Note

Partitions of the set of natural numbers and their representation functions

Min Tang

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

Received 10 February 2007; received in revised form 17 May 2007; accepted 6 June 2007
Available online 16 June 2007

Abstract

For a given set A of nonnegative integers the representation functions $R_2(A, n)$, $R_3(A, n)$ are defined as the number of solutions of the equation $n = a + a'$, $a, a' \in A$ with $a < a'$, $a \leq a'$, respectively. In this paper we give a simple proof to two results by Sándor. © 2007 Elsevier B.V. All rights reserved.

MSC: 11B34; 11B83

Keywords: Partition; Representation function

1. Introduction

Let \mathbb{N} be the set of nonnegative integers. For a set $A \subset \mathbb{N}$, let $R_1(A, n)$, $R_2(A, n)$, $R_3(A, n)$ denote the numbers of solutions of

- $a + a' = n$, $a, a' \in A$,
- $a + a' = n$, $a, a' \in A$, $a < a'$,
- $a + a' = n$, $a, a' \in A$, $a \leq a'$,

respectively. For $i \in \{1, 2, 3\}$, Sárközy asked ever whether there are sets A and B with infinite symmetric difference such that $R_i(A, n) = R_i(B, n)$ for all sufficiently large integers n. As Dombi [3] has shown, the answer is negative for $i = 1$ by a simple observation that $R_1(A, n)$ is odd if and only if $n = 2a$ for some $a \in A$, and positive for $i = 2$. For $i = 3$, Chen and Wang [2] proved that the set of nonnegative integers can be partitioned into two subsets A and B such that $R_3(A, n) = R_3(B, n)$ for all $n \geq n_0$.

For a subset A of \mathbb{N} and any integer n let $A(n) = \{a : 0 \leq a \leq n, a \in A\}$. Using generating functions, Lev [7] and independently Sándor [8] gave a simple common proof to the results of Dombi and of Chen and Wang. Sándor actually established the two following stronger results(which are also implicit in Lev’s paper):

\star Supported by the National Natural Science Foundation of China, Grant no. 10471064, the SF of the Education Department of Anhui Province, Grant no. KJ2007B029, the Youth Foundation of the Education Department of Anhui Province, Grant no. 2007jyj1056zd and the Youth Foundation of Mathematical Tianyuan, Grant no. 10726074.

E-mail address: tmzzz2000@163.com.

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.06.006
Theorem 1. Let N be a positive integer. The equality $R_2(A, n) = R_2(\mathbb{N} \setminus A, n)$ holds for $n \geq 2N - 1$ if and only if $A(2N - 1) = N$ and $2m \in A \iff m \in A$, $2m + 1 \in A \iff m \notin A$ for $m \geq N$.

Theorem 2. Let N be a positive integer. The equality $R_3(A, n) = R_3(\mathbb{N} \setminus A, n)$ holds for $n \geq 2N - 1$ if and only if $A(2N - 1) = N$ and $2m \in A \iff m \notin A$, $2m + 1 \in A \iff m \in A$ for $m \geq N$.

In this paper, we give a simple proof of the above two theorems. For other related results, the reader is referred to [1,4–6,9].

Currently we have no answer for the following problem.

Problem. Given a positive integer $k (k \geq 3)$. For $i \in \{2, 3\}$, does there exist a partition

$$\mathbb{N} = \bigcup_{m=1}^{k} A_m, \quad A_u \cap A_v = \emptyset, \quad u \neq v$$

such that $R_i(A_m, n) = R_i(A_{m'}, n) (1 \leq m < m' \leq k)$ for all sufficiently large integers n?

2. Proofs

Proof of Theorem 1. Write

$$\eta(i) = \begin{cases} 1 & \text{if } i \in A, \\ 0 & \text{otherwise}. \end{cases}$$

Then

$$R_2(\mathbb{N} \setminus A, n) = |\{(a, a') : a, a' \in \mathbb{N} \setminus A, a < a', a + a' = n\}|$$

$$= \sum_{0 \leq i < n/2} (1 - \eta(i))(1 - \eta(n - i))$$

$$= \sum_{0 \leq i < n/2} 1 - |\{i : 0 \leq i \leq n, i \in A\}| + \eta(\frac{n}{2})$$

$$+ |\{(b, b') : b, b' \in A, b < b', b + b' = n\}|$$

$$= \sum_{0 \leq i < n/2} 1 - A(n) + \eta(\frac{n}{2}) + R_2(A, n).$$

Thus, $R_2(A, n) = R_2(\mathbb{N} \setminus A, n)$ holds for all $n \geq 2N - 1$ if and only if $\sum_{0 \leq i < n/2} 1 = A(n) - \eta(n/2)$ holds for all $n \geq 2N - 1$, that is,

$$\begin{cases} A(2m - 1) = m, & m \geq N, \\ A(2m) - \eta(m) = m, & m \geq N, \end{cases}$$

equivalently,

$$\begin{cases} A(2m - 1) = m, & m \geq N, \\ A(2m - 1) + \eta(2m) - \eta(m) = m, & m \geq N, \\ A(2m + 1) - \eta(2m + 1) - \eta(m) = m, & m \geq N, \end{cases}$$

equivalently,

$$\begin{cases} A(2m - 1) = m, & m \geq N, \\ \eta(2m) = \eta(m), & m \geq N, \\ \eta(2m + 1) + \eta(m) = 1, & m \geq N, \end{cases}$$
equivalently,
\[
\begin{align*}
A(2m - 1) &= m, \quad m \geq N, \\
2m \in A &\iff m \in A, \quad m \geq N, \\
2m + 1 \in A &\iff m \notin A, \quad m \geq N,
\end{align*}
\]
equivalently,
\[
\begin{align*}
A(2N - 1) &= N, \\
2m \in A &\iff m \in A, \quad m \geq N, \\
2m + 1 \in A &\iff m \notin A, \quad m \geq N.
\end{align*}
\]

This completes the proof of Theorem 1. \(\square\)

Proof of Theorem 2. Define \(\eta(i)\) as in the proof of Theorem 1. Then
\[
R_3(\mathbb{N}\setminus A, n) = \sum_{0 \leq i \leq n/2} (1 - \eta(i))(1 - \eta(n - i))
= \sum_{0 \leq i \leq n/2} 1 - A(n) - \eta \left(\frac{n}{2}\right) + R_3(A, n).
\]

Thus, \(R_3(A, n) = R_3(\mathbb{N}\setminus A, n)\) holds for all \(n \geq 2N - 1\) if and only if \(\sum_{0 \leq i \leq n/2} 1 = A(n) + \eta(n/2)\) holds for all \(n \geq 2N - 1\). \(\square\)

The remainder of the proof is very similar to that of the proof of Theorem 1. We omit it here.

References