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Abstract In this paper, we construct a numerical method for a delayed viral infection model with
general incidence rate. We prove that the obtained discrete model has the same dynamics as the cor-
responding continuous model, such as positivity, boundedness and global behaviors of solutions
with no restriction on the time step size. Furthermore, numerical simulations are given to illustrate
and confirm our main analytical results.
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1. Introduction

In recent years, several authors are interested in the study of
the dynamics of viral infections by proposing the continuous
mathematical models with delays and different forms of inci-
dence rate, such as mass action process (Zhu and Zou, 2008;
Li and Shu, 2010; Hattaf and Yousfi, 2011; Vargas-De-Leon,
2012), standard incidence function (Gourley et al., 2008;
Eikenberry et al., 2009; Tian and Xu, 2010), saturated mass
action (Li and Ma, 2007; Xu, 2011), Beddington—-DeAngelis
functional response (Huang et al., 2011; Xiang et al., 2013)
and Crowley—Martin functional response (Zhou and Cui,
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2011). In 2013, the authors (Hattaf et al. (2013)) have general-
ized all previous forms by proposing the following model:

X(1) = 4 — dx(t) = flx(2), (1), v())v(1),
7(0) = flx(t = ), y(t = 1), vt = w)p(t = m)e ™™ —ay(1),
V(1) = ky(t — 12)e 2" — uv(1),

(1)

where x(7),y(¢) and v(¢) denote the concentration of unin-
fected cells, infected cells and free virus particles at time ¢,
respectively. The parameter / is the recruited rate of uninfected
cells, k is the production rate of free virus by infected cells, d, a
and u are, respectively, the death rates of uninfected cells,
infected cells and free virus. The first delay 7, represents the
time needed for infected cells to produce virions after viral
entry and the factor e=*™ accounts for the probability of sur-
viving from time ¢ — 7, to time ¢, where o, is the death rate for
infected but not yet virus-producing cells. The second delay 1,
denotes the time necessary for the newly produced virions to
become mature and then infectious particles. The probability
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of survival of immature virions is given by e~ and the aver-
age life time of an immature virus is given by % The incidence
function f{x, y, v) is assumed to be continuously differentiable
in the interior of ]Ri and satisfies the three fundamental
hypotheses given in Hattaf et al. (2012) and used in Hattaf
et al. (2014), Hattaf and Yousfi (2014) and Wang et al.
(2013), that are:

f0,y,v)=0, forally =>0andv >0, (H1)
%(Ly,\)) >0, forallx>0, y>0andv >0, (H2)
of of
-0 < ¢ YRS RE] < ) = )
ay(‘c,y, v) <0 and o (x,y,v) <0, forallx >0
y=0andv > 0. (H3)

From the biological point of view, the three hypotheses
are reasonable. Indeed, the first means that the incidence
rate is equal to zero if there are no susceptible cells. The
second one signifies that the incidence rate is increasing
when the numbers of infected cells and virus are constant
and the number of susceptible cells increases. Hence, the
second hypothesis means the more the amount of susceptible
cells, the more the average number of cells which are
infected by each virus in the unit time will occur. Similarly,
the third assumption means the more the amount of infected
cells or virus, the less the average number of cells which are
infected by each virus in the unit time will be. On the other
hand, the infectious process is not instantaneous. For this
reason, we choose to use delay differential equations in
order to take into account the time needed for infected cells
to produce new virions after viral entry and the time
necessary for the newly produced virions to become mature
and infectious.

In Hattaf et al. (2013), Hattaf et al. proved the positivity
and boundedness of solutions. Also, they identified the basic
reproduction number of model (1) as follows

k D]
RO = _f<£ , 07 0) TR
au” \d

Moreover, they established the global stability of equilibria.

In reality, scientists often collect the data and analyze the
results at discrete times. In addition, the numerical simulations
of continuous models are obtained by discretizing these mod-
els. For these reasons, we will discretize the model (1) by using
‘mixed’ Euler method which is a mixture of both forward and
backward Euler methods. Furthermore, we will show that the
discrete model obtained by the mixed Euler method maintains
essential dynamical properties, such as positivity, boundedness
and global behaviors of solutions with no restriction on the
time step size.

The remainder of this paper is organized as follows. In
the next section, we introduce our discrete virus dynamics
model with general and two delays, and establish some
preliminary results. The stability of the disease-free
equilibrium and the chronic infection equilibrium of the
new delayed discrete model is investigated in Sections 3
and 4. Numerical simulations are given to verify the main
theoretical results in Section 5. The paper ends with a
conclusion in Section 6.

2. Delayed discrete model and preliminaries

Let / be a time step size. Assume that there exist integers
(my, my) € N with 7, = mh and 1, = myh. The grids points
are t, = nh for n € N. By applying both forward and back-
ward Euler methods and wusing the approximations
x(t,) = xu, ¥(t,) =y, and v(t,) =~ v,, we obtain the following
delayed discrete model

Xpy1 = Xy + h()» - dxn+l _f(x11+17yn7 Vn)vn)>

Vgt =V + h (f(xﬂ*ml‘f’hyn—ml s Vin—my )Vnﬂm et — ayn+l)7
Vart = Vo h(ky, 1072 — uvuiy).
2
The sequences {x,},{y,} and {v,} represent the concentrations
of cells and free virus at time n. Biologically, these concentra-

tions are positives and bounded. For this, we assume that the
initial values of model (2) satisfy:

x(s) =0, y(s) =0, v(s) = 0, forall

s=-m,—m+1,...,0, (3)
where m = max(m, m,).

The following result establishes the positivity and bounded-
ness of solutions of the discrete model (2).

Proposition 2.1. All solutions of system (2) subject to condition
(3) remain nonnegative and bounded for all n € N.

Proof. First, we prove the positivity of solutions by using
mathematical induction. When n = 0, we have

(] + hd)xl + hf(xl,yo, V())V() = Xo + hA.

Let g(x) = (1 + hd)x + hf(x, yy, vo)vo — X0 — hA. Clearly, g(x) is
a continuous function for x, g(R) = IR and

gx) =1 +hd+hv0%(x,yo,vo) > 0.

Then g(x) is monotonically increasing on IR. Hence, the
equation g(x) = 0 has a unique solution on R. Since

) I’
2(0)=—xp —hi<0andg(x0+hk) :hf(x0+ M,ymvo) vo >0,

1+hd 1+hd

we have X € (0, %) Hence, ¥ = x; > 0. From (2), we obtain

Vo X1, Yy Vo )V @
1 — )

1+ ah

_ vo + hky,

: 14+ uh

Then y, = 0 and v; > 0. Therefore, by using the induction, we
get x, > 0, y, = 0and v, > 0 for all » > 0. This proves the
positivity of solutions.

Next, we prove the boundedness of solutions. Let

n—1

T, = x, +y,+ h Z f(xj-%—lvyja V_/’)V]-g—/m(n—j).

J=n—my
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Then,

Tn+l - Tn = h(/1 - dxn+l _f(anrl s Vs Vn)Vn)
+ h(f(xﬂmerl 7yn—ml ) v”*ml )V”*ml 67“1
+h Z Sxjit, y; vy vje )

j=n—mj+1

n—1
DI CTE R Il

J=n—my

= h(i - d‘anrl

T ay,.)

- ay,m)

hal E
f x/+l ayp V/

=n—mj;+1

< h(/L - 5Tn+l)

/zal n+1-j)

. ot
where d = min{d, a,“5~}. Hence,

_ 1 N hi
ST R " TR

By using the induction, we get the following inequality

L\ i Loy
<(—— = (——) |
T”\(1+h5) T°+5{1 <1+h5”

Then,

T,

limsup T, < <
n—+oo 6

This implies that {7} is bounded. Therefore, {x,} and {y,}
are also bounded.
By the third equation of (2), we obtain

1 ) hke "
T+hu " 1+4hu

V1 = yn—m2+1 .

As {y,} is bounded, then there exists a M such that y, < M for

all n € {—my,—my +1,...,0,1,...}. Thus,
1 hke™ ™"

il S n M.

S T T

By induction, we get

1 " +kM —r 1 " < +kM e
Vn X V —e N7 IV —e ’
T+hu) " u 14 hu O

Therefore, {v,} is bounded. This completes the proof. [

If in addition we assume that xo > 0, y, > 0 and vy > 0, it
is easy to get the following result.

Remark 2.2. If xy > 0, y, > 0 and vy > 0, then all solutions of
system (2) subject to condition (3) are positive for any n > 0.
In this case, the mixed Euler numerical scheme for the system
(1) is called unconditionally positive.

Next, we find the steady states of system (2). By a simple
computation, it is easy to see that the system (2) has the same
steady states as those of the corresponding continuous system
(D).

Theorem 2.3. Let us define Ry =L f(4,0,0)e-nm1-%%,

1. If Ry < 1, then the system (2) has a unique disease-free
equilibrium of the form Ey(%,0,0).

2. If Ry > 1, then the system (2) has a unique chronic infection
equilibrium of the form E*(x*,y*,v*) besides E;, where
* 2 ky*
X € (Ev

ue*2%2"

0),y" =42 and v* =

3. Stability of the disease-free equilibrium

In this section, we investigate the stability of the disease-free
equilibrium.

Theorem 3.1. The disease-free equilibrium Ey of system (2) is
globally asymptotically stable whenever Ry < 1, and unstable

otherwise.

Proof. We construct a discrete Lyapunov functional as follows

0,0
Ln:”’_ 0_ d o T] 0 T)+002T2 1 h
T e 750,00 BT ytpe (1+ubv,
n—1
+h Z SXja1, 95, v7) vy +ae™ ™ h Z Vists
J=n—my J=n—n

Calculating the first difference of L, along the positive solution
of system (2), we have

ALn = Ln+1 - L,

st £1x9,0,0
= Xpg1 — Xp — / udé + et (yn+l - yn)

/(5,0,0)
a

+E(1 + u/,l)eoqr]Jrotztz(V’Hl _ Vn)

+ h(f(-xn+l s Vs Vn)vn 7‘f(xn—m|+l y Vn—my s V,,,,,”)V’PMI)

+ ae™'™ h(}',,ﬂ - yn—mZﬂ)

f(x°,0,0)

< (1= D00 N e -y

( f(~xn+l7070) (’C +1 ‘C)«l»g (y +1 y)

+%(1 + uh)e

+ h(f(xn+l7yn7 vn)vn _f-(xn7m|+l 7yn—m| bl vnfml )anm] )
+ae""h (yn+1 ~ Vo—mrt1 ) .

o<11]+ac212(vn+l _ Vn)

Using the equality / = dx’, we get

> (x°,0,0)
L<1d017‘<n+1 I,f(x”
rax ( X0 ) A%021,0,0)

auh F(Xs1s Vs V) >
+7ex111+a212 (7”]3 —1)v,
k f(xn+17070) ‘
(x°,0,0)
< hax' (1 -2 (1 - S00)
* < XO ) f(xn+17070)

h
+%eylr|+dzf2(R0 — ])Vn'

Since f{x, y, v) is strictly monotonically increasing with respect
to x, we have

(1 7xngl) (1 ~ fx%,0,0) ) <o.
X .f(xn+l7070)

Since Ry <1, we have AL, =L, — L, <0 for all n > 0.
Then, {L,} is a monotonically decreasing sequence. Since
L, >0, we have lim,_ L, = 0. Hence
lim, .o (L, — L,) =0, from which we obtain
lim, o X,p1 = x° and lim, . ((Ry — 1)v,) = 0. We discuss
two cases:
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e If Ry < 1, then lim,_, ,, v, = 0. By the third equation of (2),
we get lim,_ ;o ¥, = 0.

e If Ry = 1. Using lim,_., x, = x" and the first equation of
(2), it is not hard to have lim,_ v, = 0.

By the above discussion, we deduce that £ is globally asymp-
totically stable if Ry < 1.

Now, we prove that the disease-free equilibrium Ej is
unstable when Ry > 1. Calculating the linearization system of
model (2) at equilibrium Ef, we get a new system of the form

Xﬂ+l = X +h(7dA/n+l 7f(£ O O)Vn)7
Yii =Y, +h( —amj(wo O) n—m 7aY’1+1)7 (4)
Vie1r = Vi +h(k Tmn n—my+1 — an+1)7

where X,=x,—% Y, =y, and V,=v,. Let
Z,= (X, Yy, V,,)T. Then, system (4) is equivalent to
Zyy=AZ,+BZ,_,, +CZ,_, + DZ,_ iy, (5)
where

T 1+hd 0
- oHM ) 00

0 T 0

0 0 0

c=10 0 0|, p=|00 0
(1+ha/;]((l+hu e 0 00 % TamTan

Hence, the characteristic equation corresponding to linearized
system (5) is given by

det(A — EI4+ EMB4E™CHE™ ™™ D) = 0.

Therefore, this characteristic equation can be rewritten as

1
(m* f)P(é) =0,
where
P(gv) — (1 +ha)(l +hu)¢rml+mz+l _ (2 +hll+hu)éml+ml

+ émﬁrmg—l _ 112kf(f7070

— T —02T:
)e 1T1=0T

Clearly, ¢ = T//
roots are given by the solutions of the equation P(¢) = 0.
We have P(1) = au(l — Ry) <0, lims_ o P(&) = +00
and P is a continuous function on interval € [1,+00). Then
there exists a € € (1,+00) such that P(¢) = 0. Therefore, Ey is
unstable when Ry > 1. This completes the proof. [

is the root of this equation. The remaining

4. Stability of the chronic infection equilibrium

In this section, we establish the global stability of the chronic
infection equilibrium E*, by assuming that Ry > 1 and the
function f satisfies the following hypothesis

S, v) \ (v
(1 _f(x,y*, v*)) (f(x,y, » —;) <0, forall x, y, v>0.

(H4)

First, we give the following important remark.

Remark 4.1. The assumption (H4) is satisfied by various types
of the incidence rate including the mass action when
f(x,y,v) = Bx, the saturation incidence when f(x,y,v) = 1&’;‘,,
the incidence function was used in Zhuo (2012) and Sun and

Min (2014) when f(x,y, v):xﬁ—fv, Beddington—-DeAngelis

Crowley-Martin response

_ Bx
response when f(x,y,v) = SEa
fx

when f(x,y,v) = Toiamy and the more generalized
response introduced by Hattaf et al. (see Section 5 in Hattaf
etal. (2013)) when f(x, y, v) = Bx

constant rate describing the infection process, o, 0,00 and o
are nonnegative constants. Further, the fourth hypothesis
given in Wang et al. (2013) on the incidence function depending
only of x and v is a particular case of the assumption (H4).

- where f} is a positive

The following theorem establish the global stability of E".

Theorem 4.2. Assume Ry > 1 and (H4) hold. Then the chronic
infection equilibrium E* of system (2 ) is globally asymptotically stable.

Proof. We define a discrete Lyapunov functional as follows

e el

S,y v

O uner g (2)
n—1
X1, V) V/ Vi
e 5 o)
+ ae”"y*h Z ¢<y’—tl>,
J=n—my y
where ¢(x) =x—1—Inx, x€ R". Clearly, ¢: R" — R*

attains its strict global minimum at x = 1 and ¢(1) =0.
Xt — [fo S dv has the global

Sl E
minimum at x = x* and ¥(x*) = 0. So, Y(x ) 0 for all x > 0.
Thus, W, > 0 with equality holding if and only if
%:%:“i: 1 forall n > 0.

The first difference of W, satisfies

The function ¢ : x> x —

AW, = VV71+1 -w,
YY)
S Sy

Fenn <y”+1 y,+yn ( ;yn >>
Ynt1
+z( + uh)eaHan <V i1 — Vv In <v >> +AX Y V) h
n+1
% <¢ (](xrl+17yn7vn)vn> _¢<f(xn—m:+l7}n—m17V”*’”I)V””“'>)
SOy o )
+ae7‘”y*/1<¢<y"7+1> _¢<M>>
y* y*
FERE A Y
< (1Y) +e |y, .+ In z
< S, 3%57%) (vt = %) e T

v,
+— ( +uh)e 2y, — v, + v In [ ——
k Vn+1
+hf(x71+l¢ynavn)vn_hf(‘cn m|+17yr1 n117V11 ml)vn my

n—m sVn—my s Vo—m; )Vn—m
+Ax Y v hln<f( Yo, ) ')

Af(‘XIH*ll}n’V")vl‘l

Yn-my
+a€“‘”h<}”+1 Vi1 +V° 1n< . 17“))‘
Yt

=Xn+1 —Xn —
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By the inequality In x <
S, 05 v%)

x — 1, we get

AI/V11< 17 - Xn — Xn
\( f(x"+17y*7‘)*))( . )
+€“111(1 - )(yn+l _yn)
n+l
4 Eemarmn 0 )
k Vnt1 " !

auh v
+——enntnn (V,Hl — v, +v'1n <i>)
k Vit1

+ hjp(xlwl aym Vn) Vn — hf(-xn—ml +15 yn—ml bl anml )Vn—ml

. f(xn—m|+1 s Viemy» annn )vn—ml
+f(x* v v*hln( !
( ) f(xn+l s Vo Vn)vn

+ ae‘ilfl h (yn+1 - yn—m2+l + y* In (M)> .

Ynt1

V5 )

obtain lim,_ v, = v* and lim,_,, .y, = »*. Therefore, we con-
clude that E* is globally asymptotically stable. [

5. Numerical simulations

In this section, we will confirm and illustrate our previous the-
oretical results by numerical simulations. For this, we consider
the following delayed discrete model for HIV infection:

Xpt1 = Xn + h() - dxn+l - ﬁanrl Vn)7

Y1 =Vu T h(eﬂm BXumy41Vn-m, — ayn+l)7 (6)

Vpil = Vp + h(ke*“mynﬂ“2+1 — uv,,+|),
The model (6) is a special case of (2) with f{(x, y,v) = fx. The
basic reproduction number of (2) is given by

APk
R, = puu—mmn 7
O T dau® ™

Using  J=dx +ayen, fix',y )y =apet and
Lemn :} , we obtain
W, < a1 —x”j‘)(l—if(x 4 ;v3)+hay*e“m (1 _ Sy
X f(anrhy V) f(xn+17y ,V)

+ hay e (1 -

yn+| v* f( ,y,v)

+ hay*e“”‘ In (f(xn—n11+17yn—r;1] ’ v”*ml)vﬂfmlyn—mfrl) — hdxt e (

f(xn-H s Vo Vn)vn+lyn+1

Sy )y v (X, Vs V)

*
yn—ngrl v

Ef(xwrlvym Vn))
v f‘(xn+17y*7 V*)

*
Vn—ml f(xﬂ m1+17yn my s Vn— ml)) +hay* o T] (] _v_ii_yn—*)nfrlv )
v YV Vi1

17@) <1 ) >
X f(xn-H 7.V*7 V*)

+ hay*e™™ |4 —
|: f(anrlay*vV*) yn—mg+1 v* f(X*7y*7V*)

+ hay*emr] (_] _ E +f:(xn+17y*7 V*) Ef:(xwrl:ym Vn))
v* f(x)1+17yn7vn) v f(xn+l7y*7V*)

*

Af(anrlvy*v V*):|

y*VnJrl _f(anrlvyann)

+hay* o)1) Yy ﬁf(xﬂ#»hymvn) _ y*
yn—mz+l v* f(X*7y*7V*) yn+l v

+ hay*eaqﬂ In (f(xﬂfmﬁrl ’ yn—ml s Vin—my )vn*mlyn—mfrl)
f(xn+1 s Vns Vﬂ) V1V 1

7/1dx* xlrl( _xn+l) (1 _ f(X VsV ) ) —I—hay* o T (_1
Xx* SXng1, 75 v7)

vn—m, f‘(xn—mﬁrl 7yn—m| ) Vn—m] )
SOy, )

f(xnﬂvy V)
f(xﬂ+17yn? Va)

E.f(xwrlaynv Vn))
vV

S, 5, v°)

I N p*
_ hay*emr] |:¢ (ff(-x 3 3‘V 2 ) + ¢(}n—.mg+l
(anrl:y VY ) yKVnJrl

Since f(x, y, v) is strictly monotonically increasing with respect
to x, we obtain that

Xnt1 f(X*7y*1V*)
(-5 (1) <0

According to (H4), we have

f(xn+l7y*7V*) vnf(x11+l7yn>vn)
xn+l7yn7vn v f(Xn+1,)/ V¥ )

A )
_ (1 (xn+layn7 Vn)> Q(xrwlvy Vo ) _E) g 0
(-anrlay*:V*) (anrlayn’vn) v*
Since ¢(x) = 0 for x > 0, we deduce that AW, <0 for all
n = 0. Then, {W,} is a monotonically decreasing sequence.

Since W(n) = 0, it follows that lim, . W(n) = 0. Hence,
we obtain that lim,_ (W, — W,) =0, which implies that

Yn—my+1
Vnt1

1——+

lim,, ., ooX, = x* and lim,_, |

= t* From system (2), we

)+¢G(Xn+1,y V*)) ¢( * Vn—m] f(xl7*m|+l7ynfm]7vVl*ml)):|‘
(Xut15 Vs V) Vg1V S, yv)

In addition, the hypotheses (H1), (H2), (H3) and (H4) are
satisfied.

Firstly, we simulate the model (6) by using the follow-
ing parameter values: A = 10cellsmm > day~! (Perelson

et al, 1993), d=0.02day”" (Perelson et al, 1993),
a=05day"! (Perelson et al, 1996), u = 3day!
(Perelson et al, 1996), B = 0.000024 mm?® virion ' day™!

(Perelson et al., 1996; Stafford et al., 2000),
(Perelson et al, 1993), k& = 600 virions cell ' day~
(Hattaf and Yousfi, 2012) a, = 0.65day~!, 7; = 3.5 days,
17, = 2.5days and h = 0.1 days. By calculating, we have

OC]Zd
1

Ry=0.8813 < 1. By Theorem 3.1, we deduce that the
disease-free equilibrium E/(500,0,0) of (6) is globally
asymptotically stable, which means that the virus is

cleared and the infection dies out. Fig. 1 validates the

above analysis.
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Secondly, we choose f = 0.00024 mm? virion™! day™!
(Perelson et al., 1996; Stafford et al., 2000) and the other
parameter values are the same as above. The reason to just
modify the parameter f is based on the fact that R, is an
increasing function with respect to f§ (see the explicit formula
(7) for Ry). By calculating, we have Ry, = 8.8128 > 1. Then,
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system (6) has a unique chronic infection equilibrium
E7(56.7359,16.5319,651.0636). By applying Theorems 3.1
and 4.2, we see that E; becomes unstable and E” is globally
asymptotically stable. In this case, the virus persists in the host
and the infection becomes chronic. Fig. 2 confirms this
observation.
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Figure 3  Plot of the basic reproduction number R, as a function
of the time delays 7, and 1.

According to the above, we deduce a strategy to control the
viral infection. This strategy is based on reducing the value of
Ry and making it less than or equal to one. From the explicit
expression of Ry in (7), it is clear that with the increase in time
delays 7, and 7,, the value of R, decreases which is demon-
strated in Fig. 3.

6. Conclusion

In this work, we have proposed a discrete mathematical model
with two delays to describe the dynamics of viral infection,
such as human immunodeficiency virus (HIV), the hepatitis
B virus (HBV) and the hepatitis C virus (HCV). The discrete
model is derived from the continuous system (1) by using a
mixed Euler method. Also, the infection transmission process
is modeled by a general incidence function that includes vari-
ous types of incidence rate existing in the literature. We have
proved that the proposed mixed Euler method is uncondition-
ally positive. Furthermore, the dynamical behaviors of the the
delayed discrete model are investigated by linearization
method and by constructing suitable discrete Lyapunov func-
tionals. More precisely, we have proved that the disease-free
equilibrium E; is globally asymptotically stable if the basic
reproduction number satisfies Ry < 1, which means that the
virus is cleared and the infection dies out. When Ry > 1, E,
becomes unstable and the chronic infection equilibrium E* is
globally asymptotically stable. In this case, the virus persists
in the host and the infection becomes chronic. Therefore, we
conclude that the discrete model has the same qualitative prop-
erties as the corresponding continuous viral infection model (1)
with no restriction on the time step size.
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