
c~ DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 185 (1998) 19-27 

Kings in quasi-transitive digraphs 1 

J o r g e n  B a n g - J e n s e n a , *  J i n g  H u a n g b  

a Department of  Mathematics and Computer Science, Odense UniversiO,, Campusvej 55, DK-5230, 
Odense M, Denmark 

b Department of  Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, B. C., 
Canada VSW 3P4 

Received 23 April 1996; received in revised form 28 April 1997; accepted 9 June 1997 

Abstract 

A k-king in a digraph D is a vertex which can reach every other vertex by a directed path of 
length at most k. This definition generalizes the definition of a king in a tournament. We consider 
quasi-transitive digraphs - -  a generalization of tournaments recently investigated by the authors 
(Bang-Jensen and Huang, 1995). We prove that a quasi-transitive digraph has a 3-king if and 
only if it has an out-branching. We give several results on 3-kings in quasi-transitive digraphs 
which are analogous to well-known results about kings in tournaments. (~) 1998 Elsevier Science 
B.V. All rights reserved 

1. Introduction 

All digraphs considered in this paper may contain opposite arcs with the same end- 

vertices, i.e., a directed cycle o f  length 2, but contain no multiple arcs or loops. We use 

U(D) to denote the underlying undirected graph of  the digraph D. For an undireced 

graph G we use G to denote the complement graph of  G. 

A strong component of  a digraph D is a maximal subset S C_ V(D) such that 

d ( x , y ) < ~  for every choice o f  vertices x,y E S. Here d(x,y) denotes the length 

of  a shortest directed path from x to y (if  there is no such path d(x, y)  = ~ ) .  A di- 

graph is strong if it has only one strong component. An initial (strong) component 

is one which has no arcs comming in from any other strong components. (Note that 

when D is strong the whole graph D is the initial component.) 

A semicomplete digraph is a digraph in which every pair o f  distinct vertices is joined 

by at least one arc. A tournament is a semicomplete digraph with no cycles o f  length 

t w o .  
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A digraph is transitive if it is acyclic and, for every pair o f  arcs x ~ y, y ~ z  

on distinct vertices x, y,z, the arc x ~ z  is also an arc of  the digraph. A digraph 

is quasi-transitive if, for every pair of  arcs x ~ y, y ~ z on distinct vertices x, y,z, 
the vertices x and z are adjacent. It is easy to see that every semicomplete digraph, 

and hence every tournament is quasi-transitive. Clearly, every transitive digraph is 

quasi-transitive. Quasi-transitive digraphs are related to comparability graphs and share 

a lot of  structure with tournaments, see e.g. [1,2,6] and Theorem 1.1. The relation to 

comparability graphs was shown by Ghouil~-Houri who proved that a graph can be 

oriented as a quasi-transitive digraph if and only if it can be oriented as a transitive 

digraph [4]. 

Let D be a digraph on n vertices and let $1,$2 . . . . .  S, be distinct digraphs. The 

digraph D[S~,S2,...,Sn] is the digraph obtained from D by replacing the ith vertex 

of  D by the digraph Si in such a way that for every arc i--+j in D, D[SI,S2 . . . . .  Sn] 
contains all possible arcs from V(Si) to V(Sj). Furthermore, all the original arcs of  an 

Si are also in D[S1, $2,...,  Sn]. In the case when no Si contains an arc, i.e. the underlying 

graphs are independent sets, we call the digraph D[SI, $2 . . . . .  Sn] an extension of  D. 

A k-kin9 in a digraph D is a vertex x such that d(x,y)<~k for all y E V ( D ) - x .  The 

definition o f  a k-king generalizes the definition o f  a king in tournament, in which, a king 

is defined to be a vertex x such that d(x,y)<~2 for every y c  V(D) - x ,  cf. [3,7,12] 

(i.e. a 2-king according to our definition). 

2-kings in tournaments were first introduced by Maurer [9] in his delightful exposi- 

tion on the use o f  tournaments to model dominance in flocks o f  chickens. The idea to 

use 2-kings in the study of  dominance in tournaments emerged from an earlier work 

by the mathematical sociologist Landau [8] who proved that every vertex o f  maximum 
outdegree in a tournament is a 2-king. For further work on 2-kings in tournaments we 

refer the reader to [3, 7,12]. 

A necessary condition for the existence of  a k-king, k < n, in a digraph D on n ver- 

tices is that D has a vertex which can actually reach every other vertex by a directed 

path. This is equivalent to saying that D must have an out-branching. An out-branchin9 
rooted at v is a spanning tree such that each x ~ v has exactly one arc coming in. 

Gutin [5] and independently Petrovic and Thomassen [11], proved that a multipartite 

tournament (i.e., an orientation o f  a complete r-partite graph for some r~>2) has a 

4-king if and only if it has an out-branching. A multipartite tournament D is an ex- 
tended tournament if all arcs between two partite classes have the same direction, i.e. 

D is of  the form D = T[UI, U2 . . . . .  Ut] where T is a tournament on t vertices and 

each Ui is a digraph with no arcs and at least one vertex. Using the fact that every 
tournament has a 2-king, it is not difficult to prove that every extended tournament has 

a 3-king if  and only if it has an out-branching. In Section 2 we shall prove that a quasi- 
transitive digraph has a 3-king if and only if  it has an out-branching (Theorem 2.5). 

Since an extended tournament is also quasi-transitive, our result generalizes the result 

for extended tournaments above. 

The following theorem characterizes quasi-transitive digraphs in a recursive 
fashion. 
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Theorem 1.1 (Bang-Jensen and Huang [1]). Let D be a digraph. Then D is a quasi- 

transitive digraph i f  and only i f  the following holds. 
(1) I f  D is not strong, then there exist a natural number q >12, a transitive digraph 

Q on q vertices and strong quasi-transitive digraphs WI, W2 . . . . .  Wq such that 

D = Q[W~, W2 . . . . .  mq]. 
(2) I f  D is strong, then there exist a natural number q>~2, a strong semicomplete 

digraph Q on q vertices and quasi-transitive digraphs Wl, W2 . . . . .  Wq, where each 
Wi is either a single vertex or a non-strong quasi-transitive digraph, such that 

D =  Q[W1, W2 . . . . .  Wq]. Furthermore, i f  Q has a cycle of  length two induced by 
vertices vi and vj, then the corresponding digraphs Wi and Wj are trivial, i.e., each 

of  them has only one vertex. 

Let D be a quasi-transitive digraph. By Theorem 1.1 we can decompose D as 

D = Q[W~, W2 . . . . .  Wq] as described in the theorem. It is easy to see that if D is not 

strong, then this decomposition is unique, since each W/ is a strong digraph and Q has 

no directed cycle. If  D is strong, there may be several such decompositions, but it was 

shown in [1] that there is a unique such decomposition in which each W/ corresponds 

to a connected component in U(D). Hence, we can speak of the first level of the 

decomposition of D. 
Since each of the digraphs W1, 7/2 . . . . .  Wq are also quasi-transitive, we may fur- 

ther decompose any W/ which has at least 2 vertices as W/:Ri[Wil  . . . . .  mir~] ac- 
cording to Theorem 1.1. By doing this for all non-trivial W,. we obtain the second 
level, D =  Q*[Wll , . . . ,  W1 . . . . . . .  Wql . . . . .  Wqr,,] (where Q* is the subdigraph induced by 
V(R1 )U . . .  k)V(Rq) in D), of the decomposition of D and so on. Each of these levels 

will be uniquely determined, provided that we proceed as above whenever we decom- 
pose a strong quasi-transitive subdigraph of D. 

2. Existence of kings 

In this section D is always a quasi-transitive digraph with at least two vertices. Recall 

that a necessary condition for the existence of a 3-king is that D has an out-branching. 
Secondly, if D has an out-branching, then it has a unique initial component. Finally, 

observe that by Theorem 1.1, if D has a unique initial component D ~, then every vertex 

in D ~ dominates every vertex outside D ~. So if D has an out-branching, then D has 
a 3-king if and only if the unique initial component has a 3-king. Hence, it suffices to 

study 3-kings in strong quasi-transitive digraphs. 
Assume that D is a quasi-transitive digraph. We shall always use D ---- Q[WI,. . . ,  Wq] 

to denote the first level of  the decomposition of D as prescribed in Theorem 1.1. 

Furthermore, we shall assume that vertices of Q are labeled gl,g2 . . . . .  gq such that in 
forming D each gi is substituted by W/. 

By a well-known result of  Moon [10], every vertex of a strong semicomplete digraph 
on at least three vertices lies on a directed cycle of length three. Using this and 
Theorem 1.1, it is easy to prove the following lemma. 
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Lemma 2.1. Let D = Q[W1 . . . . .  Wq] be a strong quasi-transitive digraph. For every 

i =  1 ,2 , . . . ,q :  d(x,y)<~3 for every pair of  vertices x, y E  Wi. Furthermore, i f  Wi is 
non-trivial, there exist x, y E Wi such that d(x, y)  -- 3. 

A strict-3-king is a vertex that is a 3-king, but not a 2-king. A non-king is a vertex 

which is not a 3-king. 

Lemma 2.2. Let D = Q[WI . . . . .  Wq] be a strong quasi-transitive digraph. 

1. A vertex h E W~ is a 3-king i f  and only i f  the vertex gi of Q is a 3-king in Q. 
2. I f  gi is a 3-kin 9 o f  Q and Wi is non-trivial, then Wi contains a vertex which is 

a strict-3-king. 

Proof.  The first claim follows easily from Theorem 1.1 and Lemma 2.1: I f  gi is a 

3-king in Q, then h can reach every vertex outside W/ by a path o f  length at most 

three. By Lemma 2.1, gi is on a 3-cycle in Q and from this we get that h can reach 

every vertex inside W, by a path o f  length at most three. The other direction is trivial. 

The second claim follows from the fact that W~ induces a non-strong quasi-transitive 

digraph. Hence, there is some vertex u which must use a path leaving W/ to reach 

some other vertex v E W,.. Note that since Wi is non-trivial, the vertex gi is not on any 

2-cycle, by Theorem 1.l. [] 

It follows from Lemma 2.2 that in the case when D = Q[WI, . . . ,  Wq] is strong we 

can divide W1 . . . .  , Wq into those for which all h E W/ are 3-kings and those for which 

no h E W/ is a 3-king. 

Corollary 2.3. Suppose D has a 3-king. Then there is an arc between every 3-king 

and every non-king. 

Proof. I f  D is strong, then this follows easily from Theorem 1.1, Lemma 2.2, and the 

remark above. I f  D is not strong, then every 3-king x must belong to the unique initial 
strong component D t, hence if  y q[ V(D ~) then x---~ y. I f  y E V(D~), then the claim 

follows from the case when D is strong, since x is also a 3-king in D ~. [] 

Corollary 2.4. Let D = Q[WI . . . . .  Wq]. Suppose that D has a 3-king. Then, for every 

non-king u, there exists a 3-king v such that d(u ,v)> 3 and v dominates u. 

Proof.  Suppose that D is strong. Let u be a non-king of  D and let W be the set o f  

vertices w such that d(u ,w)>3.  Then W ¢ O  and, by Theorem 1.1, W =  W/, U . . .  U W/k, 
for some 1 ~< il < • • - < ik ~< q. Clearly each vertex o f  W dominates u. Consider the sub- 

graph Qt of  Q induced by {gi, . . . . .  gi,}. Note that by Theorem 1.1, Q~ is semicom- 

plete and hence has a 2-king. Let gip be a 2-king of  Q~. We claim that each vertex 
o f  W/~ is a 3-king of  D. Indeed, let x be a vertex o f  W/,. Assume that x cannot 
reach some y in three steps, i.e., d(x, y ) > 3 .  Then y ~ W and hence u can reach y 



J. Bang-Jensen, .L Huang/Discrete Mathematics 185 (1998) 19-27 23 

in at most three steps. Since x ~ u and x cannot reach y in three steps, u cannot 

reach y in less than three steps. Let u---+ a ~ b ~ y be a path o f  length 3 from u to 

y. Since x---+ u and u--~ a, there is an arc between x and a. However neither x ~ a 

nor a--~x is possible: if  x--+a then x can reach y in three steps and if  a---~x then 

u can reach x in two steps. Hence, every x E Wi~, is a 3-king such that x ~ u and 

d(u,x)>3. 
Now suppose D is not strong. If  u belongs to the unique initial component D' ,  then 

we can apply the argument above, since every 3-king o f  D t is a 3-king in D. I f  u 

does not belong to D/, then D ~ completely dominates u so we just  take any 3-king 

from D t. [] 

As we mentioned above, every tournament has a 2-king. In general digraphs, even 

in a quasi-transitive digraph, there may not exist a vertex which can reach every other 

vertex. For example, an alternating path of  length at least three does not have such 

a vertex (Xl ---+x2 ,---x3 --+x4 ~---x5 . . . ) .  Hence such a digraph contains no k-king for any 

finite k. 

Theorem 2.5. Let D be a quasi-transitive diyraph and let D=K[HI . . . . .  Ilk] denote 
the first (respectively, second) level of  the decomposition o lD if  D is strong (respecti- 
vely, not strong). Then D has a 3-king if and only if  it has an out-branching. 
Furthermore, i f  D has a 3-king, then ever), vertex x of  maximum out-degree is a 
3-king. Finally, D has a 2-king i f  and only i f  IHil = 1 for some i such that gi is 
a 2-king in K. 

Proof .  Clearly, the existence of  an out-branching is necessary. Below we shall prove 

the other direction, assuming that D has an out-branching. 

By the remark in the begining of  this section, we may assume that D is strong. Let 

gi be a 2-king of  K. By Lemma 2.2 and Theorem 1.1, every vertex o f  W/ is a 3-king 

in D. 

To prove the second claim suppose D has a 3-king. Let x be a vertex of  maximum 

out-degree in D. By Theorem 1.1, x must belong to the initial strong component o f  D, 

so again we may assume that D is strong. Note that by Theorem 1.1 and Lemma 2.1, 

d(x, y ) =  3 for every non-neighbour of  x (each of  these belong to the same W,. as x). 

Suppose now that some in-neighbour y of  x cannot be reached from x by a path of  

length two. Then y dominates all the out-neighbours o f  x and x, contradicting the 

choice of  x. This shows that x is a 3-king. 

The last claim follows easily from Lemma 2.2. [] 

Let T denote the unique strong tournament on three vertices and let I be the digraph 

with two vertices and no arcs. It is easy to see that the quasi-transitive digraph T[I, I, I] 
has an out-branching, but no 2-king. 

In the case when the quasi-transitive digraph D has no transmitter (a vertex of  

in-degree zero), the above theorem can be strengthened to. 
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Proposition 2.6. Let D be a quasi-transitive digraph with a 3-king. I f  D has no 

transmitter, then D has at least two 3-kings. Furthermore, i f  D has a unique initial 
component and this has at least three vertices, then D has at least three 3-kings. 

Proof.  Suppose first D is strong. Then, by Theorem 1.1, Q has no transmitter and 

hence has at least two 2-kings and if Q is not just a 2-cycle, then it has at least three 

2-kings (this is a well-known result for tournaments [9] which is easy to extend to 

semicomplete digraphs). The claim now follows from Lemma 2.2. 

If  D is not strong, then the initial component (which must be unique since D has 

a 3-king) is non-trivial (since D has no transmitter), so by the result above we find 

the desired kings. [] 

Proposition 2.7. Let D be a quasi-transitive digraph which contains a 3-king but no 
transmitter. Every non-king is dominated by at least three 3-kings, unless the initial 
component is a 2-cycle, in which case every non-king is dominated by exactly two 

3-kings. 

Proof.  Let x be a non-king. If  x is not in the initial component of  D, then the claim 

follows from Proposition 2.6. So we may assume that D is strong. Let i be chosen 

such that x E W/. Let gi, . . . .  , gi,, r >~ 1 be the vertices dominating gi in Q. 

Observe that if a vertex z is a 3-king in D t - - D ( ~  U . . .  U Wi, ), then z is a 3-king 

in D. Here we used that Q is semicomplete and hence z has a path o f  length 2 to 

every vertex u ¢~ Wi, U • • - U W/i, (via x). Hence, we can assume that D '  has at most 

two 3-kings. By Proposition 2.6, this means that D ~ either has a transmitter, is not 

strong, or it is just a 2-cycle. In the first two cases the reader can easily verify that 

x is a 3-king, contradicting the assumption. [] 

3. Establishing kings 

In this section we let D be a quasi-transitive digraph and let D ----- Q[W1 . . . .  , Wq], be 

the first level of  the decomposition of  D according to Theorem 1.1. As in Section 2 

we associate Wi with the ith vertex o f  Q. We consider the problem of  whether there 

exists a quasi-transitive digraph D* which contains D as an induced subgraph such 

that set of  3-kings of  D* is precisely the vertex set o f  D. I f  such a D* exists, then 

we say that D can be established. 
A similar problem for tournaments has been studied by Reid; cf. [12]. He proved 

that a tournament T is contained in a tournament whose 2-kings are the vertices of  

T if and only if T contains no transmitter. A more general result can be found in [7]. 

Theorem 3.1. Let D be a quasi-transitive digraph with a non-king. Let D be decom- 

posed as D=K[H1 . . . . .  Ilk], where this is the first level of  the decomposition of  D i f  
D is strong and the second level of  the decomposition of  D i f  D is not strong. Then 
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D can be established i f  and only i f  the following conditions are met 

(1) K has a strict-3-kin9. 
(2) Every 2-king o f  K is dominated by some strict 3-king o f  K. 

In particular i f  D can be established, then it has a 3-king. 

Proof .  Suppose that D satisfies (1) and ( 2 ) .  Let gi, . . . . .  gi,, respectively, gjL,..., gj, de- 

note the 2-kings, respectively, the strict-3-kings of  K. Add t new vertices v l , . . . ,  vt and 

the following arcs to D: Each vi completely dominates all vertices in Hi, and is com- 

pletely dominated by all other vertices of  D, and va dominates vb if and only if gj,, 
dominates gjb and gjh does not dominate gj.  It is easy to check that this new di- 

graph D* is quasi-transitive. Furthermore, no new vertex Vr can be a king, because, 

in D the vertices of  Hi, cannot reach the vertices of  some Hp in two steps, hence 

vr cannot reach the vertices of  Hp in three steps in D*. It remains to prove that all 

vertices of  D wilt be 3-kings in D*. First observe that in K no non-king dominates 

a 2-king and hence, by Corollary 2.3, if gi is a non-king and gj is a 2-king of  K, 

then every vertex of  Hj dominates every vertex of  H i. It is clear that every 3-king of  
D belonging to Hgi, U . . .  U Hq,, will become a 3-king of  D* since it dominates all the 

new vertices vl . . . . .  yr. Similarly, it is easy to see that every 3-king of  D belonging 
to Hq,, U . . .  UHqj, will be a 3-king in D*: if  z E/4j,, then z dominates all the vertices 

va,. . ,  vt, except vi. Furthermore, if  g is an out-neighbour of  gj, in K, then z dominates 
every vertex in Hq and each of  these vertices dominate vi. 

Finally, let u be a non-king of  D. To reach a vertex wih EHi~,, 1 <~h<~s, u can use 

a path of  the form u ~ vr ---, wj, ~ wi,, where wj, E IIj,. Such a path exists because, 
by (2), every 2-king of  K is dominated by some strict 3-king of  K. To reach a vertex 

wj/ E Hit, 1 <<.f<~t, we use a path of  the form u--+ v f -+  wh. Finally, to reach another 
non-king v, u uses a path of  the form u ~ vr ~ wj, ~ v where wj, E ~.,.  To see why 
such a path exists, it suffices to notice that every non-king of  K must be dominated 

by some strict 3-king of  K (otherwise it would be a 3-king, by assumption (2) and 

Corollary 2.4). Thus, we have shown that D can be established. 
To prove the other direction suppose that D can be established and let D* be a quasi- 

transitive digraph whose set o f  3-kings is precisely V(D). First observe that we may 

assume that D* is strong, since if it is not strong, then all vertices of  D must belong 
to the initial strong component of  D* and this dominates all other components, by 

Theorem 1.1. Hence, the graph D** obtained by deleting all other components from 
D* other than the initial one will also have precisely the vertices of  D as 3-kings. 

Let D * =  Q*[WI* . . . . .  Wqq*] denote the first level of  the strong decomposition of  D*. 
Since no vertex of  V ( D * ) \ V ( D )  is a 3-king, it follows from Lemma 2.2 that no 

Wi* contains vertices from both of  the sets V(D) and V(D*) \V (D) .  Secondly, by the 
choice of  the decomposition of  D as K[HI . . . . .  Hk], we have ensured that each Hi is 
part of  a connected component in U(D) and hence Hi C Wj* for some j E { 1 . . . . .  q* } 
(it may be a proper subset, but only in the case when D is not strong). Finally, note 
that by Corollary 2.3 there is an arc between every vertex of  V ( D * ) \ V ( D )  and every 
vertex of  V(D). 
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Let us first prove that D must have a 3-king if it can be established. Suppose 

D has no 3-king. Then it follows from Theorem 1.1, Lemma 2.2 and the fact that 

every semicomplete digraph has a 2-king that D is not strong and has at least two 

initial strong components. Thus, all initial components will belong to the same W~* in 

the above decomposition of D*. Furthermore, since every vertex of D is a 3-king in 

D* there must be some vertex v E Wj* for some j ~ i such that v dominates all the 
vertices in Wi*. However, this means that v can reach all vertices in D by a directed 

path of  length two, contradicting Corollary 2.4. Hence D must have a 3-king if it can 

be established. 

Suppose that K has no strict 3-king. Let git . . . .  , gis, s >/1, denote the 2-kings of  K. 

Let H = Hi~ U .. .  U Hi~. Then it is easy to see that there is no arc from V\H to H 

in D. Hence it follows from the remarks above and the fact that every vertex of D is 
a 3-king in D* that V(D*)\V(D) contains a vertex vE W~*, for some r, such that 

every vertex of W~* dominates all the vertices of  some Hij. However, now v can reach 
all vertices in V(D) by a directed path of  length at most 3, contradicting Corollary 2.4. 
Hence (1) must hold if D can be established. 

Suppose that K has a 2-king which is not dominated by any strict 3-king. Then, 

using the fact that each Hi is either equal to some ~ *  or a proper subset of some 

Wj* we can argue as above that V(D*)\V(D) contains a vertex v such that v dominates 

all the vertices of  some Hi,, where the vertex 9# is a 2-king in K and again we obtain 
a contradiction to Corollary 2.4. Hence (2) must also hold i f D  can be established. [] 

Note that in the case when D is not strong we must consider the second and not 
just the first level of the decomposition. This can be seen from the example in Fig. 1. 

Here D is not strong and the first level of  the decomposition is D = Q[{xl,x2,x3, Yl, y2, 

/ 
i 

a b 

Fig. 1. An example showing that we must consider the second level of  the decomposition when D is not 

strong. The 2-kings of  K are {Xl,X2,X3} and the strict 3-kings are {Yl,Y2,Y3}. The vertices zl,z2,z3 are 
the new vertices added to D. All  arcs not shown go from V(D) to {zl,z2,z3}. 
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Y3}, {u}], where Q is just  the edge ql --~ q2 and hence has no strict 3-king. Still D can 

be established as shown in (b). Note that the new digraph is made by  fol lowing the 

rule in the first part o f  the proof  of  Theorem 3.1 (the second level o f  the decomposi t ion 

is D : K[{Xl }, {x2}, {x3 }, {Yl }, {Y2}, {Y3 }, {u}], thus K = D).  
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