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Abstract

We study variations of the standard leptogenesis scenario that can arise if an additional mass scale related to the breaking of some new symmetry
(as for example a flavor or the B–L symmetry) is present below the mass MN1 of the lightest right-handed Majorana neutrino. Our scheme is
inspired by U(1) models of flavor à la Froggatt–Nielsen, and involves new vectorlike heavy fields F . We show that depending on the specific
hierarchy between MN1 and the mass scale of the fields F , qualitatively different realizations of leptogenesis can emerge. We compute the CP
asymmetries in N1 decays in all the relevant cases, and we conclude that in most situations leptogenesis could be viable at scales much lower than
in the standard scenario.
© 2007 Elsevier B.V.
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1. Introduction

Baryogenesis through leptogenesis represents an attractive
mechanism to explain the observed matter–antimatter asymme-
try of the Universe [1,2]. Once the Standard Model (SM) is
extended by including the seesaw mechanism in order to ex-
plain the strong suppression of the neutrino mass scale [3], the
possibility of generating a cosmic lepton asymmetry via the lep-
ton number and CP violating out-of-equilibrium decays of the
seesaw singlet neutrinos arises as a natural possibility. Partial
conversion of the lepton asymmetry into a baryon asymmetry
then proceeds by means of electroweak sphaleron interactions
[4] that are non-perturbative SM processes. Qualitatively, it is
almost unavoidable that a model that includes the seesaw mech-
anism will predict a certain amount of matter–antimatter asym-
metry surviving until the present epoch, and then the question of
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whether leptogenesis is able to explain the puzzle of the baryon
asymmetry of the Universe is essentially a quantitative one. In
recent years, quantitative analysis of the standard leptogenesis
scenario have become more and more sophisticated, taking into
account many subtle but significant ingredients, such as various
washout effects [5–7], thermal corrections to particle masses
and CP violating asymmetries [8], spectator processes [9], fla-
vor effects [10–17] and the possible effects of the heaviest right
handed Majorana neutrinos N2,3 [10,18–20] (for reviews of the
most recent results see [21]).

One assumption that is common to all these studies is that
between the scale of the breaking of lepton number and the elec-
troweak breaking scale, there are no additional sources of new
physics that could affect the mechanism of leptogenesis. This
assumption is certainly justified both in terms of simplicity and
also because it allows for a certain level of predictivity, that is
mainly due to the fact that the same couplings that determine
the CP asymmetries and the out-of-equilibrium conditions in
the decays of the heavy Majorana singlets are also responsible
for the seesaw masses of the light neutrinos. In particular, in the
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standard seesaw model, successful leptogenesis implies a lower
bound on the values of MN1 that, even in the most favorable
case of dominant N1 initial abundance [8], puts a direct test of
leptogenesis out of the reach of any foreseeable experiment.1

In this Letter we explore the implications of the presence be-
low MN1 , of an additional energy scale related to the breaking
of a new symmetry (that could be for example a flavor sym-
metry). As we will see, in some cases a large enhancement of
the CP asymmetry in N1 decays is easily obtained, while at the
same time the scale of leptogenesis can be lowered by several
orders of magnitude without conflicting with other conditions.
Indeed, the scenario we will study can realize in a natural way
some of the conditions needed to render leptogenesis viable
down to the TeV scale [22]. The main features of the model,
that is directly inspired by U(1) models for flavor à la Froggatt–
Nielsen [23] are outlined in Section 2.2 In Section 3, after re-
viewing the main results of standard leptogenesis, we highlight
the most important new features that stem from the presence of
the extra mass scale. In Section 4 we present the conclusions.
In Appendix A we consider a minimal scenario where one light
neutrino remains massless, and we derive a simple analytical
expression for the ratio between the new mass scale and MN1 .

2. The model

We assume that at some large scale close to the leptogene-
sis scale a horizontal U(1)X symmetry forbids direct couplings
between the lepton doublets l and the heavy Majorana neutri-
nos N . Light neutrino masses can arise because of the presence
of heavy vectorlike fields FL, FR that are singlets with respect
to SU(2)L × U(1)Y and charged under the additional U(1)X
factor, and that couple to both the Majorana fields and to the lep-
ton doublets l. We use Greek indices α,β = 1,2, . . . to denote
the heavy Majorana neutrinos and we write the Lagrangian in
terms of self-conjugate Majorana spinors Nα ≡ (NRα,Nc

Rα
)T .

Latin indices a, b = 1,2, . . . will denote the heavy Dirac fields
with Fa ≡ (FRa,FLa)

T , and Latin indices i, j = 1,2,3 will
denote the SM left-handed lepton doublets li . The following
Lagrangian gives a simple realization of this scheme:

−L= 1

2
N̄αMNαNα + F̄aMFaFa + (

hialiPRFaΦ

(1)+ λαaN̄αFaS + λ(5)
αa N̄αγ5FaS + h.c.

)
,

where Φ is the SU(2)L Higgs doublet and S is a complex
scalar that is a singlet under SU(2)L × U(1)Y and charged
under U(1)X . The scalar S is responsible for breaking the ad-
ditional symmetry through a vacuum expectation value (vev)
σ ≡ 〈S〉 that we assume to be somewhat smaller than the mass
scale of the vectorlike fields σ � MF . A simple U(1)X charge
assignment that forbids the l̄PRNΦ coupling and yields the La-

1 Only in the case of resonant leptogenesis [6], scales much lower than the

limit MN1 � 107 GeV [8] seem to be possible.
2 Leptogenesis models based on the Froggatt–Nielsen mechanism have been

studied also in [24] in the context of Dirac leptogenesis, and in [25] as well as
in the last paper in [6] in the context of resonant leptogenesis.
grangian (1) is for example X(lLi,FLa,FRa) = +1, X(S) =
−1 and X(Nα,Φ) = 0.

To put in evidence the main consequences of our scheme
without complicating too much the discussion and the results,
we assume that to a good approximation the heavy Dirac
fields Fa couple to the Majorana neutrinos in a pure vector-
like way. That is, we assume λ(5) � λ, and we neglect all the
effects related to the pseudoscalar couplings. Including also
the pseudoscalar interactions would give rise to additional di-
agrams contributing for example to the total decay width of the
Majorana neutrinos and to the decay CP asymmetries, without
changing our main conclusions.

Let us note that all the interaction terms in Eq. (1) also pre-
serve a U(1) (accidental) global symmetry with assignment
L(lL,FL,FR,NR) = +1 and L(S,Φ) = 0, that we can readily
identify with lepton number. Then, as in the standard seesaw
model, this symmetry is broken (by two units) only by the Nα

Majorana mass term. As regards the U(1)X symmetry, if for
all the SM fields the charges X were proportional to B–L, this
symmetry would leave unaffected all the charged leptons and
quarks Yukawa couplings. In contrast, if the set of X charges
for the quarks and leptons is not a trivial one, U(1)X could play
a role as (part of) a flavor symmetry of the kind proposed long
ago by Froggatt and Nielsen [23]. However, for the present dis-
cussion the issue if U(1)X also contributes to determine the
charged fermion mass pattern is to a large extent irrelevant, and
accordingly we will not necessarily adopt all the assumptions
that realize the naturalness conditions of flavor models based
on Abelian symmetries, and in particular:

• We do not constrain the couplings in the Lagrangian
Eq. (1) to be all of the same size and of order unity.

• We do not need to specify any precise value for the ratio
σ/MF .

• We do not constrain from below by means of flavor chang-
ing neutral current (FCNC) considerations the scale of U(1)X
breaking.3

After U(1)X and electroweak symmetry breaking, the light
neutrino mass matrix arising from (1) reads

(2)−Mij =
[
h∗ σ

MF

λT v2

MN

λ
σ

MF

h†
]

ij

=
[
λ̃T v2

MN

λ̃

]
ij

,

where for convenience we have introduced the effective seesaw
couplings

(3)λ̃αi =
(

λ
σ

MF

h†
)

αi

.

That is, with respect to the standard seesaw mechanism the light
neutrino masses have an additional suppression factor of the ra-

3 This is consistent if, e.g., we take X = B–L. However, if U(1)X is also
responsible for the mass hierarchy in the quark sector, then severe constraints
from the absence of new FCNC effects imply that the U(1)X breaking scale σ

must remain orders of magnitude above the TeV scale [26]. In all the schemes
analized in Section 3.2 we take MN > σ and hence the same constraints would
apply also to the leptogenesis scale.
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tio σ 2/M2
F and are of fourth order in the fundamental couplings

(λ and h).
An important point to note is that in order to ensure that two

light neutrino are massive, as is required by oscillation neutrino
data, a minimum field content of two right-handed neutrinos
Nα and two vectorlike fields Fa is needed. A straightforward
analysis then shows that even in this minimal scheme, both
the matrices of the h and λ coupling constants contain physi-
cal complex phases that can be relevant for leptogenesis.

To summarize, in this model besides the electroweak break-
ing scale v we have the following new mass scales:

• the mass scale of the heavy vectorlike fields, MF ,
• the lepton number breaking scale, MN ,
• the horizontal symmetry breaking scale, σ .

The consequences of the different hierarchies amongst these
new scales is studied in detail in Section 3.

3. The different possibilities

In this section we present the detailed results for the CP
asymmetry in N1 decays for the different cases as are deter-
mined by the hierarchy between the relevant scales MN1 , MF

and σ , and we will explore qualitatively the implications of the
different possibilities. As already said, we take N1 to be the
lightest one of the Majorana neutrinos, and F1 to be the lightest
of the vectorlike fields. For the different mass ratios we adopt
the following notation:

(4)zα = M2
Nα

M2
N1

, ωa = M2
Fa

M2
F1

, ra = MN1

MFa

.

The CP-asymmetry in the decay of the heavy Majorana neutri-
nos N1 is defined in the usual way as

(5)εN1 = ΓN1 − Γ̄N1

ΓN1 + Γ̄N1

,

where ΓN1 and Γ̄N1 represent respectively the partial decay
rates of N1 into particles with lepton number L = +1 and an-
tiparticles with lepton number L = −1 (regardless of the fact
that they are l or F states). A non-vanishing numerator in
Eq. (5) can arise from the interference between tree-level and
loop-amplitudes, and the total decay rate in the denominator
can be approximated with the tree level result. When the ratio
in Eq. (5) is phase-space independent, as is the case in two-body
decays, the CP-asymmetry can be simply calculated in terms of
products of the tree-level M0 and loop M1 amplitudes. How-
ever, when there is a dependence on the phase space as is the
case for three-body decays discussed in Section 3.2.1, the full
decay widths have to be taken into account.

In standard leptogenesis models the lepton number breaking
scale is constrained by the out-of-equilibrium condition on the
decay rate of N1, and as the scale of lepton number violation
is lowered, in order to satisfy this condition the size of the N1
Yukawa couplings must be accordingly reduced. If we further
require that the neutrino oscillation data are accounted for just
by the (type 1) seesaw mass matrix, and we forbid any addi-
tional source for the light neutrino masses, then it can be shown
that a large suppression of the CP asymmetry in N1 decays is
unavoidable. Then the requirement that the final lepton asym-
metry is large enough to account for the baryon asymmetry of
the Universe, implies a lower bound on the mass of N1 that is
several orders of magnitude larger than the electroweak break-
ing scale.

As we will discuss below, in some cases the presence of a
new scale and of a new set of couplings associated with it can
allow to satisfy the out-of-equilibrium condition and to account
for the light neutrino mass scale, without necessarily implying
any particular suppression of the CP asymmetries, even when
MN1 is lowered down to the TeV scale. This ‘decoupling’ of the
size of the CP asymmetry from the decay width ΓN1 and from
the scale of the light neutrino masses is rendered possible by the
fact that, while the latter two quantities are mainly controlled
by the λ parameters that couple the heavy vectorlike fields F to
the right handed neutrino N1, the CP asymmetry is essentially
determined by the couplings h between the fermions F and the
lepton doublets l.

3.1. The standard leptogenesis case: MF , σ � MN

When the masses of the heavy Dirac fields and the U(1)X
symmetry breaking scale are both larger than the Majorana neu-
trino masses (MF , σ > MN ) there are no major differences
from the standard Fukugita–Yanagida leptogenesis model [1].
After integrating out the F fields one obtains the standard see-
saw Lagrangian containing the effective operators λ̃αiN̄αliΦ

with the seesaw couplings λ̃αi given in Eq. (3). The right-
handed neutrino N1 decays predominantly via 2-body channels
as shown in Fig. 1. This yields the standard results that for
convenience we recall here. The total decay width is ΓN1 =
(MN1/16π)(λ̃λ̃†)11 and the sum of the vertex and self-energy
contributions to the CP-asymmetry for N1 decays into the fla-
vor lj reads [27]

(6)

εN1→lj = 1

8π(λ̃λ̃†)11

∑
β 	=1

Im
{
λ̃βj λ̃

∗
1j

[(
λ̃λ̃†)

β1F̃1(zβ)

+ (
λ̃λ̃†)

1β
F̃2(zβ)

]}
,

where

F̃1(z) =
√

z

1 − z
+ √

z

(
1 − (1 + z) ln

1 + z

z

)
,

(7)F̃2(z) = 1

1 − z
.

Fig. 1. Diagrams generating the lepton asymmetry in the Fukugita–Yanagida
model.
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At leading order in 1/zβ and after summing over all leptons lj ,
Eq. (6) yields for the total asymmetry:

(8)εN1 = 3

16π(λ̃λ̃†)11

∑
β

Im

{
1√
zβ

(
λ̃λ̃†)2

β1

}
,

where the sum over the heavy neutrinos has been extended to
include also N1 since for β = 1 the corresponding combination
of couplings is real.

In the hierarchical case MN1 � MN2,3 the size of the total
asymmetry in (8) is bounded by the Davidson–Ibarra limit [28]

(9)|εN1 | �
3

16π

MN1

v2
(mν3 − mν1) � 3

16π

MN1

v2


m2
atm

mν1 + mν3

,

where mνi
(with mν1 < mν2 < mν3 ) are the light neutrinos mass

eigenstates and 
m2
atm ∼ 2.5 × 10−3 eV2 is the atmospheric

neutrino mass difference. It is now easy to see that (9) implies
a lower limit on MN1 . The amount of B asymmetry that can be
generated from N1 dynamics can be written as:

(10)
nB

s
= −κsεN1η,

where κs ≈ 1.3 × 10−3 accounts for the dilution of the asym-
metry due to the increase of the Universe entropy from the
time the asymmetry is generated with respect to the present
time, η (that can range between 0 and 1, with typical values
10−1–10−2) is the efficiency factor that accounts for the amount
of L asymmetry that can survive the washout process. WMAP
data on the cosmic background anisotropy [29] and consider-
ations of big bang nucleosynthesis [30] yield the experimental
value nB/s ≈ (8.7±0.4)×10−11, and therefore, assuming that
εN1 is the main source of the B–L asymmetry, Eqs. (9) and (10)
yield:

(11)MN1 � 109 mν3

η

√

m2

atm

GeV.

This limit can be somewhat relaxed depending on the specific
initial conditions [8] or when flavor effects are included [12,15,
16] but the main point remains, and that is that the value of MN1

should be well above the electroweak scale.

3.2. Variations on leptogenesis: σ < MN1

Interesting new possibilities arise when the U(1)X symme-
try breaking scale is lower than the leptogenesis scale, that is
σ < MN1 . In this case N1 cannot decay directly into the light
lepton doublets via the two body channel. In this regime, we
can distinguish three cases:

(1) σ < MN1 but all the masses MFa are larger than MN1 :
then N1 can decay to lj only via the three body channel N1 →
SΦlj depicted in Fig. 2.

(2) MN1 is larger than the mass scale of the heavy vectorlike
fields MF and of the U(1)X symmetry breaking scale σ : then
N1 will decay via two body channels to Fa and F̄a (see Fig. 3).
The heavy fermions F will then transfer part of the asymme-
try to the light leptons via lepton number conserving processes
(decays and scatterings).
Fig. 2. Diagrams responsible for the CP-asymmetry in case 1.

(3) If MN arises from the same source than MF (as for ex-
ample from the vev of a singlet) then some of the heavy fermi-
ons (for example F1) could be lighter than N1 while the others
can be heavier. Then N1 will decay dominantly into F1, F̄1 via
the two body channel in Fig. 3. However, a new diagram con-
tributing to the CP asymmetry is present in this case. This dia-
gram is interesting, since it yields the possibility of decoupling
the lifetime of N1 from the size of the CP violating asymmetry
εN1→F1 .

In the next sections we will analyze in some detail these dif-
ferent possibilities.

3.2.1. Case 1: MF > MN1

In the case when all the vectorlike fermions F are heavier
than N1 but the horizontal U(1)X is still a good symmetry at
T � MN1 , there is only one diagram contributing to the CP
asymmetry, that is the wave function type of diagram depicted
in Fig. 2(b). This is because on the one hand the loop correction
to the N1FS vertex with Nβ (β 	= 1) and F internal lines does
not develop an imaginary part, and on the one other hand there
is no correction at one loop to the vertex F lΦ (the first correc-
tion arises only at two-loops). This is due to the fact that the
standard vertex correction depicted in Fig. 1(b) is of the Majo-
rana type (with an inverted flow of fermion number) while in
the present case both F and l are Dirac fermions.

Unlike the standard case and the next two cases discussed in
Sections 3.2.2 and 3.2.3, for three body final states the squared
amplitudes and interference terms are not phase-space indepen-
dent. Our results for the total decay width and CP-asymmetries
given below correspond to the leading terms in the mass ratios
ra,a′,b < 1. For the N1 total decay width we obtain

ΓN1 = MN1

192π3

∑
aa′

ra′ra
(
h†h

)
a′aλ1a′λ∗

1a

(12)= MN1

192π3

(
MN1

σ

)2(
λ̃λ̃†)

11.

The interference between diagrams 2(a) and 2(b), summed over
all the leptons lm running in the loop, yields the CP-asymmetry:

εN1 = 3

128π

∑
aa′b Im[(h†h)a′b(h†h)baλ1a′λ∗

1a]ra′rar2
b∑

aa′(h†h)a′a(λ1a′λ∗
1a)rara′

(13)= 3

128π

Im[λ̃hr2h†λ̃†]11

(λ̃λ̃†)11
= 0.
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When written in terms of the effective couplings λ̃ as in the
second line in Eq. (13), the vanishing of the CP asymmetry at
leading order in the mass ratios ra,a′,b < 1 is apparent. How-
ever, this is true also beyond the leading order, and is related
to the fact that the loop in diagram 2(b) does not involve lep-
ton number violation. Mathematically, one can see from the first
equality in Eq. (13) that the vanishing of the CP-asymmetry fol-
lows from the fact that by exchanging the two indices a ↔ a′
the combination of couplings within square brackets goes into
its complex conjugate, and thus the sum over a and a′ yields a
real term for any value of the index b. Since the full phase-
space function (that in Eq. (13) has been replaced with the
leading term ∼ rar

′
a) is symmetric under the exchange ra ↔ r ′

a

this holds also for the complete result. The fact that there is no
source term for the lepton asymmetry implies that in the present
case leptogenesis can occur only through the effects of lepton
flavor dynamics combined with the violation of lepton number
that is provided by the washout processes. The single lepton-
flavor CP-asymmetries are indeed non-vanishing:

εN1→lj = 3

128π

∑
aa′b Im[(h†h)a′bh∗

jbhjaλ1a′λ∗
1a]ra′rar2

b∑
aa′(h†h)a′aλ1a′λ∗

1ara′ra

(14)= 3

128π

∑
i Im[(hr2h†)ij λ̃1i λ̃

∗
1j ]

(λ̃λ̃†)11
	= 0

and will be a source of non vanishing asymmetry-densities
in the different flavors. These asymmetries will then suffer
washouts processes (like s and t channels scatterings ljΦ ↔
S∗N1, SN1 ↔ l̄j Φ̄) that in general are characterized by dif-
ferent rates for the different flavors. As is discussed, e.g., in
Ref. [13], under these conditions a net lepton asymmetry can
result even if εN1 = 0.

A quick inspection of Eq. (14) shows that if the λ̃ couplings
are all of the same order of magnitude, the CP asymmetry
εN1→lj is roughly proportional to |hr2h†|. That is, the domi-
nant contribution to the CP asymmetry is determined by the h

couplings that are different from the effective couplings λ̃ ap-
pearing in the neutrino mass matrix, and in particular larger by
a factor of (λσ/MF )−1 (see Eq. (3)). If we further assume the
hierarchy hr > λ between the fundamental couplings then, in-
dependently of the particular value of MN1 , leptogenesis will
always occur in a regime when the Fa interactions with the
light leptons determine a ‘flavor’ basis �a = hiali/

√
(hh†)aa .

This ensures that the requirement that flavor dynamics partici-
pates in the generation of a lepton asymmetry is satisfied.

We will now address the following two interesting points:
(1) In the present case is leptogenesis still compatible with a
reasonable scale for the light neutrino masses? (2) Is the lepto-
genesis scale still bounded from below, or can it be lowered to
values that are experimentally accessible?

The out-of-equilibrium condition necessary to ensure that a
macroscopic lepton asymmetry can be generated reads

(15)ΓN1 � ξ · H(MN1),

where the out-of-equilibrium parameter ξ can normally lie in
the range ξ ∼ 0.1–10 (but values as large as 102 are possi-
ble) and the Hubble parameter at decay time is H(MN1) �
1.66
√

g∗M2
N1

/MP with g∗ = 106.75 the number of relativis-
tic degrees of freedom at T ∼ MN1 and MP the Planck mass.
Using (12) this yields the condition

(16)
(
λ̃λ̃†)

11 � 105ξ

(
σ

MN1

)2
MN1

MP

.

From Eq. (2) we have

(17)
∑

i

mνi
= v2

MN1

Tr
(
λ̃T z−1/2λ̃

)
11 ≈ v2

MN1

(
λ̃λ̃T

)
11,

where in the second relation we have assumed that MN1 dom-
inates the seesaw matrix. From (16) and (17) we obtain the
order-of-magnitude relation

(18)
∑

i

mνi
≈ 0.3ξ

(
σ

MN1

)2

eV.

This ensures that if the ratio σ/MN1 is not exceedingly small,
the out-of-equilibrium condition can be satisfied for the correct
scale of neutrino masses. When the value ξ · (σ/MN1)

2 ∼ 10−1

suggested by the previous equation is inserted into Eq. (16)
we obtain (λ̃λ̃†)11 � 10−12(MN1/1 TeV), that is the λ̃ cou-
plings should be of the order of the electron Yukawa coupling
when MN1 is at the TeV scale. On the other hand this limit
does not constrain the size of the asymmetry in Eq. (14), and
for |hr2h†| � 10−3 the CP asymmetry could be sufficiently
large for successful leptogenesis. For such a low leptogene-
sis scale, direct production of the F states could be possible
in collider experiments, e.g., via off-shell X boson exchange
(MX ∼ gXσ < MF ). However, F → N1 decays (if kinemat-
ically accessible) would be strongly suppressed by the small
values of λ, and thus a direct detection of the Majorana neutri-
nos would be a rather difficult task.

3.2.2. Case 2: MF < MN1

In this case N1 decays proceed through the diagram in
Fig. 3(a). A lepton asymmetry is first generated in the F states,
and is transferred in part to the light leptons through the L con-
serving interactions controlled by the couplings h. If we assume
that the h-interactions are in equilibrium at T ∼ MN1 (as is
the case if the couplings h are larger than the couplings λ1a),
then the reduction of the asymmetry in the F states implied
by chemical equilibrium with the light leptons l also implies
a reduction in the rates of the washout processes, with a corre-
sponding enhancement of the efficiency η. This would favor the
survival of a sizeable asymmetry. Neglecting in first approxima-
tion phase space suppressions from final state masses, the total
decay width for this case reads:

(19)ΓN1 = MN1

32π

(
λλ†)

11.

The CP asymmetry is determined by the interference between
diagram (a) and the loop diagrams (b) and (c) in Fig. 3. Note
that even if these diagrams are the same as in the standard case,
the result for the asymmetry is different, since in contrast to the
lepton doublets the vectorlike fields F do not couple chirally to
the Majorana neutrinos. From the interference of diagrams (a)
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Fig. 3. Diagrams generating the CP asymmetry for MN1 > MF , σ .

and (b) in Fig. 3 we obtain:

(20)ε
(a+b)
N1→Fa

= 1

8π(λλ†)11

∑
β 	=1

Im
[(

λλ†)
β1λβaλ

∗
1a

]
F1(zβ),

where F1 is given by

F1(z) = −2z − √
z + [

z(1 + 2z) + √
z(1 + z)

]
log

(
1 + z

z

)

(21)
z→∞= 1

2
√

z
+ 1

6z
+ · · · .

As regards the self-energy type of diagrams, like in the standard
case besides the diagram depicted in Fig. 3(c) there is another
diagram (c′) of the Majorana type with opposite fermion flux
in the loop. The contribution from the interference of these dia-
grams with diagram 3(a) is:

(22)

ε
(a+c+c′)
N1→Fa

= −1

8π(λλ†)11

∑
β 	=1

Im
{[(

λλ†)
β1

+ (
λλ†)

1β

]
λβaλ

∗
1a

}
F2(zβ),

with

(23)F2(z) = 1 + √
z

1 − z

z→∞= − 1√
z

− 1

z
+ · · · .

Adding the two contributions (20) and (22), summing over all
the possible final states Fa , and using the fact that Im[(λλ†)1β ×
(λλ†)β1] = 0 to include in the leading order result also the sum
over β = 1, we obtain:

(24)εN1 = 3

16π(λλ†)11

∑
β

Im

{
1√
zβ

(
λλ†)2

β1

}
.

Even if the two functions F1 and F2 are not the same as in
the standard case with chiral leptons couplings [27], once the
effective couplings λ̃ are replaced with the fundamental λ’s,
at leading order Eq. (24) coincides with the standard expres-
sion Eq. (8). However, the fact that the couplings in Eq. (24)
are not the seesaw couplings λ̃ is rather important, because
the fundamental λ’s do not directly determine the light neu-
trinos masses. This implies that for this case the bound of
Eq. (9) does not hold. As regards the consistency among dif-
ferent phenomenological requirements, an order of magnitude
estimate suggests that there is some tension between the out-
of-equilibrium condition (15), that by means of Eq. (19) yields
(λλ†)11 � 103ξMN1/MP , and the light neutrino mass scale. In
fact the latter can get too much suppression from the small val-
ues of λ̃ that are reduced by the factor hσ/MF with respect to
the λ that determine the decay rate. This yields the rough es-
timate

∑
i mνi

∼ O(ξ10−5) eV. While it is always possible to
assume a large hierarchy between the combination of couplings
that control the out-of-equilibrium condition and the couplings
that determine the light neutrino masses, the fair conclusion is
that in the case under discussion successful leptogenesis can be
ensured only by means of a careful choice of the relevant para-
meters.

3.2.3. Case 3 (MF2,3 > MN1 > MF1 )
This case corresponds to the situation when the value of MN1

lies in between different values of MFa . For definiteness we
assume MF1 < MN1 < MFb

with b 	= 1. Neglecting the con-
tributions from three body decays N1 → SliΦ (suppressed by
O(hh∗) and by phase space factors) the N1 decay rate reads

(25)ΓN1 = MN1

96π
|λ11|2.

For the CP asymmetry, besides the diagrams in Fig. 3(a) the
new type of diagram depicted in Fig. 4(d) also contributes. This
contribution is qualitatively different from the previous ones in
Fig. 3 since it involves the couplings hia of the light leptons li
to the vectorlike fermions Fa . It is easy to see that in the case
when the h couplings dominate over the λ, diagram 4(d) gives
the leading contribution to the CP asymmetry. The interference
between diagrams 3(a) and 4(d) yields:

(26)ε
(a+d)
N1→F1

= 1

8π |λ11|2
∑
b 	=1

Im
[(

h†h
)

1b
λ11λ

∗
1b

]
F2(ωb),

where the function F2 is given in Eq. (23). After approximat-
ing F2(ω) ∼ −1/

√
ω) the sum can be extended over all b since

Im[(hh†)11λ11λ
∗
11] = 0. In this case, while the constraint from

the out-of-equilibrium condition is only slightly relaxed with
respect to the previous case (|λ11|2 � 104ξMN1/MP ), it in-
volves only the coupling λ11. It is then conceivable that some
mechanism could suppress just this particular entry, without
affecting the light neutrino mass scale (e.g., a texture zero in
the matrix of the λ’s lifted by some higher order effect). As in
the case discussed in Section 3.2.1, small values of λ do not
necessarily imply that the CP asymmetry is small, since the
contribution in Eq. (26) depends in a crucial way on the size
of the couplings h, and the factor of |λ11|2 in the denominator
can also enhance εN1→F1 . Also in this case, the scale of lepto-
genesis could be much lower than the bound in Eq. (11) without
being in conflict with other conditions. For example, by taking
|λ11| of the order of the electron Yukawa coupling ∼ 10−6 the
out-of-equilibrium condition can be satisfied for values of MN1

as low as ∼ 1 TeV. By assuming that the λ couplings differ-
ent from λ11 are at least of the order of the μ Yukawa ∼ 10−4,
and taking for the seesaw suppression factor (hσ/MF ) ∼ 10−2,
we also obtain a reasonable value for the light neutrino mass
scale. At the same time, the contribution to the CP asymmetry
in Eq. (26) can remain as large as O(h2).
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Fig. 4. Additional diagram contributing to the CP asymmetry in N1 → F1 de-
cays when MF1 < MN1 < MFb

(b = 2,3, . . .).

4. Conclusions

In this Letter we have explored the consequences for lepto-
genesis of adding to the seesaw model a new scale related to
the breaking of an additional U(1)X symmetry. Our framework
is inspired by U(1) models for flavor à la Froggatt–Nielsen,
but it differs from the usual schemes firstly in its simplicity,
and secondly because we do not impose particular conditions
for the values of the fundamental couplings, nor on the ratio
between the symmetry breaking scale and the masses of the
heavy vectorlike fermions. As a consequence, while the model
represents an interesting playground to study variations of the
standard leptogenesis scenario, it does not pretend to account
also for the pattern of fermion masses and mixings. (This could
still be achieved in more complicated schemes in which U(1)X
appears as a component of the full flavor symmetry.) We have
found that in all the cases in which leptogenesis occurs while
the U(1)X symmetry is still unbroken, the expressions for the
CP asymmetries in the decays of the lightest Majorana neutrino
εN1 differ from the standard case. The most interesting situa-
tions occur when the N1 lifetime and the CP asymmetry εN1 are
controlled by two different sets of couplings, and are thus un-
related. In these cases successful leptogenesis can be achieved
even at a scale as low as a few TeV, without conflicting with
the requirement of N1 out-of-equilibrium decays, and ensuring
at the same time a reasonable value for the scale of the light
neutrino masses.
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Appendix A

In this section we present some analytic results for the min-
imal 2 + 2 model with only two right-handed neutrinos N1,2
and two pairs of vectorlike fermions F1,2 and F̄1,2. This is
the minimal field content that ensures that two light neutri-
nos are massive, as is required by neutrino oscillations data.
Since in this case one neutrino is exactly massless, the neu-
trino mass squared differences measured in oscillations exper-
iments completely determine the light neutrinos masses, thus
allowing for a certain level of predictivity. For a normal hier-

archy spectrum we have mν2 =
√


m2
sol ≈ 9 × 10−3 eV and

mν3 =
√


m2
atm + 
m2

sol ≈ 5 × 10−2 eV. Focusing on the case
discussed in Section 3.2.1, that is defined by the condition
MF > MN , the 2 × 3 matrix of the effective couplings λ̃ can
be written as [31]

(27)λ̃ = 1

v
M

1/2
N Rm1/2

ν U†,

where R is a complex 2 × 3 matrix satisfying RRT = I and
RT R = diag(0,1,1) [12], U = UD · diag(1, e−iφ/2,1) with UD

the leptonic mixing matrix, and MN and mν are respectively
the matrices of the heavy and light neutrinos mass eigenvalues.
Substituting (27) in the combination of couplings that deter-
mines the decay rate, Eq. (12), we obtain

(28)
(
λ̃λ̃†)

11 = MN1

v2

(
mν2 |R12|2 + mν3 |R13|2

)
.

Then Eq. (16) implies the following constraint on the ratio of
the U(1)X breaking scale and the lightest Majorana mass MN1 :

ξ

(
σ

MN1

)2

� 10−5
MP

√

m2

atm

v2

[
|R13|2

(29)+
√


m2
sol


m2
atm

|R12|2
]

(30)≈ 0.2
(|R13|2 + 0.17|R12|2

)
.

This suggests that a mild hierarchy between σ and MN1 is cer-
tainly possible and, as was implicit in our scheme, allows for
the possibility that the three scales MF , MN1 and σ can actu-
ally lie within a few orders of magnitude.
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