, the result follows. |

124. We will now show that it is impossible for G{"'/3(G{") to have
more than one summand.
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LEMMa 124.1. Go=G{V+ T and 3(G) < 3(Gy).

Proof. As each G_,, is one-dimensional we have that /(G,), the nil
radical of 34,(T), annihilates G_,. But G, acts faithfully on G_, so
I(Gy)=(0) and hence 34,(7)=T. Thus Go=G§’+ T. Now if G_, ; #(0)
then U(G{") G_, , is a nonzero Gy-submodule of G _, hence is equal to
G _,. Thus 3(G{V) acts as scalars on G _{, so 3(G§{"")=3(G,). 1

LEMMA 12.4.2. Suppose G{/3(GV) has more than one summand.
Then G{=J,+J,, where J|,J, are ideals of G4, JynJ,<=3(Gy) and
[/, J2]1=(0).

Proof. If GV/3(GY) has more than one summand we may write
GV3(GE)Y=1,@I,, where each of I, and I, is a nonzero sum of classical
simple algebras. Since I\") =, for i =1, 2 we see that I, and I, are invariant
under any derivation of G{"/3(G{"). Since G, acts on G{'/3(G) by
derivations, we see that if J; is the inverse image of 7, in G{" then J; is an
ideal in G,,. Clearly G§"'=J,+ J, and J, nJ, € 3(G,). If [J;, J,] # (0) then
some I, z#(0), I, 4#(0). But I, is a direct sum of classical simple
algebras so B([1, 4,1, 3])#0. This implies I, z<1,, a contradiction. |

LEMMA 1243. If G_,#(0) then G{/3(GL") has no more than one
summand.

Proof. Suppose G _,# (0). Then by (12.2.3) (which holds for (L, T)
by Lemma 12.2.3) there exist Ael’_, and ael, such that
[G_1;,G_141:]1#(0) (so that a+24e _,). Now suppose fe Iy Since
G{V/3(GY) is a direct sum of classical simple algebras we can find
g+5€ Gy 15 such that B([ g, g _;])=2. Write hy=[g4, g ;]. Then since
(ad g,,)2 G_,=(ad gﬂ)2 G_,=(0) (by (12.2.2) and Corollary 12.3.2) we see
that t(hy)e {—1,0, 1} for all te I"_. In particular, A(hz)e {—1,0,1} and
(x+24)(hg)e {—1,0,1}. Suppose a(h;)=0. Then (a+2A)(hg)=24(hy)e
{=1,0,1}n{—-2,0,2}. Thus a(hs)=0 implies A(hg)=0. Now either
J1..=(0) or J,,=(0) (for otherwise I,,#(0), I,,#0, and, as
o([ 11, _.1)# (0) since I, is a sum of classical simple algebras, we have
I,,<1,, a contradiction). Hence we may assume that J, ,=(0). Now
suppose that J, ,# (0). Then hye J, so a(hg) =0 and hence A(hz) = 0. Thus
J{ annihilates G _ ;. Since J{) is an ideal in G, and the action of G, on
G _, is faithful and irreducible, this is impossible. Hence G _, = (0). ||

Lemma 1244, If G_,=(0) then GV/3(G) has no more than one
summand.

Proof. Suppose G{V/3(G{’) has more than one summand. Let J; and J,
be as in Lemma 12.4.2.
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Let AeI'_,. Suppose G;=(0). Then if v,, w_, are as in Lemma 12.3.3
we see that if ped(L, T) then u([v,,w_;]1)e{-3,-2,-1,0,1,2,3}.
But Ael"_, implies 4 is a Witt or Hamiltonian root and so rle A(L, T)
for all n, 1<ng<p—1. As p>7 this implies G;#(0). Thus
[G_,,[G_,,[G_,,G5]]] is a nonzero ideal in G, which therefore
contains a nonzero element of 7. Hence we may find 4, u, vel |,
v,eG_,;, v,eG ,,, v,eG ,,, and u_, , ,€G; , , , such that
[vs, [v,, [v,,u_; , ,11]1#0. Then there exists some v.€ G_, , such that
07& [U,, [U}n [U;u [Uv’ u,,i,u,‘,]]]] = [vb [Ur’ [vpa [Uv’ u—i—;zfv]]]] =
[U;n [Ura [U/ls [Uva uv/l—ufv]]]] = [Uv, [vw [v}n [v;u u,,{,#,v]]]:l (as
G_,=(0)). Then we have that G,, ;#(0), G,. ,#(0), Gy, ,#(0)
Thusif I'), ={a#0|J,,#(0)} wehave t— A, t—pu, t—vel, ul,u {0}
Hence (interchanging A, u, v if necessary) we may assume 17— A4,
t—pel;, {0} fori=1or 2. Now write u_, ,=[v,,u_; , ,]so that
0% [v;, [v,,u_;_,]1] Then we may find some a# 4, ael_; such that
(v, [, [V u ;- ,111#0. For if not, E=ad([v;, [v,,u_;_ ,]]) is a
rank one transformation of G_, with E?#0. Then Lemma 2 of [Wil71b]
gives G,=gl(G_,), contradicting our assumption that G{/3(G{") has
more than one summand. Since O0#/[v,, [v,, [v,,u ;, ,1]1]1=
(vs, [y, [V, 0,117 (as G _,=(0)), Go,.,#(0). Similarly, Go,_, #
(0). Assume (interchanging J, and J, if necessary) that J, ,_; #(0).

Note that if Ae I' |, fe @y, v,€G | ;, 83€Goy, and [ gy, v,]#0, then
there exists g ;€ G, such that [g_4, [ g4, v,]1]1#0. To see this take g_g4
so that B([ g5, g 5]) =2 (which is possible as G{')/3(G{") is a direct sum of
classical simple algebras). Then (as (ad g4)* G _, =(0)) [ g4, v;] # 0 implies
MLgpg-5])=—1 and [g_4,v,]=0. Thus v,= [[gp 85l vi]l=
—[g 4, [gp,v;]1], giving the result.

Now we have [g, ;,v;]#0. Since J{" is a nonzero ideal of G, we
have [gg, v;,]1#0 for some gzeJ, 5. Thus 0# [gg, [g-0s s> [8a—25v21]]
and so (as [J},J,]1=(0)) [8u-is0isp]#0 for v, 536G _y ;4
Thus 0 # [U;H»ﬂ’ [Uow [v,u, ufi—u]]] = [vw [vl+ﬂa [Uu, uf).fy]]] 80
mg=[v,, 4 [V, 4 ;_,11€J,4 is a nonzero root vector. Since JP is a
nonzero ideal of G, we have [g,,v,]#0 for some g,eJ,,. Thus
0# [gy’ [m—ﬂ’ [mﬂ’ Ua]]] and so (as [JI’J2]=(O)) [mﬂ’ Uoz+y] 7é0
for v,,,6G .., Thus O0#[v,,,, [viip [V, u_,_,11] so 0#
(Vgyy> [Vsypou_, ,11. We now have that Go, ,#(0) (for 0#
[v,, (v, (v v, 111), 2. 5#(0), Gou s p#(0) (for 0# [v,, [v; .4,
(ov i 1)) =[vu (00 p (oo 5, 111) 1, #(0), and Go, i gy, #(0)
(for  O0#[v,,,, [Viypu 3,11 Now if  Gog, Goy, Gogrg#(0)
(where 0,¢,0+¢#0) then [Gy4, Goyl=Gop,s by Lemma I14.1
of [Sel67] (which applies since G§'/3(G") is classical semisimple).
Therefore if Gog,J; 4, Gogys#(0) we have J;p,J;5,4#(0). We can
therefore conclude that J,, ,#(0), Jo,_,,s#(0), Jio_,sz#(0), and
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Jiw prpsy#(0). Thus a—p+f=0 and so we have J,, ;#(0),
Jow y=Ja2 5 #(0). But we also have that t— 4, t—pel", U {0} for i=1
or 2 and thus A — u vanishes on TnJ, or on T J,. Since « — A vanishes
on TnJ, and a«—pu vanishes on TnJ,, this implies that a—1=0 or
a—u=0, contradicting 4, ueI"'_,. |

LEMMA 124.5. G\ is a restricted ideal in G,.

Proof. If x€G,,, a#0, then (ad x)>’G_,=(0) (by (12.2.2) and
Lemma 12.2.3). Thus (ad x)” = ad(x?) annihilates G _, and so x” =0. Also
TG is spanned by elements of the form [x,y], where xeG,,,
ye€Gy 4, a([x,¥])=2 (since G{'/3(G") is a sum of classical simple
algebras). For such x and y, since (ad x)>G_,=(ad y)? G_, =(0) we have
that the eigenvalues of ad[x, y] on G _, are contained in {—1,0, 1}. Thus
on G_,, ad[x, y]=(ad[x, y])Y=ad[x, y1? and so [x, y]”=[x, y]. Thus
T Gy is restricted and hence GV is.

LEMMA 12.4.6. Let ke N. Up to isomorphism there is only one structure
of restricted Lie algebra on gl(pk) which extends the natural restricted Lie
algebra structure of sl(pk) and there is only one structure of restricted Lie
algebra on pgl(pk) + Fz which extends the restricted Lie algebra structure of
psl(pk) + Fz (a direct sum of restricted ideals where psl(pk) has the natural
restricted Lie algebra structure and zF = z).

Proof. Let E, denote the usual matrix unit in gl(pk). Then
(ad E,;)” — (ad E,,) annihilates gl(pk) and so if x+— x[?1is any pth power
map on gl(pk) we have Ef)— E|, = al, where ae F and I denotes the iden-
tity matrix. Let b satisfy #* —b—a=0. Then (E,, —bN'?1 —(E,, —bI)=0.
Thus the linear map ¢: gl(pk) — gl(pk) defined by ¢|,, .+, = identity and
#(E,,)=E, — bl is an isomorphism of restricted Lie algebras from gl(pk)
with the natural restricted Lie algebra structure to gl(pk) with the pth
power map x> x[71,

Similarly, let E,, denote the image of E,; in pgl(pk). Then
(ad E,,)” — (ad E,,) annihilates pgl(pk)+ Fz and so if x+> xt”) is any pth
power map on pgl(pk) + Fz then E{?1— E|, = az, where ae F. Let b satisfy
b»—b—a=0. Then (E,, —bz)'")~(E, —bz)=0. Thus the linear map
¢: pal(pk) + Fz — pgl(pk) + Fz defined by ¢ |, . =identity and
O(E,)=E, —bz is an isomorphism of restricted Lie algebras from
pgl(pk) + Fz (direct sum of restricted ideals with natural pth power struc-
ture on pgl(pk) and z”=z) to pgl(pk)+ Fz with the pth power map
x—xtP

COROLLARY 12.4.7. The restricted Lie algebra G, has one of the
following structures:
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(i) Go=Fz,
(ii) G is isomorphic to a classical simple Lie algebra,
(iii) Gy =sl(pk), pal(pk), or gl(pk) for some ke N,
(iv) Go=x=J® Fz (a direct sum of restricted Lie algebras), where z is
central and J is classical simple or pgl(pk) for some k e N. '

Proof. By Lemmas 12.4.3 and 12.4.4, G{"/3(G§") has at most one sum-
mand. If G§{"'/3(G§) = (0) then, as Go = G+ T and 3(G{") = 3(G,) = T, we
have G, < T so Gy, =3(G,). Thus as G, acts faithfully and irreducibly on
G _, we see that (i) holds. Thus we may assume that G{/3(G{") has one
summand, i.e., that it is a classical simple Lie algebra.

Suppose 3(Go)=(0). Then 3(G§"’)=(0) and G{" is classical simple.
Then Go<Der G{". By [Blo62, Lemma 7.1], Der G{"’=G{" unless
GV > psl(pk), k e N, and Der(psl(pk)) = pgl(pk). Thus (ii) or (iii) holds.

Next suppose that 3(G§") # (0). Then G{ is a nonsplit central extension
of the classical simple Lie algebra G{'/3(G{"). By [Blo68, Theorem 3.1]
this implies G§"/3(G{") = psl(pk) and G{" = sl(pk). Thus G, < Der(sl(pk))
and so G, = gl(pk) or sl(pk). By Lemma 12.4.6 this is an isomorphism of
restricted Lie algebras. Thus (iii) holds.

Finally, suppose that 3(G,) # (0) and 3(G{")= (0). Thus G{" is classical
simple and G,2G" @ Fz a direct sum of restricted ideals by Lemma
12.4.5. Thus Gy, < Der GV + Fz. If G§ is not of the form psl(pk) then by
[Blo62, Lemma 7.1], G{"’=Der G{"’ so G, is listed in (iv). If G{" = psl( pk)
then G,=psl(pk)+ Fz or pgl(pk)+ Fz. In the latter case, Lemma 12.4.6
shows that this is a direct sum of restricted ideals. Thus (iv) again holds
and the lemma is proved. |I

12.5. We now state and prove the main theorem of the paper.

THEOREM 12.5.1. Let L be a finite-dimensional restricted simple Lie
algebra over F, an algebraically closed field of characteristic p>17. Then L is
either classical simple or an algebra of Cartan type.

Proof. Let T be an optimal torus in L. By Proposition 10.4.1, all roots
with respect to 7T are proper. By Proposition 12.2.1 we may assume
L+#Q(L, T). Let L, be a maximal subalgebra containing Q(L, T) (indeed,
Ly=Q(L, T) by Corollary 1232), L2 .--2L_2L,2L,2--- be a
corresponding filtration, and G be the associated graded algebra. By Lem-
mas 12.3.5 and 12.3.6, N(G)=(0) and the action of G, on G, is faithful.
Thus the graded Lie algebra G is transitive. By Corollary 12.4.7 we see that
G, is a direct sum of restricted ideals each of which is abelian, classical
simple, or isomorphic to sl(pk), pgl(pk), or gl( pk). Thus the hypotheses of
the Recognition Theorem (Theorem 1.2.2) are satisfied and that theorem
gives our result. |
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