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If a Steiner system S(4,5,17) exists, it would contain derived
S(3,4,16) designs. By relying on a recent classification of the
S(3,4,16), an exhaustive computer search for S(4,5,17) is carried
out. The search shows that no S(4,5,17) exists, thereby ruling out
the existence of Steiner systems S(t, t + 1, t + 13) for t � 4.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

For integers 2 � t < k < v , a Steiner system S(t,k, v) is a pair (V , B), where V is a v-set of points
and B is a collection of k-subsets of V , called blocks, such that every t-subset of V is contained in
exactly one block. Steiner systems S(2,3, v), S(3,4, v) and S(4,5, v) are called Steiner triple, quadru-
ple and quintuple systems, respectively. The parameter v is called the order of the system. The point
set of a Steiner system Q is denoted by V (Q) and the block set by B(Q).

Steiner triple systems exist exactly when v ≡ 1 or 3 (mod 6), and Steiner quadruple systems ex-
actly when v ≡ 2 or 4 (mod 6) [2]. Furthermore, by considering derived designs it is easy to see that
v ≡ 3 or 5 (mod 6) is a necessary condition for the existence of Steiner quintuple systems. Also, since
the number of blocks in S(4,5, v) is

(v
4

)
/
(5

4

)
, which must be an integer, v �≡ 4 (mod 5) is another nec-

essary condition. It is still an open problem to find sufficient conditions for the existence of Steiner
quintuple systems. For v = 11, there exists a unique Steiner quintuple system [1] and for v = 15, no
Steiner quintuple systems exist [12]. By taking derived designs of known S(5,6, v) [2], it follows that
Steiner quintuple systems exist for v = 23,35,47,71,83,107,131,167,243. For v = 17 the existence
problem is a longstanding open problem; attempts to extend an S(3,4,16) to an S(4,5,17) have not
been successful [15]. However, there exists a unique S(4, {5,6},17), that is, Steiner system containing

E-mail addresses: patric.ostergard@tkk.fi (P.R.J. Östergård), olli.pottonen@tkk.fi (O. Pottonen).
1 Supported in part by the Academy of Finland, Grant Numbers 107493 and 110196.
2 Supported in part by the Graduate School in Electronics, Telecommunication and Automation and a grant from the

Foundation of Technology, Finland (Tekniikan edistämissäätiö).
0097-3165/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2008.04.005

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:patric.ostergard@tkk.fi
mailto:olli.pottonen@tkk.fi
http://dx.doi.org/10.1016/j.jcta.2008.04.005


P.R.J. Östergård, O. Pottonen / Journal of Combinatorial Theory, Series A 115 (2008) 1570–1573 1571
blocks of 5 and 6 points [9]; see also [14]. It is known that an S(4,5,17) could not have nontrivial
automorphisms [4].

A bijection f : V → V ′ maps a design Q = (V , B) to the design f (Q) = (V ′, B′) with block set
B′ = { f (B): B ∈ B}. The designs Q and f (Q) are said to be isomorphic and f is called an isomorphism.
An isomorphism that maps a design onto itself is an automorphism. For any set V , the set of all
bijections of V onto itself is a group called the symmetric group on V and is denoted by Sym(V ). Now
the definition above of how these functions map designs is a group action. The automorphism group
of a design Q = (V , B) is the group Aut(Q) := {γ ∈ Sym(V ): γ (Q) = Q}.

Let Q = (V , B) be an S(t,k, v) and p ∈ V . The derived design of Q induced by p is defined as
Q p = (V p, B p) with

V p = V \ {p}, B p = {
B \ {p}: p ∈ B ∈ B

}
.

Clearly Q p is an S(t − 1,k − 1, v − 1). Accordingly the existence of an S(t,k, v) implies the existence
of an S(t − 1,k − 1, v − 1). For two points p,q we can consider a derived design of a derived design,
(Q p)q , which we will denote by Q p,q . Derivation is commutative, that is, Q p,q = Qq,p .

In the rest of the paper we describe an exhaustive search for S(4,5,17). By running the computer
search we found that no S(4,5,17) exists. Thus no S(t, t + 1, t + 13) exists for t � 4, since such
designs would have an S(4,5,17) as a derived design. It is already known that no such design exists
for t � 12, since the number of blocks in an S(12,13,25) would be

(25
12

)
/
(13

12

)
, which is not an integer.

2. The search

We assume that the point set of a putative S(4,5,17) is Z17 = {0,1, . . . ,16}.
Let Q be an S(4,5,17). Then Q can be represented as a list (Q16, Q15, . . . , Q0) of derived designs.

(Note that the list contains labelled designs, not arbitrary isomorphism class representatives.) In the
search, we first construct a set of pairs (Q16, Q15), called seeds, of derived designs of a putative
S(4,5,17) such that any S(4,5,17) has an isomorphic copy Q such that (Q16, Q15) is a seed. Note
that the two designs of a seed have a common derived triple system, as Q16,15 = Q15,16. The seeds
are classified in two independent ways based on a recent classification [6] of S(3,4,16). Using a
straightforward exhaustive search we finally try to augment each seed to an S(4,5,17).

Instead of using the straightforward exhaustive search in the final stage, we could use the classifi-
cation of S(3,4,16) to find all extensions of seeds (Q16, Q15) to triples (Q16, Q15, Q14), extend these
to (Q16, Q15, Q14, Q13), and so on, finally ending up with a complete S(4,5,17), if such a design
exists. However, this alternative approach is harder to implement and possibly even slower than the
method used.

2.1. Generating seeds

There are 80 nonisomorphic S(2,3,15) [3,13] and 1,054,163 nonisomorphic S(3,4,16) [6]. Let
T1, T2, . . . , T80 be isomorphism class representatives of the S(2,3,15) such that each design has point
set Z15. The isomorphism class representatives of the S(3,4,16) are partitioned into 80 subsets Ci ,
i = 1, . . . ,80, such that R ∈ Ci exactly when i is the smallest integer for which Ti is isomorphic to
some derived design of R. By relabeling if necessary we can assume that for any R ∈ Ci we have
V (R) = Z16 and R15 = Ti .

Isomorphism testing for S(2,3,15) is straightforward as the multiset of 15 integers with the num-
bers of Pasch configurations each point intersects is a certificate; a Pasch configuration is a set of four
triples isomorphic to {{a,b, c}, {a,d, e}, {b,d, f }, {c, e, f }}. For computing isomorphisms and automor-
phisms we use the graph automorphism software nauty [11].

Let Q be an isomorphism class representative of a putative S(4,5,17) and let i be the smallest
integer for which some derived triple system of a derived quadruple system of Q is isomorphic to Ti .
By relabeling if necessary we can assume that the derived design Q16 is equal to some R ∈ Ci .
The design Q15 is then a Steiner quadruple system satisfying the following conditions: it has point
set Z17 \ {15}, its derived triple system (Q15)16 is equal to Ti , none of its derived triple systems is
isomorphic to any T j with j < i, and it has no blocks in common with Q16. This implies that Q15
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is isomorphic to some G′ ∈ Ci . Now we define seeds as pairs (Q16, Q15) such that Q16 ∈ Ci and Q15
satisfies the conditions listed in this paragraph.

Thus all seeds can be found by iterating over every i, R, G ∈ Ci and considering all pairs (R, G′)
such that G′ is isomorphic to G and G′

16 = Ti . However all such pairs are not seeds since the two
S(3,4,16) may have common blocks.

We have yet to describe how to find every possible G′ . We give two different algorithms. Since G′
has point set Z17 \ {15} and the algorithms use the more convenient set Z16, the point 15 need to be
replaced with 16.

Algorithm 1. Assume Ci and Ti are given, V (G) = Z16 for every G ∈ Ci and V (Ti) = Z15. For each
G ∈ Ci and k ∈ Z16 such that Gk is isomorphic to Ti , find a permutation γk such that γk(Gk) = Ti and
γk(k) = 15. For every G , γk and α ∈ Aut(Ti), output the design α(γk(G)).

All permutations act on Z16; we define α(15) = 15 for α ∈ Aut(Ti) ⊂ Sym(Z15).

Theorem 1. Algorithm 1 above outputs every G′ such that G′ is isomorphic to some G ∈ Ci , V (G′) = Z16 and
G′

15 = Ti .

Proof. First note that for any Steiner system Q, point q, and permutation δ ∈ Sym(V (Q)), we have
δ(Qq) = δ(Q)δ(q) .

Let G and G′ satisfy the assumptions. Because G and G′ are isomorphic, there exists a β ∈
Sym(Z16) such that β(G) = G′ . Let k = β−1(15). Since β(Gk) = β(G)β(k) = G′

15 = Ti , the algorithm
finds a permutation γ with γ (Gk) = Ti and γ (k) = 15.

Since β(Gk) = Ti = γ (Gk), we have βγ −1 ∈ Aut(Ti). Let α = βγ −1. The algorithm outputs G′ =
β(G) = α(γ (G)). �
Algorithm 2. Assume Ci and Ti are given, V (G) = Z16 for every G ∈ Ci and V (Ti) = Z15. Consider
every S(3,4,16) G′ with G′

15 = Ti and output G′ if none of its derived systems is isomorphic to T j
with j < i.

In the classification of S(3,4,16) [6], a search for every G′ with G′
16 = Ti and V (G′) = Z16 was

carried out using a method similar to that described in Section 2.2. Possibility to reuse the data made
Algorithm 2 practical.

To gain more confidence in the results of our computer search, we searched for all seeds using
both Algorithm 1 and Algorithm 2. The searches resulted in isomorphic sets of seeds.

The isomorphism class representatives may be ordered in 80! different ways for the list T1, . . . , T80.
Furthermore, for each order, the isomorphism class representatives in the sets Ci may be chosen in a
great number of ways and listing the choices here is infeasible. Since different choices lead to different
sets of seeds, an independent verification might produce a different number of seeds. Regardless of
these choices, however, the seeds will always have the crucial property that, up to isomorphism, each
S(4,5,17) can be obtained by extending a seed.

The computational requirements for finding the seeds depend on the order of the triple systems.
The order used in this work is shown in Table 1, which lists the indices assigned to the designs
T1, . . . , T80 in [10]. That is, T1 is #77 in [10], T2 is #67, etc.

Table 1
Indexing of S(2,3,15)

77 67 72 68 73 42 71 66 65 78 79 80 69 50 37 49 46
57 48 56 51 60 38 45 55 74 52 75 44 43 47 54 41 53
40 35 58 39 62 70 64 36 59 63 76 33 34 32 30 28 27
24 23 31 25 29 26 21 22 61 11 20 12 19 9 10 18 15

8 13 14 17 4 6 5 16 3 7 2 1
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2.2. Extending seeds

The task of extending a seed to an S(4,5,17) can be formulated as an instance of the exact cover
problem. In the exact cover problem, we are given a finite set U and a set S of subsets of U . The task
is to produce a partition of U consisting of sets in S .

First consider the task of producing an S(4,5,17). In this case the set U consists of all quadruples,
and S of all candidate blocks. More formally, let q(A) = {S ⊂ A: |S| = 4} be the set of all quadruples
contained in a set A. Now U = q(Z17) and S = {q(B): B ⊂ Z17, |B| = 5}.

Extending a seed is the same as producing an S(4,5,17) containing a given set of blocks. This is
formulated as an exact cover problem by suitably restricting the sets U and S defined above.

The libexact software [7], based on an algorithm suggested by Knuth [8], was used for this search.

3. Results

No S(4,5,17) was found when running the search, and we conclude that none exists. Thus no
S(t, t + 1, t + 13) exists for 4 � t � 11; for t � 12 the nonexistence was already known.

The computationally intensive part of this result was the earlier classification of S(3,4,16) [6],
which required several years of CPU time, while all searches described in this paper required less
than two days. In total 5,194,881 seeds were obtained during this process.

We corroborated earlier classification results for S(4,5,11) and S(4,5,15). Indeed, no S(4,5,15)

was found and a unique S(4,5,11) was obtained. Only a few seconds of CPU time were required in
these cases.

The next v for which existence of S(4,5, v) remains open is 21. As the number of Steiner
triple systems of order 19 has been shown [5] to be 11,084,874,829, classification of S(3,4,20) and
S(4,5,21) using the approaches in [6] and here, respectively, is not feasible.
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