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Abstract. For  nondeterministic recursive equations over an arbitrary signature of function symbols 
including the nondeterministic choice operator "or"  the interpretation is factorized according to 
the techniques developed by the present author (1982). It is shown that one can either associate 
an infinite tree with the equations, then interpret the function symbol "or"  as a nondeterministic 
choice operator and so mapping the tree onto a set of  infinite trees and then interpret these trees. 
Or one can interpret the recursive equation directly yielding a set-valued function. Both possibilities 
lead to the same result, i.e., one obtains a commuting diagram. However, one has to use more 
refined techniques than just powerdomains. This explains and solves a problem posed by Nivat 
(1980). Basically, the construction gives a generalization of the powerdomain approach applicable 
to arbitrary nonflat (nondiscrete) algebraic domains. 

1. Introduction 

When trying to give a denotational semantics for nondeterministic or concurrent 
programs, one of the most intricate questions is that of finding the appropriate fixed 
point definitions for recursively defined programs. Although it is not difficult at all 
to give the fixed point equations, in general, one has to face a number of problems 
when trying to find the appropriate ordering for applying the principle of least fixed 
points. One option is to take the orderings used in powerdomains, but these orderings 
for sets are just preorderings over nonflat (nondiscrete) domains. So one has to 
look for more sophisticated techniques. In the following we give a general construc- 
tion for the definition of set-valued (nondeterministic) functions as fixed points of 
recursive equations. 

In the algebraic semantics as described in [3] it is shown that a recursive equation 
can either be interpreted directly in an algebraic domain D or first transformed into 
an infinite tree (the Herbrand-Kleene interpretation) and then interpreted in D with 
identical results. As pointed out by Nivat [4] for nondeterministic equations contain- 
ing the nondeterministic choice operator "or"  one would like to have analogous 
techniques. One would like to transform a recursion equation with the nondeter- 
ministic choice operation "or"  either at first into an infinite tree (without interpreting 
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"or" ,  just considering it as a binary function symbol), then interpret "or"  yielding 
a set of infinite (deterministic) trees, that can be interpreted then. Or one could 
directly interpret the recursive equation over set-valued functions. Like in the 
deterministic case, one is interested that all these interpretations form a commuting 
diagram. The function mapping applications of recursively defined functions onto 

sets of possibly infinite trees is what  we call nondeterminist ic  Herbrand-Kleene  
interpretation. 

As pointed out in [4], it seems difficult or even impossible to define the nondeter- 

ministic Herbrand-Kleene  interpretation. In fact, it is impossible in the classical 

way as long as one wants to consider a domain (a 'powerdomain ' )  of infinite trees, 

and just  monotonic  and continuous functions for it. However,  applying the tech- 
niques of Broy [1], which have originally been developed to give a denotational 
semantics to concurrent, communicat ing programs, the reason for the problem can 

be explained and a 'nonclassical '  solution can be envisaged. Combining several 
orderings, nondeterminist ic Herbrand-Kleene  interpretations can be defined such 

that the respective constructions commute and the techniques of 'algebraic' semantics 
by interpretations of recursive equations as infinite trees can be carried over to 
nondeterminist ic  computations. 

In particular, such techniques can be applied for arbitrary nonflat (nondiscrete) 

domains. Thus a generalized construction for a nondeterminist ic  Herbrand-Kleene  
interpretation is obtained where the problems of interpreting nondeterministic choice 
are separated from the problems of classical determinate interpretations. 

2 .  B a s i c  d e f i n i t i o n s  

As in [2] a signature E = (S, F)  is a pair consisting of a set S of sorts and a set 
F of function symbols with some fixed functionality s~ x . - - x s ~  sn+~ for each 

f ~  F with Sie S. For our purpose it is sutficient to consider just  a one-element set 
of sorts and an arbitrary set F of funct ion symbols not containing _L and "or" .  In 
particular we consider 

X=({s},F), 

E+ = ({s}, F+), 

E J- = ({s}, FJ-), 

where _L ~ F, or ~ F, 

where F + = F u {_t_, or}, 

where F ± = F w {_t_}, 

where the functionali ty of _1_ is -* s and that of "o r"  is s x s ~ s. 

A (total) E-algebra A = ({sA}~s, {fA}s~v) consists of a family of carrier-sets s A 
for each sort s ~ S and a family of functions f A  for each f e  F with a functionality 
according to the functionality of fi 

A is called an algebraic E-algebra iff 

- all s a form consistently complete countably algebraic domains (for a definition, 
see Section 4), 

- all f a  denote continuous functions. 
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As usual (cf. [2]) we define the term-algebra Wz to be the X-algebra, the sorts of 
which consists of all well-formed terms (of the respective sorts) formed from the 
function symbols in F and the functions consisting of the corresponding 'term- 
construction" operations. By IA(t) we denote the interpretation of a term t in the 
algebra A. 

W:~+ (and also W : ~ _  W:~+) can be partially ordered by (cf. [3]) 

t E r  iff t = r  v t = £  

V [ t = f (  t , ,  . . . , t~)A r = f (  r l ,  . . . , r n )  n t ,  E r l  ^ ' ' ' ^  tn  ~ r~] .  

Since " _ "  defines a partial ordering with least element _k, we can form the ideal 
completion leading to the algebra of finite and infinite terms or trees (also called 
'magmas'). By W~z* and W~z~ the ideal completion of respectively Wx+ and W:~ 
is denoted. As demonstrated by Nivat [3], the interpretation Ia can be continuously 

extended in a unique way to 'infinite' terms from W~x~. This extension will be 
denoted by I~  in the next section. 

3. On nondeterministic Herbrand-Kleene interpretations 

Let A be an algebraic X-algebra. It is our goal to define mappings (the application 
of I~  to sets of terms is assumed to be shorthand for the element-wise application 
of I~): 

B""---- . !~__~p(A) 

where the following equations are to hold: 

B KIt] = {t} f o r  t 

BA°~.t]={I°~(t)} for te  W~l, 

B~K[or(tl,  t2)]---- B~K[t l ]u B~K[t2], 

B~[or(t l ,  t2)] = B ~ t l ] u  BA°°[t2], 

B H K [ f ( h , . . . ,  t , , ) ] = { f ( r l , . . . ,  r,,)" Vi, 1~  i ~  n" rie B~K[ti]}, 

B ~ f ( h , . . . ,  tn)]={fA(a~, . . . ,  an):Vi ,  l ~ i ~ n  : ai~B~ti]} .  

Here f e  F is assumed. Note that variables can be seen as nullary function symbols. 
The intended function B~K is called nondeterministie Herbrand-Kleene interpreta- 
tion. For finite terms t the sets B~v,[ t] and B E  t] are uniquely defined if we interpret 
the equations above as an inductive definition. However, this does not work for 
infinite terms t. Actually, at a first glance it is not clear whether such a function 
B~K actually axists and is uniquely determined. In spite of this we can prove that 
B~K cannot be monotonic. 
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L e m m a  3.1. There does not  exist an ordering on P(W~l)  such that B°~K is monotonic. 

Proof. Consider the following examples of trees: 

t l :  
S 

o r  ~ : 

/ \ B.,,, 3-} 
S ± 

i 
i 

, J._ t 

S 

i 

3- 

t2: o r  
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i i 

,, ,, 3_ 

± 3- 
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, ', 
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± s , 
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We have t l _  t2~ t3; so, the monotonicity of B~K would immediately imply 

ea  r - -  BHr,[ tl ] _  B ~ d  t23_ B ~ d  t3]. 

Since B~: [  t 1 ] = B~r[  t3], one immediately obtains, by the antisymmetry of a partial 
ordering, B~K[tl] = B~r~t2]  which obviously gives a contradiction. [] 

The proof clearly shows a problem arising with nondeterministic computations 

Scott's theory of computation is based on the principle of approximation: every 
object is determined uniquely by the set of its finite approximations (forming an 
ideal). For nondeterministic computations one has to consider sets of objects. A sel 
of objects is approximated in the sense above by a set of approximatins for these 
objects. However, unfortunately, if such objects x # y # z are in the partial order. 
i.e., if x ~ y E z  holds, then every approximation of y is also an approximation ol 
z; every set approximating {x, z} contains approximations of x and thus of y. Sc 
an approximation of {x, z} is always an approximation of {x, y, z} and vice versa 
Both are not distinguishable by the classical approximation order, the Egli-MilneJ 
order. This explains one of the basic anomalies in the generalized (to nonfla 
domains) powerdomain approach (cf. [5, 6]). 

Nondeterministic interpretations do not only describe one computation, but a se 
of feasible computations. So, one has two independent notions of approximations 
the classical approximation 'is less defined' of computations in the sense of Scot! 



Herbrand-Kleene universe for nondeterministic computations 5 

And the approximat ion 'has a wider spectrum of choices' on the level of nondeter- 

minism. 
It is not surprising that it is not possible to combine these two distinct notions 

of approximat ion into one single partial ordering without running into problems. 

4 .  S o m e  d e f i n i t i o n s  o n  p o w e r s e t s  a n d  p o w e r d o m a i n s  

In this section we give three powerdomain constructions based on the idea of 
ideal completions.  We choose very particular representations for the elements of 

these powerdomains.  
A part ial ly ordered set D O M  is called countably algebraic domain if: 

- every directed set S___ D O M  has a least upper bound (lub), 
- the set of  finite approximations of an element x is directed and every element 

x ~ D O M  is lub of the set of its finite approximations:  

x = lub{y ~ DOM: y ___ x and y finite}, 

- the set of finite elements is countable. 

Here a set S ___ D O M  is called directed if 

Vx, y ~ S  3 z~ S :  XEZA yEZ. 

An element x ~ D O M  is called finite if for all directed sets S _ DOM we have 

x E l u b S  ~ 3 y e S : x E y .  

DOM is called consistently complete if every set S ~ DOM with an upper  bound 
even has a least upper  bound. Trivially every set has then a greatest lower bound (glb). 

Let D O M  be a consistently complete, countably algebraic domain;  for S, S 1, $ 2 _  

DOM we define: 

M I N ( S ) = { x ~  S : Vy~ S : y E x ~ x = y } ,  

MAX(S)  = { x ~  S : V y ~  S : x ~ _ y ~ x = y } ,  

C L O S E ( S ) = { x ~  D O M  : 3SOc_ S: 

((Va, b e  SO 3 z c  SO: aGzA b E z ) A x = l u b  SO) 

v((Va,  b e S 0  3 z e S O : z E a A z E b ) a x = g l b S O ) } ,  

UPC ( S)  = { x ~  D O M :  3y~ S : y G x } ,  

DOC ( S)  = {x ~ D O M  : 3 y  ~ S : xm_y}, 

C O N E ( S )  = { x e  D O M  : :ly, z e S  : y~_xEz}. 

S is cailed convex iff C O N E ( S ) =  S; S is called closed if[ C L O S E ( S ) =  S. 
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We have 

C O N E ( S )  = UPE(S)  c~ DOE(S).  

Trivially all these functions and notions on sets can be extended to set-valued 
functions and functionals over those functions by applying them elementwise. 

The following three preorderings are used (cf. [5, 6]): 

SI_ES2 iff V x ~ S 1  : l y ~ S 2 : x E _ y ,  

S1EMS2 iff V y ~ S 2  3 x 6 S l  : x ~ y ,  

S1EEMS2 iff S 1 E E S 2 A S 1 E M S 2 .  

Over nonflat (nondiscrete) domains these relations just define preorderings. What 
sets are identified if we try to make these relations into orderings can be seen from 

the following lemma. 

Lemma 4.1. For closed sets S1, $2 we have 

S1EES2  iff M A X ( S 1 ) E E M A X ( S 2 ) ,  

S1EMS2 /ff MIN(S1)_MMIN(S2) .  

For arbitrary sets S 1, $2 we have 

SI__mMS2 /ff UPC(S1)EMUPC(S2), 

S1EES2 /ff DOC(S1)~EDOC(S2), 

S1EEMS2 iff CONE(S1)EFMCONE(S2), 

SIEMS2 iff UPC(S2)_ UPC(SI), 

SIEES2 if/" DOE(S1)___ DOE(S2). 

This lemma shows one pathological property of  the powerdomains based on these 
'orderings':  In  a powerdomain particular distinct sets are considered as being 
equivalent, i.e., the powerdomain constructions actually consider classes of 
equivalent sets. But sets may not only be equivalent because they cannot  be distin- 
guished by the orderings above. Due to the principle of  finite approximability and 
continuity two sets are considered to be equivalent in a countably algebraic power- 
domain based on some ordering if[ the classes of finite sets of finite elements that 
approximate these sets in the sense of  these orderings are identical. 

Let FDOM denote the set of finite elements from DOM. 
We take here a very concrete set-theoretic view of  powerdomains.  Their elements 

are just represented by subsets of P(DOM), i.e., by particular elements of the 
powerset over DOM. These representations are chosen in a very particular way 
which is most  convenient  for our semantic descriptions. 
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The power domain PD(DOM) of erratic nondeterminism (also called Plotkin 
power domain  or Egl i -Milner  power domain)  is defined as follows. The set of finite 

elements is represented by the convex hull of  finite sets of finite elements: 

G D = ( C O N E ( S ) :  S___ FDOMA ISl<oo}. 

We immediately can prove 

(GD, ~EM) is poset. 

PD(DOM )  is defined as the ideal-completion of (GD, EEM)- We choose as rep- 

resentation for PD( DOM )  a subset of P(DOM),  such that every ideal I _  GD is 

represented by 

{x ~ DOM : VS1 s I, y ~ FDOM : 

y E x ~ 3 S 2 ~  I, SI__.EMS2, ZS $2 : y E z E X } .  

By 

P D O M  : P(DOM) --> PD(DOM) 

we denote the function mapping every set S __ DOM on its power domain representa- 

tion. It is defined by 

PDOM ( S)  = {x ~ DOM : VS1 ~ GD,  y ~ FDOM : 

y E x  ^ S 1 E E M S ~  

3S2 ~ GD, SI~--EMS2EEMS, ZC $2 : y E Z E X } .  

Note that  we have chosen a ___-maximal representation for PDOM(S) ,  i.e., the 

c . m a x i m a l  set in the class of sets that are ~EM-equivalent w.r.t. EEM-approximations 
by finite sets of finite elements. A proof  is given in Lemma 4.2. 

The power domain of demonic nondeterminism (also called Smyth power domain) 

is defined as follows: 

G M  = {UPC(S) : S _ FDOM ^ IS[ < ~}. 

One immediately can prove 

(GM, EM) is poset. 

P M O ( D O M )  is the ideal-completion of (GM, EM). We choose as representation for 
P M O ( D O M )  a subset of  DOM, such that  every ideal I _ GM is represented by 

{x~ DOM : VS1 ~ / ,  y c  F D O M  : 

y E x ~ 3 S 2 ~  I, S1EMS2 ,  z ~ S 2  : yEzr-__X}. 

By 

PM DOMO: P(DOM) -> P M O ( D O M )  
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we denote the function mapping  every set S _ DOM on its power domain  representa- 
tion. It is defined by 

PM DOMO(S)  = { x e  DOM : VS1 EGM,  yE FDOM : y E x  A SI~_MSO 

3S2e GM, S1-----MS2~M S, :re $2 : y ~ z ~ x } .  

All sets in PMO(DOM) are closed. Since we find it more convenient to work with 

a ___-minimal representation we define 

PM(DOM) = {MIN(S)  : S E PMO(DOM)} 

and 

with 

PM DOM : P ( D O M ) ~  PM(DOM) 

PM DOM(S)  = MIN(PM DOMO(S)) .  

Note that we have chosen a c_-minimal representation for PM DOM(S) ,  i.e., the 

_ -min imal  set in the class of  closed, finitely approximable sets that are EM-equivalent 

w.r.t. EM-approximations by finite sets of  finite elements. A proof  is given in 
Lemma 4.2. 

The power domain of angelic nondeterminimism (also called Hoare power domain) 

is defined as follows: 

GE = {DOC(S) : S ~ FDOM A Isl < oo). 

One immediately can prove 

(GE, ~E) is poset. 

PEO(DOM) is the ideal-completion of (GE, EE). We choose as representation for 

PEO(DOM) a subset of  DOM such that every ideal l ~ GE is represented by 

{x E DOM : VS1 E/ ,  y E FDOM : 

yEx=~:IS2E I, S1 EES2, zE S2 : y~_z~_x}. 

By 

PE DOMO : P(DOM) ~ PEO(DOM) 

we denote the function mapping  every set S ~ DOM on its power domain  representa- 

tion. It is defined by 

PE DOMO(S)  = {xE DOM : VSIE GE, y E FDOM : y E x ^  S1EES:=> 

3S2E GE, S1EES2EES,  zE S2 : y E z E X } .  

The sets in PEO(DOM) are closed. We may represent them also by their maximal 
elements. This leads to a _-minimal  representation for the powerdomain  of angelic 
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nondeterminism. We define 

PE(DOM) -- {MAX(S)"  S ~ PEO(DOM)} 

and 

with 

PE DOM" P(DOM)--) PE(DOM) 

PE D O M =  MAX(PE DOMO(S)) .  

Note that  we have chosen a ~-minimal  representation for PE DOM(S) ,  i.e., the 
-minimal set in the class of closed, finitely approximable sets that are ~E-equivalent 

w.r.t. ~E-approximations by finite sets of finite elements. (For a proof, see Lemma 

4.2.) 
Basically these powerdomains contain just those sets for which the respective 

relations form orderings and which can be approximated by finite sets of finite 
elements. They are isomorphic to (continuous) ideal completions of  the representa- 
tion class of  finite sets of finite elements. 

For sets S1, $2 we define equivalence-relations as follows: 

S1 ~EM S2 iff PDOM(S1)  = PDOM(S2),  

S l  --M $2 iff PM DOM(S1)  = PM DOM(S2),  

S1 ~E $2 iff PE DOM(S1) = PE DOM(S2).  

These equivalence relations can also be described in another way according to the 

following lemma. 

Lemma 4.2. For S1, $ 2 c  DOM we have: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

S l  ~EM $2 iff VSc_ FDOM, [SJ<oo : (SEEM S I c ) S E E M  S2), 

S1 --M $2 iff VS ~ FDOM, [SJ < oo : (S ~-~-M S l  (::~S EZ M $2), 

Sl --E S2 if/" VSc_FDOM, IS[<oo: (S~ESlCr~S~--ES2), 

PDOM(S)  = (._J{S0_c D O M :  S--EM SO}, 

PM D O M ( S ) =  M I N ( U  {SOc DOM : S--M SO}), 

PE DOM(S)  = M A X ( U  {SO___ D O M :  S --E SO}). 

Proof. Parts (1)+ (2)+(3)  are trivial in one direction, since in the definitions of 
PDOM, PM DOM, PE DOM it can simply be seen that  PDOM(S) (and PM DOM(S) 
and PE DOM(S)  respectively) only depends on the set of finite sets SO of  finite 
elements with SOEEMS. NOW assume that S1 ~EMS2 and there is some S _  
FDOM, [S[<oo with S E-~-EM Sl  b u t - q ( S  EEM $2). Then either there exists some 
x~ S such that there does not exist a y2~ S2 with x~_y2 and there exists some 
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y l  e S1 with x ~ y l ;  then y l  e PDOM(S1)  but  --n(yl ~ PDOM(S2)) ;  or there exists 
some y2~ S2 such that there does not exist an x ~ S with x Ey2 and thus y2 
PDOM(S2) but  ~ (y2  ~ PDOM(S1)) .  The proofs of (2) and (3) follow analogously. 

(4) If  x ~ S O  for some S0~EM S, then for every pair of  approximations y E  
x, Sl EEM S (and thus S1 ---m-EM S0) with Sl ~ GD, y ~ FDOM there exist approxima- 
tions $2~ GD with S1 -----EM S2 m__EM S (and thus $2 ~--EM SO) with z~ $2 such that  
y~zE_x;  hence x~  PDOM(S).  

Now if x ~ P D O M ( S ) ,  then 

S ~EM S1}. 
(5) Follows in analogy to (4). 
(6) Follows in analogy to (5). 

S~EMSk,.){X } and thus x~U{SI___DOM:  

[] 

The concept  of  finite observability over algebraic domains simply means that two 
objects are equal iff their classes of  finite approximations are identical. 

Lemma 4.3. The following diagram commutes: 

PD(DOM) 

P(DOM) - *.- PE(DOM) PM(DOM) 

PM DOM 

In particular, MIN and M A X  are continuous functions. 

Proof. The lemma is a corollary of  Lemma 4.2. [] 

On function domains we use the classical ordering. Given a domain D 1 ordered 
by ~,  then the set of  functions 

{ f :  D2--> D1} 

with some given set (or domain) D2 can simply be ordered by 

f l  E* f2  iff Vx ~ D2 : f l  (x) ~ f2 (x ) .  

Analogously we write lub* for the lub on the function domain ordered by _*. 
Unfortunately,  the simple powerset without the empty set ordered by inclusion 

ordering does not form a domain.  For very obvious reasons we do not accept the 
empty set as element, since the set of  possible computations of a nondeterministic 
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program can never be empty. However, (P(DOM)\{~}, c_) forms a predomain,  i.e., 
it has all properties of  a domain besides the existence of a least element. We restrict 
ourselves to closed sets, i.e., to sets S where with every directed set in S its least 
upper bound is also in S. This is motivated by the concept of  finite observability. 
Every object should be determined by its finite approximations. 

Accordingly, the power predomain of closed sets is defined as follows: 

P C ( D O M )  = {S _ D O M  : S = CLOSE(S)}. 

A function 

f :  P(DOM)--> P (DOM)  

is called closely union continuous iff 

f ( C  LOS E([._Jx,) ) = C LO SE([..Jf(x,) ) 

for every _ -cha in  {xi}i~N, x~ ~ P(DOM).  
Similarly, a functional  

T : ( D O M  ~ P (DOM))  -> (DOM -> P(DOM))  

is called closely union continuous iff 

T [ C L O  S Eo ( U  *f~)] = CLOSE o ([._J* Tiff]) 

for every __-chain, (f~)i~N, f~ : DOM-> P(DOM).  Here, o denotes the composition 
of functions and [._)*f~ denotes the elementwise union of the set-valued function f~, 
i.e., 

d e f  

( U * f 3 ( x )  = Uf (x). 

Based on these general definitions we are now going to give a general construction 
for a nondeterminist ic Herbrand-Kleene  interpretation. 

5. Nondeterministic interpretations 

Let A be an algebraic 2~±-algebra with least element -I-A. 
The nondeterministic interpretation of terms t ~ W~÷ in A is to be defined by the 

function 

B~" W~÷-~ P(A)  

fulfilling the equations 

B~[or ( t l ,  t 2 ) ]=  B ~ [ t l ] u  B~[t2], 

OO~ OO B A [ f ( h , . . . ,  t n ) ]={ fA(a , , . . . ,  a,)" Wi, 1 <~i<~ n" ai~ BA[ti]}. 
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Note that we do not require that the images of  B~ are in PD(A) but just in P(A), 
the powerset over A. It is not difficult to show that there are many distinct functions 
that fulfill these equations, since these equations do not characterize BA uniquely. 
Such a situation is well known from classical fixed point theory. Besides the least 
fixed point, generally there are many other fixed points (optimal, maximal fixed 
points, etc.). What we would like to do is to proceed as in classical fixed point 
theory: we would like to find an appropriate ordering on P(A) such that B~ can 
be specified as the least fixed point. But according to our Lemma 3.1 such an ordering 
does not exist. So we have to use more refined techniques instead. In particular 
now we have 

- to prove that the class of functions fulfilling the equations above is nonempty; 
- to define uniquely which function from this class is to be taken. 

We are going to define the function B~ in three steps: 
S t e p  1. We define an approximation BP~ for the intended function B~ in the 

powerdomain of erratic nondeterminism, such that the following relation should 
hold: 

BP~[t] = PDOM(BT[t]). 

Define 

BPA" W~+-> PD(A) 

by the least fixed point in the set of functions: 

W~z+~ PD(A) 

fulfilling the following equations: 

BP~[or(t l ,  t2)] = CONE(BP~[ t l ]u  BP~[t2]), 

B a ~ [ f ( t l , . . . ,  t , ) ] = C O N E ( { f A ( a b  . . . , a , )  " Vi ,  l <~ i<~ n "  a i ~  Ba~[ t , ] } ) .  

Now let 

BA : Wz+~ P(A) 

be defined (inductively on finite terms) by 

BA[or(tl, t2)]= BA[tl]w BA[t2], 

B A [ f (  h ,  . . . , t,)] = { f A (  a l ,  . . . , an) : V i, 1 <~ i ~ n : a i  E h a i t i ]  }. 

Note that because BA works only on finite terms, it is characterized uniquely by 
these two equations. 

Lemma 5.1. BP~' is cons i s t en t l y  def ined,  g E M - m o n o t o n i c ,  a n d  ~__EM-COntinuous. 
W e  have ,  f o r  f i n i t e  t e rms  t ~ W z + ,  

BP~[ t] = CONE(BA[ t]). 
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For arbitrary terms t ~ W~÷ we have 

BP~[t] = --EM-Iub{CONE(BA[t0]) " tO ~ Wr+ ^ tOE t}. 

Proof. Since both right-hand sides of the equations for BP~ are monotonic  and 
continuous for BP~ in the _zM-ordering, the least fixed point of the equations is 
identical to the lub of the iterated application of  the right-hand side of  the equations 
starting with 

BP°[t]  = {_L}, 

i BP~ + ~[or(tl, t2)] = CONE(BP~[ t  1 ] u BPA[ t2]), 

BPk+'[f(t,,..., tn)]  = 

i = C O N E ( { f A ( a , , . . . ,  a , )" Vi, 1 n" a, B P A [ t , ] } ) .  

However, this coincides with our  definition of BP~ if  we take the lub on both sides 
of the equations. 

According to its definition, BPA is the continuous extension of C O N E  o BA to 
infinite terms on the powerdomain  PD(A). 

In particular, for every tO e Wz+ with tOE t there oxists some i e • such that 

CONE(BA[tO]) EEM BP~[t]. 

Vice versa for every i~N there exist tOe W : :  with tO___ t such that 

BP~[ t] E__EM CONE(BAIt0]).  

This proves the claim of the lemma. .  [] 

Step 2. We define an approximation for B~ in the powerdomain of  demonic 
nondeterminism. For t ~ W°~-~ we have according to the results of Nivat  [3]: 

BP~[t]={l~(t)}. 

According to Lemma 4.3, 

MIN o BP~" W~+-~ PM(W~-)  

defines a monotonic  and continuous mapping, too. 

Lemma 5.2. MIN o BP~ is consistently defined, _M-monotonic, and _ M-continuous. 
It is the least f ixed point in the set 

W~+~ PM(A) 

fulfilling the following equations: 

M I N ( B P ~ o r ( t l ,  t2)]) = M I N ( B P ~ t l ] u  BPA"°[t2]), 

M I N ( B P ~ f ( t , , . . . ,  t,,)]) = 
i 

= M I N ( { f A ( a , , . . . ,  a~) " Vi, 1 <~i<~n " ai~BPA~[ti]}). 



14 M. Broy 

Proof. MIN is the continuous function mapping PD(A) into PM(A). [] 

Step 3. We define B~ as the c_*_least closed function with 

MIN o BP~ _c* B~ _~* BP~, 

that fulfills the specifying equations. 

Proof of the existeaee of B~ (constructive) 
(1) Define 

B~" W~+~ PC(A) 

by 

B°A = MINo BP~, 

i B + [or(tl, t2)]= B [tl]u BAEt2], 
i t , ) ] = { f A ( a ~ , . . . , a , )  " Vi, 1 ~ i<~n " a~ E BPA[t~]}). 

(2) We have 

n i¢ . - ,  1~i+1 
A ~  J-~A 

because the above definitions of Bi are c*.monotonic in B and 

B°[ t] = M I N ( B P ~  t]) 

= ~ MIN(BPA°~[tl]w BP~t2])  
[ M I N ( { f ( a ~ , . . . ,  a . )"  ai E BPA°°[t,]}) 

_ M I N ( B P ~ t l ] ) u M I N ( B P A ~ ] )  ~ = B ~ t ] .  
~ { f ( a , , . . . ,  a , ) :  a, e MIN(BPA[t,])}J 

(3) Define 

B T = C L O S E ° I J * B ~ ;  

since all language constructs are closely union-continuous, B~ is a fixed point of 
the defining equations. [] 

Corollary 5.3. With the definitions of  the previous lemma we have for all terms t: 

aM D O M ( B E  t]) = MIN(PDOM(B~[ t])) 

= MIN(BPA~ t]) 

= MIN(BA°°[ t]) ~ BA"°[ t] 

CONE(BE t]) 

__q PDOM(Ba°°[ t]) = BPa'~[ t]. 
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• O O  

For A = W ~  the function B A will be denoted by 

B~K" WT~+-, P(WT~) 

and called the nondeterministic Herbrand-Kleene interpretation. Now let us consider 
a basic example. 

Example 5.4 ($ la Maurice Nivat, taken from [4]) 

• (x) = or(s(x) ,  ~(s(x))). 

The infinite tree T (which is the least fixed point of the equation above in W~÷) 
associated with ~ ( x )  can be represented as follows: 

o r  
/ \  

s or 
i / \ 
x s or 

i : / \ 
S S 
m i 
m i 
m t 

X S 
t 
i 
i 

$ 
| 

t 
i 

X 

Following our construction we obtain 

BP~K[T] = { l ,  s(±),  s ( s ( ± ) ) , . . . ,  s(x), s(s(x)), . . .},  

MIN(BP~K[T]) = {_t_} = B°K[ T], 

B ~ K [ T ] = { ± , s ( x ) } ,  

B2K[T] = {±, s(x), s(s(x))}, 

B~K[T] = { l ,  s(x), s(s(x)), . . .}.  

As a second example for recursive equations, Nivat considers 

~ ( x )  = or(s(tr(x)) ,  ~ ( s (x ) ) ) ,  o'(x) = x, 

with the infinite trees T1 and T2. Obviously, both definitions of • should be 
equivalent. One obtains 

BP~K[T1] = {±, s(_l_), s(s(.l_)),..., s(x), s(s(x)), . . .},  

BP~K[ T2] = {x}, 

hence 

MIN(BP~K[ T1]) = {±} = B°K[ T1], 

MIN(BP~K[ T2]) = {x} = B°K[ T2], 
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B I K [  T1 ] = {_l_, s(x)}, B I K [  T2] = {x}, 

B 2 K [ T 1 ] = { - l - , s ( x ) , s ( s ( x ) ) } ,  B ~ K [ T 2 ] = { x } ,  

Finally we obtain again 

B ~ K [ T 1 ]  = {_1_, s ( x ) ,  s ( s ( x ) ) ,  . . .}. 

So we get the same fixed point for both equations for ~. 
The problem found in [3] simply stems from the fact that B~K[T] is not convex. 

As Nivat demonstrates, if the powerdomain idea is applied to nonconvex sets S in 
a naive way, however, arbitrary sets SO with CONE(S) = CONE(S0) can be obtained 
as limits by taking the lubs pointwise. 

BA has the following properties: 
- PDOM o BA is --EM-COntinuous and E EM-least fixed point of the defining equation 

in PD(A), 
- B ~ [ t ] = { l T ( t ) }  for re W~l, 
- B~ is the ~*-least closed function that is ~EM-equivalent to PDOM o Ba. 

The basic results of the definitions above can be condensed into the following 
theorem. 

T h e o r e m  5.5. F o r  every  algebraic Z -a lgebra  A the f o l l o w i n g  d iagram commutes :  

CLOSE o I CLOSE ° I 

P ( A )  ~ PD(A) 
PDOM 

Note that here I~  is to be taken elementwise. 

Proof. According to the monotonicity of I~  we have 

MIN o B~ c_* CLOSE o IX o MIN o BHK.°° 

NOW for arbitrary algebras C we define 

B P ° [  t ]  = { / } ,  

B P ~ [ o r ( t l ,  t2)] = CONE(BP~[t l ]  u BPc[t2]),i 

B P ~ l [ f ( t l , . . . ,  G ) ] = { f ( a l , .  . . , a , )  " a , ~  BP~[t,]}. 



Herbrand- Kleene universe for  nondeterministic computations 17 

Let B~ and  B ~ K  be def ined  as above;  we can  prove  by induc t ion  on i: 

(,) v t  w z+ : 

V t l e  M I N  o BP~[ t ] ,  t2 e C L O S E  o I ~  o M I N  o B~r.[t] with t l  ___ t2 • 

3a ~ B~,[t]" I A [ t l ] ~  a ~ I~[ t2] .  

For  i =  0, (*) is trivial. N o w  let (*) be val id  for  all i<~ n;  we cons ide r  th ree  cases: 

- i f  t l  = _L, t h e n  (*) is tr ivial ,  

- if  t l  = o r ( t l l ,  t12), t hen  t 2 = o r ( t 2 1 ,  t22) wi th  t l l E t 2 1 ,  tl2E_ t22, a n d  

BPuK[t] ,  t l l ,  t l 2 e  M I N o  

so there  exist  accord ing  to o u r  induct ion  hypothes i s  a 1, a2  ~ B~[t] with 

IA[ t l  1]----- a l  _ I~'[t21 ], 

therefore ,  we  obta in  

I~[tl]m_al=__I~[t2] or 

I ~ [ t l 2 ] r -  _ a2 ~ IA[t22]; 

I~ [ t  1 ] ~  a 2 E  I~[ t2] ,  

- if t l  = f ( t ~ , . . . ,  t ,) ,  the  p r o o f  can be d o n e  analogously .  

So we have  

a ~ C L O S E  o I ~  o M I N  o B~:[t]  ¢¢, a ~ C L O S E ( U *  B~[t] )  

since for  every  x e M I N  o B~K[t] there exist 

xi ~ M I N  o BPhK[t]  with lub xi = x, 

and  a c c o r d i n g  to our  l e m m a  above there  exist 

y i e B ~ [ t ]  with x i ~ y i E x .  
So 

C L O S E  o I ~  o M I N  o BH~ ---* B~,  

and  since bo th  B ~  and  C L O S E  o IA ° BHK are the un ique ly  d e t e r m i n e d  _ - l e a s t  fixed 

points  con t a i n i ng  

C L O S E  o I ~  o M I N  o co BHK, 

they  are  ident ica l .  

The  equa l i ty  

C L O S E  o 1a o P D O M  o BHK = P D O M  o B ~  

s imply  fol lows by con t inu i ty  arguments .  []  

This m e a n s  tha t  it is poss ib le  either to in te rp re t  a term t e W~+ immed ia t e ly  in 

P ( A )  as r e p r e s e n t i n g  a set  o f  e l e m e n t s  o f  A or  at first interpret t h e s e  t erm e l e m e n t w i s e  

to  o b t a i n  a se t  over  A. T h e  results  o f  b o t h  w a y s  o f  p r o c e e d i n g  c o i n c i d e ,  a n d  the 

d i a g r a m  c o m m u t e s .  
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6. Concluding remarks 

The basic idea that was leading to the approach presented above comes from a 
particular view of nondeterminism: a nondeterminist ic  program does not specify 
just one computat ion (for every input), but rather a class of computations. This is 

why the classical domain theory and fixed point  theory (which is tailored for treating 

classical notions of computabili ty) cannot work in a straightforward way in the case 
of nondeterminism, If  ideas from domain theory and fixed point  theory are applied 
in a more sohpisticated way, however, one can cope with nondeterminism as well. 

The technique applied in this paper was used the first time in [1] to define a 

denotat ional  semantics for concurrent, communicat ing,  nondeterministic programs. 
In the preceding section it is demonstrated that  this technique is general in the sense 
that it can be applied to nondeterminist ic computat ions over arbitrary domains. 

Note that  one problem remains: All sets B~K[t] and BA~t] are closed• So if we 

consider the tree 

t: o r  
/ \ 

_L or 
/ \ 

$ o r  
/ / 

_1_ s 
/ 

S 
/ 

.1_ 

\ 
o r  

one may expect that B~K does not contain the infinite tree s °° defined by 

O O  

s : S 
,, 
b 

S 
u 

S 

However, this tree s °° is an element of B~K since B~r.[t] is always closed. Only at 
first sight this seems a drawback, but it is a consequence of the notion of finite 
observability and a part icular  interpretation of _L. I f  all finite approximations of an 

element x are members of  B~K[t], then so is x. Note that this has nothing to do 
with fairness, since fairness rather corresponds to the tree T associated with qO of 
the problem above• Note that  B~K[T] does not contain s °° 
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