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A Mutation in C2orf64 Causes Impaired Cytochrome c
Oxidase Assembly and Mitochondrial Cardiomyopathy

Merei Huigsloot,1,2 Leo G. Nijtmans,1,2 Radek Szklarczyk,3 Marieke J.H. Baars,4

Mariël A.M. van den Brand,1,2 Marthe G.M. HendriksFranssen,1,2 Lambertus P. van den Heuvel,1,2

Jan A.M. Smeitink,1 Martijn A. Huynen,3 and Richard J.T. Rodenburg1,2,*

The assembly of mitochondrial respiratory chain complex IV (cytochrome c oxidase) involves the coordinated action of several assembly

chaperones. In Saccharomyces cerevisiae, at least 30 different assembly chaperones have been identified. To date, pathogenic mutations

leading to a mitochondrial disorder have been identified in only seven of the corresponding human genes. One of the genes for which

the relevance to human pathology is unknown is C2orf64, an ortholog of the S. cerevisiae gene PET191. This gene has previously been

shown to be a complex IVassembly factor in yeast, although its exact role is still unknown. Previous research in a large cohort of complex

IV deficient patients did not support an etiological role of C2orf64 in complex IV deficiency. In this report, a homozygous mutation in

C2orf64 is described in two siblings affected by fatal neonatal cardiomyopathy. Pathogenicity of the mutation is supported by the results

of a complementation experiment, showing that complex IVactivity can be fully restored by retroviral transduction of wild-typeC2orf64

in patient-derived fibroblasts. Detailed analysis of complex IV assembly intermediates in patient fibroblasts by 2D-BN PAGE revealed the

accumulation of a small assembly intermediate containing subunit COX1 but not the COX2, COX4, or COX5b subunits, indicating that

C2orf64 is involved in an early step of the complex IVassembly process. The results of this study demonstrate that C2orf64 is essential for

human complex IV assembly and that C2orf64mutational analysis should be considered for complex IV deficient patients, in particular

those with hypertrophic cardiomyopathy.
Identification of the disease-causing mutation in patients

with amitochondrial disorder due to cytochrome c oxidase

(complex IV) deficiency (MIM 220110) is complicated by

the sheer number of candidate genes. Mutations in

mtDNA-encoded genes MT-CO1, MT-CO2, and MT-CO3,

as well as MT-TS1 and MT-TL1, have been identified,

although these are relatively rare.1 Remarkably, mutations

in the ten nuclear-encoded structural complex IV subunits

appear to be even rarer because only one case has been

described to date.2 The majority of deficiencies are caused

by mutations in nuclear genes encoding proteins involved

in the synthesis and assembly of complex IV. These include

TACO1 (MIM 612958), a translational activator of COX1;3

LRPPRC (MIM 607544) that stabilizes COX1 and 3

mRNA;4,5 COX10 (MIM 602125) and COX15 (MIM

603646) that are involved in heme A biosynthesis;6,7

SCO1 (MIM 603644) and SCO2 (MIM 604272) that cata-

lyze copper insertion into COX2;8–10 and SURF1 (MIM

185620) that is involved in early maturation of

COX1.11,12 Despite the progress that has been made in

understanding the mechanism of complex IV assembly,

many complex IV deficient cases remain unsolved at the

molecular genetic level. Thus, in yeast, many more

assembly factors that have human orthologs have been

identified, including Cox11p, Cox16p, Cox17p, Cox19p,

and Pet191p. Some of the human orthologs of the

genes encoding these proteins have been screened for the
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presence of mutations in complex IV deficient patients.

However, no mutations have been found thus far, suggest-

ing that these genes might not be relevant to human

pathology.13,14

The study described here has been carried out in the

Netherlands in accordance with the applicable rules con-

cerning the review of research ethics committees of the

Radboud University Nijmegen Medical Center and

informed consent. This report describes two patients

from a consanguineous family of Turkish origin. The first

child was born by Caesarian section because of fetal stress

after 39 weeks of an uneventful pregnancy. The patient

died on day 8 after birth because of hypertrophic cardio-

myopathy of the left and right ventricles. During the

next pregnancy, an ultrasound examination performed at

week 34 revealed signs of fetal cardiomyopathy. The girl

was born at week 36 by caesarean section because of fetal

stress. On day 10 after birth, this patient also died because

of hypertrophic restrictive cardiomyopathy. For both

patients, functional impairment of brain or skeletal

muscle, often observed in complex IV deficiency,15

were not documented. Postmortem microscopic investiga-

tions showed accumulation of lipid droplets in cardiomyo-

cytes and mitochondrial proliferation. Measurements of

the mitochondrial respiratory chain enzyme activities

were performed by previously described methods16,17

in cultured fibroblasts of patient P1 revealed a severe
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Table 1. Activity of Respiratory Chain Enzymes in Fibroblasts from
Patient P1

Enzyme Enzyme Activitya Control Rangea

Complex I 150 100–310

Complex II 528 520–845

Complex III 1523 1320–2610

Complex IV 150 680–1190

Citrate synthase 206 144–257

Patient P1 is homozygous for the c.157G>C mutation in C2orf64.
a Activities of complex I, complex II, complex III, and complex IV are expressed
as milliunits per unit citrate synthase (CS); activity of citrate synthase is
expressed as milliunits per milligram protein.
complex IV deficiency (Table 1). The activity of complex IV

in cultured fibroblasts and in heart muscle was reduced as

well (Table 2). In the same family, two subsequent preg-

nancies were tested for the presence of complex IV defi-

ciency by measuring enzyme activities in native chorionic

villi.18 The activities in both the chorionic villi and in

cultured fibroblasts obtained from skin biopsies collected

after birth revealed (near-) normal complex IV activities

(Table 2). Genetic analysis did not reveal mutations in

the mtDNA and in the nuclear genes known to cause

complex IV deficiency, including SCO1, SCO2, COX10,

and COX15. Subsequently, homozygosity mapping was

performed on the index case patient P1 (VI-1 in

Figure 1A), patient P2 (VI-2 in Figure 1A), and the two

healthy siblings (VI-3 and VI-4 in Figure 1A), revealing

a large candidate region on chromosome 2 (73.28–145.07

Mb). This region, containing a total of 710 genes, was

screened for known human complex IV genes as well as

for human orthologs of yeast genes encoding known

complex IV assembly and maintenance proteins. Only

one candidate gene is present in this region, C2orf64, the

human ortholog of PET191. It has been shown that

complex IV activity is deficient in yeast pet191D mutant

strain, whereas the activity of succinate:cytochrome c

oxidoreductase (complex IIþIII) is elevated, and complex
Table 2. Activity of Complex IV in Tissues and Cultured
Fibroblasts from Patients and Healthy Sibling

Patient or
Healthy Sibling Genotypea Tissue

Complex IV
Activityb

Control
Rangeb

Patient P2 mut/mut heart 4 114–424

fibroblasts 16 680–1190

Healthy sibling S3 wt/mut chorionic villi 269 271–922

fibroblasts 623 680–1190

Healthy sibling S4 wt/wt chorionic villi 557 271–922

fibroblasts 714 680–1190

a Genotype refers to the presence of wild-type (wt) or c.157G>C mutated
(mut) C2orf64 alleles.
b The activity of complex IV is expressed as milliunits per unit citrate synthase.

The Am
III and V protein levels are unaffected.19 This indicates

that mitochondrial translation in pet191D cells is normal,

yet levels of Cox1p, Cox2p, and Cox3p protein were found

to be reduced. From these findings, it was concluded that

Pet191p is a complex IV assembly protein in yeast.19 In

a previously published study of this gene in a large cohort

of complex IV deficient patients, no mutations were

observed.14 We found a homozygous mutation at

c.157G>C (p.Ala53Pro) in C2orf64 (NM_001008215.1) in

the two affected children, whereas healthy sibling S3 was

heterozygous for this mutation, and healthy sibling S4

carried two wild-type alleles (Figure 1B). This was in agree-

ment with the homozygosity mapping data (Table S1).

Both parents were heterozygous for the mutation. This

mutation was not detected in 216 alleles of healthy control

individuals of Turkish origin, nor is it present in EST data-

bases, consistent with pathogenicity of the mutation. In

order to assess whether the C2orf64 p.Ala53Pro mutation

had an effect on complex IV assembly, we performed 1D

and 2D blue native PAGE (BN-PAGE) analysis on fibro-

blasts of the two patients and their healthy siblings. One-

dimensional BN-PAGE showed that both the activity and

amount of holocomplex complex IV was strongly reduced

in both patients compared to the siblings (Figure 2A). Two-

dimensional BN-PAGE analysis subsequently confirmed

the near absence of holocomplex IV and showed COX1

accumulation in subcomplexes (Figure 2C). Complex IV

assembly is a stepwise process with three milestones in

the form of subassemblies S1, S2, and S3 that are formed

by the sequential addition of subunits and cofactors.20,21

The predominant subcomplex in the C2orf64 patients

was similar in size to the smallest subcomplex observed

in control cells (Figure 2C). This subcomplex appears to

be similar to the previously described subcomplex S122

that has also been observed in complex IV deficiency due

to mutations in the gene-encoding assembly factor

SURF1,23,24 although these patients also show a varying

degree of accumulation of subcomplex S2, the next

subassembly in the complex IV assembly pathway. The

levels of individual complex IV subunits COX1, COX2,

COX4, and COX5a were also reduced (Figure 2B), which

suggests that the very low levels of holocomplex IV and

absence of higher order assembly intermediates beyond

subcomplex S1 results in downregulation or destabiliza-

tion of individual complex IV subunits. The reduced levels

of COX1 and COX2 are compatible with the reduced levels

of the yeast orthologs in Pet191p deficient yeast cells.19

Taken together, these observations suggest a role for

C2orf64 in an early stage of the complex IV assembly

process.

To confirm that the mutation in C2orf64 caused

the strong reduction of complex IV holocomplex

amount and activity, we retrovirally transduced both

index patient and healthy sibling fibroblasts with

human full-length C2orf64. Complementation of patient

fibroblasts with wild-type C2orf64 resulted in normal-

ization of fully assembled complex IV (Figure 3).
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Figure 1. Family Pedigree andMolecular
Genetic Analysis of the C2orf64 cDNA
(A) Pedigree of the family of the two
patients described in this report.
(B) Electropherograms showing the wild-
type sequence of C2orf64 (top panel) and
the nucleotide changes in the complex IV
deficient patients P1 (VI-1 in A) and P2
(VI-2) and the healthy siblings S3 (VI-3)
and S4 (VI-4). The arrow indicates the
mutated nucleotide c.157G>C. P1 and P2
are homozygous for the c.157G>C muta-
tion, whereas S3 is a heterozygous carrier
and S4 carries the wild-type sequence.
Please note that the reverse sequence is
shown.
Moreover, normal in-gel activity of complex IV was

present in fibroblasts from the healthy siblings and in

the C2orf64-complemented patient cell line (Figure 3).

Overexpression of wild-type C2orf64 in healthy siblings

had no effect on complex IV levels or activity (Figure 3).

These observations support the notion that the mutation
tion of a COX1 containing early complex IV assembly intermediat
different antibodies can only be compared qualitatively because exp
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in C2orf64 is responsible for the complex IV deficiency in

our patients.

Further support for the pathogenic role of the

p.Ala53Pro mutation came from protein sequence anal-

ysis. The C2orf64 protein contains two Cx9C motifs that

are highly conserved among all eukaryotes with complex
Figure 2. Reduced Complex IV Activity
and Amount in Fibroblasts from the
Patients with a C2orf64 Mutation
(A) Fibroblasts from patients P1 and P2
show a severely reduced in-gel activity of
complex IV32 compared to the unaffected
siblings S3 and S4 (top panel). The
lower three panels show the results
of immunoblots after nondenaturing
BN-PAGE,33 revealing a severely reduced
complex IV amount in patients P1 and
P2. Complex IV was stained with anti-
COX4 antibodies. Equal loading of the
gel was tested by staining for complex III
(by using anti-CORE2) and complex II
(by using anti-70 kDa subunit). Holocom-
plex IV is indicated by the arrowhead;
the asterisk indicates a nonspecific band.
(B) Immunoblot after SDS-PAGE of fibro-
blast extracts of patients P1 and P2 and
healthy siblings S3 and S4 showing
reduced expression levels of complex IV
subunits COX1, COX2, COX4, and
COX5a in fibroblasts of both patients.
The complex II 70 kDa subunit (CII
70 kDa) was used as a loading control.
(C) Two dimensional BN-PAGE analysis of
fibroblasts from patients P1 and P2 and the
healthy siblings S3 and S4 was performed
in accordance with standard procedures.
Blots were stained by using antibodies
against different complex IV subunits as
indicated. Holocomplex IV is indicated
(H). Patients P1 and P2 show accumula-
tion of a small subcomplex (indicated by
S1) that contains COX1 but not COX2,
COX4, and COX5a. This indicates that
mutation of C2orf64 results in accumula-

e. Note that blots of different fibroblasts and blots stained with
osure times are not the same.
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Figure 3. Complementation with Wild-Type C2orf64 Restores
Complex IV
Fibroblasts from patient P2 and healthy siblings S3 and S4 were
infected with retrovirus containing no insert (pDS) or C2orf64
(C2). The C2orf64 complementation was done by cloning full
length human C2orf64 cDNA clone IOH26651 (GeneID:
493753; Imagenes, Berlin, Germany) into the Gateway retroviral
destination vector pDS_FBneo (# MBA-295, LGC, Middlesex, UK)
with the Gateway LR Clonase II enzyme mix (Invitrogen).
Recombinant viruses were produced by using the amphotropic
packaging cell line PA317 (#CRL-9078, LGC, Middlesex, UK)
according to the manufacturer’s protocol (Invitrogen, Breda,
The Netherlands). P2, S3, and S4 fibroblasts were incubated for
24 hr with a 1:1 mixture of growth medium and virus-containing
medium in the presence of 4 mg/ml polybrene,34 followed by
14 days selection with 500 mg/ml geneticin (G418, PAA, Pasching,
Austria). G418-resistant cells were used for biochemical analyses
within 5 passages after transduction. P2 fibroblasts grew very
slowly and all cells failed to survive the selection procedure
upon retroviral transduction of the empty vector. Mitochon-
drion-enriched fractions from all other transduced cell lines
were tested for in-gel activity of complex IV after BN-PAGE. In
addition, amounts of OXPHOS complexes were visualized with
anti-NDUFA9 (complex I; CI), anti-70 kDa subunit of complex
II (CII), anti-CORE2 for complex III (CIII), anti-COX1 for
complex IV (CIV) and anti-complex Va for complex V (CV).
The results show a clear complex IV deficiency, consistent with
the results in Figure 2A, which is rescued by complementation
with wild-type C2orf64 (indicated by C2). Lanes indicated with
wt are nontransduced fibroblasts, lanes with pDS indicate fibro-
blasts transduced with empty virus. Note that the complex III
panel shows three bands, the lowest of which represents holo-
complex III, whereas the two more slowly migrating bands
most likely represent supercomplexes containing complex III.
The middle band is absent in patient P2 and returns after comple-
mentation with wild-type C2orf64. This middle band therefore
most likely represents a supercomplex containing complex III
and complex IV.
IV (Figure 4A). In twin Cx9C motif proteins with a known

3D structure, COX17 and COX6b, the cysteines in these

motifs form intramolecular disulfide bridges that stabilize

two antiparallel a helices in a hairpin conformation.25,26

If C2orf64 adopts such a helical hairpin structure, the

p.Ala53Pro mutation will have a significant influence on

protein structure, because proline residues lack an amide

proton, precluding the hydrogen bond required for the
The Am
formation of a-helices.27 Additionally, sterical interference

of the proline sidechain with the a-helix backbone28

restricts the presence of prolines to the first four positions

of a helix.27 Indeed, analysis of eukaryotic orthologs of

not only Pet191p (Figure 4A) but also all other 23 human

mitochondrial twin Cx9C proteins shows that prolines

appear exclusively within the first four residues of a helices

(data not shown). In contrast, the p.Ala53Pro mutation is

present at the seventh position and is likely to interfere

with its conformation (Figure 4B). Consistent with the

predicted structure of Pet191p, the first cysteine (C14) of

the first Cx9C motif and the second cysteine (C57) of

the second Cx9C motif, which are predicted to interact

with each other, have been shown to be essential for

respiration in yeast.19 Thus, the p.Ala53Pro mutation in

C2orf64 is likely to interfere with the oxidative folding

process of this twin Cx9C domain-containing protein

that is linked to its mitochondrial inter membrane space

localization.29–31
Supplemental Data

Supplemental Data include one table and can be found with this

article online at http://www.cell.com/AJHG/.
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